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Abstract

Perceptual hashing algorithms (PHAs) are widely used for identifying illegal
online content and are thus integral to various sensitive applications. However, due
to their hasty deployment in real-world scenarios, their adversarial security has
not been thoroughly evaluated. This paper assesses the security of three widely
utilized PHAs—PhotoDNA, PDQ, and NeuralHash—against hash-evasion and
hash-inversion attacks. Contrary to existing literature, our findings indicate that
these PHAs demonstrate significant robustness against such attacks. We provide an
explanation for these differing results, highlighting that the inherent robustness is
partially due to the random hash variations characteristic of PHAs. Additionally,
we propose a defense method that enhances security by intentionally introducing
perturbations into the hashes.

1 Introduction

Perceptual hashing, also known as robust hashing, is a content fingerprinting technique that generates
similar binary hashes for perceptually similar contents and different hashes for different contents
[1]. Perceptual hashing is useful in various applications such as content moderation, authentication,
and detection. Numerous perceptual hash algorithms (PHAs) have been developed or deployed
for practical applications [2]. Early examples include the algorithm used on YouTube to identify
copyrighted material [3] and algorithms used in online image search engines of Google, Microsoft
Bing, etc [4].

Recently, PHAs have gained more critical importance, particularly in responding to the requiremnt of
reporting illicit content. For instance, in cases involving Child Sexual Abuse Media (CSAM), US
media service providers are legally obliged to examine suspected illegal content and report it to a
“Cyber Tip Line” operated by the National Center for Missing and Exploited Children (NCMEC).
Microsoft’s PhotoDNA and Meta’s PDQ were immediately deployed for this purpose [5][6][7].

With a growing emphasis on user privacy, technologies like end-to-end encryption have become
prevalent. This shift has led to the deployment of PHAs on the client side before data encryption [8].
For example, Apple has proposed to deploy NeuralHash on all its iOS devices [9]. However, this
client-side deployment has raised significant concerns among the client users about their data privacy,
which inadvertently arouses a widespread criticism regarding the security and privacy-preserving
capabilities of PHAs [10]. Criticism has been further fueled by recent studies highlighting the
vulnerability of PHAs to adversarial attacks and the potential for information leakage through hash
bits [4][11][12].
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Given the critical role PHAs play in sensitive applications, it is essential to ensure their security.
Unfortunately, PHAs are often deployed hastily without sufficient security evaluation. This paper
systematically assesses the adversarial robustness of three widely used PHAs—PhotoDNA, PDQ,
and NeuralHash—against two types of attacks: hash-evasion attacks, aimed at enabling illicit content
to evade detection, and hash-inversion attacks, aimed at reconstructing the original secret content
from hashes. To support this evaluation, we introduce two new attack algorithms: a query-efficient
black-box adversarial attack algorithm and a data-efficient hash inversion algorithm.

The major contributions of this paper are as follows.

• This study demonstrates that PHAs exhibit notable robustness against blackbox adversarial
evasion attacks when realistic constraints on image distortion, query budget, and hash
difference are applied. This finding challenges previous studies that overlooked these
constraints, leading to unjustified criticisms of PHAs.

• This paper confirms the sufficient privacy-preserving capabilities of hash bits, countering
claims from some existing studies that suggested hash bits disclose significant information
about the content of the original images. The key point is how diverse the images are.

• This research reveals that the security of PHAs is partially due to the unique property of
random hash variations. Based on this observation, a defense method is proposed to enhance
security by intentionally randomizing hash bits.

The paper is organized as follows: Section 2 provides a literature review, Section 3 formulates the
attack and defense algorithms, Section 4 presents the experiment results, and Section 5 concludes
the paper. More detailed experiment data can be found in the Appendix. The source code of the
experiments, including ways to access binary executables of the PHAs, can be found at https:
// github. com/ neddamj/ nnhash .

2 Literature Review

Among the numerous PHA’s [2], this paper focuses on the following three major ones due to their
widespread deployment in practice:

• PhotoDNA, released by Microsoft in 2009, is used by over 70 companies including Cloud-
flare and Dropbox [6][13][14]. It generates an 1152-bit hash for each input image;

• PDQ, launched by Meta in 2019 [7] and heavily inspired by pHash [2][15], produces a
256-bit hash for each input image.

• NeuralHash, released by Apple in 2021 with the goal of identifying CSAM [9], creates a
more concise 96-bit hash for each input image.

