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ABSTRACT

Large language models achieve strong reasoning performance, but inference
strategies such as Self-Consistency (SC) are computationally expensive, as they
fully expand all reasoning traces. We introduce PoLR (Path of Least Resistance),
the first inference-time method to leverage prefix consistency for compute-efficient
reasoning. PoLR clusters short prefixes of reasoning traces, identifies the domi-
nant cluster, and expands all paths in that cluster, preserving the accuracy benefits
of SC while substantially reducing token usage and latency. Our theoretical anal-
ysis, framed via mutual information and entropy, explains why early reasoning
steps encode strong signals predictive of final correctness. Empirically, PoLR con-
sistently matches or exceeds SC across GSM8K, MATH500, AIME24/25, and
GPQA-DIAMOND, reducing token usage by up to 60% and wall-clock latency by
up to 50%. Moreover, PoLR is fully complementary to adaptive inference meth-
ods (e.g., Adaptive Consistency, Early-Stopping SC) and can serve as a drop-in
pre-filter, making SC substantially more efficient and scalable without requiring
model fine-tuning.

1 INTRODUCTION

Large Language Models (LLMs) have recently achieved remarkable performance on complex rea-
soning tasks Yang et al. (2025); Grattafiori et al. (2024); Guo et al. (2025), ranging from grade-
school math (Cobbe et al., 2021) to graduate-level problem solving (Hendrycks et al., 2021; Rein
et al., 2023). Among inference-time strategies, Self-Consistency (SC) decoding (Wang et al., 2023)
has emerged as a strong default: by sampling multiple reasoning traces and taking a majority vote
over their final answers, SC substantially improves accuracy over greedy or single-sample decoding.
However, it incurs substantial computational cost because all reasoning traces must be expanded to
completion.

To reduce SC’s compute requirements, several inference-time methods such as Adaptive Consis-
tency (AC) Aggarwal et al. (2023) and Early-Stop Self-Consistency (ESC) Li et al. (2024) have
been proposed. These methods expand reasoning traces sequentially and stop generating them only
when sufficient final-answer agreement is observed. Though effective, they share a fundamental
limitation: answer-level agreement is only observable after full reasoning traces is generated. As a
result, they cannot exploit the rich structural information that might appear earlier in the reasoning
process and their efficiency remains limited by the need to generate complete reasoning traces.

Recently, an alternative line of research shows that the early stages of reasoning traces carry dispro-
portionately strong signals about the eventual solution, a phenomenon known as prefix consistency.
Formally, if ri denotes a reasoning trace, then its first L tokens ri[1 : L], termed as prefix, tend to
exhibit similarity across reasoning traces, irrespective of their later steps. Ji et al. (2025) exploited
this phenomenon at training time, that is, fine-tuning models on prefixes to improve reasoning while
reducing inference cost. However, this requires expensive fine-tuning and cannot be applied directly
at inference.

This gap motivates a method that reduces Self-Consistency cost by exploiting early steps of rea-
soning traces rather than waiting for full trajectories. To address this need, we introduce PoLR
(Path of Least Resistance), the first method to leverage prefix consistency for inference-time Self-
Consistency. To leverage Prefix consistency, PoLR generates N short prefixes, embeds and clus-
ters them, and only expands the prefixes to full reasoning traces for the dominant cluster, reducing
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(a) PoLR Overview
(b) Token-accuracy plot GPQA-
Diamond

Figure 1: (a) Comparison of Self-Consistency (SC) and PoLR. Top: SC expands all N sampled
traces to completion (100% expansion), then aggregates answers via majority vote. Bottom: PoLR
first generates N short prefixes of length Lp, embeds and clusters them, and selects the dominant
cluster. All K ≪ N traces from this cluster are expanded, after which majority voting is applied.
(b) PoLR exceeds SC accuracy, while reducing token cost by approx 50%.

wasted token generation and adaptively allocating compute to promising paths. This approach pre-
serves SC’s accuracy while cutting token usage and latency dramatically as depicted in Figure 1.
The key contributions of this work are:

• PoLR is a drop-in SC replacement that clusters partial reasoning traces and selectively expands
the dominant cluster, substantially reducing inference cost.

• Across math (GSM8K, MATH500, AIME24/25), commonsense, and science reasoning bench-
marks (GPQA-DIAMOND), and implicit knowledge retrieval benchmark (STARTEGYQA)
PoLR shows up to 60% token reduction and 50% latency savings without accuracy loss, consis-
tent across LLM families and scales (1–32B params).

• PoLR is the first inference-time method to exploit prefix consistency for Self-Consistency, com-
plementing existing adaptive self-consistency methods further reducing the token generation.

• PoLR is robust to different clustering methods, prefix lengths, and cluster selection strategies.

By exploiting structural regularities in the earliest reasoning steps, PoLR bridges accuracy-focused
reasoning with compute-aware inference.

2 DO PREFIXES ENCODE EARLY CONSENSUS?

Table 1: Preliminary analysis on
MATH500 and GSM8K (DSQ7B, 40
samples). Prefixes rapidly form a domi-
nant cluster: expanding only ∼ 50% of
traces achieves accuracy nearly identi-
cal to SC

Lp Expansion rate Accuracy EPM

MATH500

SC 1.00 89.8 –

32 0.64 89.8 125
64 0.58 89.6 63
128 0.48 89.2 5
256 0.45 89.2 0

GSM8K

SC 1.00 79.7 –

32 0.52 79.7 135
64 0.49 78.9 80
128 0.47 79.3 30
256 0.46 79.1 1

To understand if prefixes encode strong signals about the
eventual solution, we conduct a preliminary analysis of
reasoning prefixes. We generate 40 traces per question us-
ing DeepSeek-Distill-Qwen-7B (DSQ7B) on MATH500
and GSM8K, truncating traces at varying prefix lengths
Lp in Table 1. We evaluate the fraction of traces that
shares identical prefix Lp (Expansion rate) and compute
majority-vote (accuracy). We also find the exact prefix
match (EPM) that is number of problems where all 40
traces share identical prefixes.

The results show that traces sharing the same prefix
achieve nearly the same accuracy as full SC, meaning a
large fraction of token cost spent on extra traces rarely
contribute to the final answer. These findings suggest that
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LLMs encode structural agreement well before generating complete answers. Detecting and lever-
aging this early consensus can substantially reduce compute without compromising SC’s robustness.

3 PATH OF LEAST RESISTANCE (POLR)

In this section, we present how PoLR (Path of Least Resistance) operates as an inference-time alter-
native to Self-Consistency (SC). The name PoLR is motivated by a natural principle: systems tend
to follow the path of least resistance, avoiding unnecessary detours while conserving energy. Anal-
ogously, instead of fully expanding all reasoning traces like SC, PoLR prunes unlikely or redundant
paths early and allocates computation only to the dominant prefix cluster.

3.1 MATHEMATICAL FORMULATION

Setup. Consider an input reasoning question x posed to a language modelM. In the standard SC
baseline, we sample N complete reasoning traces of average length ℓf and then aggregate their final
answers by majority vote. While effective, this incurs high inference cost because every trace must
be expanded until completion, even if most are redundant.

PoLR modifies this pipeline by introducing a prefix-based selection step. Specifically, we sample N
short prefixes, each of length Lp tokens, and use their semantic structure to decide which subset of
traces to fully expand. The key intuition is that reasoning traces often share overlapping initial steps
(Ji et al., 2025), and these early structures correlate with the correctness of the final outcome. By
clustering prefixes, we can identify the dominant reasoning mode early, without generating all traces
to completion. A step-by-step implementation instructions presented in Appendix B (Algorithm 1).

