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Abstract
Developing AI agents capable of interacting with
open-world environments to solve diverse tasks
is a compelling challenge. However, evaluating
such open-ended agents remains difficult, with
current benchmarks facing scalability limitations.
To address this, we introduce Minecraft Universe
(MCU), a comprehensive evaluation framework
set within the open-world video game Minecraft.
MCU incorporates three key components: (1) an
expanding collection of 3,452 composable atomic
tasks that encompasses 11 major categories and
41 subcategories of challenges; (2) a task compo-
sition mechanism capable of generating infinite
diverse tasks with varying difficulty; and (3) a
general evaluation framework that achieves 91.5%
alignment with human ratings for open-ended task
assessment. Empirical results reveal that even
state-of-the-art foundation agents struggle with
the increasing diversity and complexity of tasks.
These findings highlight the necessity of MCU as
a robust benchmark to drive progress in AI agent
development within open-ended environments.
Our evaluation code and scripts are available at
https://github.com/CraftJarvis/MCU.

1. Introduction
Developing AI agents capable of interacting with dynamic
environments—often referred to as “open-world” in the lit-
erature (Parmar et al., 2023)—to solve diverse tasks remains
a long-standing challenge in Artificial Intelligence (Kejri-
wal et al., 2024). Among the various environments used
to study AI agents, games have emerged as a prominent
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choice, as they provide real-world challenges within pro-
grammable simulators, offering valuable opportunities for
real-world simulation (Bruce et al., 2024; Reed et al., 2022;
Raad et al., 2024). Compared to other digital environments
such as web/apps (Zhou et al., 2023; Qin et al., 2025; Lin
et al., 2024), mobile platforms (Pan et al., 2024; Wang et al.,
2024), and coding IDEs (Xu et al., 2022; Jimenez et al.,
2024; Huang et al., 2023), games present a higher degree of
control complexity, similar to that encountered by physical
robotic agents (Nasiriany et al., 2024; Wang et al., 2023b;
Zhou et al., 2024b). While compared to robotics, games
support long-horizon planning tasks and enable safer and
more efficient testing within sandbox environments.

A crucial aspect of open-ended game agents is their gen-
eralizability. The ultimate goal of developing AI agents is
to deploy them in real, open-world environments, where
they must solve tasks robustly across drastically different
situations. With this in mind, early game agents have been
studied in procedurally generated Atari-like environments
with diverse configurations (Cobbe et al., 2020). Recent
efforts shift toward complex environments with greater free-
dom (Fan et al., 2022; Hafner, 2021; Team et al., 2021),
among which Minecraft stands out. Minecraft is a video
game that provides procedurally generated open-world en-
vironments with a state space exceeding the number of
atoms in the universe (we elaborate on the benefits of using
Minecraft for open-ended game agents in Section 2.1). This
vast environment allows agents to tackle infinite open-ended
tasks using human-like actions in diverse situations.

Despite the numerous advantages of Minecraft as an ex-
perimental environment, we have identified several limita-
tions in existing benchmarks that impede a comprehensive
evaluation of agents’ generalizability. These limitations
include low task quality (Fan et al., 2022), insufficient di-
versity (Hafner, 2021), and the lack of automatic evaluation
suites (Cai et al., 2024c). We further illustrate these issues
in Figure 2. Based on these issues, we find that Minecraft
agents lack a unified benchmark, and each agent is evaluated
on a distinct set of tasks (see Section 4 for further discus-
sion). To address this, we introduce Minecraft Universe
(MCU), an advanced evaluation framework in Minecraft
(Figure 1). MCU encompasses thousands of composable
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tasks and provides a scalable automatic evaluation system,
designed based on the following key principles:

High Task Diversity Task diversity plays a crucial role
in: (1) simulating challenges across various scenarios to
thoroughly evaluate generalizability, and (2) harnessing the
full potential of open-ended game agents capable of solving
a wide range of tasks. MCU emphasizes two key aspects of
task diversity in its implementation: (1) Intra-task diver-
sity: We utilize a large language model (LLM) to dynami-
cally generate task initialization conditions—such as biome,
weather, and player states—introducing variability and ran-
domness that closely mirror real gameplay scenarios (Fig-
ure 1a). (2) Inter-task diversity: We collect 3,452 atomic
tasks within Minecraft, spanning a broad spectrum of chal-
lenges, including precise control (e.g., combat, building),
logical reasoning (e.g., crafting, trading), and knowledge
application (e.g., tool use, animal care) (Figure 1b). These
tasks can further be composed to generate new tasks on a
combinatorial scale as detailed in Section 2.3.

High Task Quality Minecraft imposes numerous con-
straints that render unchecked tasks intractable (Fan et al.,
2022; Yang et al., 2024). For example, the task “mine
diamond with a wooden pickaxe” is infeasible because di-
amonds cannot be mined with such a tool. Similarly, the
task “design and build a transportation system for your city”
from the MineDojo benchmark (Fan et al., 2022) presents
an extreme challenge even for humans. Other issues in-
clude repetitive tasks (Figure 2). To mitigate these issues,
MCU filters tasks from a wide range of data sources, en-
suring adherence to high-quality standards (Figure 1b left).
Additionally, in the LLM-based task configuration gener-
ator, we incorporate a series of soft constraints within the
prompt, and implement a refinement mechanism based on
self-reflection (Shinn et al., 2023) and the Minecraft simu-
lator’s feedback by executing the generated configuration.
Further implementation details are provided in Section 2.4.

Automated Evaluation Open-ended tasks (Stanley et al.,
2017; Standish, 2003) inherently lack clear success signals
and often depend on human evaluation or manually designed
metrics (Dubois et al., 2024), which hinders scalability. To
address this issue, MCU introduces an automated evaluation
system (AutoEval) based on vision-language model (VLM)
that fulfills two key objectives: (1) producing evaluation
results that closely align with human judgments, and (2) of-
fering multi-dimensional assessments that go beyond simple
success rates for a comprehensive evaluation for open-ended
tasks (Figure 1c), while the designed “task progress” dimen-
sion is a process-supervised counterpart of 0-1 success rate.
We also show in Figure 1e that AutoEval is cost-efficient.

Enduring Challenges To ensure that MCU remains a
long-term benchmark for agent development, we adopt two
key strategies: (1) designing tasks with varying levels of dif-
ficulty, where increasing complexity introduces additional
challenges such as adverse weather conditions and mislead-
ing factors. While state-of-the-art models achieve moderate
success on simpler tasks, they struggle with more complex
scenarios (Figure 1d). (2) Enabling the composition of
atomic tasks into more intricate tasks. This approach expo-
nentially increases both the number and complexity of tasks,
ensuring that MCU continues to provide a lasting challenge.

2. MCU Benchmark
In this section, we first provide an overview of Minecraft
and its game simulator, followed by a detailed outline of the
construction process for the MCU benchmarking pipeline.

2.1. Minecraft Environment

Minecraft is a voxel-based 3D video game that, due to its
popularity and wide variety of mechanics, has become a
prominent domain for RL research (Oh et al., 2016; Tessler
et al., 2017). Much of the prior work focuses on small,
custom-built Minecraft environments with tasks such as nav-
igation (Arumugam et al., 2019; Matiisen et al., 2019), block
placement (Trott et al., 2019; Alaniz, 2018), combat (Uda-
gawa et al., 2016), and other similar activities (Shu et al.,
2017). More recent efforts have shifted towards studying the
full, unmodified human action space, which encompasses
tasks like drag-and-drop inventory management and item
crafting. In this work, we employ unmodified Minecraft ver-
sion 1.16.5 as our testing environment (Guss et al., 2019b),
utilizing mouse and keyboard inputs as the action space and
a 640 × 360 RGB image as the observation. The specifics
of the action space will be detailed in Table 6.

As mentioned in Section 1, Minecraft serves as a powerful
experimental environment due to its unparalleled diversity,
complexity, and open-ended nature, which enable creative
gameplay and countless possibilities. Below, we outline the
key features that make Minecraft particularly suitable for
open-ended game agent development:

1. Vast State Space. Minecraft provides an extraordinar-
ily large state space, as illustrated in Table 7 with an
intuitive comparison. Its expansive maps, functional
blocks, and diverse mobs result in an immense num-
ber of possible configurations. This makes Minecraft
an ideal platform for studying the generalizability of
agents. Additionally, we present illustrative experi-
ments in Appendix D to demonstrate the importance
of vast state spaces for agent generalization.

2. High Complexity Support. Minecraft supports tasks
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Atomic Task
MINE
Mine Dirt
Mine birch log
…
CRAFT
Cra  oak planks
Cra  Stone Axe
…
DIET
Eat beef
Drink po on
…
COMBAT
Combat a wolf
Hunt a sheep
…
DECORATION
Decorate the wall
Lay carpet
…
BUILD
Build a house
Build a waterfall
…

LLM-based Task Config Generator VLM-based Evaluator

task_description: use iron pickaxe to mine 
redstone ore
custom_init_commands:
- /give @s minecraft:stone_pickaxe #random
- /give @s minecraft:iron_pickaxe #necessary
- /execute as @p at @s run fill ~-2 ~ ~~2 ~ ~ 
minecraft:redstone_ore #necessary #necessary
-/give @s minecraft:torch 64 #random #random

Refine config

Task 
sets

Commands as env 
initialization

New tasks

Agent Set

STEVE-1

VPT

More Agents 
in the future …

Trajectory video

-    Evidence: The agent locate the redstone ore… 
- Overall: Excellent
- Evidence: The agent mine efficiently…
- Action Control: Excellent
- Evidence: …
- Material Usage: …
- …

Task
descriptions

A Streamlined Package for Minecraft AI Agent Development

a

c d e

•

•
•
•

BRAIN
STORM

b

Figure 1: An overview of MCU. a. Benchmarking pipeline. MCU includes two main components: task generation and trajectory
evaluation. The LLM-based task configuration generator instantiates the environment with the necessary prerequisites, random factors,
and task descriptions for diverse atomic tasks. These configurations are verified using an environment simulator. The VLM-based
evaluator assesses each task trajectory in video form across multiple dimensions, providing comprehensive performance insights. MCU
offers a model-agnostic evaluation interface based on Minestudio (Cai et al., 2024a), making it suitable for various agents. b. Task
category distribution. The atomic task set is sourced from the Minecraft wiki, in-game data, existing benchmarks, and brainstorming
sessions. It spans 11 major categories and 41 subcategories, ensuring high inter-task diversity. For readers unfamiliar with Minecraft, we
illustrate the real-world challenges associated with different task categories to provide context. c. Multi-dimensional capabilities. MCU
evaluation shows that SOTA agents have made progress in overall task completion and material usage, but still have obvious limitations
in creativity and error recognition. d. Intra-task generalizability. Varying difficulty levels within the same task lead to performance
degradation, which tests the agent’s intra-task generalization capability. e. Human vs AutoEval. The automatic evaluation (AutoEval) of
MCU is 8.1× more cost-effective and 4.8× more efficient in labeling 30 samples. Best viewed zoomed in.
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combat_sheep_plains_iron_armors_diamond_sword_shield:
  category: combat
  guidance: '1. Find a sheep.
    2. Get close to the sheep.
    3. Hit the sheep with your hand or a weapon.
    4. The sheep will die and you will get 1-3 pieces of mutton.'
  prompt: hunt a sheep in plains with a diamond sword, shield...

creative:1236:
  collection: youtube
  prompt: build a nether portal

creative:699:
  collection: youtube
  prompt: make a nether portal.

task_description: decorate the cave 
custom_init_commands:
- /give @s minecraft:torch 10
- /give @s minecraft:poppy 10
- /give @s minecraft:item_frame 2
- /give @s minecraft:flower_pot 5
- /give @s minecraft:red_dye 5

task_description: hunt a sheep with 
diamond_sword
custom_init_commands:
- /give @s minecraft:diamond_sword
- /summon minecraft:sheep ~5 ~ ~

task_description: hunt a sheep with 
wooden_sword
custom_init_commands:
- /give @s minecraft:wooden_sword 
- /summon minecraft:sheep ~8 ~ ~
- /summon minecraft:wolf ~ ~ ~2
- /give @s minecraft:golden_apple 8

MINEDOJO Task Examples

MCU Task Examples (Ours)

Build a life-sized replica
of your house in Minecraft

Design and build a transpo-
rtation system for your city

Create a working calculator 
out of redstone

Only executable for programmatic task

Support open-ended tasks Simulate real game playing Different difficulty level

Highly repetitive Not solvable

Figure 2: A comparison between the “tasks” in MCU and Minedojo (Fan et al., 2022). We investigate the task list provided by MineDojo
and identify several issues. For example, only programmatic tasks that have clear reward signal can be executable in the benchmark; many
tasks in their list are repetitive (both No.1236 and No.699 are “build nether portal”); and a large amount of tasks in the creative tasks are
not solvable even by human. To address this, our MCU benchmark can create executable configurations for open-ended tasks, and ensure
intra-task and inter-task diversity to simulate real game playing in different difficulty levels, while preserving solvability of tasks.

requiring advanced problem-solving skills. For in-
stance, obtain diamond task (Guss et al., 2019a) in-
volves over 20 sub-goals, often takes hours to com-
plete, and demands the ability to remember terrain and
resource locations—showcasing the game’s capability
to facilitate complex task development and execution.

