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Abstract

How do language models (LMs) represent characters’ beliefs, especially when those1

beliefs may differ from reality? This question lies at the heart of understanding the2

Theory of Mind (ToM) capabilities of LMs. We analyze Llama-3-70B-Instruct’s3

ability to reason about characters’ beliefs using causal mediation and abstraction.4

We construct a dataset that consists of simple stories where two characters each5

separately change the state of two objects, potentially unaware of each other’s6

actions. Our investigation uncovered a pervasive algorithmic pattern that we call a7

lookback mechanism, which enables the LM to recall important information when8

it becomes necessary. The LM binds each character-object-state triple together by9

co-locating reference information about them, represented as their Ordering IDs10

(OIs) in low rank subspaces of the state token’s residual stream. When asked about11

a character’s beliefs regarding the state of an object, the binding lookback retrieves12

the corresponding state OI and then an answer lookback retrieves the state token.13

When we introduce text specifying that one character is (not) visible to the other,14

we find that the LM first generates a visibility ID encoding the relation between15

the observing and the observed character OIs. In a visibility lookback, this ID is16

used to retrieve information about the observed character and update the observing17

character’s beliefs. Our work provides insights into the LM’s belief tracking18

mechanisms, taking a step toward reverse-engineering their ToM capabilities.19

1 Introduction20

The ability to infer the mental states of others—known as Theory of Mind (ToM)—is an essential21

aspect of social and collective intelligence [Premack and Woodruff, 1978, Riedl et al., 2021]. Recent22

studies have established that language models (LMs) can solve some tasks requiring ToM reasoning23

[Street et al., 2024, Strachan et al., 2024b, Kosinski, 2024], while others have highlighted shortcom-24

ings [Sclar et al., 2025, Shapira et al., 2024, Kim et al., 2023a, inter alia]. Nonetheless, most existing25

work relies on behavioral evaluations, which do not shed light on the internal mechanisms by which26

LMs encode and manipulate representations of mental states to solve (or fail to solve) such tasks [Hu27

et al., 2025, Gweon et al., 2023].28

In this work, we investigate how LMs represent and update characters’ beliefs, which is a fundamental29

element of ToM [Dennett, 1981, Wimmer and Perner, 1983]. For instance, the Sally-Anne test [Baron-30

Cohen et al., 1985], a canonical test of ToM in humans, evaluates this ability by asking individuals to31

track Sally’s belief, which diverges from reality due to missing information, and Anne’s belief, which32

updates based on new observations.33

We construct CausalToM, a dataset of simple stories involving two characters, each interacting with34

an object to change its state, with the possibility of observing one another. We then analyze the35

internal mechanisms that enable Llama-3-70B-Instruct [Grattafiori et al., 2024] to reason about and36

answer questions regarding the characters’ beliefs about the state of each object (for a sample story,37

see Section 3 and for the full prompt refer to Appendix A).38
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We discover a pervasive computation that performs multiple subtasks, which we refer to as the39

lookback mechanism. This mechanism enables the model to recall important information only when40

it becomes necessary. In a lookback, two copies of a single piece of information are transferred to41

two distinct tokens. This allows attention heads at the latter token to look back at the earlier one when42

needed and retrieve vital information stored there, rather than transferring that information directly.43
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Figure 1: The lookback mechanism
is used to perform conditional reason-
ing. The source token contains infor-
mation that is copied into two instances
via attention to create a pointer and an
address. Alongside the address in the
residual stream is a payload of infor-
mation. When necessary, the model re-
trieves the payload by dereferencing the
pointer. Solid lines represent movement
of information, while the dotted line indi-
cates the attention “looking back” from
pointer to address.