The adversarial robustness of PhotoDNA, PDQ, and NeuralHash to either hash-evasion or hash-
inversion attacks has not been thoroughly investigated, primarily due to their relative novelty and
the absence of publicly available source code. For hash-evasion, [16] was the first to explore the
robustness of NeuralHash, revealing its vulnerability to whitebox attacks, assuming the adversary has
full access to the PHA. Additionally, [17] examined PDQ and demonstrated how adversarial images
could be generated in the whitebox context. Furthermore, [18] utilized linear interpolation between
two images to create adversarial examples.

Regarding blackbox hash-evasion attacks, where the adversary only has access to the input and output
of the algorithm, [17] examined PDQ. It concluded that it was not robust against untargeted blackbox
attacks. Similarly, [19] evaluated both PhotoDNA and PDQ, finding that they lacked robustness
against both targeted and untargeted attacks. While these studies are closely related to the current
paper, they overlooked the importance of adversaries’ constraints on image distortion, query budget,
as well as hash difference levels. By all means, unconstrained blackbox attacks may always be
successful, particularly in the untargeted setting.

Regarding hash-inversion attacks or privacy-preserving capabilities of PHAs, Microsoft initially
claimed that the hashes generated by PhotoDNA were irreversible and could not be used to reconstruct
the original images [20]. However, a blog post [12] challenged this assertion, suggesting that
PhotoDNA hashes might contain enough information to synthesize images from the hashes. To
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the best of our knowledge, [12] is the only work addressing the reconstruction of original images
from hashes, and it specifically focuses on PhotoDNA, which uses long hashes. Another method for
investigating information leakage involves training classifiers to identify image content from hashes.
Studies such as [16] and [18] demonstrated that NeuralHash hashes could indeed reveal information
about their source images, such as identifying the object’s class. These findings contrast with those of
[21], which examined PhotoDNA hashes and concluded that they were resistant to such classification
attacks.

3 Attack Algorithms and Defense Method

In a perceptual hash system, a service provider scans a client’s unencrypted content, extracts hashes
for each image using a perceptual hashing algorithm (PHA) and compares these hashes with a
database of known illicit hashes. If a match is found, an alarm is raised or the unencrypted content is
forwarded for further analysis [8]. In this context, we consider two types of adversaries: the client
adversary, who aims to evade hash matching, and the service provider (or third-party) adversary,
who seeks to reconstruct the client’s original images from collected hashes. This paper evaluates
the security of three widely used PHAs—PhotoDNA, PDQ, and NeuralHash—against two specific
types of attacks: blackbox hash-evasion attacks, which are employed by the client adversary, and
hash-inversion attacks, which are utilized by the service provider adversary. Additionally, we propose
a defense mechanism that can be integrated into the perceptual hashing system.

3.1 A Query-Efficient Adversarial Blackbox Attack Algorithm for Hash Evasion

This study focuses exclusively on blackbox adversarial attacks, rather than whitebox attacks, to
reflect the practical scenario where PHA implementations are proprietary. In many cases, the details
of PHA architectures and model weights are not publicly available due to their commercial nature.
For example, Microsoft enforces non-disclosure agreements for PhotoDNA users, providing only
an emulation of the algorithm. Similarly, although [22] released weights for the first-generation
NeuralHash, Apple has since updated the algorithm, and the details of the latest version remain
confidential.

Consider the original image I0 with the hash value h0 = H(I0). The objective of the client adversary
is to generate a very similar image Iadv whose new hash hadv = H(Iadv) is sufficiently different
from h0 in untargeted attacks or sufficiently similar to some target hash htar in targeted attacks. We
use normalized Hamming distance Dh(h0,hadv) to evaluate the similarity of two hashes, and use
per-pixel normalized L2 norm L2(I0, Iadv) to evaluate the similarity of two images.

Because the output of PHAs is hash bits, not logits or class decisions, we propose a joint soft-label
hard-label attack (JSHA) algorithm that can drastically improve blackbox attack query efficiency.
JSHA consists of two steps. The first step is to apply a soft-label blackbox attack to generate an initial
adversarial image Iinit so that its hash hinit = H(Iinit) is far away from h0 for untargeted attacks or
close to htar for targeted attacks. This step is formulated as the optimization

max
δ

Dh (h0,H(I0 + δ)) (untargeted), or, min
δ

Dh (htar,H(I0 + δ)) (targeted) (1)

The optimization is conducted iteratively. In each iteration, the adversary queries the PHAs with its
adversarial input I0+δ to get the hash, and uses the hash to optimize the loss. After reaching the query
number threshold or the hash distance threshold D0, this first step stops with output Iinit = I0 + δ.