Step 1: Prefix Sampling. Given the input question x and theM, we first generate N short rea-
soning prefixes pi = Prefix(M(x, ti), Lp), i = 1, . . . , N, where ti is the sampling temperature,
and Prefix(·) denotes truncating the LLM output to Lp tokens. In practice, this is implemented by
setting max new tokens = Lp.

Step 2: Embedding and Clustering. Each prefix pi is embedded into a sparse vector represen-
tation via TF–IDF bag-of-words encoding over tokens. This choice is lightweight, model-agnostic,
and CPU-friendly, avoiding external neural encoders. We provide a detailed comparison with neural
encoder in Table 4. It is evident that neural encoders increase the clustering overhead way more than
the TF-IDF encoders with diminishing returns on the accuracies.

We cluster {pi} into C = {C1, . . . , Cm} using Agglomerative Hierarchical Clustering with cosine
similarity. This is well-suited for small N (11–51), as it requires no pre-specified m and produces
interpretable groupings. That is C∗ = argmaxCj∈C |Cj |, where

⋃m
j=1 Cj = {p1, . . . , pN} and C∗

is the dominant cluster.

Step 3: Expansion. We then expands all K prefixes from C∗ to full reasoning traces as rk =
M(x | pk), pk ∈ C∗, k = 1, . . . ,K.

Step 4: Self-Consistency Voting. Let ak be the extracted answer from trace rk. PoLR returns
â = argmaxy

∑K
k=1 1[ak = y]. Thus PoLR strictly generalizes SC: if K = N and clustering is

bypassed, it reduces to standard SC.

Token Efficiency: Let ℓp = average prefix length, ℓf = full reasoning length. Number of tokens
generated for SC TSC = N · ℓf , and for PoLR TPoLR = N · ℓp + K · (ℓf − ℓp). We compute the
token efficiency as:

η = 1− TPoLR

TSC
= 1− N · ℓp +K · (ℓf − ℓp)

N · ℓf
.

3.2 THEORETICAL JUSTIFICATION

PoLR relies on the intuition that early prefixes already contain useful signals about the final rea-
soning trajectory. We formalize this intuition by considering two complementary properties: (i)
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correctness alignment, which determines whether restricting to a dominant cluster preserves accu-
racy, and (ii) structural skew, which governs the magnitude of efficiency gains.

3.2.1 CORRECTNESS ALIGNMENT AND ACCURACY PRESERVATION

Let Y ∈ {0, 1} denote the correctness of a final reasoning trajectory (1 if correct, 0 otherwise), and
let Z denote the cluster assignment of a sampled prefix. The critical condition for PoLR is that Z
carries information about Y , i.e. I(Z;Y ) > 0, where I(·; ·) denotes mutual information. Intuitively,
if prefixes cluster in a way that is at least weakly predictive of correctness, then restricting expansion
to the dominant cluster will not systematically degrade accuracy. In this view, self-consistency (SC)
can be seen as an unbiased estimator of E[Y ], while PoLR acts as a variance-reduced estimator that
focuses on high-probability clusters.

Formally, the conditional entropy of correctness given the cluster assignment can be written as
H(Y |Z) =

∑
z P (Z = z)H(Y |Z = z). If H(Y |Z) is small, then cluster identity reliably predicts

correctness. Our empirical results (Section 5) show that I(Z;Y ) and H(Y |Z) remain non-trivial
across models, which explains why PoLR consistently matches SC in accuracy.

3.2.2 STRUCTURAL SKEW AND EFFICIENCY

While correctness alignment governs accuracy preservation, our experiments reveal that it does not
explain the magnitude of efficiency gains. Instead, efficiency is driven by the structural skew in the
prefix cluster distribution. Define the skew for a given instance as κ = |C∗|

N , where |C∗| is the size of
the dominant cluster and N is the number of sampled prefixes. If κ is large, the majority of prefixes
fall into one cluster, and ignoring the smaller clusters eliminates substantial redundant expansions.
Conversely, if clusters are balanced (κ ≈ 1/m), dominant cluster’s traces’ expansion yields more
token savings but poorer quality.

At the dataset level, the expected efficiency gain is thus directly tied to the expected skew E[η] ∝
E[κ−1]. Empirically, we observe strong correlation between κ and token savings, whereas NMI
between clusters and correctness is weakly correlated with efficiency. This indicates that PoLR’s
efficiency derives from structural dominance rather than correctness alignment.

The combined picture is as follows:

• Accuracy preservation requires that I(Z;Y ) > 0, i.e., that clusters are not adversarially
misaligned with correctness. Even modest alignment is sufficient, as SC’s voting ensures
that errors do not amplify.

• Efficiency magnitude depends on structural skew κ: the more dominant the largest cluster,
the more redundant expansions PoLR can safely ignore.

This separation of concerns reconciles our theory and empirical findings: mutual information guar-
antees safety, while skew determines savings. Our experiments across GSM8K with multiple models
(1.5B–7B) confirm this in Section 5.5, where NMI remains low (≤ 0.18), yet efficiency saturates
around 50–58%, precisely because prefix clusters exhibit strong structural skew.

We now make the connection between cluster skew and efficiency gains explicit.
Proposition 1. Let N denote the number of sampled prefixes, partitioned into m clusters
{C1, . . . , Cm} with sizes |C1|, . . . , |Cm|, and let C∗ denote the dominant cluster with size |C∗|.
Assume PoLR expands K continuations from C∗, while Self-Consistency (SC) expands M continu-
ations from all N prefixes (with M ≥ K). Then the expected token efficiency gain of PoLR relative
to SC satisfies

η ≥ 1− K

M
· κ−1,where κ = |C∗|

N is the dominance ratio (skew).

Sketch. SC requires expanding M continuations distributed across all N prefixes. If m clusters
are expanded proportionally, each prefix contributes on average m/N expansions. PoLR instead
expands only K continuations from the dominant cluster C∗. Normalizing by M , the relative cost
is K

M ·
N

|C∗| = K
M · κ

−1. Thus the efficiency gain relative to SC is at least 1 − K
M · κ

−1. Equality
holds when expansions are exactly proportional across clusters.
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This bound formalizes the empirical observation that efficiency gains scale monotonically with κ:
the more dominant the largest cluster, the more redundant expansions can be ignored.

4 MAIN EXPERIMENTS

Backbone LLMs. We evaluate the efficiency and generality of PoLR – Path of Least Resistance
across diverse open-source LLMs spanning different architectures, scales, and training paradigms.
Specifically, we use DeepSeek-R1-Distill-Qwen (DSQ) (7B, 1.5B) (Guo et al., 2025), distilled from
reasoning-specialized LLMs; QWQ32B (Team, 2025; Yang et al., 2024a), a Qwen2.5 variant trained
with reinforcement learning for problem solving; MiMo-7B-RL-0530 (Xiaomi, 2025) and Phi-4-
15B Abdin et al. (2025), an open-source GPT-style model trained with large-scale supervised data;
and Qwen2.5-Math-7B (Yang et al., 2024b), a math-specialized instruction-tuned model. These
choices cover architectures (Qwen, MiMo, Phi-4, DeepSeek), parameter scales (1.5B–32B), and
training paradigms (distillation, RL, supervised fine-tuning).