We identify three key lookback mechanisms that col-44

lectively perform belief tracking: 1) Binding lookback45

(Fig. 2a(i)): First the LM assigns ordering IDs (OIs) [Dai46

et al., 2024] that encode whether a character, object, or47

state token appears first or second. Then, the character and48

object OIs are copied to low-rank subspaces of the corre-49

sponding state token and the final token residual stream.50

Later, when the LM needs to answer a question about a51

character’s beliefs, it uses this information to retrieve the52

answer state OI. 2) Answer lookback (Fig. 2a(ii)): Uses the53

answer state OI from the binding lookback to retrieve the54

answer state token value. 3) Visibility lookback (Fig. 6):55

When an explicit visibility condition between characters56

is mentioned, the model employs additional reference in-57

formation called the visibility ID to retrieve information58

about the observed character, augmenting the observing59

character’s awareness.60

Overall, this work not only advances our understanding of61

the internal computations in LMs that enable ToM capa-62

bility but also uncovers a pervasive mechanism that serves63

as the foundation for executing complex logical reasoning64

with conditionals.65

2 The Lookback Mechanism66

Our investigation of belief tracking uncovers a recurring67

pattern of computation that we call the lookback mecha-68

nism.1 Here we give a brief overview of this mechanism;69

subsequent sections provide detailed experiments and anal-70

yses. In lookback, source information is copied (via at-71

tention) into an address copy in the residual stream of a72

recalled token and a pointer copy in the residual stream of73

a lookback token that occurs later in the text. The LM places the address alongside a payload of the74

recalled token’s residual stream that can be brought forward to the lookback token if necessary. Fig.75

1 schematically describes a generic lookback.76

That is, the LM can use attention to dereference the pointer and retrieve the payload present in77

the residual stream of the recalled token (that might contain aggregated information from previous78

tokens), bringing it to the residual stream of the lookback token. Specifically, the pointer at the79

lookback token forms an attention query vector, while the address at the recalled token forms a key80

vector. Because the pointer and the address are copies of the same source information, they would81

have a high dot-product, hence a QK-circuit [Elhage et al., 2021] is established forming a bridge82

from the lookback token to the recalled token. The LM uses this bridge to move the payload that83

contains information needed to complete the subtask through the OV-circuit.84

To develop an intuition for why an LM would learn to implement lookback mechanisms to solve85

reasoning tasks such as our belief tracking task, consider that during training LMs process text86

in sequence with no foreknowledge of what might come next. Then, it would be useful to mark87

1Although this mechanism may resemble induction heads [Elhage et al., 2021, Olsson et al., 2022], they
differ fundamentally. In induction heads, information from a previous token occurrence is passed only to the
subsequent token through, without being duplicated to its next occurrence. In contrast, the lookback mechanism
copies the same information not only to the location where the vital information resides but also to the target
location that needs to retrieve that information.
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(a)
Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with tea. Then Bob grabs another opaque bottle and
fills it with water.
Question: What does Carla believe the cup contains?
Answer: tea

Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Intervention 1: Answer Pointer ( ), Causal Model Output: beer
Intervention 2: Answer Payload ( ), Causal Model Output: tea
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Figure 2: Belief Tracking in Language Models: We task the LM with tracking the beliefs of two characters
that manipulate the states of two objects. We hypothesize that the LM solves this task by implementing a causal
model with two lookback mechanisms (2a). To support our hypothesis, we conduct a causal analysis where we
measure whether interventions on a high-level causal model produce the same output as equivalent interventions
on the LM. For instance in 2b, we show results for an experiment distinguishing the pointer and payload in the
answer lookback.
(a) Belief Tracking with No Visibility between Characters: Our hypothesized causal model for this kind
of story has two lookbacks that operate on ordering IDs (OIs) that encode whether a token appears first or
second. In the binding lookback (i), the LM first represents the two events in the story by binding together
each character-object-state triple in the residual stream of the state token. When questioned about a particular
character and object, the LM looks back to the corresponding triple and retrieves an OI to that state token. Notice
that in this lookback, that payload is later used as a pointer, i.e., what a C programmer would call a double
pointer. In the answer lookback (ii), the LM dereferences the pointer to the answer token to generate the correct
answer. Color indicates the information content, while shape indicates the role of that information in lookback
(see Fig. 1), e.g., the state OI is a payload ( ) in the binding lookback and a pointer/address ( ) in the answer
lookback.
(b) Answer Lookback Pointer and Payload: To test our hypothesized causal model, we run the LM on pairs of
slightly different stories, and then intervene by patching a specific representation state from the counterfactual
run to the original run, observing any change in the output. The causal model predicts that if we alter the
“answer payload ” of the original to instead take the value of the counterfactual answer payload, the output
should change from coffee to tea; the gray curve in the line plot shows this does occur with p ≈ 1.0 when
patching states at the “:” token beyond layer 56, providing evidence that the answer payload resides in those
states. On the other hand the causal model predicts that taking the counterfactual “answer pointer ” would
change the original run output from coffee to beer—a new output that matches neither the original nor the
counterfactual!—and we do see this surprising effect, again with p ≈ 1.0, when patching layers between 34
and 52, providing strong evidence that the answer pointer is encoded at those layers. Collected over N = 80
samples, these measurements suggest the Answer Lookback occurs between layers 52 and 56. Furthermore the
representations of the causal variables are small: the interventions can be localized even further to subspaces of
dimension 33 (payload) or 20 (pointer), tiny portions of the 8192-dimensional state space.
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Figure 3: Tracing information flow of crucial input tokens using causal mediation analysis.