The second step applies a hard-label blackbox attack to reduce the image distortion while maintaining
the hash distance obtained in the first step. Specifically, this step solves the following optimization

min
Iadv

L2(I0, Iadv), s.t. Dh(h0,H(Iadv)) ≥ D0 (untargeted), Dh(h0,H(Iadv)) ≤ D0 (targeted) (2)

Starting from Iadv = Iinit, the adversary queries the PHAs to get the hash and uses the queried hash
to optimize (2) until the query number threshold or the threshold of L2(I0, Iadv) is reached.

One of major advantages of this algorithm is high query efficiency. The first step is an unconstrained
optimization and a large learning rate can be applied to get an initial adversarial sample quickly. In
the second step, since we start from Iinit which is only a noisy version of I0, the convergence is fast.
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(a) (b)

Figure 1: (a) Hash inversion attack model (left: for Celeb Dataset. Right: for STL-10 dataset). (b)
Architecture of residual block.

3.2 A Data-Efficient Hash-Inversion Attack Algorithm

GAN (generative adversarial network) was trained in [12] to invert CelebA images. However,
the adversary may need more data-efficient hash-inversion attack algorithms because the training
data may not be abundant. For this, we has developed new and more data-efficient generative
models to reconstruct the original input images from the hashes. We designed a decoder-style deep
model, similar to the Fast Style Transfer [23], to convert the N -bit hashes to (64, 64) images. This
model is mainly a combination of residual blocks depicted in Fig. 1(b), with fractionally-strided
convolutions/deconvolutions for learned upsampling. The entire architecture is described in Fig. 1(a),
where the left network is for the MNIST and CelebA dataset while the right network is used for the
STL-10 dataset.

For a given training dataset, we first compute the hashes of each image offline and store the image-
hash pairs. We then train the model outlined above to reconstruct the images as closely as possible by
minimizing the mean-square-error (MSE) loss between the model output and the image from which
the hash was generated.

3.3 A Defense Method based on Random Hash Perturbation

The adversaries rely on gradient estimation to solve the optimization problems. It is well known
that hash bits of PHAs change slightly and randomly with respect to slight changes in input images.
Based on existing work on random perturbation defense [24][25], we have the following proposition:

Proposition 1. Gradient estimation based on queried hash is not reliable due to the random variation
of hash bits.

An outline of the proof is in the Appendix A.1. The random variation of hash bits makes the
adversaries’ optimization struggle to converge, which will be demonstrated in the next section.
Furthermore, considering this observation, we propose a defense method where the PHAs randomly
invert q-portion of the hash bits to guarantee sufficient hash randomness, where 0 ≤ q ≤ 1.

4 Experiment

4.1 Performance Metrics

We use the attack success rate for assessing the robustness against blackbox adversarial hash-evasion
attacks. Given a set of M original images Im0 with their corresponding hashes hm

0 , the adversary
generates adversarial images Imadv with hashes hm

adv. The attack success rate is defined as

ASR(p) =
1

M

M∑
m=1

I (Dh(h
m
0 ,hm

adv) ≷ p)) I (L2(I
m
0 , Imadv) < θ) (3)
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Table 1: ASR(p) of Targeted Hash-Evasion Attacks. (PH: PhotoDNA. PD: PDQ. NH: NeuralHash)

ZO- ZOsign
SimBA NES+ sign- -SGD

ASR SimBA +HSJA NES HSJA SGD +HSJA
PH ASR(.1) 0% 0% 0% 0% 0% 0%
PD ASR(.1) 0% 0% 0% 0% 0% 0%
NH ASR(.1) 0% 0% 0% 0% 0% 0%
[19] PH ASR(.3) (L2 = 0.19) 83% (2× 106 queries)
[19] PD ASR(.3) (L2 = 0.42) 100% (6× 105 queries)

where I(·) is the indicator function, p ∈ [0, 1] is the pre-set hash distance threshold and θ is the
pre-set image distortion threshold. For the operator “≷”, > is used for untargeted attacks, < is for
targeted attacks. Small or zero ASR(p) means a PHA is robust to an attack.

For the thresholds, we set θ = 0.1. On the other hand, we should apply large enough p to evaluate
untargeted attacks because hadv should be different from h0. It was found in [11] that most pairs
of distinct images had Dh(h0,h1) > 0.3. Therefore, we primarily use p = 0.3 in (3) to determine
the success of untargeted attacks. In contrast, we should use small enough p for targeted attacks to
make sure hadv is sufficiently close to htar. Prior studies [11] indicate that many normal image edits
would change an image’s hashes to the level of Dh(h0,h1) < 0.1. Therefore, we mainly use p = 0.1
in (3) for assessing the success of targeted attacks. This important parameter p was unfortunately
neglected by most existing adversarial robustness studies.

