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Abstract

Building a good speech recognition system usually requires
large amounts of transcribed data, which is expensive to col-
lect. To tackle this problem, many unsupervised pre-training
methods have been proposed. Among these methods, Masked
Predictive Coding achieved significant improvements on var-
ious speech recognition datasets with BERT-like Masked Re-
construction loss and Transformer backbone. However, many
aspects of MPC have not been fully investigated. In this paper,
we conduct a further study on MPC and focus on three impor-
tant aspects: the effect of pre-training data speaking style, its ex-
tension on streaming model, and how to better transfer learned
knowledge from pre-training stage to downstream tasks. Ex-
periments reveled that pre-training data with matching speaking
style is more useful on downstream recognition tasks. A unified
training objective with APC and MPC provided 8.46% relative
error reduction on streaming model trained on HKUST. Also,
the combination of target data adaption and layer-wise discrim-
inative training helped the knowledge transfer of MPC, which
achieved 3.99% relative error reduction on AISHELL over a
strong baseline.

Index Terms: unsupervised pre-training, transformer, speaking
style, streaming speech recognition, knowledge transfer

1. Introduction

Current industrial end-to-end automatic speech recognition
(ASR) systems rely heavily on large amounts of high quality
transcribed audio data. However, transcribed data take substan-
tial effort to obtain in industrial applications, while at the same
time, a lot of un-transcribed data exist in online systems and
cost little to collect. It is worthwhile to explore how to effec-
tively use un-transcribed data to improve the performance of
speech recognition systems when labeled data are limited.
Recently, unsupervised pre-training has shown promising
results in several areas, including Computer Vision (CV) [1],
Natural Language Processing (NLP) [2] and so on. One work
that stands out among these methods is Bidirectional Encoder
Representations from Transformers (BERT) [2], which used a
Masked Language Model (MLM) pre-training objective and ob-
tained new state-of-the-art results on eleven NLP benchmarks.
In speech area, researchers also proposed many unsuper-
vised pre-training algorithms. Contrastive Predictive Coding
(CPC) [3] extracts representation from data using contrastive
loss that requires distinguishing a true future audio sample
from negatives. There are multiple concurrent approaches
that generalize this approach [4} |5] and applied it in learn-
ing speaker representation [6], extracting speech representa-
tion [7, 18], performing various speech-related tasks like speech
recognition [7} 9} [10]], speech emotion recognition [11]] and so
on. [12| 13| [14] proposed Autoregressive Predictive Coding

(APC) objective that predicts unseen future frame given past
frames and also achieved good results on phonetic classifica-
tion, speech recognition, and speech translation. Some other
work [15L[16}[17,|18]] got motivation from NLP and applied sim-
ilar methods on speech tasks.

Among these methods, Masked Predictive Coding (MPC)
[18] achieved significant improvements on state-of-the-arts
Transformer based speech recognition models on various
datasets without introducing any additional parameters for the
speech recognition model. However, many aspects of MPC
have not been fully explored:

* Speaking style has a strong impact on performance of
ASR systems [19, [20]. Whether speaking style of pre-
training data would affect the performance of down-
stream tasks has not been fully investigated.

* The ability to perform streaming recognition is impor-
tant for ASR systems. MPC may not work for streaming
recognition because it requires bidirectional context for
predictive coding. How MPC can contribute to stream-
ing models is worth exploring.

e Despite abundant work [21} 22, 23] on NLP about
knowledge transfer between pre-trained model and
downstream task, there are few work exploring how to
perform better knowledge transfer in the area of speech.

In this paper, we investigate these aspects of MPC and discuss
how we can extend MPC for better speech recognition.

2. Masked Predictive Coding

Masked Predictive Coding (MPC) [18] uses Masked Recon-
struction objective to perform predictive coding on Transformer
based models. As depicted in Fig. [I} the model structure
of MPC is essentially the encoder part of Transformer based
speech recognition model plus a single fully-connected projec-
tion layer. During training, masks are applied on input FBANK
features before feeding into the encoder. The training objective
is L1 loss computed between masked input FBANK features
and projected encoder output at corresponding position. The lo-
cal smoothness of speech makes the task of predicting adjacent
frames too easy. So, in the current setup of MPC, we divide
input features into chunks of four frames and apply mask on
chunks with a probability of 15%. Unlike BERT, MPC adopted
dynamic masking proposed in [24] where the masking pattern
is generated every time a sequence is fed to the model.