Benchmarks. We evaluate on multi-step reasoning tasks: GSM8K (Cobbe et al., 2021), grade-
school arithmetic word problems; MATH500 (Lightman et al., 2023), a set of 500 challenging math
problems; AIME24/25 (of Problem Solving, 2024; 2025), high-school olympiad-level math prob-
lems; GPQA-DIAMOND (Rein et al., 2024), a graduate-level STEM reasoning benchmark covering
physics, chemistry, and biology; and STRATEGYQA (Geva et al., 2021), a multi-hop reasoning and
implicit knowledge retrieval task.

Evaluation Metrics. We follow standard metrics from prior reasoning literature: Exact Match
(EM) on GSM8K (Habib et al., 2023); Pass@1 on Math500 and AIME24/25; Accuracy (binary
correctness) on GPQA-Diamond. We also measure Token Efficiency relative to Self-Consistency
(SC): η = 1− TPoLR

TSC
, Path Expansion (PExp) denoting the number of full reasoning traces used for

majority voting, and PoLR Overhead (kt), which includes TF-IDF vectorization and clustering.

Baselines. The primary baseline is Self-Consistency (SC) (Wang et al., 2023), which samples
multiple chain-of-thoughts independently and selects the majority answer. SC is widely adopted
as a standard inference-time ensemble for reasoning tasks. We also report single-sample greedy
decoding (Chain-of-Thought, CoT) as a lower-bound reference and compare PoLR with Adaptive
Consistency (AC) Aggarwal et al. (2023), and Early-Stopping Self-Consistency (ESC) Li et al.
(2024).

All experiments are repeated 10 times1. with different random seeds (sampling order and tempera-
ture) and we report mean performance and standard deviation across runs for all metrics: accuracy,
EM, Pass@1, token efficiency, and latency. Further hyperparameter details are provided in Ap-
pendix A. All PoLR evaluations use Lp = 256 unless stated otherwise. Empirically, we find that
Lp = 256 achieves a good balance between PoLR accuracy and token efficiency gains.

Main Results. Table 2 presents the performance of PoLR compared to Self-Consistency (SC)
across five reasoning benchmarks (GSM8K, MATH500, AIME24, AIME25, GPQA-DIAMOND)
and multiple LLM families. The results reveal clear advantages of PoLR. First, PoLR drastically
reduces token usage while preserving accuracy. Across all datasets and models, token efficiency
η typically ranges between 40–60%, effectively cutting token consumption by roughly half. For
example, on GSM8K with QWQ32B at N = 51, PoLR achieves the same accuracy as SC (90.8%)
while using only half the tokens (η = 47.6%). The additional clustering overhead kt is minimal,
just a few milliseconds, so the savings directly translate into faster inference. Second, accuracy is
preserved and occasionally improved. Despite discarding up to half of the reasoning paths, PoLR
matches SC’s accuracy and sometimes surpasses it. On MATH500, for instance, PoLR improves
QWQ32B from 91.8% to 92.0% at N = 51, and DSQ7B from 89.6% to 89.7% at N = 31. On
AIME25, PoLR boosts accuracy by +3 percentage points for DSQ7B (33.7% → 36.4%) and Phi-
4-15B (32.0% → 36.0%). These gains occur because PoLR emphasizes the dominant, coherent

1For brevity, standard deviations are not included in the main table. All reported gains are statistically
significant. Detailed standard deviation values are provided in Appendix C.
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Table 2: Performance comparison of PoLR versus SC across datasets (GSM8K, MATH500,
AIME24, AIME25, GPQA-DIAMOND) and model sizes. The table shows accuracy differences
(green = improvement, red = drop), token efficiency η (%), sample size N , and PoLR overhead kt
(ms).

GSM8K
(1319)

DSQ1.5B DSQ7B QWQ32B

N SC PoLR η(%) kt (ms) SC PoLR η(%) kt (ms) SC PoLR η(%) kt (ms)

51 73.2 0.0 40.1 11.3 79.8 0.2 26.5 5.9 90.8 0.0 47.6 11.2
31 73.2 0.0 41.1 6.0 80.0 -0.4 27.2 4.3 90.9 -0.6 48.6 5.8
11 72.6 0.0 43.7 2.3 79.7 0.0 28.1 1.9 90.6 -1.3 54.2 2.4

MATH500
(500)

DSQ1.5B DSQ7B QWQ32B

N SC PoLR η(%) kt (ms) SC PoLR η(%) kt (ms) SC PoLR η(%) kt (ms)

51 76.2 -0.8 52.4 6.5 89.8 0.0 48.7 7.6 91.8 0.2 51.8 11.2
31 76.4 0.0 52.0 4.4 89.6 0.1 48.5 5.1 91.9 0.0 54.2 5.7
11 75.9 -1.6 52.0 2.0 89.4 0.0 48.4 2.2 91.6 0.0 60.5 2.2

AIME24
(30)

DSQ7B Phi-4-15B QWQ32B

N SC PoLR η(%) kt (ms) SC PoLR η(%) kt (ms) SC PoLR η(%) kt (ms)

51 53.3 -3.7 50.9 6.3 50.0 3.3 49.5 12.1 80.0 0.0 59.7 10.8
31 53.3 -3.0 51.5 3.3 49.7 0.3 51.5 5.3 78.3 0.7 61.6 6.2
11 54.3 -3.3 49.8 2.0 50.3 -5.3 58.6 2.2 78.3 -2.0 66.6 12.8

AIME25
(30)

DSQ7B Phi-4-15B QWQ32B

N SC PoLR η(%) kt (ms) SC PoLR η(%) kt (ms) SC PoLR η(%) kt (ms)

51 33.3 0.0 48.8 7.8 33.3 0.0 54.7 11.0 76.7 -10.0 56.8 12.3
31 35.3 0.0 48.4 3.9 32.0 4.0 54.8 5.9 75.0 -4.0 59.5 6.9
11 33.7 2.7 48.9 2.2 35.7 2.3 60.5 2.3 74.7 -6.0 65.3 5.3

GPQA
DIAMOND

(198)

DSQ7B MiMo-RL-7B QWQ32B

N SC PoLR η(%) kt (ms) SC PoLR η(%) kt (ms) SC PoLR η(%) kt (ms)

51 57.1 -1.5 57.1 9.5 65.7 0.0 51.4 9.0 68.7 1.5 53.8 17.4
31 55.3 -1.2 55.8 5.7 64.9 -1.2 51.7 5.9 68.2 0.0 56.9 7.3
11 54.1 -1.7 55.4 2.4 64.6 0.0 48.9 2.5 67.9 0.0 64.3 2.5

reasoning clusters while filtering out noisy or inconsistent paths. On few occasions, PoLR down-
grades the SC accuracy by small magnitudes except on the AIME25 dataset, where for QWQ32B
PoLR is 10 points below SC. This amounts to dropping accuracy on only 3 samples out of total 30
samples in this dataset. In Appendix H, we find that these instances are inherently challenging, with
even SC succeeding only by a narrow margin.

Finally, PoLR’s benefits are consistent across models, datasets, and trace expansion budgets. On
challenging benchmarks like GPQA-DIAMOND, PoLR improves QWQ32B accuracy from 68.7%
to 70.2% at N = 51, while reducing token usage nearly by half (η = 53.8%). Even on math-
intensive datasets such as MATH500, AIME24, and AIME25, PoLR maintains high efficiency and
accuracy, demonstrating robustness across reasoning domains and model scales. Additionally, PoLR
shows consistent gains over non-math/STEM task, STRATEGYQA, discussed in Appendix G.