3. Open-Endedness. Minecraft encourages unrestricted
exploration, allowing players to engage in a wide spec-
trum of challenges. These range from defeating the
ender dragon, which requires long-horizon decision-
making (Jin et al., 2023), to building a house with pre-
cise control and creativity (Zhang et al., 2020). This
open-ended nature fosters the development of agents
capable of handling diverse and dynamic objectives.

2.2. Integration with MineStudio

To create a robust and user-friendly benchmark, we develop
MCU based on MineStudio (Cai et al., 2024a), an open-
source software package designed specifically to facilitate
agent development in Minecraft. MineStudio provides intu-
itive APIs, extensive documentation and tutorials, making it
an ideal foundation for our benchmarking framework.

MineStudio offers users extensive customization options
by allowing them to inherit from the MinecraftCallback
class. This facilitates functionalities such as issuing cheat
commands, logging episodes, and overriding observations.
Leveraging this flexibility, our task configuration pipeline
generates the necessary data for class CommandsCallback,
SummonMobsCallback and FastResetCallback to ini-

tialize the environment. To ensure generality, MineStu-
dio unifies the agent inference pipeline. Consequently, our
evaluation pipeline observes only the generated trajectories,
which are consistently formatted by RecordCallback for
compatibility across diverse agents. Additionally, we em-
ploy RewardsCallback to support user-defined metrics,
such as task success rates and our AutoEval metrics, and to
enable RL training with MCU evaluation results.

2.3. Atomic Tasks: Fundamental Testing Units in MCU

We introduce the concept of atomic tasks as the fundamental
testing units in MCU. The inspiration for atomic tasks stems
from unit testing in software development (Olan, 2003),
where a system is decomposed into smaller, independently
verifiable units. Similarly, atomic tasks are designed to
isolate and evaluate specific agent capabilities.

An atomic task T is defined solely by its goal g, independent
of the methods, tools, or specific environmental conditions.
During evaluation, an atomic task is instantiated, which
induces a task-specific initial state distribution P(s0|g)
(see Section 2.4). For example, the atomic task mine

stone is purely goal-driven. Across different evaluation
batches, it may manifest as mine stone with a wooden

pickaxe, mine stone during a rainy day, or other
variations. Regardless of these instances, the core goal
remains consistent, ensuring a reliable test of whether the
agent has genuinely acquired the underlying capability. This
property makes atomic tasks an effective tool for evaluat-
ing an agent’s ability to achieve goals under diverse and
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GPT-4o

Environment Initialization

Self-verification 

Module

Error code refine

Generate the rating criteria for 

hunting sheep with a diamond 

sword.

GPT-4o

Multi-dimensional Criteria

Overall: the completion of key steps.

- identify and approaches sheep.

- use a diamond sword to hunt sheep.

Action: perform actions precisely. 

- …

Key Frames

GPT-4v

Evaluation Results

Sample

Generate the initial config of 

sheep hunting.

Overall:

- evidence: the agent located the 

sheep, approached it, and hunted it 

with a diamond sword.

- result: excellent!

Action:

- evidence: The agent sometimes 

strikes the grass or dirt.

- evidence: the agent takes out a 

diamond sword from the inventory

- result: good!

- …

task_description: use a diamond sword to 

hunt the sheep 

custom_init_commands:

-   /give @s minecraft:diamond_sword

- /summon minecraft:cow ~ ~ ~2

- …

Verified Initialization

task_description: use a diamond sword to 

hunt the sheep 

custom_init_commands:

-   /give @s minecraft:diamond_sword

- /summon minecraft:sheep ~ ~ ~2

- …

Figure 3: Automatic task generation and evaluation pipeline. Top: Task Generation. GPT-4o generates and verifies the environment
initialization configuration for each atomic task, producing executable instructions compatible with Minestudio APIs. Bottom: Automatic
Evaluation. A vision-language model (GPT-4o with vision) assesses task performance by analyzing sampled video frames against criteria
generated by GPT-4o, providing detailed evidence and results. The GPT-4o used is gpt-4o-2024-08-06.

potentially unseen conditions.

Atomic tasks can also be combined to form more com-
plex tasks using logical operators such as “and” (

∧
)

and “or” (
∨

), or by introducing constraints such as
“when,” “where,” and “how.” For instance, an agent could
be tasked with [mine oak log] or [mine grass]

{bare-handed} and {then} [craft sticks], where
[] denotes individual atomic tasks. This compositional
approach enables the exploration of a vast task space by
leveraging the combination of simple goals to create more
challenging scenarios. We also incorporate this feature in
MCU task generation pipeline as detailed in Appendix E.2

To pursue task diversity, as outlined in Section 1, we have
collected 3,452 atomic tasks1, each represented as a textual
description. These tasks serve as the fundamental building
blocks for task synthesis in MCU. They may be later com-
posed (discussed in the previous paragraph) and instantiated
using an LLM-based task configuration generator (see Sec-
tion 2.4). The atomic tasks are categorized into 11 major
categories and 41 sub-categories, covering diverse chal-
lenges encountered in Minecraft. These tasks are sourced
through the following pathways: (1) Distilling high-quality
tasks from existing benchmarks, such as MineDojo (Fan
et al., 2022) and SkillForge (Cai et al., 2024c). (2) Extract-
ing tasks from the Minecraft Wiki2. (3) Synthesizing tasks
using in-game data from the Minecraft simulator (e.g., gen-

1The dataset is continuously expanding.
2https://minecraft.wiki/

erating tasks like craft item X if item “X” is craftable).
(4) Brainstorming innovative tasks with input from domain
experts and LLMs. Further details on the collection process
for atomic tasks are provided in Appendix B.1.

2.4. Task Configuration Generation

To execute automatic or compositional tasks in the Minecraft
environment, tasks must be configured by specifying param-
eters such as spawn biomes, player states, inventories, and
surrounding mobs. We formalize this configuration process
as sampling an initial state s0 from a task-specific distri-
bution P(s0|T ). To simulate realistic gameplay, evaluate
agents effectively on a given task T , and ensure intra-task
diversity (Section 1), we propose a scalable task configura-
tion pipeline powered by LLMs. This pipeline incorporates
an automatic verification mechanism to ensure task validity
based on two criteria: (1) the sampled initial state s0 ex-
hibits high diversity, and (2) the environment includes all
elements necessary to complete the task (i.e., s0 is compat-
ible with T ). By leveraging the knowledge and creativity
of LLMs, this approach generates diverse and scalable task
scenarios, addressing the limitations of manually predefined
configurations. The implementation details are as follows.

Config Generator As detailed in Section 2.2, we utilize
three callbacks from MineStudio to initialize the task envi-
ronment. A powerful LLM GPT-4o (Achiam et al., 2023) is
prompted with a task description and few-shot examples of
the parameter format to populate these callbacks, generating
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executable configurations and detailed task descriptions for
text-conditioned agents and evaluation in Section 2.5. For
instance, the atomic task mine diamonds may include the
description “mine diamonds with an iron pickaxe”, with
the initial state s0 providing necessary resources (e.g., di-
amond ores and an iron pickaxe) to eliminate preparatory
subtasks. To enhance task diversity, random factors such as
ore placement and item arrangements are introduced to pre-
vent predictability. The prompt also includes soft constraints
to address LLM limitations, such as numerical insensitivity
or confusion with game-specific rules. For crafting tasks re-
quiring precise materials (e.g., 3 wool blocks and 3 wooden
planks), surplus resources are instructed to be generated
to account for LLM inaccuracies. Soft constraints also
ensure environmental integrity by avoiding the generation
of inaccessible structures (e.g., via the /fill command).
Complete prompt details are provided in Appendix G.1.

Verification To ensure the quality of the generated task
configurations, the config generator incorporates a self-
verification mechanism. Initially, the generated configu-
ration is re-validated by the LLM using the Reflxion tech-
nique (Shinn et al., 2023). If any errors are detected—such
as summoning cows only for the task hunt sheep (Fig-
ure 3)—the config generator is prompted to regenerate the
configuration. The generated configuration is also validated
using the MineStudio Simulator to ensure executability. Er-
ror logs from the simulator are also utilized to guide further
regeneration of the configuration if necessary.

2.5. Automatic Evaluation (AutoEval)

Automatic evaluation is critical for machine learning bench-
marks but challenging to design for AI agents. This prob-
lem is framed as defining a scoring function f that maps
a task description T and an agent’s trajectory traj =
{s0, a0, s1, a1, . . . , sT } to a normalized score reflecting the
trajectory’s quality with respect to T . In digital agent bench-
marks, success rate based on annotated criteria is commonly
used for tasks with clear, objective metrics (e.g., coding, OS
operations). However, in open-ended games like Minecraft,
defining a single programmatic metric is often infeasible. To
address this, we propose a VLM-based multi-dimensional
evaluation framework for MCU, comprising two compo-
nents (Figure 3): (1) criteria generation: creating clear,
task-specific evaluation dimensions; and (2) scoring with
criteria: leveraging predefined criteria to infer quality scores
from agent performance videos using VLM.

Criteria Generation Preliminary experiments reveal that
directly prompting GPT-4o (as a VLM) to score trajectories
without task-specific criteria leads to suboptimal perfor-
mance (Table 1). To address this, we introduce a criteria
generation pipeline that provides detailed scoring instruc-

tions. Specifically, we define six key dimensions for evalu-
ating agent performance in Minecraft. Prior to evaluation,
GPT-4o is prompted to generate task-specific criteria for
each dimension. The dimensions are as follows, with an
example shown in Figure 3 (bottom): (1) Task Progress:
Assesses critical steps and factors required for task com-
pletion. (2) Action Control: Evaluates the avoidance of
unrelated or unnecessary actions. (3) Material Usage: Mea-
sures the selection and application of materials. (4) Task
Efficiency: Focuses on minimizing repetitions and optimiz-
ing strategies. (5) Error Recognition: Assesses the ability
to identify and correct errors. (6) Creative Attempts: Rec-
ognizes innovative approaches in task execution. Please
check Appendix G.1 for the prompts of criteria generation.