One unique characteristic of sequence-to-sequence with at-
tention ASR models is it usually applies downsampling in the
encoder. Previous research showed temporal pooling encour-
ages effective encoding in different temporal resolution and
makes alignments in the decoding easier [25]. When tempo-
ral downsampling is applied, with input feature X € R**¢ and



—

[ Projection Layer

Transformer Encoder

[ PreNet ]
X1 mask mask mask mask X7

Figure 1: Masked Predictive Coding with four-fold downsample

temporal downsampling rate r, Transformer encoder projects
the output of last encoder layer to dimension X, € RY/™x7
‘We then reshapes it back to same shape as input feature for MPC
loss computation.

The overall training procedure of MPC consists of two
stages, pre-training on unsupervised data and fine-tuning on
supervised data. In the pre-training stage, MPC performs
predictive coding directly on FBANK input and encoder out-
put. After the unsupervised pre-training procedure, we re-
move the additional projection layer for predictive coding and
add Transformer decoder for fine-tuning on downstream ASR
tasks. All model parameters are end-to-end trainable in the
fine-tuning stage. The work perhaps most similar to ours is
Mockingjay [15], which also employed Transformer encoder
with Masked Reconstruction loss. But their work mainly used
pre-trained model as a feature extractor while MPC works more
like BERT and focuses on obtaining a good parameter initial-
ization. Also, unlike [15] and other previous work on predictive
coding [7, [12], our setup does not introduce any additional pa-
rameters into speech recognition model.

3. Methods
3.1. MPC for streaming models

To apply MPC in streaming models, the Transformer encoder
needs to be restricted to only use information that has appeared
before. Though some previous work [26} 27] employed chunk-
wise splitting for streaming models, in this paper, we simply
changed self-attention mask on Transformer encoder to make
the whole model stream-able. Specifically, we use a triangular
matrix for self-attention mask M in encoder, where the upper
triangular part is set to —oo, and the other elements to 0.

Recent work on APC [13]] got impressive results on down-
stream tasks with Transformer decoder backbone. Inspired
by [28], we also propose to use a unified training objective
that combines MPC and APC. During training, with probabil-
ity p, we apply triangular matrix on Transformer encoder and
use APC objective, with probability 1 - p, we use the Trans-
former encoder as-is with MPC objective. This parameter shar-
ing framework has the advantage of making the learned speech
representations more general because they are jointly optimized
for different pre-training objectives where context is utilized in
different ways.

3.2. Knowledge transfer for MPC

For speech recognition task in a specific domain, its data dis-
tribution may be a lot different from data used for MPC pre-
training. Directly using MPC model in fine-tuning stage might
cause degradation in performance, even catastrophic forgetting
[29130]. To deal with this problem, we followed previous work
[21, 23] and adopted target data adaption to fine-tune MPC
model on data of target task before the fine-tuning stage.

It is well-known that different layers of neural network cap-
ture different types of information, and the transferability of dif-
ferent layers also varies a lot [31}|32]]. Previous work [21] made
use of these findings by assigning lower learning rates to lay-
ers that are more general for downstream tasks and achieved
promising results. To adapt their findings to MPC, we first used
probing task [331134] on pre-trained model to find out which lay-
ers of Transformer encoder are more useful downstream speech
recognition tasks. After that, layer-wise discriminative train-
ing [21] is used to assign different learning rates to each layer
of Transformer encoder and adapt them to different extents for
better knowledge transfer.