For hash-inversion attacks, we use the L2 distortion, the SSIM (Structural Similarity Index Measure)
[26], and the LPIPS (Learned Perceptual Image Patch Similarity) [27] between the reconstructed
image and the true image to evaluate the performance. No ASR or query budget is involved.

4.2 Experiment on Hash-Evasion Attack and Defense

In implementing our proposed JSHA algorithm, we modified three different soft-label attack algo-
rithms: SimBA [28], NES [29], and ZOsignSGD [30], to use in Step One, and modified the hard-label
attack algorithm HSJA [31] to use in Step Two. For instance, “SimBA+HSJA” means our JSHA
with a modified SimBA as Step One and a modified HSJA as Step Two. Modifications included
removing/changing constraints and adjusting hyper-parameters, etc. We compared the proposed
JSHA with the direct application of the original SimBA, NES, and ZOsignSGD algorithms. We also
compared it with existing works [17] and [19].

The experiments were conducted on 100 randomly selected images from the ImageNet validation
dataset. Step One was executed for a total of 3000 queries unless the early stopping criterion was met.
Step Two was run for an additional 2000 queries unless meeting the early stopping criterion. The
main challenge for us was the CPU-based non-parallel PHA executables, which limited the number
of images or queries we could process. In comparison, [19] only utilized 30 images in experiments.

For targeted hash-evasion attacks, experiment results are presented in Table 1 and Appendix A.3.
With a focus on ASR(0.1), we observed that all targeted attacks failed, yielding ASR(0.1) = 0. To
our knowledge, no literature has ever reported non-zero ASR(0.1), suggesting that all the PHAs are
robust against blackbox targeted hash-evasion attacks.

For untargeted attacks, experiment results are presented in Table 2 and Appendix A.4. With a focus
on ASR(0.3), we see that PDQ was robust against all adversarial attacks, with a maximum ASR(0.3)
of 1% only. It’s worth noting that although [17] achieved a much higher attack success rate against
PDQ, it required significantly more queries. The results also demonstrated that our defense method
was effective because it drastically reduced ASR(0.3) and made the PHAs robust.

4.3 Experiment on Hash-Inversion Attack and Defense

Experiments were conducted over three datasets: MNIST, CelebA, and STL-10. For each hashing
algorithm and dataset, we trained the inversion network depicted in Fig. 1 for 50 epochs, with a batch
size of 64 and an initial learning rate of 0.005. We utilized the MSE loss function with the AdamW
optimizer and the cosine annealing learning rate scheduler. While MNIST and CelebA models were
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Table 2: Adversary’s ASR(p) in Untargeted Blackbox Hash-Evasion Attacks, either without defense
(q = 0) or with defense q = 0.1. (PH: PhotoDNA. PD: PDQ. NH: NeuralHash. )

ZO- ZOsign Defense Defense
SimBA NES+ sign- -SGD +SimBA +NES

ASR SimBA +HSJA NES HSJA SGD +HSJA +HSJA +HSJA
PH ASR(.3) 1% 92% 0% 69% 0% 19% 27% 21%
PD ASR(.3) 0% 0% 0% 1% 0% 0% 0% 0%
NH ASR(.3) 0% 14% 0% 28% 0% 2% 0% 2%
[19] PH ASR(.3)= 90%, (L2 = 0.2, HSJA with 3× 104 queries)
[17] PD ASR(.3)= 73%, (L2 = 0.1, up to 8× 106 queries)

(a) STL-10 image samples with NeuralHash, without defense

(b) CelebA image samples with PhotoDNA, under various levels q of defense

Figure 2: Samples of true/original images and reconstructed images by the hash inversion algorithm.

relatively easy to train, we encountered substantial challenges when training STL-10 models. We had
to degrade STL-10 images to black-and-white in order to get meaningful reconstructed images.

Some sample images are shown in Fig. 2 whereas major experiment results are left to Appendix A.5
to save space. In general, hash-inversion failed over STL-10 while some level of success could be
seen in MNIST and CelebA over PhotoDNA hash only. The reason is that the MNIST and CelebA
images have similar or regular formation. The reconstructed images tend to converge to such common
formation when the hash is long enough. However, even in this case, the reconstructed CelebA
images could not be used to recognize the original face.

The effectiveness of random hash perturbation defense can be clearly seen in Fig. 2(b). Even the
slightest perturbation q = 0.1 made the reconstructed image quite different from the original image.