Scoring with Criteria As described in Section 2.2, the
agent’s rollout trajectories are recorded in video format.
To balance resource efficiency and evaluative effectiveness
under specific research conditions, we extract one frame
every 30 frames from the video. During the evaluation phase,
the sampled frames, along with task-specific criteria, are
input into the VLM. The VLM assesses each dimension by
identifying supporting evidence from the video, providing
evidence and explanations, and subsequently assigning a
score. For each criterion, we define five scoring intervals:
very poor, poor, fair, good, and excellent, corresponding
to scores of 0, 0.25, 0.5, 0.75, and 1, respectively. Please
check Appendix G.5 for the prompts of scoring.

3. Experiments
In this section, we first demonstrate the effectiveness of
AutoEval. Subsequently, we assess the capabilities of state-
of-the-art agents using MCU and provide insights for the
development of future open-ended Minecraft agents.

3.1. Validity of Automatic Evaluation

Experimental Setup To validate the effectiveness of au-
tomatic evaluation, we compare the results of automatic
evaluation methods with human annotations. We also evalu-
ate a baseline approach, MineCLIP (Fan et al., 2022), which
also focuses on automatic evaluation. Our evaluation is
conducted under two distinct settings: (1) comparative eval-
uation, where the quality of two trajectories of same task is
compared; and (2) absolute rating, where a score is assigned
to a single trajectory. For AutoEval, the comparative predic-
tion for two trajectory is given by comparing the scores.

Dataset We collected 500 trajectories spanning 60 tasks,
derived from both agent rollouts and human gameplay
videos. To evaluate the quality of these trajectories, we
engaged 20 expert Minecraft players to provide annotations.
The players were tasked with performing both compara-
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Table 1: F1 scores for predicting the better human-annotated tra-
jectory across different task categories. The compared methods
include MineCLIP (Fan et al., 2022), our AutoEval on both open-
access models (MiniCPM (Yao et al., 2024), JarvisVLA (Li et al.,
2025)) and closed API-based models (GPT-4o). The highest score
for each task category is bolded.
Method Survive Build Craft Mine Explore Average
MineCLIP 11.0 45.0 44.0 73.0 0.0 34.6
AutoEval (MiniCPM) 65.0 43.0 80.0 59.0 53.0 60.0
AutoEval (JarvisVLA) 73.0 62.0 73.0 84.0 65.0 71.4
AutoEval (GPT-4o) 100.0 85.0 62.0 73.0 100.0 84.0

Table 2: F1 scores for predicting the better human-annotated tra-
jectory across various dimensions (denoted using abbreviations).
Progress Action Error Rec. Creative Efficiency Material Average

84.0 96.0 86.0 100.0 92.0 91.0 91.5

tive evaluations and absolute ratings on randomly sampled
trajectory pairs for the same task or individual trajectories.
Each player contributed 1 hours of work. Details regarding
the annotation process are provided in Appendix C.2.

Comparative Evaluation In this setting, participants are
asked to vote on the comparative quality of the trajectory
videos (denoted as A and B), selecting from the following
options: A is better, B is better, tie, or both are bad. We
filtered trajectory pairs annotated with first two options for
automatic evaluation, resulting in 236 pairs. As shown in Ta-
ble 1, our methodology exhibits a significant improvement
over MineCLIP, a CLIP model (Radford et al., 2021) fine-
tuned on large-scale Minecraft video frames. MineCLIP,
however, struggles to capture complex event-level seman-
tics with an average F1 score of only 34.6 (compared to
84.0 of AutoEval). For intricate tasks such as craft, which
demand precise attention to detail and the recognition of
subtle elements, the performance of AutoEval is slightly
reduced. We leave further improvements in this for future
work. Nevertheless, as demonstrated in Table 2, our auto-
mated evaluation metric achieves an average agreement rate
of 91.5% with human assessments across all dimensions.
This highlights the effectiveness of the criteria-enhanced
AutoEval for multi-dimensional evaluations.

Absolute Rating For absolute rating, we collected a total
of 227 individual ratings across approximately 50 distinct
tasks. The Pearson and Kendall correlation coefficients be-
tween AutoEval and human ratings are presented in Table 3,
demonstrating a strong overall positive correlation. How-
ever, the correlation varies across different dimensions. For
instance, objective dimensions such as task progress exhibit
high agreement between human evaluators and VLM assess-
ments, with a Pearson correlation of 0.78. In contrast, more
subjective dimensions, such as creativity, show a lower cor-
relation. Additionally, we compute the inter-rater agreement
for scoring the same trajectory, revealing a higher Pearson

Table 3: The Pearson correlation and Kendall’s τ between AutoE-
val and human ratings across different dimensions.

Dimension Pearson Kendall’s τ
Coefficient P-value Coefficient P-value

Task Progress 0.78 1.70× 10−22 0.71 1.94× 10−19

Action 0.76 6.22× 10−19 0.67 1.68× 10−16

Error Recog. 0.68 1.10× 10−12 0.62 4.40× 10−10

Creativity 0.63 5.90× 10−9 0.56 1.18× 10−7

Efficiency 0.75 1.10× 10−16 0.67 1.02× 10−14

Material 0.70 2.28× 10−16 0.63 2.29× 10−13

correlation for task progress (0.83) and a lower correlation
for creativity (0.69).

3.2. Evaluating Existing Agents with MCU

Agents We evaluate four powerful foundation agents in
Minecraft, all supported by MineStudio: (1) VPT (BC),
a behavior cloning agent initially pre-trained on YouTube
Minecraft videos and further fine-tuned on refined early-
game contractor data; (2) VPT (RL), a reinforcement learn-
ing fine-tuned model based on VPT (BC) that maximizes
the reward for obtaining diamonds in Minecraft; (3) STEVE-
I (Lifshitz et al., 2023), which follows text instructions to
complete tasks; and (4) GROOT (Cai et al., 2024c), which
solves tasks demonstrated by a reference video. GROOT
receives video instructions, STEVE-I receives text instruc-
tions, and VPT operates without instructions. We exclude
agents that simplify the Minecraft environment by deviating
from the native action space. More details on these models
can be found in Cai et al. (2024c).

Experimental Setup While MCU enables scalable task
evaluation without extensive human annotation, we care-
fully select a small yet diverse set of 30 atomic and 5
compositional tasks to illustrate our experimental conclu-
sions without introducing excessive complexity. A com-
prehensive evaluation of a total of 150 tasks, including
90 randomly sampled atomic tasks and 60 compositional
tasks, is deferred to Appendix E. The 30 atomic tasks are
drawn from six major categories, ensuring inter-task diver-
sity while maintaining a moderate difficulty level suitable
for Minecraft junior players. The difficulty of each task is
of simple mode, and each task is evaluated using 30 random
seeds. To highlight the importance of intra-task diversity,
we select six atomic tasks (1-2 from each category), assess-
ing both simple and hard modes of these tasks seperately.
Each difficulty level is evaluated with 10 random seeds.

3.2.1. INTER-TASK GENERALIZATION

We present the AutoEval-generated “task progress” scores
for the inter-task generalization experiments in Table 4,
while the multi-dimensional performance, averaged over all
tasks, is visualized in Figure 1c. Notably, the task progress
metric is closely related to the commonly used “task suc-
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Table 4: Task progress for 35 tasks. Performance table across all tasks in simple mode. Abbreviations: Exp = exploring, FD = find
diamond, FF = find forest, FV = find villages, CM = climb mountain; Crv = carve, CO = compose obsidian, Drk = drink, F&S =
flint&steel, Slp = sleep; Ck = cake, Clk = clock, CT = craft table, DS = diamond sword, Ld = ladder; DO = diamond ore, Dt = dirt,
Gr = grass, IO = iron ore, Ob = obsidian; End = enderman, Shp = sheep, Skl = skeletons, Spd = spiders, Zmb = zombies; BP = build
pillar, Cv = cave, NP = nether portal, SG = snow golem; Wf = waterfall; CTS = crafting table from scratch, MDS = mine diamond from
scratch, D&S = dye and shear sheep, T&P = till and plant seeds, PAG = prepare a gift. Best values within the same task are bolded.

Agent Navigation Task Tool-use Task Crafting Task
Exp FD FF FV CM Avg Crv CO Drk F&S Slp Avg Ck Clk CT DS Ld Avg

GROOT 0.90 0.56 0.75 0.60 0.60 0.72 0.20 0.10 0.40 0.10 0.85 0.33 0.35 0.60 0.45 0.75 0.25 0.48
Steve-I 0.95 0.50 0.95 0.90 0.35 0.73 0.45 0.00 0.35 0.20 0.10 0.22 0.80 0.70 0.45 0.20 0.70 0.57
VPT (BC) 0.90 0.65 0.87 0.75 0.60 0.75 0.25 0.00 0.40 0.10 0.45 0.24 0.45 0.35 0.30 0.50 0.45 0.41
VPT (RL) 0.70 0.58 0.55 0.50 0.35 0.54 0.15 0.10 0.35 0.15 0.25 0.20 0.70 0.62 0.50 0.30 0.62 0.55

Agent Mining Task Combating Task Building Task Compositional Task
DO Dt Gr IO Ob Avg End Shp Skl Spd Zmb Avg BP Cv NP SG Wf Avg CTS MDS D&S T&P PAG Avg

GROOT 0.81 0.70 0.90 0.56 0.40 0.67 0.30 0.50 0.56 0.50 0.75 0.53 0.40 0.20 0.45 0.65 0.15 0.38 0.45 0.71 0.05 0.50 0.19 0.23
Steve-I 0.35 0.85 0.95 0.20 0.35 0.54 0.05 0.30 0.40 0.75 0.42 0.54 0.60 0.10 0.30 0.05 0.05 0.13 0.45 0.35 0.30 0.20 0.30 0.13
VPT (BC) 0.30 0.30 0.50 0.15 0.38 0.33 0.25 0.55 0.55 0.35 0.50 0.36 0.00 0.02 0.35 0.00 0.20 0.11 0.30 0.30 0.10 0.00 0.25 0.13
VPT (RL) 0.15 0.35 0.37 0.05 0.35 0.22 0.15 0.35 0.35 0.25 0.30 0.28 0.10 0.02 0.40 0.13 0.25 0.23 0.90 0.50 0.00 0.00 0.30 0.34

Table 5: Performance changes of GROOT for selected tasks in
simple and hard modes. Each result is averaged over 10 seeds.

Task Task Progress Action Control
Simple Hard ∆ Simple Hard ∆

Build Nether Portal 0.45 0.30 -0.15 0.50 0.40 -0.10
Mine Iron Ore 0.56 0.60 0.04 0.44 0.55 0.11
Craft to Cake 0.35 0.32 -0.03 0.31 0.25 -0.06
Combat Skeletons 0.56 0.30 -0.26 0.25 0.20 -0.05
Carve Pumpkin 0.20 0.15 -0.05 0.35 0.25 -0.10
Sleep in bed 0.85 0.50 -0.35 0.40 0.30 -0.10
Average 0.50 0.36 -0.14 0.38 0.33 -0.05

cess rate” in agent benchmarks. However, unlike success
rate, which is a binary (0-1) outcome-based criterion, task
progress is a process-supervised metric. This allows for
a more fine-grained assessment of an agent’s performance
beyond simply determining whether a task was completed.

We observe that agents often struggle to reliably complete
many tasks (e.g., combat and build). However, they still
exhibit nonzero task progress, indicating partial progress
as determined by the LLM. This suggests that while agents
may not always achieve full task success, they are capable of
making incremental advancements toward task completion.
Among the evaluated agents, we note that VPT (RL), which
is specifically RL-tuned to maximize rewards for obtaining
diamonds, performs well on tasks aligned with this objec-
tive (e.g., crafting a crafting table from scratch). However,
it significantly underperforms on tasks unrelated to its tar-
get. This highlights the importance of inter-task diversity
in assessing the generalizability of agents. While generalist
agents such as GROOT and Steve-I demonstrate better open-
endedness, they struggle with specific tasks (e.g., crafting
particular items), indicating that future efforts should focus
on improving performance in these areas. Additionally, we
observe that task progress for compositional tasks is lower
than for atomic tasks, underscoring the persistent challenge
of MCU. Furthermore, as shown in Figure 1c, current agents
fall short in creativity, error recognition, and efficiency, sug-

gesting important directions for future research aimed at
improving these aspects.