In summary, PoLR halves token usage, preserves or improves accuracy, and adds negligible
overhead, offering a practical, training-free approach to make Self-Consistency substantially more
efficient for real-world deployment.

5 ANALYSIS AND DISCUSSION

5.1 POLR AS A COMPLEMENT TO ADAPTIVE REASONING.

We evaluate whether PoLR can improve adaptive inference methods such as Adaptive Consistency
(AC) Aggarwal et al. (2023) and Early-stopping Self-Consistency (ESC) on the GPQA-DIAMOND
benchmark. Table 3 reports accuracy and the number of path expansions (PExp) across three LLMs
and different initial sample budgets N .

The results show that PoLR effectively ignores low-quality reasoning paths before applying adap-
tive methods, reducing the number of expansions required without compromising accuracy. For
example, in DSQ7B with N = 31, PoLR+AC reduces PExp from 13.54 (AC alone) to 10.53, while

6
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Table 3: PoLR complements Adaptive Consistency (AC) and Early-Stopping Self-Consistency
(ESC) on GPQA-DIAMOND. In the hybrid setting, PoLR ignores low-quality reasoning paths
(PExp) before adaptive allocation. Results for three LLMs and multiple budgets N show reduced
PExp while preserving or improving accuracy. Bold indicates the best result.

LLMs→ DSQ7B MiMo-RL-7B QWQ32B

N→ 51 31 51 31 51 31

Acc PExp Acc PExp Acc PExp Acc PExp Acc PExp Acc PExp

CoT 54.55 1.00 54.54 1.00 63.64 1.00 63.18 1.00 68.69 1.00 68.33 1.00

SC 57.07 51.00 55.25 31.00 65.66 51.00 64.90 31.00 69.00 51.00 68.19 31.00
PoLR 55.56 20.79 54.04 13.01 65.16 24.12 63.74 14.62 70.20 21.83 67.80 12.58

AC 56.57 18.05 55.20 13.54 65.66 13.15 64.85 10.64 69.70 10.43 68.13 9.66
PoLR + AC 55.56 10.58 55.56 10.53 65.15 9.70 65.15 9.75 70.71 8.11 70.61 8.05
mESC 56.06 24.69 55.81 18.04 65.40 19.00 64.80 14.33 68.54 16.90 67.58 13.02
PoLR+ESC 54.85 13.49 55.99 9.54 65.10 11.79 64.50 8.93 69.90 11.13 67.17 8.05

maintaining comparable accuracy (55.56% vs. 55.20%). Similar patterns hold across MiMo-RL-7B
and QWQ32B, with PoLR+AC and PoLR+ESC consistently lowering path expansions by 31.4%
(on average) while preserving or slightly improving performance.

These findings indicate that PoLR can serve as an efficient pre-processing step for adaptive reasoning
methods. By combining PoLR with adaptive allocation, the hybrid approach achieves substantial
computational savings (75% on average as compared to SC) while retaining solution quality, making
it a practical enhancement for inference-time reasoning in large language models. All results report
mean accuracies over 10 random trials. Table 7 in Appendix D provides standard errors, showing
that PoLR yields more precise results with lower variance. We also conducted the same comparison
on MATH500, observing consistent patterns (Table 8, Appendix D), confirming the robustness of
PoLR across datasets.

5.2 LIGHTWEIGHT PREFIX EMBEDDINGS ARE SUFFICIENT FOR POLR.

We evaluate the effect of different prefix embeddings on PoLR performance. Ta-
ble 4 compares lightweight TF–IDF features with dense semantic embeddings from
tomaarsen/mpnet-base-nli-matryoshka2 generating 64-dimensional sentence embed-
ding.

Table 4: Impact of different embeddings on PoLR accuracy
on GSM8K, GPQA-Diamond and Math500 datasets.

SC TF-IDF Matryoshka

Model Acc Acc η kt Acc η kt

GSM8K
DSQ1.5B 73.2 73.2 40.1 11.3 73.3 38.7 219.8
DSQ7B 79.8 80.0 26.5 5.9 79.9 26.6 219.0
QWQ32B 90.8 90.8 47.6 11.2 90.8 45.8 221.4

GPQA
DIAMOND

DSQ7B 57.1 55.6 57.1 9.5 54.0 52.4 209.3
MIMO7B 65.7 65.2 51.4 9.0 64.1 47.7 221.5
QWQ32B 68.7 70.2 53.8 17.4 70.7 54.1 218.5

MATH500
DSQ1.5B 76.2 75.4 52.4 6.5 76.2 47.5 219.7
DSQ7B 89.8 89.4 48.7 7.6 90.0 44.7 220.6
QWQ32B 91.8 92.0 51.8 11.2 91.8 51.4 218.9

The results show that TF–IDF
achieves nearly identical accuracy
and token efficiency to dense embed-
dings while incurring dramatically
lower clustering overhead (5–11 ms
vs. 220 ms). This indicates that
lightweight representations are suf-
ficient for PoLR’s prefix clustering:
they capture enough structural simi-
larity among reasoning paths. Dense
embeddings, while semantically
richer, provide little benefit for short
prefixes and introduce substantial
computational cost. For longer pre-
fixes or highly heterogeneous tasks,
denser embeddings may be advantageous, but for the current reasoning benchmarks, lightweight
features offer the best trade-off between efficiency and accuracy.

2https://huggingface.co/tomaarsen/mpnet-base-nli-matryoshka
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(a) GPQA Diamond (b) GSM8K (c) Math500

Figure 2: Impact of different cluster threshold selection.

5.3 IMPACT OF DISTANCE THRESHOLD IN CLUSTERING.

In PoLR, agglomerative clustering is applied to TF–IDF embeddings of reasoning prefixes, with the
distance threshold controlling the granularity of clusters. To study its effect, we vary the threshold
from 0.5 to 1.0 while fixing the number of samples at N = 51, and report accuracy and token
efficiency η on GPQA-DIAMOND in Figure 2a, GSM8K in Figure 2b and MATH500 in Figure 2c
across different LLMs.

Across all thresholds, we find that accuracy remains nearly identical to SC, confirming that prefix
consensus is strong enough that the precise clustering granularity does not affect the final
outcome. However, the token efficiency is sensitive to the threshold: lower thresholds lead to
tighter clusters, which reduce the size of the dominant cluster and hence the number of traces that
need to be expanded. This naturally improves token efficiency.

The magnitude of efficiency gains also depends on model capacity. Weaker models such as
DSQ1.5B show the largest improvements (up to ∼ 60% token savings), since they tend to pro-
duce more redundant and low-quality traces that can be easily filtered. In contrast, stronger models
such as QWQ32B, which generate more diverse yet useful reasoning steps, leave less redundancy
to exploit, yielding smaller efficiency gains (∼ 40%). This behavior is consistent with the intuition
that PoLR benefits most when the model’s reasoning space is noisy and contains many unpromising
paths. We choose a threshold of 1.0 for our main experiments as it strikes a balance between effi-
ciency and accuracy: at this setting, the accuracy either matches or slightly exceeds SC, while still
providing substantial token savings, whereas lower thresholds could marginally improve efficiency
but risk fragmenting clusters unnecessarily

5.4 POLR IS ROBUST TO CLUSTERING METHODS

Table 5: Impact of different clustering methods on PoLR.