addresses alongside payloads that might be useful for downstream tasks. In our setting, the LM88

constructs a representation of the story without any knowledge of what questions it may be asked89

about, so the LM concentrates pieces of information in the residual stream of certain tokens which90

later become payloads and addresses. When the question text is reached, pointers are constructed that91

reference this crucial story information and dereference it as the answer to the question.92

3 Preliminaries93

Dataset Existing datasets for evaluating ToM capabilities of LMs are designed for behavioral94

testing and lack counterfactual pairs needed for causal analysis [Kim and Sundar, 2012]. To95

address this, we constructed CausalToM, a structured dataset of simple stories, where each story96

involves two characters, each interacting with a distinct object causing the object to take a unique97

state. For example: “Character1 and Character2 are working in a busy restaurant.98

To complete an order, Character1 grabs an opaque Object1 and fills it with99

State1. Then Character2 grabs another opaque Object2 and fills it with100

State2.” We then ask the LM to reason about one of the characters’ beliefs regarding the state101

of an object: “What does Character1 believe Object2 contains?” We analyze the LM’s102

ability to track characters’ beliefs in two distinct settings. (1) No Visibility, where both characters103

are unaware of each other’s actions, and (2) Explicit Visibility where explicit information about104

whether a character can/cannot observe the other’s actions is provided, e.g., “Bob can observe105

Carla’s actions. Carla cannot observe Bob’s actions.” We also provide general task106

instructions (e.g., answer unknown when a character is unaware); refer to Appendix A & C for the107

full prompt and additional dataset details. Our experiments analyze the Llama-3-70B-Instruct model108

in half-precision, using NNsight [Fiotto-Kaufman et al., 2025]. The model demonstrates a high109

behavioral performance on both the no-visibility and explicit-visibility settings, achieving accuracy110

of 95.7% and 99% respectively. For all subsequent experiments, we filter out samples that the model111

fails to answer correctly.112

Causal Mediation Analysis113

Our goal is to develop a mechanistic understanding of how Llama-3-70B-Instruct reasons about114

characters’ beliefs and answers related questions [Saphra and Wiegreffe, 2024]. A key method for115

conducting causal analysis is interchange interventions [Vig et al., 2020, Geiger et al., 2020, Finlayson116

et al., 2021], in which the LM is run on paired examples: an original input o and a counterfactual117

input c and certain internal activations in the LM run on the original are replaced with those computed118

from the counterfactual.119

Drawing inspiration from existing literature [Vig et al., 2020, Meng et al., 2022, Wang et al., 2023],120

we begin our analysis by performing interchange interventions with counterfactuals that are identical121

to the original except for key input tokens. We trace the causal path from these key tokens to the122

final output. This is a type of Causal Mediation Analysis [Mueller et al., 2024]. Specifically, we123

construct a counterfactual dataset where o contains a question about the belief of a character not124

mentioned in the story, while c is identical except that the story includes the queried character. The125

expected outcome of this intervention is a change in the final output of o from unknown to a state126

token, such as beer. We conduct similar interchange interventions for object and state tokens (refer127

to Appendix D for more details).128

Figure 3 presents the aggregated results of this experiment for the key input tokens Character1,129

Object1, and State1. The cells are color-coded to indicate the interchange intervention accuracy130
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[IIA; Geiger et al., 2022]. Even at this coarse level of analysis, several significant insights emerge: 1)131

Information from the correct state token (beer) flows directly from its residual stream to that of the132

final token in later layers, consistent with prior findings [Lieberum et al., 2023, Prakash et al., 2024];133

2) Information associated with the query character and the query object is retrieved from their earlier134

occurrences and passed to the final token before being replaced by the correct state token.135