3.2.2. INTRA-TASK GENERALIZATION

The task progress and action control performance of intra-
task generalization experiments for GROOT, the best agent
among the compared agents, are presented in Table 5. The
results indicate that for the same task, slight changes in
the task situation lead to a significant drop in task progress
performance. For example, consider the very simple task of
sleep in bed, which only requires the agent to identify
a bed and right-click the mouse. In simple mode, the bed
is placed directly in front of the agent on a plain with no
surrounding objects. However, in hard mode, both the bed
and the agent are inside a house, requiring the agent to
correctly identify the bed and interact with it. We observed
failure cases where the agent mistakenly interacted with a
chest in the room or left the house instead. This suggests
that GROOT does not learn the skill robustly, a phenomenon
not previously reported in the Minecraft agent literature.

Nevertheless, some tasks exhibited relatively stable perfor-
mance across difficulty levels, such as mine iron ore,
craft to cake, and combat skeletons. This may be
because certain categories of tasks (e.g., building, tool-use,
and crafting) are more susceptible to difficulty variations
due to increased environmental complexity, while others are
less affected. Overall, enhancing intra-task diversity of tasks
is beneficial to test the robust generalzability of agents.

4. Related Work
Benchmarks in Minecraft MineDojo (Fan et al., 2022)
introduces a suite of 1,560 creative tasks defined by natu-
ral language instructions. However, it suffers from signif-
icant redundancy and overly complex tasks, complicating
practical evaluation, as shown in Figure 2. BEDD (Milani
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et al., 2023) defines five tasks covering various aspects of
Minecraft, primarily designed for the MineRL BASALT
competition. By decomposing the evaluation framework,
BEDD facilitates detailed assessments of agent performance
across subgoals and attributes such as human likeness. How-
ever, its reliance on human ratings limits scalability. Other
works on Minecraft agents (Wang et al., 2023d;c; Cai et al.,
2024c; Yuan et al., 2023; Baker et al., 2022; Lifshitz et al.,
2023) lack a unified benchmark, with each agent evaluated
on its own task set. We argue that establishing a standard-
ized benchmark is a high priority for advancing Minecraft
agent development.

Open-ended Agents in Minecraft Many agents have
been developed to interact with Minecraft environments.
Some methods focus on using Imitation Learning or Rein-
forcement Learning to learn various skills in open-world
Minecraft to complete short-horizon tasks (Baker et al.,
2022; Cai et al., 2024c; Lifshitz et al., 2023; Jiang et al.,
2025; Zhao et al., 2024a; Cai et al.; Yuan et al., 2024; Cai
et al., 2024b; Jiang & Lu, 2025). Baker et al. (2022) gener-
ates action labels from Minecraft videos on YouTube using
IDM and performs imitation learning to obtain an uncondi-
tional policy capable of completing various tasks. Lifshitz
et al. (2023) uses MineCLIP as a text encoder to obtain a
text-conditioned multitask policy based on unconditional
VPT (Baker et al., 2022). Minecraft also supports the test-
ing of long-horizon programmatic tasks, so some meth-
ods accomplish long-horizon tasks by using large language
models as planners, combined with skill policies (Wang
et al., 2023d; Zhou et al., 2024a; Chen & Gao, 2024; Yuan
et al., 2023; Qin et al., 2024; Zheng et al., 2023b). Wang
et al. (2023d) has designed an agent pipeline based on GPT,
which interactively completes tasks from environmental
feedback through the self-explanation and zero-shot plan-
ning capabilities of LLMs. In order to further enhance the
long-horizon capabilities of LLM Agents, some methods
have explored efficient explicit memory mechanisms to sup-
port agents retrieve and improve from previous interaction
trajectories (Wang et al., 2023c; Zhu et al., 2023; Wang et al.,
2023a; Park et al., 2024; Li et al., 2024). Unlike designing
complex agent pipelines, the rise of VLA (Zitkovich et al.,
2023; Kim et al., 2024) has inspired researchers to use end-
to-end VLM as a policy to directly fulfill human instructions
in Minecraft (?Zhao et al., 2024b). Some methods use a
code-as-policy approach (Liang et al., 2022), using Mine-
Flayer (PrismarineJS, 2024) as a language-conditioned pol-
icy, combined with a pretrained LLM to accomplish various
tasks to avoid agents trapped on short-horizon skills lack-
ing when executing long-horizon tasks (Wang et al., 2023a;
Yang et al., 2025; Liu et al., 2024b;a). Finally, there are some
methods focused on completing open-ended creative tasks
in Minecraft, such as building and decoration, which differ
from the traditional programmatic object-centric tasks and

often cannot be directly defined by rule-based rewards (Guo
et al., 2024; Zhang et al., 2023).

LLM-as-a-Judge The advancement of large language
models (LLMs) has demonstrated remarkable performance
in instruction following, query understanding, and response
generation. This capability has motivated the use of LLMs
as judges (Zheng et al., 2023a), leveraging their ability to
score and rank model outputs. The strong performance of
LLMs (Brown et al., 2020), combined with well-designed
assessment pipelines (Li et al., 2023; Beigi et al., 2024; Bai
et al., 2024), enables fine-grained and detailed judgments
for various evaluation applications, addressing the limita-
tions of traditional evaluation methods that require extensive
human annotation. Recent efforts have also explored the use
of LLMs and vision-language models (VLMs) to evaluate
AI agents (Pan et al., 2024; Zhuge et al., 2024). Compared
to previous work, MCU is the first to apply this paradigm
to open-ended game agent task generation and evaluation.
We argue that LLM-based task generators have the potential
to create diverse tasks that are crucial for evaluating open-
ended game agents, given the inherent open-endedness of
LLMs (Hughes et al., 2024). Furthermore, using the same
LLM (or VLM) as a judge ensures more consistent evalua-
tion criteria compared to crowdsourcing approaches (Zhou
et al., 2023).

5. Conclusion
We introduce Minecraft Universe (MCU), a scalable evalua-
tion framework for open-ended game agents in Minecraft.
MCU features 3,452 diverse and composable atomic tasks,
a dynamic task composition mechanism to ensure sustained
challenges, and an automated evaluation system with over
90% human alignment. Empirical results indicate that state-
of-the-art agents struggle with tasks exhibiting high inter-
task and intra-task diversity. To support standardized bench-
marking, we release MCU-Turbo, a curated subset of 100
tasks with structured difficulty settings, as detailed in Ap-
pendix F. We hope MCU serve as robust foundations for
advancing open-world agent research.
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A. Minecraft Environment Setting
In the regular Minecraft game, the server (or ”world”) always runs at 20Hz while the client’s rendering speed can typically
reach 60-100Hz. To ensure consistency with the server, the frame rate is fixed at 20 fps for the client. The action and
observation spaces in our environment are identical to what a human player can operate and observe on their device when
playing the game. These details will be further explained in subsequent subsections. Additionally, diagnostic information
such as in-game stats, contents of the agent’s inventory, and whether any in-game GUI is open is provided by the environment.
This information can only be used for tracking, recording, and evaluating purposes but cannot serve as inputs to evaluated
agents.

A.1. Minecraft Game World Setting

We have chosen to conduct the test in Minecraft version 1.16.5’s survival mode. During this open-world experiment, the
agent may encounter situations that result in its death, such as being burned by lava or a campfire, getting killed by hostile
mobs, or falling from great heights. When this happens, the agent will lose all its items and respawn at a random location
near its initial spawn point within the same Minecraft world or at the last spot it attempted to sleep. Importantly, even after
dying, the agent retains knowledge of its previous deaths and can adjust its actions accordingly since there is no masking of
policy state upon respawn.

Figure 4: Minecraft game observation.

A.2. Observation Space

The observation space for a human player is limited to the raw pixels visible on the display screen. It does not include any
hidden information from the game world, such as hidden blocks or nearby mobs. Additionally, any information contained in
the pixels must be perceived by the model rather than directly given, including inventories and health indicators. Human
players can access this information by pressing F3, which should be considered part of the game screen. There are no
restrictions on optional parameters that human players can adjust in the display settings, such as field of view, GUI scale
(controlling the size of in-game GUI), and brightness. The rendering resolution of Minecraft is 640x360; however, it is
recommended to resize images to lower resolutions for better discernibility and computational efficiency.

A.3. Action Space

The action space is also consistent with human-playing settings, i.e., mouse and keyboard controls. These actions include
key presses, mouse movements, and clicks. The specific binary actions that are triggered by keypress are shown in Table
Table 6. In addition to actions triggered by keypresses, the action space also includes mouse movements. Similar to human
gameplay, when there are no in-game GUIs open, moving the mouse along the X and Y axes changes the agent’s yaw
and pitch respectively. However, when a GUI is open, camera actions shift the position of the mouse cursor. The mouse
movements are relative and adjust their position or camera angle based on their current state. More details can be found at
https://minecraft.fandom.com/wiki/Controls
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Table 6: Binary actions included in the action space.

Action Human action Description
forward W key Move forward.

back S key Move backward.
left A key Strafe left.

right D key Strafe right.
jump space key Jump.

inventory E key Open or close inventory and the 2x2 crafting grid.
sneak shift key Move carefully in the current direction of motion. In the GUI it acts

as a modifier key: when used with an attack it moves item from/to the
inventory to/from the Hotbar, and when used with craft it crafts the
maximum number of items possible instead of just 1.

sprint ctrl key Move fast in the current direction of motion.
attack left mouse button Attack; In GUI, pick up the stack of items or place the stack of items

in a GUI cell; when used as a double click (attack - no attack - attack
sequence), collect all items of the same kind present in inventory as a
single stack.

use right mouse button Place the item currently held or use the block the player is looking at. In
GUI, pick up the stack of items or place a single item from a stack held
by the mouse.

drop Q key Drop a single item from the stack of items the player is currently holding.
If the player presses ctrl-Q then it drops the entire stack. In the GUI, the
same thing happens except for the item the mouse is hovering over.

hotbar.[1-9] keys 1 – 9 Switch active item to the one in a given hotbar cell.
show debug screen F3 key See the chunk cache, the memory usage, various parameters, the player’s

map coordinates, and a graph that measures the game’s current frame
rate.

A.4. Why Minecraft is Suitable for Open-Ended Agent?

A.4.1. STATE SPACE CALCULATION

Minecraft has an enormous state space. Here, we will estimate how many possibilities are contained within the full state
space of Minecraft.

Block State The world in Minecraft consists of different types of blocks, each with potentially multiple states. Let B be
the number of block types, and W be the world size, which is approximately 30M × 30M × 384, i.e., the total number of
blocks in the world.

The formula for the number of block states is:

Block States = BW

Substituting the values B = 500 and W ≈ 3.46× 1018, we get:

Block States = 5003.46×1018

In Procgen environments, the number of block states is estimated based on a pixel space. Block states are calculated based
on how many different visual representations (pixels) can be generated. In ALE, the levels are artificially fixed and finite.
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Table 7: Comparison of State Space between Different Benchmarks. Unlike other benchmarks that isolate tasks within separate state
spaces, which may simplify the learning process, Minecraft integrates all tasks into a shared state space. This requires the agent to
generalize without relying on memorizing specific environments. The initial seed reflects the inherent generation capability of procedural
generation, while the final state reflects the full range of possibilities contained within the entire game. The final state space of Minecraft
(Approx. 1010

20

) far exceeds the number of atoms in the universe (Approx. 1080). The constraint is 10−2, assuming that only one percent
of the combinations are possible.