GSM8K SC Agglomerative DBSCAN HDBSCAN

Acc Acc η kt Acc η kt Acc η kt
DSQ1.5B 73.2 73.2 40.1 11.3 72.7 56.1 12.0 73.5 61.5 12.9
DSQ7B 79.8 80.0 26.5 05.9 80.1 36.4 06.9 80.4 33.4 07.1
QWQ32B 90.8 90.8 47.6 11.2 90.8 64.6 11.4 91.0 56.9 12.0

GPQA SC Agglomerative DBSCAN HDBSCAN

Acc Acc η kt Acc η kt Acc η kt
DSQ7B 57.1 55.6 57.1 09.5 56.1 69.9 10.2 53.5 71.8 11.0
MIMO7B 65.7 65.2 51.4 09.0 64.1 65.3 10.1 63.6 67.0 10.5
QWQ32B 68.7 70.2 53.8 17.4 68.2 52.2 14.9 68.2 55.2 15.3

Math500 SC Agglomerative DBSCAN HDBSCAN

Acc Acc η kt Acc η kt Acc η kt
DSQ1.5B 76.2 75.4 52.4 6.5 76.2 68.7 7.2 76.0 67.4 7.7
DSQ7B 89.8 89.4 48.7 7.6 89.6 54.6 8.2 89.2 63.5 9.7
QWQ32B 91.8 92.0 51.8 11.2 92.0 71.3 12.6 92.2 63.1 12.6

Table 5 shows that the choice
of clustering method has
minimal impact on accuracy,
but strongly affects PoLR’s
efficiency metrics. Across
GSM8K, MATH500 and
GPQA-DIAMOND datasets and
different model sizes, density-
based methods (DBSCAN and
HDBSCAN) yield the better
token efficiency (η), indicating
more effective reuse of prefix
consensus. These gains come
with a modest increase in
overhead (kt). Larger models
such as QWQ32B benefit most,
achieving both high accuracy
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(a) Qwen2.5-math-7B (95%) (b) DSQ7B (80%) (c) DSQ1.5B (73%)

Figure 3: Efficiency gains of PoLR across three models on GSM8K as a function of prefix length.
All models achieve over 50% token savings by 256-512 prefix tokens.

and strong efficiency improvements. Overall, we observed that the clustering methods mainly
impact the efficiency–overhead trade-off, not the accuracy, showing that the PoLR is robust
to different clustering methods.

5.5 EFFECT OF PREFIX LENGTH ON EFFICIENCY AND CLUSTER STRUCTURE.

To further understand the role of prefix information, we varied prefix length from 2 to 4096 tokens
on GSM8K with different LLMs. Figure 3 shows the resulting efficiency gains, cluster skew, and
NMI. Raw numbers are provided in Appendix E, Table 9.

We observe that efficiency improves monotonically with prefix length up to∼ 512 tokens, achieving
∼ 58% token savings over Self-Consistency, after which it saturates. Cluster skew, by contrast,
decreases sharply from ∼ 0.96 at length 2 to ∼ 0.52 at 256, stabilizing thereafter. NMI increases
slowly with prefix length but remains relatively low (∼ 0.18 at 4096).

These results highlight two insights that efficiency is primarily governed by structural dominance
(skew) rather than correctness alignment (NMI). Even with weak NMI, PoLR achieves substantial
token savings whenever a dominant cluster exists. Second, prefix length trades off skew and NMI.
Short prefixes yield high skew but low predictiveness; longer prefixes reduce skew while slightly
improving correctness alignment. PoLR’s efficiency benefits emerge in the mid-range, when skew
remains sufficient for pruning yet prefixes capture more reasoning structure.

We compared PoLR across three LLMs for GSM8K dataset with differing accuracies (73%–95%).
Across all models, efficiency gains eventually plateau around 50–55%, but the trajectory differs.
Lower-capacity models achieve large savings even at very short prefixes (2–16 tokens), whereas the
higher-accuracy Qwen2.5-Math-7B requires longer prefixes (256–512) before efficiency saturates.
Importantly, cluster skew consistently predicts efficiency gains, while NMI remains low across all
models. This highlights that PoLR’s benefits stem from structural dominance of prefix clusters rather
than their correctness alignment, and that model capacity mainly shifts the prefix length required to
realize these savings.

5.6 CLUSTER SIZE =⇒ BETTER ACCURACY

To further understand which cluster’s reasoning traces should be expanded, we perform the

Table 6: Correlation coefficient between clus-
ter sizes and accuracy for DSQ7B and QwQ32B
(N = 51, Lp = 256).

GSM8K MATH500 AIME24 AIME25 GPQA

DSQ-7B 0.90 0.89 0.75 0.76 0.90
QwQ-32B 0.90 0.88 0.87 0.78 0.78

majority voting for all the formed clusters for
all dataset model combinations. We observed
that the dominant cluster (by cluster size) cap-
tures more accurate traces while the remain-
ing clusters tend to have lower accuracies com-
pared to the dominant cluster, second dominant
cluster being typically ranking second in accu-
racy, and so on.

9
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We further find the Pearson correlation coefficient ρ between the cluster sizes and the corresponding
accuracies for all the dataset in Table 6. We observe a strong correlation for all dataset model
combinations ρ > 0.75. Therefore, in PoLR, cluster size is the best indicator of the cluster to
be expanded. We provide the prefix length-wise dominant cluster accuracy for all dataset model
combinations in Figure 5 Appendix F.

We refer the reader to Appendix I for further analysis of the impact of other hyperparameters on
PoLR.

6 RELATED WORK

We focus on two main directions relevant to our work: (1) methods that utilize answer consistency
to reduce inference cost, and (2) methods that exploit early reasoning prefixes.

Methods Exploiting Answer Consistency Self-Consistency (SC) Wang et al. (2023) has become
a standard approach for improving the reliability of chain-of-thought reasoning by sampling multiple
solution paths and selecting the majority answer. Other verifier-based methods include Cobbe et al.
(2021); Uesato et al. (2022); Yao et al. (2023). While effective, SC is inefficient: accuracy improves
roughly linearly with the number of samples N , but decoding cost scales proportionally, leading to
substantial redundancy when many trajectories repeat similar reasoning patterns.

Several methods aim to mitigate this overhead. Adaptive Consistency (AC) Aggarwal et al. (2023)
monitors answer agreement as samples arrive, allocating fewer trajectories to “easy” problems where
consensus forms quickly. Early-Stopping Self-Consistency (ESC) Li et al. (2024) halts sampling
once a confident majority is detected, avoiding the cost of decoding all N samples. Reasoning-
Aware Self-Consistency (RASC) Wan et al. (2025) evaluates reasoning paths based on a set of
features and aggregates answers using weighted majority voting after collecting high-quality paths.

Both AC and ESC reduce compute by relying on answer-level agreement, but they act after full
trajectories are decoded. In contrast, PoLR exploits structural signals much earlier: by clustering
prefixes before expansion, it avoids generating redundant modes upfront rather than waiting
for consensus at the answer level. This is crucial because when agreement is delayed or split
across modes, AC and ESC still expend tokens unnecessarily, whereas PoLR prevents this overhead
entirely. Our experiments show that PoLR and AC are complementary: prefix clustering removes
redundant modes, while adaptive stopping controls allocation within the dominant cluster, achieving
the strongest efficiency–accuracy trade-offs. Moreover, unlike iterative methods, PoLR is highly
parallelizable, leading to higher throughput in practice since multiple promising prefixes can be
expanded simultaneously without waiting for sequential majority-vote checks.