Desiderata Based Patching via Causal Abstraction136

The causal mediation experiments provide a coarse-grained analysis of how information flows from137

an input token to the output but do not identify what that information is. A fact about transformers is138

that the input to the first layer contains input tokens and the output from the final layer contains the139

output token, but what is the information content of representations along the active causal path in140

between the input and output?141

To answer this question, we turn to Causal Abstraction [Geiger et al., 2021, 2024]. We align the142

variables of a high-level causal model with the LM’s internal activations and verify the alignment by143

conducting targeted interchange interventions for each variable. Specifically, we perform aligned144

interchange interventions at both levels: interventions that target high-level causal variables and145

interventions that modify low-level features of the LM’s hidden activations. If the LM produces the146

same output as the high-level causal model under these aligned interventions, it provides evidence147

supporting the hypothesized causal model. The effect of these interventions is quantified using148

IIA, which measures the proportion of instances where intervened high-level causal model and149

low-level LM have the same output (refer to Appendix E for more details about the causal abstraction150

framework and Appendix F for the belief tracking causal model).151

In addition to performing interchange interventions on entire residual stream vectors in LMs, we152

also intervene on specific subspaces to further localize causal variables. To identify the subspace153

encoding a particular variable, we employ the Desiderata-based Component Masking [De Cao et al.,154

2020, Davies et al., 2023, Prakash et al., 2024] technique, which learns a sparse binary mask over the155

internal activation space by maximizing the logit of the causal model output token. Specifically, we156

train a mask to select the singular vectors of the activation space that encode a high-level variable157

(see Appendix G for details).158

4 Belief Tracking via Ordering IDs and Lookback Mechanisms159

The LM solves the no visibility setting of the belief tracking task using three key mechanisms: Order-160

ing ID assignment, binding lookback, and answer lookback. Figure 2a illustrates the hypothesized161

high-level causal model implemented by the LM, which we evaluate in the following subsections.162

The LM first assigns ordering IDs (OIs; , , ) to each character, object, and state in the story163

that encode their order of appearance (e.g., the second character Carla is assigned 2 ). These OIs164

are used in two lookback mechanisms. (i) Binding lookback: Address copies of each character OI165

( ) and object OI ( ) are placed alongside their corresponding state OI payload ( ) in the residual166

stream of each state token, binding together each character-object-state triple. When the model is167

asked about the belief of a specific character about a specific object, it moves pointer copies of168

the corresponding OIs ( , ) to the final token’s residual stream. These pointers are dereferenced,169

bringing the correct state OI into the final token residual stream. (ii) Answer lookback: An address170

copy of the state OI ( ) is alongside the state token payload ( ) in the residual stream of the correct171

state token, while a pointer copy ( ) is moved to the final token residual stream via the binding172

lookback. The pointer is dereferenced, bringing the answer state token payload into the final token173

residual stream, which is predicted as the final output. Refer to Appendix F for pseudocode defining174

the causal model for the belief tracking task. In Appendices M and L, we show parts of our analysis175

generalizing to the Llama-3.1-405B-Instruct model and the BigToM dataset [Gandhi et al., 2024].176

4.1 Ordering ID Assignment177

The LM assigns an Ordering ID (OI; Dai et al. 2024) to the character, object, and state tokens. These178

OIs, encoded in a low-rank subspace of the internal activation, serve as a reference that indicates179

whether an entity is the first or second of its type independent of its token value. For example, in180

Fig. 2a, Bob is assigned the first character OI, while Carla receives the second. In the subsequent181

subsections and Appendices H & I, we validate the presence of OIs through multiple experiments,182

where intervening on tokens with identical token values but different OIs alters the model’s internal183
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Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with coffee. Then Bob grabs another opaque bottle
and fills it with beer.
Question: What does Carla believe the cup contains?
Answer: coffee

Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Intervention: Binding Payloads and Addresses ( , , )
Causal Model Output: beer
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Figure 4: Binding lookback payload and address: We intervened on both the high-level causal
model and the LM running on the original story, modifying their variables and internal activations
respectively, to match those from a counterfactual scenario. In the causal model intervention, we
update the addresses (character and object OIs; and ) and the payloads (state OIs; ). This
causes the binding lookback mechanism to attend to and retrieve the state OI corresponding to the
alternate state token, which is then dereferenced by answer lookback to yield the alternate state token
(e.g., beer instead of coffee). In the LM interchange intervention, modifying the residual stream at
the state token results in identical outputs between layers 33 and 38. This confirms our hypothesis
that both the address and payload information are represented in the residual stream of state tokens.