Dimension Minecraft Procgen/CoinRun ALE/Pitfall

Initial Seed 264 232 Fixed

World Size 30M × 30M × 384 ≈ 3.46× 1018 64× 64 Predefined Layout

Block Types 500 3 3-5

Block States 5003.46×1018 364×64 limited

Entities Mobs: 30+ Types, Health: 0–20
Animals: 30+ Types, Health: 0–10

Villagers: 13 Professions, 5 Levels, 100 Trades

Obstacles: 3 Classes Obstacles: 8 Classes

Entity Count 107 ≤ 20 ≤ 10

Entity States (30× 20 + 30× 10 + 13× 5× 100)10
7

≈ 2.57× 1075×107
320 ≈ 3.49× 109 Limited

Inventory States 36 Slots, 500+ Item Types, Max Stack 64
(500× 64)36

N/A N/A

Final State Space
Block × Entity × Inventory States × Constraint Approx. 1010

20

Approx. 1099 Limited, Predefined Levels

Entity State Minecraft contains a wide variety of entities including animals, mobs, and villagers, each with different
properties and states. Mobs have more than 30 types, health ranging from 0 to 20, animals have more than 30 types with
health from 0 to 10, and villagers have 13 professions, 5 levels, and 100 trades. The entire map contains approximately 107

entities. Consider all possible combinations, the number of entity states is:

Entity States ≈ (30× 20 + 30× 10 + 13× 5× 100)10
7

≈ 2.57× 1075×107

In Procgen environments like CoinRun, the number of entity states is typically smaller due to fewer types of entities and
simpler interactions.

Inventory State Minecraft’s inventory consists of 36 slots, each capable of holding a variety of items (over 500 types),
with a maximum stack size of 64. The formula for the number of inventory states is:

Inventory States = (500× 64)36

Final State Space The final state space is determined by the combination of block states, entity states, inventory states,
and possible constraints (such as game rules). Assuming all these state spaces are independent, the final state space formula
is:

Final State Space = Block States × Entity States × Inventory States × Constraint

For Minecraft’s final state space, assuming a constraint factor of 10−2, we get:

Final State Space ≈ 1010
20

A.4.2. FURTHER ATTRIBUTES

Complexity Minecraft presents a highly complex environment composed of diverse elements, including blocks, creatures,
terrain, and vegetation. This complexity challenges agents to learn adaptive behaviors across varied tasks, fostering
generalization in a dynamic setting.
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Open-endedness The open-world nature of Minecraft exposes agents to a vast range of environments, requiring exploration
and adaptive navigation. The flexibility to define tasks of varying difficulty enables targeted evaluation of agent capabilities
across diverse challenges.

Dynamism and Unpredictability Unlike static benchmarks, Minecraft features dynamic environmental changes such as
day-night cycles, emergent entities, and varied terrain. Agents must develop adaptability and robust decision-making to
handle unforeseen events, enhancing their generalization to real-world complexities.

Creativity and Innovation Minecraft supports open-ended tasks like construction and decoration, encouraging agents
to explore diverse strategies for goal achievement. This fosters innovation and problem-solving in complex, unstructured
settings.

Broad Challenge Coverage Minecraft serves as an ideal platform for training and evaluating generalist agents, presenting
four key challenges: Long-horizon Decision Making: Tasks decompose into flexible subtask sequences, requiring agents
to plan beyond immediate actions. For example, acquiring wool may involve killing sheep, crafting from string, or trading
with villagers, demanding strategic foresight. Precise Control: Building and crafting require fine-grained movement and
accurate object manipulation. Tasks like constructing a Nether portal necessitate precise block placement, challenging agents
to handle high-dimensional action spaces with stability. Out-of-distribution Generalization: The dynamic environment
introduces novel scenarios beyond training data. Agents must generalize to unseen conditions, such as avoiding hazards
(e.g., lava) or adapting to ecosystem variations. Compositional Generalization: Agents should infer new task compositions
from learned subskills. For instance, if trained to craft sticks from planks and ladders from sticks, they should generalize to
crafting ladders from planks. The vast combinatorial task space in Minecraft makes compositional generalization a crucial
challenge.

Community and Resources Minecraft’s extensive community provides rich datasets, strategies, and problem-solving
techniques. Open-source mods and plugins further enable controlled experimental setups for agent training.

Safe and Controlled Environment Minecraft offers a risk-free virtual world where researchers can precisely manipulate
environmental parameters for reinforcement learning, ensuring reproducibility and safety in training agents.
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B. Details of Task Generation
B.1. The Source of Atomic Tasks

Filtering from Existing Benchmarks We curated tasks from established benchmarks, including Skill-Forge (Cai et al.,
2024c), MineDojo (Fan et al., 2022), and prior Minecraft research (Baker et al., 2022; Yuan et al., 2023; Wang et al.,
2023d;c). To refine the selection, we performed deduplication to remove redundant tasks, excluded those too difficult for
human players (e.g., constructing highly complex architectures or automated redstone circuits), and eliminated compositional
tasks that could be decomposed into two or more atomic tasks.

Minecraft Wiki Resources Additional tasks were sourced from the official Minecraft Wiki, which categorizes various
in-game activities. From these, we extracted executable tasks, focusing primarily on the Advancement page3, which
contains a curated list of diverse, engaging, and reasonably challenging tasks designed to enhance gameplay.

Synthesis from In-Game Information The Minecraft simulator defines various item properties, such as “craftable,”
“mineable,” “eatable,” and “breakable.” Leveraging these definitions, we systematically generated atomic tasks, such as
craft item X if X is craftable, and similarly for other properties. This method efficiently scales up the task set while
ensuring comprehensive coverage of game elements.

LLM and Expert Brainstorming Beyond structured sources, we incorporated tasks generated through brainstorming
sessions with expert Minecraft players and LLMs. This approach was particularly valuable for designing open-ended,
creative tasks that pose real-world challenges for agents. Brainstorming was conducted in collaboration with a university
Minecraft club.

Since most tasks are derived from the official Minecraft Wiki and in-game data, they are inherently reliable. Nevertheless,
all tasks underwent rigorous validation through human inspection and automated scripts. The finalized atomic task list is
provided as supplementary material alongside the code.

B.2. Task Configuration

In this section, we provide an overview of the key considerations for configuring a task, as introduced in Section 2.4.
This section aims to offer an intuitive understanding of task configuration. For detailed implementation and real-world
configurations, please refer to Minestudio Section 2.2 and our integrated codebase.

The initial state of a task encapsulates all the information an agent can utilize based on its intended plan to execute the task.
This includes not only the valid input but also any information the agent can derive or perceive, such as the observed 2D
pixels of the game scene, inventory items, and coordinates (which can be accessed in-game by pressing F3, particularly
the Y-dimension). The inventory I consists of two components: the necessary items for completing the task, denoted as
In—without which the agent would not be able to plan and execute the task in a real game—and additional random items,
denoted as Ir. Our objective is to manipulate these variables while ensuring that the random elements closely align with the
real in-game distribution.

B.2.1. OBSERVATION AND COORDINATE

For a fixed version of the Minecraft game, the observation and coordinate elements are determined by the world seed, the
coordinate, and the facing direction. The world seed is entirely independent of other variables and can be chosen arbitrarily.
The facing direction remains unchanged from its state before teleportation to the task scene, making it inherently random
and not subject to manipulation.

Setting a coordinate as a valid spawn location for a given task requires satisfying certain preconditions, such as specific
biome types or other constraints defined by the game. For example, in the climb the mountain task, the agent must
spawn in a stony shore biome, while for a task that involves reaching a village, the spawn location should be near one.

To facilitate reproducible task execution, we also collect a series of coordinate locations for each selected seed, corresponding
to the required preconditions. Each (seed, precondition) pair can be mapped to multiple possible locations, allowing flexibility
across different tasks. Minestudio allows for initializing game environment given these predefined random seeds.

3https://minecraft.wiki/w/Advancement
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B.2.2. INVENTORIES

The inventory I consists of two main components: In, the essential items required to complete the task, and Ir, a set of
random items acting as distractors. Since multiple approaches may exist to accomplish the same goal, In is also treated as a
random variable. For instance, an agent may use either an iron pickaxe or a diamond pickaxe to mine diamond ore. To
ensure comprehensive testing, we incorporate a variety of possible item sets for In.

Regarding Ir, we adjust its presence based on task difficulty. For some tasks, we omit Ir to reduce complexity. In other
cases, we introduce random initial inventories by sampling from game snapshots derived from VPT contractor data. This
approach ensures that the test environment remains diverse while maintaining a realistic distribution of inventory items.
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C. Human Annotation
C.1. Minecraft Quiz

To get an annotation for multi-dimensional task scores for trajectories used in our experiments (Section 3.2), we designed
and distributed a questionnaire to confirm the annotators are familiar with Minecraft. The questionnaire is a quiz, containing
five multiple-choice questions with 25 options to test their familiarity with Minecraft; each correctly answered option
is worth 1 point. Then we filtered out the questionnaires with a correct rate of less than 75%, and then considered their
investigation parts for the remaining questionnaires. The quiz is shown in Table 8. We distributed the questionnaires to the
signed up Minecraft annotators, and all of the annotators passed the quiz.

Table 8: The quiz in our questionnaire (only 5 questions are presented), is used to judge the respondents’ familiarity with Minecraft. The
problems are adapted from Milani et al. (2023).

No. Question Options

1 A bed can

A. speed up the night.
B. change the respawn location.
C. be crafted from drops of a certain animal in the game.
D. can be crafted by a furnace, but cannot be crafted by a crafting table.

2 You can acquire EXP when

A. killing hostile mobs.
B. mining trees.
C. jumping on a coal ore block.
D. mining coal.
E. enchanting a diamond sword.

3 What mobs can deal damage to the player?

A. Skeletons.
B. Zombies.
C. Sheep.
D. Pigs.
E. Creepers.
F. Enderman.

4 What items can be eaten?

A. Apples.
B. Dirt.
C. Beef.
D. Wheat.
E. Breads.
F. Spider eyes.

5
If you mine a block with a bare hand, what
kinds of block can drop the corresponding
item?

A. Wooden logs.
B. Wooden planks.
C. Iron ore.
D. Coal ore.

C.2. Human Videos For Tasks

Human videos serve two purposes: they are used as reference videos for GROOT and for comparison with the trajectory
videos generated by the agent models. For each task, we select three world seeds: 19961103, 20010501, and 12345. For
each (task, seed) pair, we manipulate the controllable parameters as described above, resulting in three distinct environment
configuration files. For each configuration file, we record a corresponding human video. Additionally, we designate the first
configuration file of seed 19961103 as the reference video for GROOT.

C.3. Human rating system

In our dataset, there are a total of 60 tasks, each containing 10 rollout trajectories in video format. These videos capture
gameplay records from either humans or various agents.

For the absolute rating task, we randomly select one task and present a corresponding video to human raters, who score it
across six predefined dimensions.

For the comparative evaluation task, we randomly sample two different rollouts from the same task, referred to as Video A
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and Video B. These videos may both be from human players, both from agents, or one from a human and the other from an
agent. Raters are then asked to compare Video A and Video B on each dimension to determine which one performs better.

The human rating interfaces are illustrated in Figure 5 and Figure 6. Taking the video comparison website as an example, it
is designed to evaluate agent performance by displaying two videos side by side, enabling human raters to directly compare
their behaviors within the same task. The interface consists of the following modules:

1. Task Description Module: Positioned at the top-right, this module specifies the task to be evaluated (e.g., Survive
Shield: Use a shield to ward off zombies). It ensures that raters understand the objective before scoring.