5 Conclusions

This paper evaluates the security of three widely used perceptual hashing algorithms (PHAs): Pho-
toDNA, PDQ, and NeuralHash. Contrary to many existing studies, our findings show that these
PHAs demonstrate notable robustness against both adversarial blackbox hash-evasion attacks and
hash-inversion attacks. We attribute this robustness, in part, to the random variations inherent in the
hash generation process. Building on this insight, we propose enhancing security by introducing
additional randomization to the hash bits.
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A Appendix / supplemental material

A.1 Proof of Proposition 1 of Section 3.3

Without loss of generality, consider the optimization problem (1). A common approach involves
utilizing K randomly perturbed images to query the PHAs and then using the queried hashes to
estimate the gradient as follows

g =
1

K

K∑
k=1

1

β
ukDh(htar,H(I0 + δ + βuk)) (4)

where βuk represents random perturbation [29]. Firstly, due to the nature of PHAs, overly small
perturbations may not induce any change in hash. Hence, relatively large β is required, but this
renders the gradient estimation unreliable. Secondly, the hash H(I0+ δ+βuk) randomly varies with
the small perturbation βuk. The random variation can be modeled as a noise term Z with variance
σ2. Following the analysis of [25], this noise is amplified by 1/β, leading to the gradient estimate g
being affected by a noise power σ2/β2, hence making it unreliable.

Due to the random nature of PHAs, it is almost impossible to limit the change of hash to just one or a
few hash bits by perturbations. Practical σ is usually around 0.1. β may be around 0.001. As per
[25], the signal-to-noise-ratio (SNR) of the gradient estimation can fall well below −40 dB, which
makes the adversary’s optimization not convergent or converge extremely slowly. This implies that
PHAs are theoretically robust to blackbox attacks under the query budget constraint.

A.2 Robustness Problem of PHAs to Normal Image Editing

One of the special issue of PHAs is that they seem not robust to some normal imaging editing
methods, for which [32] examined PhotoDNA, while [11] investigated PDQ and NeuralHash. Both
studies demonstrated that PHAs were robust to certain edits like compression but vulnerable to others
like cropping. While such prior works have already extensively investigated image editing on PHAs,
a new evaluation is necessary due to ongoing algorithm updates. Notably, NeuralHash has received at
least one update since its first release. This study addresses the gap in knowledge by evaluating the
robustness of the updated algorithms and, more importantly, by providing the first comparison of the
three PHAs.

Assume the original input to the PHA is an image I0, and the true output is an N -bit hash h0 = H(I0),
where H(·) denotes the hashing algorithm. The client adversary applies standard image editing
operations over I0 to obtain an adversarial image Iadv with a new N -bit hash hadv = H(Iadv). A
successful attack means hadv is sufficiently different from h0.

We experimented with four image editing operations that can keep the original high image quality:
JPEG compression with random quality factors, resizing images with random scaling factors, filtering
images with the vignette filter, or rotating images to random degrees. We calculated the hashes h0

and h1 of the images before and after the editing, and derived their distance Dh(h0,h1). Using
1000 images from the ImageNet validation dataset, we obtained ASR(p) for various p based on (3),
wherein the L2 condition was removed by setting θ to infinity.

Experiment results are presented in Tables 3. The data for ASR(.3) is highlighted in black because
p = 0.3 is the threshold we suggested to focus on. It is evident that all three PHAs were robust
to compression and resizing, but not to filtering and rotation. In conjunction with the findings in
[11][16], the PHAs are robust to many standard image editing operations except the following:

• PhotoDNA is not robust to: filtering, rotating, resizing, mirroring, bordering, cropping;

• PDQ is not robust to: filtering, rotating, mirroring [11], bordering [11], cropping [11];

• NeuralHash is not robust to: filtering, rotating, mirroring [11].

NeuralHash was the most robust among the three. Surprisingly, the newest edition of NeuralHash
that we experimented with was still not robust to filtering, rotating, and mirroring, similar to the first
edition experimented in [11][16]. Nevertheless, we believe this robustness problem can be mitigated
by training the model to be invariant to such standard operations with data augmentations.

9



Table 3: Adversary’s ASR(p) with Image Editing Attacks

ASR Compress Resize Filter Rotate
PhotoDNA ASR(.1) 3% 99% 100% 100%
PhotoDNA ASR(.2) 0% 55% 100% 100%
PhotoDNA ASR(.3) 0% 0% 94% 100%
PhotoDNA ASR(.4) 0% 0% 37% 98%

PDQ ASR(.1) 0% 27% 88% 100%
PDQ ASR(.2) 0% 0% 67% 100%
PDQ ASR(.3) 0% 0% 44% 100%
PDQ ASR(.4) 0% 0% 27% 100%

NeuralHash ASR(.1) 0% 22% 96% 100%
NeuralHash ASR(.2) 0% 0% 82% 100%
NeuralHash ASR(.3) 0% 0% 57% 96%
NeuralHash ASR(.4) 0% 0% 12% 31%