Methods Exploiting Early Prefixes Another line of work leverages the predictive power of early
prefixes. Path Consistency Zhu et al. (2024) estimates the confidence of partial reasoning paths
and guides subsequent generations toward promising branches. In contrast, PoLR does not rely on
external confidence estimators or guided decoding. Instead, it clusters multiple short prefixes to
capture naturally emerging consensus among independent samples and applies self-consistency vot-
ing only within that cluster. This preserves SC’s majority-vote principle while substantially reducing
computational cost.

Similarly, UPFT Ji et al. (2025) shows that prefixes contain rich signals and uses them at training
time for supervision. PoLR transfers this insight to inference, demonstrating that prefixes can
be exploited unsupervised and training-free to reduce inference cost while maintaining SC-level
accuracy. Orthogonal to prefix-based methods, several trainable approaches iteratively leverage
LLM outputs to improve model performance Zelikman et al. (2022); Yuan et al. (2023).

7 CONCLUSION

In this work, we present PoLR, which leverages prefix clustering to drastically reduce reasoning cost
while preserving or improving accuracy, providing a training-free, inference-time enhancement to
Self-Consistency.
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A HYPERPARAMETER SETTINGS

In this section we provide the hyperparameter settings for PoLR and the other comparative methods.
All experiments were conducted using LightevalHabib et al. (2023), supporting 7,000+ evaluation
tasks across multiple domains and languages. We performed all experiments on 4 NVIDIA L40S
48GB memory cards. We now define the core parameters for each method used in this work. For the
comparative methods we used the hyperparameters configurations yielding the best performance.

PoLR

• top-p=0.9,
• temperature=0.6,
• max-token=32K,
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Algorithm 1 Path of Least Resistance (PoLR)

Require: Question x, LLMM, prefix length Lp, #prefixes N , #expansions K
Ensure: Final answer â

1: Prefix Sampling:
2: for i = 1 . . . N do
3: pi ← Prefix(M(x, ti), Lp)
4: end for
5: Clustering:
6: Embed prefixes: ei ← Embed(pi)
7: C ← Cluster({ei}Ni=1)
8: C∗ ← argmaxCj∈C |Cj |
9: Expansion:

10: Select K prefixes {p1, . . . , pK} ⊂ C∗

11: for k = 1 . . .K do
12: rk ←M(x | pk) ▷ Complete reasoning trace
13: ak ← ExtractAnswer(rk)
14: end for
15: Self-Consistency Voting:
16: â← argmaxy

∑K
k=1 1[ak = y]

17: return â

• prefix-Length=256,

• clustering parameters:

– clustering distance threshold=1.0
– feature downsampling dim=10
– linkage=average,
– metric=cosine,

Adaptive Consistency (AC) Aggarwal et al. (2023)

• top-p=0.9,

• temperature=0.6,

• max-token=32K,

• stop criteria: β−confidence threshold=0.95,

Early-stopping Self-consistency (ESC) Li et al. (2024)

• top-p=0.9,

• temperature=0.6,

• max-token=32K,

• window-size=5,

A.1 LLM USAGE

We used ChatGPT and Claude for grammar reviews and language style polishing. In certain cases
we used these models in analyzing and summarizing tables. These summaries are then verified and
updated manually for correctness.

B POLR ALGORITHM

Algorithm 1 provide the step-by-step instruction to implement PoLR. PoLR is model agnostic and
wokrs for any LLM.
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C POLR PERFORMANCE VS PREFIX LENGTHS

Following the structure of Table 2, we report mean accuracies and standard deviations for both PoLR
and SC across different prefix lengths Lp ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}
and two sampling budgets N ∈ {51, 31} (Figure 4).

Overall, PoLR exhibits remarkable robustness to the initial number of samples: for both N =
51 and N = 31, token efficiency follows nearly identical curves. In both settings, we observe a
sharp improvement in efficiency once prefix lengths reach the range 128–512, after which efficiency
plateaus or declines slightly. The drop at very long prefixes arises because many instances do not
require extended prefixes to reach a stable answer—expanding them wastes computation without
improving consensus. This trend is consistent across all dataset–LLM pairs we tested.

In terms of quality, PoLR generally matches or outperforms SC across prefix lengths. The gains are
most stable on math and commonsense datasets (e.g., GSM8K, MATH500, AIME24/25), where
prefix consensus is especially strong. The only exception is GPQA-DIAMOND, where accuracy
drops slightly for longer prefixes. We attribute this to the nature of GPQA problems: they often
require multi-step reasoning and longer prefixes often contains specialized technical terms that leads
to less informative lexical overlap between prefixes. Potential solutions could include expanding
top-m clusters instead of the dominant cluster or switching to semantic neural embeddings. We
leave this for future work.

D POLR COMPARISON WITH EXISTING APPROACHES

D.1 POLR COMPLEMENTS ADAPTIVE AND EARLY-STOPPING CONSISTENCY ACROSS
DATASETS

Tables 7 and 8 evaluate PoLR in combination with Adaptive Consistency (AC) and Early-Stopping
Consistency (ESC) on two contrasting benchmarks: GPQA-DIAMOND (STEM reasoning with
highly diverse, less predictable traces) and MATH500 (structured math reasoning with strong prefix
regularities).

GPQA-DIAMOND. On GPQA, prefixes are less predictive of correctness, making consensus
weaker. Here, PoLR alone already reduces expansions substantially (e.g., DSQ7B: 20.79 vs. 51
under SC at N = 51), but occasionally trails SC in accuracy. However, when combined with AC
or ESC, PoLR consistently lowers PExp by an additional 30–40% while preserving or even slightly
improving accuracy. For instance, PoLR+AC with DSQ7B cuts expansions to 10.58 from 18.05
under AC, with no loss in performance. This highlights PoLR’s role as a pruning front-end that
removes clearly redundant reasoning paths before adaptive allocation.

MATH500. On structured math problems, prefix clusters are highly reliable. PoLR alone reduces
expansions by more than half (e.g., DSQ7B: 22.47 vs. 51 at N = 51) while matching SC accuracy.
When combined with AC, expansions drop to as low as 5.69 per problem (DSQ7B, N = 51) with-
out measurable accuracy loss, achieving up to 5× efficiency gains. ESC also benefits: PoLR+ESC
consistently reduces expansions (e.g., 9.23 vs. 10.66 on QWQ32B) while retaining SC-level perfor-
mance.

Takeaway. The contrast between GPQA-DIAMOND and MATH500 illustrates the conditions un-
der which PoLR is most effective. On tasks with highly structured reasoning (MATH500), PoLR
is nearly lossless and compounds the efficiency of adaptive strategies to yield massive savings. On
tasks with more diverse or less predictable reasoning paths (GPQA), PoLR still reduces redundancy
and enhances existing adaptive methods, though accuracy gains are less pronounced. Together, these
results show that PoLR is both a strong standalone alternative to SC and a universal enhancer for
adaptive consistency methods across reasoning domains.
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(a) GSM8K: DSQ1.5B (b) GSM8K: DSQ7B (c) GSM8K: QWQ32B

(d) MATH500: DSQ1.5B (e) MATH500: DSQ7B (f) MATH500: QWQ32B

(g) AIME24: DSQ7B (h) AIME24: Phi-4-15B (i) AIME24: QWQ32B

(j) AIME25: DSQ7B (k) AIME25: Phi-4-15B (l) AIME25: QWQ32B

(m) GPQA-DIAMOND: DSQ7B
(n) GPQA-DIAMOND: MiMo-RL-
7B (o) GPQA-DIAMOND: QWQ32B

Figure 4: Performance comparison of PoLR versus SC across datasets (GSM8K, MATH500,
AIME24, AIME25, GPQA-DIAMOND) and model sizes. The table shows accuracy differences
(green = improvement, red = drop), token efficiency η (%), and sample size N as a function of
different prefix lengths Lp.
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Table 7: PoLR complements Adaptive Consistency (AC) and Early-Stopping Consistency (ESC) on
GPQA-DIAMOND. In the hybrid setting, PoLR prunes low-quality reasoning paths (PExp) before
adaptive allocation. Results for three LLMs and multiple budgets N show reduced PExp while
preserving or improving accuracy.