2. Video Display Module: Two videos are presented side by side, each replaying an agent’s gameplay. This layout allows
raters to observe agent behaviors, mistakes, or innovative strategies in real-time.

3. Scoring Panel: Located below the videos, this panel enables raters to assess agent performance across six dimensions.
For each dimension, raters can indicate which agent performed better, mark a tie, or specify that neither agent took
relevant actions.

4. Input and Submission Module: At the top-center, an input box collects rater identifiers to ensure traceability. A
Submit button at the bottom sends completed ratings to the database, contributing to the dataset used for benchmarking.

Figure 5: Video comparison website.
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Figure 6: Individual video rating website.
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D. Generalization Experiments
In this experiment, we aim to demonstrate that developing open-ended agents requires selecting an environment with a vast
state space. We seek to show that when the state space is limited, learning within such an environment is prone to overfitting
rather than fostering genuine skill acquisition. Consequently, when tested in open-ended environments (i.e., the test set
prepared for this experiment), the agent is likely to fail in handling unseen scenarios.

Table 9: Training Hyperparameters

Hyperparameter Value Hyperparameter Value

Steps 25M GAE Lambda 0.95
Learning Rate 2× 10−5 PPO Clip 0.1
Scheduler Linear Policy Loss Weight 1.0
Optimizer Adam Value Loss Weight 0.5
Adam Epsilon 1× 10−8 KL Loss Weight 0.3
Number of Training GPUs 2 KL Loss Decay 0.995
Batch Size per GPU 1 Reward Discount 0.999
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Figure 7: Generalization performance across different training state sizes. The x-axis values should be multiplied by 107. We evaluate the
agent on the full distribution of state space. The mean and standard deviation are computed over 100 episodes. As the number of training
states increases, the gap between training and testing performance narrows: training curves become lower, while testing performance
improves.

D.1. Experimental Setup

To assess the impact of state space size on generalization, we conduct experiments on the Hunt Sheep task, using training
sets ranging from 100 to 10, 000, 000 states. The state space primarily consists of variables such as equipment, mobs,
biome, distance, and the number of sheep. For each setting, a subset of the state space is sampled as the training set, while
evaluation is performed on the full state space.

We train agents using online reinforcement learning with Proximal Policy Optimization (PPO) for 25 million steps, requiring
approximately 50 training hours on three GPUs. Detailed hyperparameter configurations are listed in Table 9. The
implementation is also supported by Minestudio.

D.2. Results

As shown in Figure 7, agents exhibit strong overfitting when trained on small datasets. As the training set size increases, the
generalization gap progressively narrows, with test performance improving as agents become more adept at generalization.
To close the generalization gap, agents require exposure to as many as 10 million states.

However, we also observe certain limitations in the agent’s capacity. For example, at the start of the game, sheep may
spawn behind the agent, outside its field of view. The agent fails to develop the behavior of scanning its surroundings before
proceeding, often becoming distracted by other objects instead.

D.3. Discussion

These results highlight the necessity of complex environments like Minecraft, where achieving high performance in a
limited state space does not necessarily imply strong generalization. Moreover, sufficiently large state spaces challenge
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existing reinforcement learning algorithms, offering insights into their capacity limits. At a critical state-space size, further
increasing the diversity of states ceases to yield additional improvements in test performance, suggesting an upper bound on
the agent’s generalization ability.
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E. Large-Scale Inference and Evaluation of MCU
This section demonstrates the MCU’s capability for large-scale inference and task evaluation. We conduct an extensive
experiment involving 150 tasks, consisting of 90 atomic tasks and 60 composite tasks. The experiments are performed on
three agents: VPT (BC), VPT (RL), and STEVE-1. Due to the high cost of recording reference videos, GROOT is excluded
from this evaluation. Specifically, atomic tasks are conducted in hard mode, while composite tasks are executed in simple
mode.

E.1. Atomic Tasks Setup

For atomic tasks, one task is randomly sampled from the atomic task list for each experiment. As outlined in Section 2.4, each
selected task undergoes task configuration generation and verification to ensure the necessary preconditions for execution.
This process guarantees that tasks are properly configured and validated before being executed in the experimental
environment.

E.2. Composite Tasks Setup

Following the methodology described in Section 2.3, we implement a composite task generation pipeline using logical
connectors (“AND” and “OR”) to combine multiple atomic tasks. Composite tasks are designed in three distinct formats,
illustrated by the following examples (note that users can define additional compositions):

1. Three Atomic Tasks Combined with “AND” or “OR”

• “Find smooth red sandstone stairs OR mine yellow banner AND sell yellow dye”
• “Find melon AND mine lodestone OR craft a wooden pickaxe”

2. Two Atomic Tasks Combined with “AND” or “OR”

• “Find melon AND mine lodestone”
• “Craft a wooden sword OR find a diamond”

3. Single Atomic Task with No Initial Tools Provided

• “Mine red sandstone from scratch”
• “Craft a stone pickaxe from scratch”

In each case, atomic tasks are randomly sampled from a pool of over 3,000 available tasks. Composite tasks are designed to
assess the system’s ability to handle complex instructions and execute multiple tasks sequentially or in combination.

E.3. Experimental Conclusions

This experiment evaluates agent performance across a broad task domain, focusing on atomic tasks in hard mode and
compositional tasks. As shown in Figure 9 and Figure 8, agents struggle with these complex scenarios. STEVE-1 exhibits a
performance decline in compositional tasks, likely due to its reliance on short prompts, as discussed in Lifshitz et al. (2023).
When encountering longer or unseen instructions, it experiences out-of-distribution (OOD) issues. The low performance of
all agents in creativity and error recognition aligns with the conclusions drawn in Figure 1c.
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Figure 8: Performance of different agents across 90 atomic tasks.
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Figure 9: Performance of different agents across 60 compositional tasks.
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F. MCU-Turbo: A Standard Benchmark for Evaluating Minecraft Agents
We introduce MCU-Turbo, a canonical benchmark suite for systematically evaluating agents within the Minecraft Universal
(MCU) framework. MCU-Turbo is designed as a standardized evaluation protocol, comprising 80 atomic tasks across 10
categories and 20 compositional tasks. Each task is assessed under two difficulty regimes—Simple and Hard—to rigorously
test an agent’s capabilities in generalization, tool use, long-horizon planning, and robustness to environmental variation. The
following experiments establish baseline performance using current state-of-the-art agents.

F.1. Baseline Results in the Simple Evaluation Mode

Agents demonstrate varied competencies across different evaluation dimensions under the simple setting. Notably, aspects
such as creative behavior and error recognition remain challenging across the board, as illustrated in Table 10.

Table 10: Baseline agent performance in simple mode.

Agent Name Task Progress Action Control Error Recognition Creative Attempts Task Efficiency Material Usage
STEVE-1 31.4% 31.9% 13.1% 6.4% 23.2% 35.6%
VPT (BC) 29.1% 29.0% 11.8% 6.2% 21.3% 33.8%
VPT (RL) 25.9% 26.2% 8.8% 5.2% 18.9% 31.3%
JARVIS-VLA 25.6% 27.8% 9.3% 5.5% 18.3% 30.5%

F.2. Baseline Results in the Hard Evaluation Mode

In the Hard mode, agents are subjected to increased environmental complexity and the presence of distractors. As shown in
Table 11, performance consistently declines across all dimensions, underscoring the difficulty of generalization under more
challenging conditions.

Table 11: Performance degradation in hard mode.

Agent Name Task Progress Action Control Error Recognition Creative Attempts Task Efficiency Material Usage
STEVE-1 23.1% 22.6% 6.9% 6.0% 16.6% 24.5%
VPT (BC) 23.0% 21.7% 6.2% 6.0% 15.6% 25.0%
VPT (RL) 21.0% 20.9% 5.0% 4.6% 14.4% 23.7%
JARVIS-VLA 20.9% 22.3% 5.5% 4.3% 14.5% 22.3%

F.3. Agent Performance on Creative vs. Programmatic Tasks

Creative tasks present a substantially greater challenge compared to programmatic ones. For example, STEVE-1 exhibits
a 15.8% reduction in task progress when transitioning from programmatic to creative tasks, as shown in Table 12. These
results highlight the persistent difficulty of generalization in open-ended and less-structured settings.

Table 12: Performance comparison: creative vs. programmatic tasks.

Task Type Task Progress Action Control Error Recognition Creative Attempts Task Efficiency Material Usage
Programmatic 38.4% 36.5% 16.3% 7.7% 27.7% 43.8%
Creative 22.6% 26.2% 9.1% 4.7% 17.7% 25.4%
Drop -15.8% -10.3% -7.2% -3.0% -10.0% -18.4%

Overall, the MCU-Turbo benchmark provides fine-grained insights into agent capabilities across a diverse task spectrum. It
emphasizes enduring challenges in creativity and adaptive behavior, and aims to steer future research toward the development
of more general-purpose, robust Minecraft agents.
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G. Prompts
G.1. Prompt for Config Generation of Atomic Tasks

1 You are an expert of Minecraft , and I am a new Minecraft player.
2 You should give me all the necessary things I need for completing the task.
3 I will give you the following information:
4

5 The task I want to complete: ...
6

7 You should perform the following steps to help me:
8 1. Tell me all valid items , mobs , biomes and all the necessary things to complete task

;
9 2. Formulate the above information as cheat commands;

10 3. Randomly generate one or two related but not necessarily cheat commands.
11 4. Only output one simple task description , a thinking process and

custom_init_commands.
12

13 e.g. The task I want to complete: Trade for iron helmet.
14 You should respond in the format as described below:
15 - In order to trade for iron helmet , we need at least 5 emerald and a armorer nearby.
16 - Task description: trade for iron helmet with a villager
17 - custom_init_commands:
18 - /give @s minecraft:armor_stand 2
19 - /give @s minecraft:emerald 10
20 - /summon villager ~2 ~ ~-2 {Profession :" minecraft:armorer",VillagerData :{ profession

:" minecraft:armorer "}}
21 - /give @s minecraft:diamond 64
22

23 e.g. The task I want to complete: craft a crafting table.
24 You should respond in the format as described below:
25 - In order to craft a crafting table , we need at least 4 planks.
26 - Task description: craft a crafting table
27 - custom_init_commands:
28 - /give @s minecraft:oak_planks 64
29 - /give @s minecraft:bread 16
30 - /time set night
31

32 e.g. The task I want to complete: mine iron_ore.
33 You should respond in the format as described below:
34 - In order to mine iron_ore , we need at least a stone pickaxe or a better one , and

have iron_ore nearby.
35 - Task description: mine iron ore with a stone pickaxe
36 - custom_init_commands:
37 - /give @s minecraft:stone_pickaxe
38 - /execute as @p at @s run fill ~2 ~2 ~3 ~1 ~5 ~4 coal_ore
39 - /execute as @p at @s run fill ~-5 ~-2 ~-1 ~ ~ ~-3 iron_ore
40 - /give @s minecraft:wooden_pickaxe
41

42 e.g. The task I want to complete: flying trident on a rainy day.
43 You should respond in the format as described below:
44 - In order to flying trident on a rainy day , we need a trident enchanted with the

riptide enchantment , and set the weather in rainy mode.
45 - Task description: flying trident on a rainy day
46 - custom_init_commands:
47 - /weather rain
48 - /give @p minecraft:trident
49 - /give @p minecraft:trident{Enchantments :[{id:" minecraft:riptide",lvl :1}]} 3
50 - /give @p minecraft:fire_charge{Enchantments :[{id:" minecraft:riptide",lvl :1}]} 3
51

52 e.g. The task I want to complete: combat a zombie.
53 You should respond in the format as described below:
54 - In order to combat a zombie , we need weapons , armors and a zombie nearby. Firstly ,

the Diamond Armor Set is the top -tier defensive gear , providing exceptional
protection. Secondly , the Diamond Sword , can swiftly dispatch zombies.
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Additionally , explosive items such as Lava and TNT can also effectively deal with
zombies. Zombies usually appear at night , so we need night vision.