A.3 Extra Experiment Data of Targeted Hash-Evasion Attacks in Section 4.2

Besides the data shown in Section 4.2 and Table 1, more experiment data of targeted attacks are
presented in Table 4. We find that the robustness is extremely strong because of ASR(p) ≈ 0 across
all p. The only exception was NeuralHash, which exhibited ASR(0.4) of 43% with SimBA. However,
this isn’t indicative of successful adversarial attacks; rather, it’s due to numerous hashes generated
by NeuralHash having Dh(h0,h1) as low as 0.3. Under NeuralHash, many images are inherently
adversarial when evaluated at p = 0.4.

Therefore, contrary to the prior claims that PHAs were not robust against targeted attacks [19], our
findings demonstrate the strong robustness of all PHAs against targeted blackbox attacks. This is
significant to the practical application of PHAs because the client adversary needs targeted attacks
to ensure that its adversarial hashes do not inadvertently match illicit hashes in the database. The
strong robustness means it is hard for the adversary to undertake either untargeted or targeted attacks
without being caught.

Table 4: Adversary’s ASR(p) in Targeted Blackbox Hash-Evasion Attacks. (PH: PhotoDNA. PD:
PDQ. NH: NeuralHash)

ZO- ZOsign
SimBA NES+ sign- -SGD

ASR SimBA +HSJA NES HSJA SGD +HSJA
PH ASR(.1) 0% 0% 0% 0% 0% 0%
PH ASR(.2) 0% 0% 0% 0% 0% 0%
PH ASR(.3) 0% 0% 0% 0% 0% 0%
PH ASR(.4) 1% 2% 0% 0% 0% 0%
PD ASR(.1) 0% 0% 0% 0% 0% 0%
PD ASR(.2) 0% 0% 0% 0% 0% 0%
PD ASR(.3) 0% 0% 0% 0% 0% 0%
PD ASR(.4) 0% 0% 0% 0% 0% 0%
NH ASR(.1) 0% 0% 0% 0% 0% 0%
NH ASR(.2) 0% 0% 0% 0% 0% 0%
NH ASR(.3) 0% 0% 0% 0% 0% 0%
NH ASR(.4) 43% 11% 0% 0% 0% 0%
[19] PH ASR(.3) (L2 = 0.19) 83% (2× 106 queries)
[19] PD ASR(.3) (L2 = 0.42) 100% (6× 105 queries)

A.4 Extra Experiment Data of Untargeted Blackbox Hash-Evasion Attacks in Section 4.2

A.4.1 Experiment data and sample images of untargeted attacks without defense

Besides the experiment data shown in Section 4.2 and Table 2, extra experiment data are presented in
Table 5. Sample adversarial images generated with our proposed JSHA with various pre-set threshold
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p are depicted in Fig. 3 and Fig. 4, with their corresponding distortion metrics listed in Table 6.
Notably, the images with p = 0.4 were deemed invalid adversarial images as their distortion was not
under the threshold θ = 0.1, resulting in extremely noisy images. Similarly, for PDQ, the adversarial
images with p = 0.2 and 0.3 were also invalid.

Therefore, contrary to previous studies suggesting that PHAs were not robust against untargeted
attacks, we found that some PHAs like PDQ and NeuralHash could be considered as robust if realistic
constraints regarding image distortion and query budget are taken into account.

Table 5: Adversary’s ASR(p) in Untargeted Blackbox Hash-Evasion Attacks. (PH: PhotoDNA. PD:
PDQ. NH: NeuralHash. )

ZO- ZOsign
SimBA NES+ sign- -SGD

ASR SimBA +HSJA NES HSJA SGD +HSJA
PH ASR(.1) 100% 100% 18% 100% 1% 98%
PH ASR(.2) 80% 100% 2% 98% 0% 90%
PH ASR(.3) 1% 92% 0% 69% 0% 19%
PH ASR(.4) 0% 0% 0% 1% 0% 0%
PD ASR(.1) 0% 45% 0% 64% 0% 8%
PD ASR(.2) 0% 1% 0% 10% 0% 0%
PD ASR(.3) 0% 0% 0% 1% 0% 0%
PD ASR(.4) 0% 0% 0% 0% 0% 0%
NH ASR(.1) 4% 88% 0% 99% 0% 94%
NH ASR(.2) 2% 23% 0% 77% 0% 42%
NH ASR(.3) 0% 14% 0% 28% 0% 2%
NH ASR(.4) 0% 0% 0% 0% 0% 0%
[19] PH ASR(.3)= 90%, (L2 = 0.2, HSJA with 3× 104 queries)
[17] PD ASR(.3)= 73%, (L2 = 0.1, up to 8× 106 queries)

Table 6: Distortion of the Adversarial Image Samples in Fig. 3(b).