Transfer Learning with single-step auxiliary loss [22] is
yet another transfer learning approach that adopted multi-task
learning perspective via the addition of pre-training objective
in the fine-tuning stage. With the same idea, we also added
MPC loss in the fine-tuning stage. This way, the joint loss in
the fine-tuning stage became the weighted sum of task-specific
loss L attn, Lorc and auxiliary MPC loss Laspc:

L= Qgttn * LAttn + /Bctc * LCTC + Ympe * L]MPC, (1)

For convenience, we name this method multi-task with MPC
through out this paper. Masked input and output for MPC are
also added during training.

4. Experiments
4.1. Data

For Mandarin pre-training, we first collected reading type
dataset OpenMandarin as described in [18]. Note unlike [18],
we did not include HKUST and AISHELL in OpenMandarin
dataset in this work because we found self pre-trained MPC also
improves performance. OpenMandarin contains about 1150
hours of speech in total. To understand the impact of pre-
training data speaking style, our internal reading type dataset
Didi Dictation and spontaneous type dataset Didi Callcenter
were also included. Didi Dictation is collected from our inter-
nal mobile dictation application while Didi Callcenter is col-
lected from phone calls between our user and customer ser-
vice staff. We randomly selected 5000 hours of Didi Callcenter
and 5000 hours of Didi Dictation for MPC pre-training. For
fair comparison with Open Mandarin, we also added another
pre-training dataset by randomly selecting 1150 hours of Didi
Callcenter and name it Didi Callcenter - 1K. For English pre-
training data, reading type dataset Librispeech [35]] and sponta-
neous type dataset Fisher [36]] are used. To provide a fair com-
parison on data size, we created a new pre-training dataset by
randomly selecting only 960 hours of Fisher dataset and name
it Fisher - 1K. Detailed information of pre-training corpora is
provided in Table[T}

Fine-tuning experiments were conducted on HKUST,
AISHELL-1 and Switchboard. The speaking style of HKUST
and Switchboard is spontaneous while the speaking style of
AISHELL is reading. Speed perturbation of 0.9 and 1.1 was
used on the training data. Mandarin characters are used as



Table 1: Details of pre-training corpora

Datasets | Hours | Speaking Style
Open Mandarin 1150 Reading

Didi Callcenter - 1K | 1150 Spontaneous
Didi Callcenter 5000 Spontaneous
Didi Dictation 5000 Reading
Librispeech 960 Reading
Fisher - 1K 960 Spontaneous

modeling units for HKUST and AISHELL like described in
[37]], while 2000 BPE subwords [38]] is used for experiments
on Switchboard.

The sample rate of HKUST and Switchboard is 8000 Hz,
which is lower than some pre-training data. To alleviate the
possible influence, we kept the sample rate of target dataset un-
changed and downsampled pre-training data with higher sample
rate to 8000 Hz when needed.

4.2. Experimental setups

For Transformer based full-sequence models, we followed
model structure of previous work [39] with e = 12, d = 6,
Amodel = 256, dyy = 1280 and dheaq = 4. A source sequence
X is first fed into a prenet consisting of two-layer CNN with
256 channels, stride size 2 and kernel size 3 and transformed to

subsampled sequence Xy € R X4 pefore feeding into
Transformer. For Transformer based streaming models, two
representative work with CTC [40] and transducer loss [41]
are slightly modified and used in this work. We used the same
prenet and encoder structure as Transformer based models. A
two-layer Transformer decoder is used as prediction network
for transducer.

In pre-training stage, all models are trained with a total
batch size of 256 for about 100 epochs. We used Adam opti-
mizer and varied learning rate with warmup schedule [42] ac-
cording to the formula:

0.5 0.5 ~1.5
lrate = k * d,oqer * min(n , L WaTrmup_n ), 2)

where n is the step number. k£ = 0.5 and warmup_-n = 5000
were chosen for all pre-training experiments.

In the fine-tuning stage, all models are trained with a total
batch size of 128. The same warmup schedule is used except we
changed n to 1.0 and warmup_n to 25000. For Transformer
based models, the Attention-CTC multi-task training objective
is used, with weights determined on development set. Models
for HKUST and AISHELL is trained for 50 epochs while model
for Switchboard is trained for 100 epochs. Label smoothing of
0.1 and weight decay of le~° are applied for all fine-tuning
experiments. SpecAugument [43] is applied when training for
Switchboard.