55 - Task description: combat and kill a zombie
56 - custom_init_commands:
57 - /replaceitem entity @s armor.head minecraft:diamond_helmet
58 - /replaceitem entity @s armor.chest minecraft:diamond_chestplate
59 - /replaceitem entity @s armor.legs minecraft:diamond_leggings
60 - /replaceitem entity @s armor.feet minecraft:diamond_boots
61 - /replaceitem entity @s weapon.mainhand minecraft:diamond_sword
62 - /time set night
63 - /effect give @a night_vision 99999 250 true
64 - /summon minecraft:zombie ~3 ~ ~
65 - /give @p minecraft:tnt 64
66

67 e.g. The task I want to complete: find a panda.
68 You should respond in the format as described below:
69 - In order to find a panda , we need to make sure there is a panda nearby.
70 - Task description: find a panda
71 - custom_init_commands:
72 - /summon minecraft:panda ~ ~ ~3
73 - /give @p minecraft:potato
74

75 e.g. The task I want to complete: interact with potion.
76 You should respond in the format as described below:
77 - In order to interact with a potion , you need at least one potion.
78 - Task description: interact with a potion
79 - custom_init_commands:
80 - /weather rain
81 - /give @s minecraft:potion 2
82

83 e.g. The task I want to complete: feed a sheep.
84 You should respond in the format as described below:
85 - In order to feed a sheep , you may need wheat in inventory and a sheep nearby.
86 - Task description: feed a sheep with wheat
87 - custom_init_commands:
88 - /summon minecraft:sheep ~ ~ ~-2
89 - /summon minecraft:sheep ~ ~ ~
90 - /give @s minecraft:wheat 5
91

92 Note:
93 - You should provide accurate information and executable cheat commands of Minecraft.
94 - The quantity of items in the cheat command should be more than what is required. For

example , the task need at least 10 emerald , provide 20 instead.
95 - You should provide all the tools and environments required for completing the task.
96 - For decoration task , you can generate poppy , flower pot , torch , blue bed , red_dye

and other similar things.
97 - Do not give me the final target things directly in my inventory.
98 - Some crafting tasks are not completed using the crafting table , they could be done

with tools like the furnace , enchanting table , or brewing stand and so on. You
need to select the appropriate tool.

99 - Remember to provide a crafting table , furnace , enchanting table , brewing stand or
similar items , if the task requires it.

100 - When use /fill command , ensure not to generate them in inaccessible locations (such
as high in the sky), and be extremely cautious not to suffocate the agent.

101 - The distance for summoning items should be within 4 blocks.
102 - For the "find" task , it is better to use / s u m m o n /fill , or /execute
103 - Attention , there are certain items that cannot be directly summoned , such as trees ,

sugar cane , bubble_coral , etc. You should use /execute or /give

Listing 1: Prompt for Config Generation of Atomic Tasks

G.2. Prompt for Config Generation of Compositional Tasks

1 You are an expert of Minecraft , and I am a new Minecraft player.
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2 You should give me all the necessary things I need for completing the task.
3 I will give you the following information:
4

5 - The task I want to complete: ...
6

7 You should perform the following steps to help me:
8 1. Tell me all valid items , mobs , biomes , and all the necessary things to complete the

task.
9 2. Formulate the above information as cheat commands.

10 3. Only output one simple task description , a thinking process , and
custom_init_commands.

11

12 e.g. The task I want to complete: Trade for iron helmet or mine stone.
13 You should respond in the format as described as below:
14 - In order to trade for iron helmet , we need at least 5 emeralds and an armorer nearby

. In order to mine stone , we need a pickaxe , like a diamond pickaxe.
15 - Task description: trade for an iron helmet with a villager and mine stone with a

diamond pickaxe
16 - custom_init_commands:
17 - /give @s minecraft:emerald 10
18 - /summon villager ~2 ~ ~-2 {Profession :" minecraft:armorer",VillagerData :{

profession :" minecraft:armorer "}}
19 - /give @s minecraft:diamond_pickaxe 2
20

21 e.g. The task I want to complete: craft a crafting table and go explore.
22 You should respond in the format as described as below:
23 - In order to craft a crafting table , we need at least 4 planks. To explore , you need

nothing.
24 - Task description: craft a crafting table
25 - custom_init_commands:
26 - /give @s minecraft:oak_planks 64
27

28 e.g. The task I want to complete: mine iron_ore and combat a zombie.
29 You should respond in the format as described as below:
30 - In order to mine iron_ore , we need at least a stone pickaxe or a better one , and

have iron_ore nearby. In order to combat a zombie , we need weapons , armors , and a
zombie nearby. Firstly , the Diamond Armor Set is the top -tier defensive gear ,
providing exceptional protection. Secondly , the Diamond Sword can swiftly dispatch
zombies. Zombies usually appear at night , so we need night vision.

31 - Task description: mine iron ore with a stone pickaxe and kill a zombie
32 - custom_init_commands:
33 - /give @s minecraft:stone_pickaxe
34 - /execute as @p at @s run fill ~-5 ~-2 ~-1 ~ ~ ~-3 iron_ore
35 - /replaceitem entity @s armor.head minecraft:diamond_helmet
36 - /replaceitem entity @s armor.chest minecraft:diamond_chestplate
37 - /replaceitem entity @s armor.legs minecraft:diamond_leggings
38 - /replaceitem entity @s armor.feet minecraft:diamond_boots
39 - /replaceitem entity @s weapon.mainhand minecraft:diamond_sword
40 - /time set night
41 - /effect give @a night_vision 99999 250 true
42 - /summon minecraft:zombie ~3 ~ ~
43

44 e.g. The task I want to complete: flying trident on a rainy day.
45 You should respond in the format as described as below:
46 - In order to fly with a trident on a rainy day , we need a trident enchanted with the

riptide enchantment , and set the weather to rainy.
47 - Task description: flying trident on a rainy day
48 - custom_init_commands:
49 - /weather rain
50 - /give @p minecraft:trident{Enchantments :[{id:" minecraft:riptide",lvl :1}]} 3
51

52 e.g. The task I want to complete: find bubble_coral and feed a sheep.
53 You should respond in the format as described as below:
54 - In order to find bubble_coral , we need to make sure there are bubble_corals nearby.

In order to feed a sheep , you may need wheat in inventory and a sheep nearby.
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55 - Task description: find bubble_coral and feed a sheep with wheat
56 - custom_init_commands:
57 - /execute as @p at @s run fill ~-5 ~-2 ~-1 ~ ~ ~-3 minecraft:bubble_coral
58 - /summon minecraft:sheep ~ ~ ~-2
59 - /summon minecraft:sheep ~ ~ ~
60 - /give @s minecraft:wheat 5
61

62 e.g. The task I want to complete: interact with a potion and eat bread.
63 You should respond in the format as described as below:
64 - In order to interact with a potion , you need at least one potion. In order to eat

bread , you need at least one bread.
65 - Task description: interact with a potion and eat bread
66 - custom_init_commands:
67 - /give @s minecraft:potion 2
68 - /give @s minecraft:bread 2
69

70 ---
71

72 Note:
73 - You should provide accurate information and executable cheat commands of Minecraft.
74 - The quantity of items in the cheat command should be more than what is required. For

example , if the task needs at least 10 emeralds , provide 20 instead.
75 - You should provide all the tools and environments required for completing the task.
76 - Attention , there are certain items that cannot be directly summoned , such as trees ,

sugar cane , bubble_coral , etc. You should use /execute or /give.
77 - For decoration tasks , you can generate poppies , flower pots , torches , blue beds ,

red_dye , and other similar things.
78 - Do not give me the final target things directly in my inventory.
79 - Some crafting tasks are not completed using the crafting table. They could be done

with tools like the furnace , enchanting table , brewing stand , or similar tools.
You need to select the appropriate tool.

80 - Remember to provide a crafting table , furnace , enchanting table , brewing stand , or
similar items if the task requires it. Use /give.

81 - When using /fill command , ensure not to generate them in inaccessible locations (
such as high in the sky), and be extremely cautious not to suffocate the agent.

82 - The distance for summoning items should be within 4 blocks.

Listing 2: Prompt for Config Generation of Compositional Tasks

G.3. Prompt for Criteria Generation

1 You are an expert of Minecraft and good at training agents in the AI field.
2 I will give you a task description in Minecraft , and you need to generate the score

points for assessing the completion of the task.
3

4 You need to output five grading criteria , including Task Progress , Material Selection
and Usage , Action Control , Error Recognition and Correction , Creative Attempts ,
and Task Completion Efficiency.

5 You should formulate specific rules under each criterion for different tasks and don ’t
modify the content between the two asterisks (** **)

6

7 Building tasks should focus on whether the agent has completed the basic shape and
structure.

8 For example , the task name is "build a house and decorate the tree", please generate
the score points for it.

9 You should respond in the format as described below:
10

11 For build a house:
12 **Task Progress: the key factors/steps for completing the task**
13 - whether the agent builds four walls
14 - whether the agent builds a roof
15 - whether the agent builds a door
16
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17 ** Action Control: whether the agents have unrelated operations of the task , including
useless actions and redundant actions **

18

19 **Error Recognition and Correction: whether the agent can promptly identify and
rectify its mistakes **

20 - e.g., whether agents recognize the misaligned walls or incorrect material usage
21 - whether the corrected results demonstrate improvement and reduce flaws in the final

product.
22

23 ** Creative Attempts: any creative attempts exhibited by the agent during the task**
24 - e.g., uniquely shaped rooms , distinctive decorative elements like furniture
25

26 **Task Completion Efficiency **
27 - whether the time taken by the agent to complete the task falls within a reasonable

range
28 - whether effective construction strategies were employed to minimize unnecessary

repetitions or errors
29

30 ** Material Selection and Usage: whether the agent correctly utilizes the given
materials **

31

32 For decorate a tree:
33 **Task Progress: the key factors/steps for completing the task**
34 - Is there a tree in the image?
35 - whether the agent put something on the tree
36

37 ** Action Control: whether the agents have unrelated operations of the task , including
useless actions and redundant actions **

38 - e.g., a purposeless arrangement of blocks , destroying the tree , repeatedly clicking
on items in the inventory without using them

39

40 **Error Recognition and Correction: whether the agent can promptly identify and
rectify its mistakes **

41 - whether the corrected results demonstrate improvement and reduce flaws in the final
product

42

43 ** Creative Attempts: any creative attempts exhibited by the agent during the task**
44 - e.g., Evaluate the overall visual effect of the decoration , including color

coordination , layout rationality , and symmetry
45 - e.g., Are the decorations on the tree diverse and abundant?
46

47 **Task Completion Efficiency **
48 - whether the time taken by the agent to complete the task falls within a reasonable

range
49 - whether effective construction strategies were employed to minimize unnecessary

repetitions or errors
50

51 ** Material Selection and Usage: whether the agent correctly utilizes the given
materials **

52

53

54 For example , the task name is "dig three holes and fill one", please generate the
score points for it.

55 You should respond in the format as described below:
56

57 **Task Progress: the key factors/steps for completing the task**
58 - whether the agent is digging the hole
59 - whether the agent digs three holes
60 - whether the agent fills one hole
61

62 ** Action Control: whether the agents have unrelated operations of the task , including
useless actions and redundant actions **

63 - e.g., wandering aimlessly , destroying the tree
64
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65 **Error Recognition and Correction: whether the agent can promptly identify and
rectify its mistakes **

66 - whether the corrected results demonstrate improvement and reduce flaws in the final
product

67

68 ** Creative Attempts: any creative attempts exhibited by the agent during the task**
69 - e.g., using different tools to dig the holes like hands or pickaxes
70

71 **Task Completion Efficiency **
72 - whether the time taken by the agent to complete the task falls within a reasonable

range
73 - whether effective construction strategies were employed to minimize unnecessary

repetitions or errors
74

75 ** Material Selection and Usage: whether the agent correctly utilizes the given
materials **

76

77 Note:
78 - For crafting tasks , it is important to distinguish whether the recipe book is opened

and to identify the final item that needs to be crafted.
79 - For motion tasks , such as using an item or eating an item , attention should be paid

to the interaction with the item.