Measure Threshold p PhotoDNA PDQ NeuralHash
p = 0.1 0.02 0.07 0.02

L2 p = 0.2 0.02 0.11 0.04
p = 0.3 0.05 0.14 0.07
p = 0.4 0.17 0.19 0.19

A.4.2 Experiment data of untargeted attacks under proposed defense

Observing that some untargeted attack algorithms such as SimBA+HSJA achieved relataively high
ASR(0.3) over some PHAs such as PhotoDNA, we experimented with the hash perturbation defense
method proposed in Section 3.3. The level of our random hash perturbation was denoted as q, where
0 ≤ q ≤ 1, which stand for the ratio of the hash bits that were randomly flipped.

Besides the experiment results presented in Section 4.2 and Table 2, more experiment data are
presented in Tables 7, 8, and 9. It can be seen that random perturbation reduced ASR(p) drastically,
which means the attacks became much less successful or even failed. Even a slight perturbation with
q = 0.1 could prevent most of the attacks.

A.5 Extra Experiment Results of Hash-Inversion Attacks in Section 4.3

A.5.1 Experiment data and sample images of hash-inversion attacks without defense

Besides the experiment sample images presented in Section 4.3 and Fig. 2, a complete set of experi-
ment data of image reconstruction quality are in Table 10. In addition, Fig. 5 shows sample images
of MNIST dataset reconstruction, Fig. 6 shows sample images of STL-10 dataset reconstruction,
whereas Fig. 7 shows sample images of CelebA dataset reconstruction. All these experiment results
were obtained without the defense being applied.
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Table 7: Adversary’s ASR(0.1) in Untargeted Blackbox Hash-Evasion Attacks when Defense was
Applied. (PH: PhotoDNA. PD: PDQ. NH: NeuralHash. )

ZOsign
SimBA NES+ -SGD

ASR +HSJA HSJA +HSJA
PH q =0.1 100% 100% 100%
PH q =0.2 100% 100% 100%
PH q =0.3 100% 100% 100%
PD q =0.1 0% 0% 0%
PD q =0.2 0% 0% 0%
PD q =0.3 0% 0% 0%
NH q =0.1 21% 18% 15%
NH q =0.2 20% 18% 15%
NH q =0.3 21% 18% 15%

Table 8: Adversary’s ASR(0.2) in Untargeted Blackbox Hash-Evasion Attacks when Defense was
Applied. (PH: PhotoDNA. PD: PDQ. NH: NeuralHash. )

ZOsign
SimBA NES+ -SGD

ASR +HSJA HSJA +HSJA
PH q =0.1 98% 99% 95%
PH q =0.2 98% 99% 95%
PH q =0.3 98% 99% 95%
PD q =0.1 0% 0% 0%
PD q =0.2 0% 0% 0%
PD q =0.3 0% 0% 0%
NH q =0.1 5% 5% 2%
NH q =0.2 5% 6% 3%
NH q =0.3 5% 6% 2%

Generally, the hash-inversion attacks worked with some success when there was a lot of regularity
in the dataset (e.g., MNIST and CelebA). In this case, the hash-inversion algorithm gave an image
of such regularity only. The longer hash values leaked more information and allowed better hash-
inversion. Nevertheless, even in the best case, it was still impossible to match the reconstructed
human faces with the true faces in the CelebA images.

When the dataset was diverse (e.g., STL-10), we were not able to learn any meaningful inversions.
This demonstrated that the PHAs were robust against hash-inversion attacks in practical applications.
In addition, PHAs with smaller number of output bits were always preferable because natural
images were not very standardized, so the smaller number of bits could help to prevent information
leakage/hash inversion.

The reason for [12] to draw the false conclusion of successful hash-inversion was because only
CelebA images were used over the long PhotoDNA hashes, and the authors overlooked the fact that
the faces can not be discriminated based on the reconstructed images.

A.5.2 Experiment data hash-inversion attacks under the proposed defense

To mitigate the potential hash inversion attacks over regular images, we experimented with the
proposed random hash perturbation defense algorithm. Some sample images were shown in Fig. 2(b)
and explained briefly in Section 4.3. Extra experiment data are shown in Tables 11, 12 and 13.