(a) DSQ7B

LLMs→ DSQ7B

N→ 51 31

Acc PExp Acc PExp

CoT 54.54 ± 0.00 1.00 ± 0.00 54.54 ± 0.00 1.00 ± 0.00
SC 57.07 ± 0.00 51.00 ± 0.00 55.25 ± 0.93 31.00 ± 0.00
PoLR 55.55 ± 0.00 20.79 ± 0.00 54.04 ± 1.96 13.01 ± 0.15

AC 56.57 ± 0.00 18.05 ± 0.00 55.20 ± 0.90 13.54 ± 0.34
PoLR + AC 55.56 ± 0.00 10.58 ± 0.00 55.56 ± 0.00 10.53 ± 0.06

ESC 56.06 ± 0.78 24.69 ± 0.87 55.80 ± 1.51 18.04 ± 0.63
PoLR+ESC 54.84 ± 0.40 13.48 ± 0.36 55.98 ± 1.72 9.53 ± 0.25

(b) MiMo-RL-7B

LLMs→ MiMo-RL-7B

N→ 51 31

Acc PExp Acc PExp

CoT 63.63 ± 0.00 1.00 ± 0.00 63.18 ± 0.00 1.00 ± 0.00
SC 65.65 ± 0.00 51.00 ± 0.00 64.89 ± 1.08 31.00 ± 0.00
PoLR 65.15 ± 0.00 24.11 ± 0.00 63.73 ± 0.97 14.62 ± 0.14

AC 65.66 ± 0.00 13.15 ± 0.00 64.84 ± 1.11 10.64 ± 0.26
PoLR + AC 65.15 ± 0.00 9.70 ± 0.00 65.15 ± 0.00 9.75 ± 0.06

ESC 65.40 ± 0.60 19.01 ± 0.98 64.79 ± 0.93 14.32 ± 0.57
PoLR+ESC 65.10 ± 0.35 11.78 ± 0.45 64.49 ± 0.84 8.93 ± 0.15

(c) QWQ32B

LLMs→ QWQ32B

N→ 51 31

Acc PExp Acc PExp

CoT 68.68 ± 0.00 1.00 ± 0.00 68.33 ± 0.00 1.00 ± 0.00
SC 69.00 ± 0.00 51.00 ± 0.00 68.18 ± 0.78 31.00 ± 0.00
PoLR 70.20 ± 0.00 21.83 ± 0.00 67.87 ± 1.19 12.57 ± 0.19

AC 69.70 ± 0.00 10.43 ± 0.00 68.13 ± 1.02 9.65 ± 0.33
PoLR + AC 70.71 ± 0.00 8.11 ± 0.00 70.61 ± 0.20 8.05 ± 0.05

ESC 68.53 ± 0.71 16.90 ± 0.67 67.57 ± 0.95 13.02 ± 0.43
PoLR+ESC 69.89 ± 0.68 11.13 ± 0.24 67.17 ± 0.87 8.05 ± 0.12
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Table 8: PoLR complements Adaptive Consistency (AC) and Early-Stopping Consistency (ESC) on
MATH500. In the hybrid setting, PoLR prunes low-quality reasoning paths (PExp) before adaptive
allocation. Results for three LLMs and multiple budgets N show reduced PExp while preserving or
improving accuracy.

(a) DSQ1.5B

LLMs→ DSQ1.5B

N→ 51 31

Acc PExp Acc PExp

CoT 73.00 ± 0.00 1.00 ± 0.00 72.88 ± 0.00 1.00 ± 0.00
SC 76.20 ± 0.00 51.00 ± 0.00 76.40 ± 0.49 31.00 ± 0.00
PoLR 75.40 ± 0.00 22.13 ± 0.00 75.70 ± 0.77 13.39 ± 0.14

AC 78.60 ± 0.00 12.20 ± 0.00 77.84 ± 0.45 10.19 ± 0.16
PoLR + AC 76.20 ± 0.00 8.63 ± 0.00 76.14 ± 0.09 8.67 ± 0.04

ESC 76.26 ± 0.09 27.42 ± 0.58 76.22 ± 0.51 19.69 ± 0.24
PoLR+ESC 75.66 ± 0.23 15.83 ± 0.26 76.12 ± 0.60 11.26 ± 0.15

(b) DSQ7B

LLMs→ DSQ7B

N→ 51 31

Acc PExp Acc PExp

CoT 89.20 ± 0.00 1.00 ± 0.00 89.12 ± 0.00 1.00 ± 0.00
SC 89.80 ± 0.00 51.00 ± 0.00 89.56 ± 0.32 31.00 ± 0.00
PoLR 89.40 ± 0.00 22.47 ± 0.00 89.68 ± 0.36 13.71 ± 0.10

AC 90.00 ± 0.00 7.07 ± 0.00 89.94 ± 0.28 6.24 ± 0.08
PoLR + AC 89.40 ± 0.00 5.69 ± 0.00 89.48 ± 0.10 5.61 ± 0.04

ESC 89.82 ± 0.06 14.64 ± 0.24 89.62 ± 0.24 11.84 ± 0.19
PoLR+ESC 89.40 ± 0.00 10.77 ± 0.11 89.68 ± 0.45 9.25 ± 0.06

(c) QWQ32B

LLMs→ QWQ32B

N→ 51 31

Acc PExp Acc PExp

CoT 92.00 ± 0.00 1.00 ± 0.00 91.94 ± 0.00 1.00 ± 0.00
SC 91.80 ± 0.00 51.00 ± 0.00 91.86 ± 0.13 31.00 ± 0.00
PoLR 92.00 ± 0.00 22.78 ± 0.00 91.74 ± 0.18 13.24 ± 0.08

AC 92.20 ± 0.00 4.87 ± 0.00 91.74 ± 0.18 4.72 ± 0.06
PoLR + AC 92.00 ± 0.00 4.67 ± 0.00 92.00 ± 0.00 4.65 ± 0.01

ESC 91.79 ± 0.00 10.66 ± 0.12 91.88 ± 0.15 9.62 ± 0.08
PoLR+ESC 92.00 ± 0.00 9.23 ± 0.05 91.92 ± 0.24 8.42 ± 0.03

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Efficiency gains of PoLR across three models on GSM8K as a function of prefix length.
All models achieve over 50% token savings by 256-512 prefix tokens. Here PEff denotes 1− PExp

N .