In the decoding stage, we selected 10 models with lowest
error rates on the validation set and averaged their parameters.
Beam search with Attention-CTC joint decoding and RNN lan-
guage model [44] is used for Transformer based models, with
weights determined using grid search on development set. The
beam size is 10 for HKUST and AISHELL for Transformer
based models and 20 for Switchboard. WEST with word-level
language model is used for decoding with CTC.

We made our code publicly available for reproducibil-
ity at https://github.com/athena-team/athena/
tree/mpc_improvement.

Table 2: Character Error Rates(%) and Relative Error Rates
Reduction(%) on HKUST and AISHELL test set

Task ‘ Pre-training Data ‘ Hours ‘ CER ‘ RERR
- - 233 | -
HKUST 170 228 | 2.14
Open Mandarin (8k) | 1150 | 22.7 | 2.58

HKUST | pigi Callcenter - 1K | 1150 | 22.0 | 5.58
Didi Callcenter 5000 | 21.5 | 7.73
Didi Dictation (8k) | 5000 | 22.1 | 5.15
- - 6.82 | -
AISHELL 178 6.61 | 3.07

AISHELL Open Mandarin 1150 | 6.38 | 6.45
Didi Dictation 5000 | 6.26 | 8.21

Table 3: Word Error Rates(%) and Relative Error Rates Reduc-
tion(%) on Switchboard and CallHome test set

- WER RERR
Pre-training Data | Hours SWB CH ‘ SWB CH
- - 8.8 17.8 | - -
Switchboard 260 8.5 174 | 3.41 2.25
Fisher - 1K 960 8.0 16.2 | 9.09 899

Librispeech (8k) | 960 8.4 17.2 | 4.55 3.37

4.3. Effect of pre-training data speaking style

The results on HKUST and AISHELL with different pre-
training data are listed in Table Our baseline result with-
out MPC matches the strong baseline in [39]]. Comparing rel-
ative error reduction of HKUST with same amounts of pre-
training data, it is obvious MPC models pre-trained with match-
ing speaking style data achieved lower error rates for down-
stream tasks.

Open Mandarin and Didi Dictation are both used in pre-
training for HKUST and AISHELL. From Table[2] we can also
find the relative error reduction using the same pre-training data
is bigger with matching fine-tuning data. Interestingly, the error
reduction Didi Callcenter - 1K brings on HKUST is even bigger
than Didi Dictation, which suggests speaking style has a bigger
impact than pre-training data size in some cases.

Experiments were also conducted on English ASR database
Switchboard. Our baseline results on Switchboard is also on par
with previous work [39]]. As shown in Table Switchboard got
better results with spontaneous type pre-training data Fisher -
1K than with Librispeech, which further confirms our findings
on speaking style.

4.4. MPC for streaming model

We first tested the effect of directly initializing streaming model
with MPC. As shown in Tabled] pre-trained MPC brings con-
sistent gains on streaming models for HKUST and AISHELL.
MPC model pre-trained on more data obtained better results on
streaming models, which is also in line with the conclusion for
full-sequence models. Though not specifically optimized, MPC
pre-training is also useful for streaming models, which suggests
the parameter initialization obtained by MPC is helpful for both
uni-directional and bidirectional models.

To further improve performance of MPC on streaming
models, we tried to combine APC with MPC in pre-training



Table 4: Character Error Rates(%) and Relative Error Rates
Reduction(%) for uni-directional CTC and uni-directional
RNN-T with pre-trained MPC

Task ‘ Model ‘ Pre-training Data ‘ CER ‘ RERR
- 293 | -
CTC Didi Callcenter - 1K | 28.0 | 4.56
HKUST Didi Callcenter 27.6 | 5.80
- 28.1 | -
RNN-T | Didi Callcenter - 1K | 26.9 | 4.43
Didi Callcenter 26.6 | 5.20
- 991 | -
CTC .
AISHELL Open Mandarin 942 | 491
- 943 | -
RNN-T Open Mandarin 8.88 | 5.83