Listing 3: Prompt for Criteria Generation

G.4. Prompt for Video Comparison

1 You are an expert in Minecraft and experienced in evaluating agents in the AI field.
2 I will provide the following:
3

4 - A task name
5 - Grading criteria for the task
6 - Two videos (Video A and Video B) of an agent performing the task.
7

8 The grading criteria contain several major categories (surrounded by ** **) and
several evaluation rules under each major category.

9 You need to carefully compare the agent ’s performance in Videos A and B according to
the evaluation rules and output one of the following:

10

11 - "A is better"
12 - "B is better"
13 - "tie"
14 - "both are bad"
15

16 The more an agent complies with the rules in each criterion , the better they perform.
17

18 Output **"A is better "** when Video A performed better according to the evaluation
rules.

19 Output **"B is better "** when Video B performed better according to the evaluation
rules.

20 Output **" tie "** when both videos demonstrate similar capabilities.
21 Output **" both are bad "** when both videos have hardly done anything related to the

rules or have performed very poorly.
22

23 Before outputting the decision , you should list the relevant evidence from the videos
to support your decision (within 80 words). Do not simply copy phrases from the
rules.

24

25 You will make the decision across six major criteria:
26

27 1. Task Progress
28 2. Material Selection and Usage
29 3. Action Control
30 4. Error Recognition and Correction
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31 5. Creative Attempts
32 6. Task Completion Efficiency
33

34 You should follow the output format below to organize your response:
35

36 ---
37

38 Task Progress:
39 - evidence: xxx
40 result: xxx
41

42 Action Control:
43 - evidence: xxx
44 result: xxx
45

46 Error Recognition and Correction:
47 - evidence: xxx
48 result: xxx
49

50 Creative Attempts:
51 - evidence: xxx
52 result: xxx
53

54 Task Completion Efficiency:
55 - evidence: xxx
56 result: xxx
57

58 Material Selection and Usage:
59 - evidence: xxx
60 result: xxx
61

62 Overall results:
63 - Task Progress: xxx
64 - Action Control: xxx
65 - Error Recognition and Correction: xxx
66 - Creative Attempts: xxx
67 - Task Completion Efficiency: xxx
68 - Material Selection and Usage: xxx
69

70 ---
71

72 Note:
73 - If the evaluation rules include "e.g.", it is only an example , and you should not be

limited to the listed examples. Consider all phenomena that conform to the major
criteria.

74 - Task progress only considers the completion of key steps of the task and does not
account for artistic qualities or similar aspects.

75 - In categories like task progress , action control , task completion efficiency , and
material selection and usage , you should ideally choose either A or B as better.

Listing 4: Prompt for Video Comparison

G.5. Prompt for Individual Video Rating

1 You are an expert of Minecraft and good at evaluating agents in the AI field.
2 I will give you a task name , a grading criteria for this task , and a video of an agent

performing the task.
3

4 The grading criteria has several major criteria (surrounded by ** **) and several
evaluation rules under each major criterion.

5 You need to score the agent ’s operations in the video based on the evaluation rules.
The more the agent complies with the rules in the criteria , the higher the score
it receives.

6 If you think the agent ’s behavior does not relate to the stated rule , score 0.
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7 If you think the agent ’s behavior barely relates to the stated rule , score 0.1 -0.3
8 If the agent ’s behavior partially relates to the rules , score 0.4 -0.6
9 If the agent ’s behavior is mostly related to the rules , score 0.7 -0.9

10 If the agent ’s behavior is completely related to the rules , score 1.
11

12 If you believe the agent complies with the rule , you should list the relevant evidence
from the video (within 50 words). Do not simply copy the phrases from the rules.

13 Please assign an appropriate score across five dimensions , including task progress ,
material selection and usage , action control , error recognition and correction ,
creative attempts , and task completion efficiency , based on the final evidence.

14

15 You should follow the following output format to organize outputs. "xxx" is the
placeholder. Evidence can be more than one.

16 If there are multiple tasks , such as mining ore and crafting items , please provide a
comprehensive evaluation , responding with only one overall score.

17

18 Output format:
19

20 Task Progress:
21 - evidence xxx
22 Score: xxx
23

24 Action Control:
25 - evidence xxx
26 Score: xxx
27

28 Error Recognition and Correction:
29 - evidence xxx
30 Score: xxx
31

32 Creative Attempts:
33 - evidence xxx
34 Score: xxx
35

36 Task Completion Efficiency:
37 - evidence xxx
38 Score: xxx
39

40 Material Selection and Usage:
41 - evidence xxx
42 Score: xxx
43

44 Overall Scores:
45 - Task Progress: xxx
46 - Action Control: xxx
47 - Error Recognition and Correction: xxx
48 - Creative Attempts: xxx
49 - Task Completion Efficiency: xxx
50 - Material Selection and Usage: xxx
51

52 Note:
53 - If the evaluation rules include "e.g.", it is only an example and you should not be

limited to the listed "e.g." All phenomena that conform to the major criteria
should be considered.

54 - Task progress only considers the completion of key steps of the task and is
unrelated to artistic qualities or other such aspects.

55 - You should ignore the text shown on the video.
56 - If the video has required materials for the task , they are automatically assigned by

the system and cannot be counted in the task progress.
57 - For combinations like "a and b or c," the average of the scores from tasks a and b

should be calculated first , and then the higher value between this average and the
score of task c should be taken as the final result.

Listing 5: Prompt for Individual Video Rating
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G.6. Pseudo-Code Examples

1 const doc = yaml.load(fs.readFileSync(task_conf , ’utf8’));
2 // Extract the item name from the task description
3 const item_name = task_description.split(’craft_a_ ’)[1];
4 // Execute each initialization command to set up the environment
5 doc.custom_init_commands.forEach(command => {
6 bot.chat(command);
7 });
8 // Find the recipe for crafting the specified item
9 const recipe = bot.recipesFor(item_name , craftingTable);

10 // Attempt to craft the item
11 try {
12 await bot.craft(recipe , count , craftingTablePosition);
13 console.log(‘${count} ${item_name} crafted successfully ‘);
14 } catch(err) {
15 console.error(’Failed␣to␣craft␣item:’, err);
16 }

Listing 6: Mineflayer Craft Task Pseudo-Code

1 from mcu_benchmark import MinecraftWrapper , VLM_Evaluator
2 from utility import load_config , check_success_and_save_video
3 from models import agent_creator
4

5 # Step 1: Load task configuration for the benchmark
6 config = load_config("build_house.yaml")
7 # Step 2: Initialize the environment with MinecraftWrapper
8 env = MinecraftWrapper(config[’env’], level=config[’level’])
9 # Step 3: Initialize the agent (using custom model path and weights)

10 agent = agent_creator(model_path , weight_path).cuda()
11 agent.eval() # Set the agent to evaluation mode
12 # Step 4: Get the initial state for the agent
13 state = agent.initial_state ()
14 # Step 5: Start the environment and reset
15 obs , info = env.reset ()
16 terminated , truncated = False , False
17 rollout_info = []
18 # Step 6: Agent’s rollout
19 while not terminated and not truncated:
20 # Get action from the agent and update state
21 action , state = agent.get_action(obs , state)
22 # Step the environment with the agent’s action
23 obs , terminated , truncated , info = env.step(action)
24 # Save frames (visual feedback from the environment)
25 rollout_info.append(info)
26 # Check if the agent succeeded in the task programmatically
27 success , video_path = check_success_and_save_video(rollout_info)
28 # Step 7: Evaluate the agent using a Vision -Language Model (VLM)
29 vlm_evaluator = VLM_Evaluator ()
30 vlm_score = vlm_evaluator.evaluate(video_path , ’build_criteria.txt’)
31 print(f"Success:␣{success }.␣VLM␣evaluation␣score:␣{vlm_score}")

Listing 7: MCU Evaluation Process Pseudo-Code
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G.7. Case study

The following case clarifies the impact of each metric on evaluating generalization performance. Metrics such as task
progress and material selection assess basic task alignment, while action control and task efficiency provide insights into
optimization strategies. Error correction and creative attempts, in contrast, measure higher-order generalization skills. These
are critical for assessing agents in open-ended and complex scenarios, as they reveal resilience to failure and capacity for
novel strategies.

While Video B outperformed Video A across most metrics, the weaknesses in creativity and error correction indicate areas
where even high-performing agents fall short. Incorporating tailored training modules and broader tasks emphasizing these
dimensions will enhance the benchmarks utility for developing and evaluating generalist agents.

1 Task Progress:
2 - Video A: The agent collects dirt blocks and places them vertically but does not

reach a reasonable height.
3 - Video B: The agent collects dirt blocks , places them vertically , and reaches a

reasonable height.
4 result: B is better
5

6 Action Control:
7 - Video A: The agent places some blocks horizontally and in unrelated locations.
8 - Video B: The agent places blocks vertically without unnecessary actions
9 result: B is better

10

11 Error Recognition and Correction:
12 - Video A: The agent does not correct incorrectly placed blocks.
13 - Video B: The agent does not make any noticeable errors that need correction.
14 result: B is better
15

16 Creative Attempts:
17 - Video A: The agent does not show any creative attempts.
18 - Video B: The agent does not show any creative attempts.
19 result: tie
20

21 Task Completion Efficiency:
22 - Video A: The agent takes a longer time with unnecessary actions.
23 - Video B: The agent completes the task efficiently without unnecessary actions.
24 result: B is better
25

26 Material Selection and Usage:
27 - Video A: The agent uses dirt blocks but places some blocks horizontally and in

unrelated locations.
28 - Video B: The agent exclusively uses dirt blocks and places them appropriately.
29 result: B is better
30

31 Overall results:
32 - Task Progress: B is better
33 - Action Control: B is better
34 - Error Recognition and Correction: B is better
35 - Creative Attempts: tie
36 - Task Completion Efficiency: B is better
37 - Material Selection and Usage: B is better

Listing 8: Video Comparison Evaluation Results
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1 **Task Progress :**
2 - Evidence: The agent placed two snow blocks vertically and a carved pumpkin on top ,

but no Snow Golem was created.
3 - Score: Partially
4

5 ** Action Control :**
6 - Evidence: The agent placed multiple unnecessary snow blocks around the structure.
7 - Score: Barely
8

9 **Error Recognition and Correction :**
10 - Evidence: The agent did not correct the placement of the carved pumpkin after

failing to create a Snow Golem.
11 - Score: Barely
12

13 ** Creative Attempts :**
14 - Evidence: No creative attempts or decorations observed.
15 - Score: None
16

17 **Task Completion Efficiency :**
18 - Evidence: The agent took excessive time with unnecessary placements and failed to

complete the task.
19 - Score: Barely
20

21 ** Material Selection and Usage :**
22 - Evidence: Correct materials (snow blocks and carved pumpkin) were used , but not

effectively.
23 - Score: Partially
24

25 ** Overall Scores :**
26 - Task Progress: Partially
27 - Action Control: Barely
28 - Error Recognition and Correction: Barely
29 - Creative Attempts: None
30 - Task Completion Efficiency: Barely
31 - Material Selection and Usage: Partially

Listing 9: Individual Video Evaluation Results
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