computation, leading to systematic changes in the final output predicted by our high-level causal184

model. The LM then uses these OIs as building blocks, feeding them into lookback mechanisms to185

track and retrieve beliefs.186

4.2 Uncovering the Binding Lookback Mechanism187

The Binding Lookback is the first operation applied to these OIs. The character and object OIs,188

serving as the source information, are each copied twice. One copy, referred to as the address, is189

placed in the residual stream of the state token (recalled token), alongside the state OI as the payload190

to transfer. The other copy, referred to as the pointer, is moved in the residual stream of the final191

token (lookback token). These pointer and address copies are then used to form the QK-circuit at the192

lookback token, which dereferences the state OI payload, transferring it from the state token to the193

final token. See Fig.2a (i) for a schematic of this lookback and see Fig.1 for the general mechanism.194

The Hypothesized Address and Payload. In our first experiment, we localize the address copies195

of the character and object OIs and the state OI payload to the residual stream of the state token196

(recalled token, Fig. 2a). We sampled a counterfactual dataset where each example consists of an197

original input o with an answer that isn’t unknown and a counterfactual input c where the character,198

object, and state tokens are identical, except the ordering of the two sentences is swapped while199

the question remains unchanged, as illustrated in Fig. 4. The expected outcome predicted by our200

high-level causal model under intervention is the other state token from the original example, e.g.,201

beer, because reversing the address and payload values without changing the pointer flips the output.202

Testing Address and Payload Hypothesis. We perform an interchange intervention experiment203

layer-by-layer, where we replace the residual stream vectors at the first state token in the original run204

with that of the second state token in the counterfactual run and vice versa for the other state token. It205

is important to note that if the intervention targets state token values instead of their OIs, it should not206

produce the expected output. (This happens in the earlier layers.)207

As shown in Fig. 4, the strongest alignment occurs between layers 33 and 38, supporting our208

hypothesis that the state token’s residual stream contains both the address information (character and209

object OIs) and the payload information (state OI). These components are subsequently used to form210

a QK-circuit between the pointer at the lookback token and the address at the other state token and211

OV-circuit that retrieves its state OI as the payload.212

Localizing the Source Information As shown in Fig. 2a, the source information is copied as213

both the address and the pointer at different token positions. To localize the source information, we214

conduct intervention experiments with a dataset where the counterfactual example, c, swaps the order215

of the characters and objects as well as replaces the state tokens with entirely new ones while keeping216

the question the same as in o.217
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Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with tea. Then Bob grabs another opaque bottle and
fills it with water.
Question: What does Carla believe the cup contains?
Answer: tea

Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Intervention: Binding Source ( , )
Frozen: Binding and Answer Addresses+Payloads ( , , ; , )
Causal Model Output: beer
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Figure 5: Source Information of Binding lookback: We run the causal model and the LM on an
original story, then update their variables and activations, respectively, to the values they would take
on for a counterfactual story with swapped characters and objects and new states. The interchange
intervention on the high-level causal model swaps the sources of the binding lookback (character
and object OIs; , ) while freezing the addresses and payloads of the binding lookback (character,
object, and state OIs; , , ) and the answer lookback (state OI and token; , ). By altering the
sources, but freezing the addresses and payloads, only the pointer is changed so the binding lookback
retrieves the other state OI which is dereferenced by the answer lookback to the other state token
(e.g., beer instead of coffee). We perform the same interchange intervention on the LM and measure
the agreement with the intervened causal model. Our results localize the source to the character and
object token residual streams between layers 20 and 34.

With this dataset, an interchange intervention on the high-level causal model that targets the source218

information will have downstream effects on both the address and the pointer, so no change in output219

occurs. However, if we additionally freeze the payloads and addresses, the causal model outputs the220

other state token, e.g., beer in Fig. 5, due to the mismatch between address and pointer.221

In the LM, we interchange the residual streams of the character and object tokens while keeping the222

residual stream of the state token fixed. When the output of the intervened LM aligns with that of the223

intervened causal model, it indicates that the QK-circuit at the final token is attending to the alternate224

state token. As shown in Fig. 5, the second experiment reveals alignment between layers 20 and 34.225