Compare these data with those in Table 10, it is clear that as we increased the level of perturbation
to the hash bits, the quality of reconstructed images decreased as expected. Therefore, the random
perturbation defense does help to defend against hash-inversion attacks.
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Table 9: Adversary’s ASR(0.3) in Untargeted Blackbox Hash-Evasion Attacks when Defense was
Applied. (PH: PhotoDNA. PD: PDQ. NH: NeuralHash. )

ZOsign
SimBA NES+ -SGD

ASR +HSJA HSJA +HSJA
PH q =0.1 27% 21% 5%
PH q =0.2 27% 21% 5%
PH q =0.3 27% 21% 5%
PD q =0.1 0 0% 0%
PD q =0.2 0% 0% 0%
PD q =0.3 0% 0% 0%
NH q =0.1 0% 2% 0%
NH q =0.2 0% 2% 0%
NH q =0.3 0% 0% 0%

Table 10: Quality of Adversarial Images Created in Hash Inversion Attacks (PH: PhotoDNA. PD:
PDQ. NH: NeuralHash)

Dataset Hash L2 SSIM LPIPS
PH 0.08± 0.02 0.79± 0.02 0.18± 0.03

MNIST PD - - -
NH 0.19± 0.05 0.35± 0.10 0.33± 0.08

PH 0.13± 0.03 0.57± 0.08 0.40± 0.07
CelebA PD 0.23± 0.07 0.44± 0.07 0.43± 0.05

NH 0.23± 0.05 0.29± 0.09 0.53± 0.07

PH 0.14± 0.03 0.41± 0.09 0.56± 0.06
STL-10 PD 0.24± 0.05 0.26± 0.05 0.65± 0.02

NH 0.23± 0.05 0.14± 0.09 0.67± 0.07

Table 11: Quality of Inverted Images when Defended with q = 0.1 (PH: PhotoDNA. PD: PDQ. NH:
NeuralHash)

Dataset Hash L2 SSIM LPIPS
PH 0.14± 0.03 0.41± 0.00 0.56± 0.06

STL-10 PD 0.24± 0.05 0.26± 0.05 0.65± 0.02
NH 0.23± 0.05 0.14± 0.07 0.67± 0.03

Table 12: Quality of Inverted Images when Defended with q = 0.2 (PH: PhotoDNA. PD: PDQ. NH:
NeuralHash)

Dataset Hash L2 SSIM LPIPS
PH 0.18± 0.04 0.26± 0.08 0.68± 0.05

STL-10 PD 0.23± 0.05 0.24± 0.08 0.65± 0.04
NH 0.23± 0.05 0.17± 0.08 0.77± 0.07

Table 13: Quality of Inverted Images when Defended with q = 0.3 (PH: PhotoDNA. PD: PDQ. NH:
NeuralHash)

Dataset Hash L2 SSIM LPIPS
PH 0.20± 0.06 0.21± 0.09 0.71± 0.05

STL-10 PD 0.23± 0.06 0.20± 0.08 0.68± 0.04
NH 0.23± 0.05 0.17± 0.08 0.78± 0.04
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(a) Original image I0.

PhotoDNA PDQ NeuralHash
(b) Adversarial images Iadv.

Figure 3: Samples of an original image and the adversarial images created by the proposed untargeted
blackbox attack algorithm JSHA (NES+HSJA).
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PhotoDNA PDQ NeuralHash

Figure 4: Samples of an original image and the adversarial images created by the proposed untargeted
blackbox attack algorithm JSHA (NES+HSJA).
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(a) PhotoDNA. Left: (.14, .83, .05). Right: (.12, .86, .07)

(b) NeuralHash. Left: (.26, .61, .10). Right: (.34, .52, .14)

Figure 5: Samples of true MNIST images and adversarial images generated by hash inversion
attacks based on hashes of (a) PhotoDNA, and (b) NeuralHash. The numbers are (L2, SSIM, LPIPS)
measures.

(a) Using PhotoDNA Hash bits

(b) Using PDQ Hash bits

(c) Using NeuralHash hash bits

Figure 6: Samples of true STL-10 images and adversarial images generated by hash inversion attacks.
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(a) Our model. {L2, SSIM, LPIPS} = {.14, .65, .34} (PhotoDNA),
= {.15, .60, .36} (PDQ), {.20, .40, .50} (NeuralHash)

(b) Our model. {L2, SSIM, LPIPS} = {.17, .63, .34} (PhotoDNA),
= {.21, .50, .34} (PDQ), {.20, .47, .45} (NeuralHash)

(c) Compare images generated by our model and [12].

Figure 7: Samples of true CelebA images and reconstructed images generated by hash inversion
attacks from hashes of PhotoDNA, PDQ, and NeuralHash. The numbers are quality metrics {L2,
SSIM, LPIPS} of reconstructed images.
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