Table 5: MPC + APC is the model pre-trained with APC 50% of
time and MPC 50% of time. Relative Error Rates Reduction(%)
is calculated with HKUST baseline without MPC

Pre-training Data ‘ Objective ‘ CER ‘ RERR
MPC 28.0 | 4.56

Didi Callcenter - 1K | APC 278 | 5.12
MPC + APC | 27.2 | 7.32
MPC 27.6 | 5.80

Didi Callcenter APC 279 | 4.72

MPC + APC | 26.8 | 8.46

stage. Previous work on APC showed a future prediction step
of 5 gave best results on Transformer decoder [13]. We im-
plemented APC with the same future prediction step and set
switching probability p to 0.5. Experiments were conducted on
HKUST dataset with Transformer CTC model and the results of
different pre-training objectives are presented in Table[5] When
used alone, APC and MPC got similar improvements. Combin-
ing APC with MPC results in consistent gains over them, which
echoes with the findings in [28]].

4.5. Knowledge transfer for MPC

Each layer of pre-trained MPC encoder captures different fea-
tures of the input speech. To get a quantitative measure of how
important layer / is, for each layer, we create a new Transformer
with / layers of encoder and 6 layers of decoder. The encoder for
the new Transformer is frozen and initialized from pre-trained
MPC model while the decoder is trainable. As shown in Fig
features from the middle layers of pre-trained Transformer
encoder are generally more helpful than features from top and
bottom layers. In the fine-tuning stage, we propose to set the
learning rates of encoder layers discriminatively by multiply-
ing the learning rate of layer / with A=/ where X € (0, 1).
To fit the accuracy curve above, we set A to be 0.95 and 6 to be
5.5. This way, the parameters of middle layers are updated more
slowly and knowledge from pre-trained MPC model is best re-
tained. Different A and 6 values have also been tested and no
significant difference is observed. Using this schedule on base-
line systems without MPC doesn’t lead to better accuracy either.

The results for target data adaptation and layer-wise dis-
criminative training are listed in Table [ Two baseline re-
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Figure 2: CER(%) with each layer of pre-trained Transformer
encoder. Results on HKUST is pre-trained with Didi Callcenter
and results on AISHELL is pre-trained with Open Mandarin

Table 6: Results on HKUST and AISHELL with different knowl-
edge transfer methods. HKUST is pre-trained with Didi Call-
center. AISHELL is pre-trained with Didi Dictation. Target
Data + Layer-wise is the combination of target data adaption
and layer-wise discriminative training

Task | Knowledge Transfer Methods | CER | RERR
- 215 | -
Target Data Adaption 21.2 | 1.40

HKUST Layer-wise Discriminative 21.3 | 0.93
Target Data + Layer-wise 20.8 | 3.26
Multi-Task MPC 21.1 | 1.86
- 6.26 | -
Target Data Adaption 6.23 | 048

AISHELL | Layer-wise Discriminative 6.21 | 0.80
Target Data + Layer-wise 6.01 | 3.99
Multi-Task MPC 6.13 | 2.08

sults we used are HKUST pre-trained with Didi Callcenter and
AISHELL pre-trained with Open Mandarin. Using target data
adaption or layer-wise discriminative training alone doesn’t
help the knowledge transfer of MPC very much. But when com-
bined together, they provide consistent gains on downstream
tasks.

For multi-task with MPC, the MPC loss should contribute
more to the joint loss to facilitate knowledge transfer in the first
few epochs. As training proceeds, the task-specific component
of the loss function becomes more important and 7, should
be decreased. In this work, we empirically found it work well
to set initial v pe to 0.2 and decrease it by half every 5 epochs.
The result in Table [6] shows multi-task with MPC gets slight
improvements over baseline.

5. Conclusion

In this work, we investigated three important aspects of MPC.
Pre-training data with matching speaking style was found to
be more useful on downstream recognition tasks. Using MPC
directly on streaming models helps, but combining MPC with
APC brings further improvements on streaming models. Also,
the combination of target data adaption and layer-wise discrim-
inative training provides consistent gains on knowledge transfer
to downstream tasks.
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