This suggests that source information—specifically, the character and object OIs—is represented in226

their respective token residual streams within this layer range.227

We provide more experimental results in Appendix H where we show in Fig. 12 that freezing the228

residual stream of the state token is necessary. In sum, these results not only provide evidence for the229

presence of source information but also establish its transfer to the recalled and lookback tokens as230

addresses and pointers, respectively.231

Localizing the Pointer Information The pointer copies of the character and object OI are first232

formed at the character and object tokens in the question before being moved again to the final token233

for dereferencing (see Appendix I for experiments and more details).234

4.3 Uncovering the Answer Lookback Mechanism235

The LM answers the question using the Answer Lookback. The state OI of the correct answer serves236

as the source information, which is copied into two instances. One instance, the address copy of237

the state OI, is in the residual stream of the state token (recalled token) with the state token itself238

as the payload. The other instance, the pointer copy of the state OI, is transferred to the residual239

stream of the final token (lookback token) as the payload of the binding lookback. This pointer is240

then dereferenced, bringing the state token as the payload into the residual stream of the final token,241

which is predicted as the final output.242

Localizing the Pointer Information We first localize the pointer of the answer lookback, which is243

the payload of the binding lookback. To do this, we conduct an interchange intervention experiment244

where the residual vectors at the final token position in the original run are replaced with those from245

the counterfactual run, one layer at a time. The counterfactual inputs have swapped objects and246

characters and randomly sampled states. If the answer pointer is targeted for intervention in the247

high-level causal model, the output is the other state in the original input, e.g., beer. As shown248
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(i) Binding lookback

Figure 6: Visbility Lookback When one character (the observing character) can see another (the
observed character), the LM assigns a visibility ID ( ) to the visibility sentence (where this relation
is defined). An address copy of this visibility ID remains in the visibility sentence’s residual stream.
A pointer copy of the visibility ID is transferred to the subsequent tokens’ residual stream (lookback
tokens). During processing, the model dereferences this pointer through a QK-circuit, bringing
forward the payload ( ). Based on initial evidence, this payload contains the observed character’s
OI( ). Refer to Appendix J for more details. This mechanism allows the model to incorporate the
observed character’s knowledge into the observing character’s belief state, enabling more complex
belief reasoning.

in Fig. 2b, alignment begins at layer 34, indicating that this layer contains pointer information, in249

low-rank subspace, which remains causally relevant until layer 52.250

Localizing the Payload To determine where the model uses the state OI pointer to retrieve the251

state token, we use the same interchange intervention experiment. However, if the answer payload is252

targeted for intervention in the high-level causal model, the output is the correct state token from the253

counterfactual example, e.g., tea, rather than the state token from the original example, as illustrated254

in Fig. 2b. The alignment occurs after layer 56, indicating that the model retrieves the correct state255

token (payload) into the final token’s residual stream by 56, which is used to generate the final output.256

5 Impact of Visibility Conditions on Belief Tracking Mechanism257

In the previous section, we demonstrated how the LM uses ordering IDs and two lookback mechanisms258

to track the beliefs of characters that cannot observe each other. Now, we explore how the LM updates259

the beliefs of characters when provided with additional information that one of the characters260

(observing) can observe the actions of others (observed). We hypothesize that the LM employs261

another lookback mechanism, which we refer to as the Visibility Lookback, to incorporate information262

about the observed character.263

As illustrated in Fig. 6, we hypothesize that the LM first generates a Visibility ID at the residual264

stream of the visibility sentence, serving as the source information. The address copy of the visibility265

ID remains in the residual stream of the visibility sentence, while its pointer copy gets transferred266

to the residual streams of the subsequent tokens, which are the lookback tokens. Then LM forms a267

QK-circuit at the lookback tokens and dereferences the visibility ID pointer to bring the payload.268

Although we were unable to determine the exact semantics of the payload in this lookback, we269

speculate that it encodes the observed character’s OI. We propose the existence of another lookback,270

where the story sentence associated with the observed character serves as the source, and its payload271

encodes information about the observed character. That payload information, encoding observed272

character’s OI, is then retrieved by the lookback tokens of the Visibility lookback, which contributes273

to the queried character’s enhanced awareness (see Appendix J for more details).274

5.1 Uncovering the Visibility Lookback Mechanism275

Localizing the Source Information To localize the source information, we conduct an interchange276

intervention experiment where the counterfactual is a different story with altered visibility information.277
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Carla and Bob are working in a busy restaurant. To complete
an order, Carla grabs an opaque cup and fills it with tea.
Then Bob grabs another opaque bottle and fills it with water.
Bob cannot observe Carla’s actions. Carla can observe Bob’s
actions.
Question: What does Carla believe the bottle contains?
Answer: water

Karen and Max are working in a busy restaurant. To complete
an order, Karen grabs an opaque flute and fills it with soda.
Then Max grabs another opaque jar and fills it with coffee.
Max cannot observe Karen’s actions. Karen cannot observe
Max’s actions.
Question: What does Karen believe the jar contains?
Answer: unknown