DSQ7B (80%) DSQ1.5B (73%) Qwen2.5-math-7B (95%)

Lp PEff avg skew avg nmi PEff avg skew avg nmi PEff avg skew avg nmi

2 0.336 0.644 0.066 0.270 0.662 0.067 0.043 0.963 0.009
4 0.375 0.594 0.070 0.346 0.614 0.066 0.065 0.937 0.012
8 0.415 0.551 0.074 0.368 0.556 0.075 0.097 0.896 0.016

16 0.440 0.520 0.080 0.412 0.516 0.081 0.187 0.791 0.038
32 0.469 0.494 0.091 0.443 0.488 0.096 0.343 0.619 0.087
64 0.500 0.469 0.107 0.475 0.468 0.114 0.409 0.567 0.111

128 0.529 0.462 0.123 0.501 0.462 0.127 0.442 0.545 0.129
256 0.524 0.463 0.142 0.516 0.471 0.146 0.537 0.514 0.157
512 0.528 0.473 0.150 0.525 0.478 0.158 0.579 0.515 0.176

1024 0.526 0.471 0.151 0.520 0.475 0.161 0.558 0.522 0.184
2048 0.528 0.471 0.150 0.530 0.478 0.162 0.548 0.532 0.187
4096 0.534 0.470 0.151 0.537 0.477 0.165 0.545 0.532 0.187

Table 10: Efficiency gains of PoLR on STRATEGYQA DSQ7B combination as compared to SC.

Lp → 2 4 8 16 32 64 128 256 512 1024 2048 4096

SC (%) 59.8 59.8 59.8 59.8 59.8 59.8 59.8 59.8 59.8 59.8 59.8 59.8
PoLR (%) 60.0 59.0 59.0 59.8 57.9 57.9 57.6 59.6 59.8 61.1 60.5 61.8
PEff 0.185 0.275 0.313 0.361 0.470 0.565 0.646 0.662 0.657 0.655 0.651 0.656
η 0.110 0.107 0.146 0.192 0.290 0.383 0.430 0.315 0.150 0.063 0.058 0.061
kt 1.3 1.4 1.5 1.7 3.7 7.4 11.2 9.4 12.2 12.1 13.0 13.1

E EFFECT OF PREFIX LENGTH ON EFFICIENCY AND CLUSTER STRUCTURE

In this section, we provide the cluster skew, NMI and efficiencies gains with varying prefix lengths
for GSM8K dataset. The plots are provided in Section 5.5 in Figure 3. For reproducibility, we are
providing the raw numbers in Table 9 for each of the plots in Figure 3.

F CLUSTER SIZE IS THE INDICATOR OF BEST PERFORMANCE

Following the structure of Table 2, we report the cluster-wise self-consistency across different prefix
lengths Lp ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}, cluster 0 being the dominant
cluster with highest number of reasoning prefixes, in Figure 5. We observe that dominant cluster
consistently delivers best accuracies across the model dataset prefix length combinations except for
the AIME24/25 dataset. It is likely because these benchmarks (e.g., AIME with only 30 samples)
are relatively small, reducing statistical robustness. Therefore, the plots for AIME seems to be a
bit noisy. However, for all the combinations we observed strong correlation between the cluster
sizes and the corresponding accuracies for all the dataset ρ > 0.75. Therefore, in PoLR, clustering
cardinality is the best indicator of the cluster to be expanded.

G POLR EVALUATION ON NON-MATH DATASETS

To further evaluate the generality of our observations beyond math/STEM settings, we also experi-
mented with a non-math/STEM QA dataset, STRATEGYQA with DSQ7B model. We find that PoLR
continues to match SC accuracy preserving the token efficiency benefits as depicted in Table 10.

Across prefix lengths, PoLR maintains accuracy comparable to or slightly better than SC, while
achieving strong token efficiency improvements (η), consistent with our observations on other math
and STEM datasets.
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(a) GSM8K: DSQ1.5B (b) GSM8K: DSQ7B (c) GSM8K: QWQ32B

(d) MATH500: DSQ1.5B (e) MATH500: DSQ7B (f) MATH500: QWQ32B

(g) AIME24: DSQ7B (h) AIME24: Phi-4-15B (i) AIME24: QWQ32B

(j) AIME25: DSQ7B (k) AIME25: Phi-4-15B (l) AIME25: QWQ32B

(m) GPQA-D: DSQ7B (n) GPQA-D: MiMo-RL-7B (o) GPQA-D: QWQ32B

Figure 5: Cluster-wise self-consistency for (GSM8K, MATH500, AIME24, AIME25, GPQA-
DIAMOND) datasets with different model sizes.
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Table 11: Instance-level error analysis of PoLR on AIME25 dataset QWQ32B model combination.

Cluster
number

Cluster
size Correct Incorrect %Correct

Within
SC

consensus %

Failure
case 1

0 20 9 11 45.0%
53.0%1 19 10 9 53.0%

2 12 8 4 67.0%

Failure
case 2

0 22 9 13 41.0%
59.0%1 15 11 4 73.0%

2 14 10 4 71.0%

Failure
case 3

0 20 9 11 45.0%

63.0%1 13 8 5 62.0%
2 13 11 2 85.0%
3 5 4 1 80.0%

Random
correct

case

0 27 26 1 96.0%
96.0%1 19 19 0 100.0%

2 5 4 1 80.0%

Average
case

0 21.77 14.6 7.2 66.1%
67.9%1 14.63 10.1 4.6 68.5%

2 9.70 7.0 2.7 65.3%

H POLR INSTANCE-LEVEL ERROR ANALYSIS

To better understand the observed 10% accuracy drop for QwQ32B on AIME2025 dataset, we per-
form an instance-level analysis of the cases where SC passes but PoLR fails. Though this drop
seems large, AIME2025 contains only 30 samples, meaning a 10% drop corresponds to a deviation
of just three problems. Given this small sample size, even a few challenging instances can produce
noticeable fluctuations.

In this analysis, for each incorrect instance, we inspect the cluster structures formed by PoLR.
For each failure instance, We compute the number of correct reasoning traces within each cluster
and compared it against the SC consensus in Table 11. We observe that the SC consensus for
these failure cases is substantial low as compared to the average case (last row block in Table 11)
indicating that these instances are inherently difficult, even for the SC baseline. Further, all these
failure case shows weaker cluster purity making PoLR’s selection task more ambiguous. However,
the primary contribution of PoLR remains to be the substantial improvements in token efficiency and
cost reduction, rather than surpassing SC in raw accuracy. Therefore, for the challenging problems
where even the SC baseline solves the task only narrowly, PoLR is not expected to outperform
SC in accuracy.

I IMPACT OF TEMPERATURE SAMPLING

To evaluate whether dynamically adjusting the prefix length based on the sampling temperature can
improve performance, we conduct a controlled study on MATH500 using DSQ7B. We vary prefix
lengths from 1 to 4096 and LLM sampling temperatures from 0.2 to 1.0 in Table 12.

Across all temperatures and prefix lengths, the accuracy varies only within a narrow band of ±1
points, showing no consistent trend that correlates temperature with an optimal prefix length sug-
gesting that sampling temperature does not meaningfully interact with prefix length, and the best-
performing prefix lengths for DSQ7B remain effectively constant.
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Table 12: PoLR is robust to different temperature samplings.

Lp
Sampling Temperatures

0.2 0.4 0.6 0.8 1

1 88.0 89.4 89.2 89.2 89.0
2 88.0 89.4 89.2 89.2 88.8
4 88.2 89.4 89.0 88.6 88.2
8 88.2 89.2 89.2 88.8 88.0

16 88.2 89.6 89.0 88.8 89.4
32 88.2 89.2 89.4 89.0 89.2
64 88.0 89.0 89.0 89.4 88.4

128 87.6 89.4 89.0 88.6 88.6
256 88.4 89.4 89.4 88.6 88.0
512 88.4 90.0 89.6 89.4 89.0

1024 88.2 88.6 89.2 89.0 88.6
2048 88.2 89.4 89.2 89.0 88.6
4096 88.6 89.6 89.2 88.6 88.4

SC 88.0 89.4 89.2 89.2 88.8
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