Intervention 1: Source ( ), Causal Model Output: coffee
Intervention 2: Payload ( ), Causal Model Output: coffee
Intervention 3: Address & Pointer ( ), Causal Model Output: coffee
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Figure 7: Visibility Lookback: We conduct three interchange intervention experiments to support
the Visibility Lookback hypothesis: (1) Source Alignment: We align the source information ( ) by
intervening on the visibility sentence-replacing it with its representation from a counterfactual run
where the visibility sentence causes the queried character to become aware of the queried object’s
contents. We observe that source information aligns between layers 10 and 23. (2) Payload Alignment
( ): We intervene on all subsequent tokens and observe alignment only after layer 31. (3) Address
and Pointer Alignment: When intervening on both the address and pointer information ( ), we
observe alignment across a broader range of layers, particularly between layers 24 and 31, because of
the enhanced alignment between the address and pointer copies at the recalled and lookback tokens.

In the original example, the first character cannot observe the second character’s actions, whereas in278

the counterfactual example, the first character can observe them (Fig. 7). The causal model outcome279

of this intervention is a change in the final output of the original run from “unknown” to the state token280

associated with the queried object. The interchange intervention is executed on visibility sentence281

tokens. As shown in Fig. 7 (– line), alignment occurs between layers 10 and 23, indicating that the282

visibility ID remains encoded in the visibility sentence until layer 23, after which it is duplicated into283

address and pointer copies on visibility sentence and subsequent tokens respectively.284

Localizing the Payload To localize the payload information, we use the same counterfactual285

dataset. However, instead of intervening on the source or recalled tokens, we intervene on the286

lookback tokens, specifically the question and answer tokens. As in the previous experiment, we287

replace the residual vectors of these tokens in the original run with those from the counterfactual run.288

As shown in Fig. 7 (– line), alignment occurs only after layer 31, indicating that the information289

enhancing the queried character’s awareness is present in the lookback tokens only after this layer.290

Localizing the Address and Pointer The previous two experiments suggest the presence of a291

lookback mechanism, as there is no signal indicating that the source or payload has been formed292

between layers 24 and 31. We hypothesize that this lack of signal is due to a mismatch between the293

address and pointer information. Specifically, when intervening only on the recalled token after layer294

25, the pointer is not updated, whereas intervening only on the lookback tokens leaves the address295

unaltered, leading to the mismatch. To test this hypothesis, we conduct another intervention using296

the same counterfactual dataset, where we intervene on the residual vectors of both the recalled and297

lookback tokens. As shown in Fig. 7 (– line), alignment occurs after layer 10 and remains stable,298

supporting our hypothesis. This intervention replaces both the address and pointer copies of the299

visibility IDs, enabling the LM to form a QK-circuit and retrieve the payload.300

6 Conclusion301

Through a series of desiderata-based patching experiments, we have mapped the mechanisms un-302

derlying the processing of partial knowledge and false beliefs in a set of simple stories. We are303

surprised by the pervasive appearance of a single recurring computational pattern: the lookback,304

which resembles a pointer dereference inside a transformer. The LMs use a combination of several305

lookbacks to reason about nontrivial visibility and belief states. Our improved understanding of these306

fundamental computations gives us optimism that it may be possible to fully reveal the algorithms307

underlying not only Theory of Mind, but also other forms of reasoning in LMs.308
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A Full prompt849

No Visibility

Instruction: 1. Track the belief of each character as described in the
story. 2. A character’s belief is formed only when they perform an action
themselves or can observe the action taking place. 3. A character does
not have any beliefs about the container and its contents which they cannot
observe. 4. To answer the question, predict only what is inside the queried
container, strictly based on the belief of the character, mentioned in the
question. 5. If the queried character has no belief about the container in
question, then predict ‘unknown’. 6. Do not predict container or character
as the final output.
Story: Bob and Carla are working in a busy restaurant. To complete an
order, Bob grabs an opaque bottle and fills it with beer. Then Carla grabs
another opaque cup and fills it with coffee.
Question: What does Bob believe the bottle contains?
Answer:

850

Explicit Visibility

Instruction: 1. Track the belief of each character as described in the
story. 2. A character’s belief is formed only when they perform an action
themselves or can observe the action taking place. 3. A character does
not have any beliefs about the container and its contents which they cannot
observe. 4. To answer the question, predict only what is inside the queried
container, strictly based on the belief of the character, mentioned in the
question. 5. If the queried character has no belief about the container in
question, then predict ‘unknown’. 6. Do not predict container or character
as the final output.
Story: Bob and Carla are working in a busy restaurant. To complete an
order, Bob grabs an opaque bottle and fills it with beer. Then Carla
grabs another opaque cup and fills it with coffee. Bob can observe Carla’s
actions. Carla cannot observe Bob’s actions.
Question: What does Bob believe the cup contains?
Answer:

851

B Related Work852

Theory of mind in LMs A large body of work has focused on benchmarking different aspects of853

ToM through various tasks that attempt to assess LMs’ performance such as Le et al. [2019], Xu854

et al. [2024], Shapira et al. [2023], Jin et al. [2024], Wu et al. [2023], Kim et al. [2023b], Chan et al.855

[2024], Strachan et al. [2024a] and many more. In addition, there are various methods tailored to856

improve ToM ability in LMs through prompting [e.g., Sclar et al., 2023, Zhou et al., 2023, Wilf et al.,857

2024, Moghaddam and Honey, 2023, Hou et al., 2024].858

Entity tracking in LMs Entity tracking and variable binding are crucial abilities for LMs to exhibit859

not only coherent ToM capabilities, but also neurosymbolic reasoning. Many existing works have860

attempted to decipher this ability in LMs [Li et al., 2021, Davies et al., 2023, Kim and Schuster, 2023,861

Prakash et al., 2024, Feng and Steinhardt, 2023, Feng et al., 2024, Dai et al., 2024]. Our work builds862

on their empirical insights and extends the current understanding of how LMs bind various entities863

defined in context.864

Mechanistic interpretability of theory of mind Only a few empirical studies explored the865

underlying mechanisms of ToM of LM [Zhu et al., 2024, Bortoletto et al., 2024] [Herrmann and866

Levinstein, 2024, is a notable theoretical paper]. Those studies focus on probing techniques [Belinkov,867

2022, Alain, 2016] to identify internal representations of beliefs and used steering techniques [Li868

et al., 2024, Rimsky et al., 2023] to improve LM performance by manipulating their activations.869

However, the mechanism by which LMs solve those tasks remains a black box, limiting our ability to870

understand, predict, and control LMs’ behaviors.871

21



C The CausalToM Dataset872

In total, there are 4 templates (one without and 3 with explicit visibility statements). Each template873

allows 4 different types of questions (CharacterX asked about ObjectY). We used lists of 103874

characters, 21 objects, and 23 states. In our interchange intervention experiments, we randomly875

sample 80 pairs of original and counterfactual stories.876

D Causal Mediation Analysis877

Bob and Carla are working in a busy restaurant. To complete
an order, Bob grabs an opaque bottle and fills it with beer.
Then Carla grabs another opaque cup and fills it with coffee.
Question: What does Bob believe the bottle contains?
Answer: beer

David and Carla are working in a busy restaurant. To
complete an order, David grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and fills
it with coffee.
Question: What does Bob believe the bottle contains?
Answer: unknown

Causal Model Output: beer
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Figure 8: Causal Mediation Analysis: The original example produces the output unknown because
Bob is not mentioned in the story, leaving the model without any information about his beliefs.
However, when the residual stream vectors corresponding to Bob from the counterfactual run are
patched into the original run, the model acquires the necessary information about that character and
consequently updates its output to beer.

In addition to the experiment shown in Fig.8, we conduct similar experiments for the object and878

state tokens by replacing them in the story with random tokens, which alters the original example’s879

final output. However, patching the residual stream vectors of these tokens from the counterfactual880

run restores the relevant information, enabling the model to predict the causal model output. The881

results of these experiments are collectively presented in Fig.3, with separate heatmaps shown in882

Fig. 9, 10, 11.883
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Figure 9: Information flow of character input tokens using causal mediation analysis.
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Figure 10: Information flow of object input tokens using causal mediation analysis.
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Figure 11: Information flow of state input tokens using causal mediation analysis.

E Desiderate Based Patching Via Causal Abstraction884

Causal Models and Interventions A deterministic causal modelM has variables that take on885

values. Each variable has a mechanism that determines the value of the variable based on the values of886

parent variables. Variables without parents, denoted X, can be thought of as inputs that determine the887

setting of all other variables, denotedM(x). A hard intervention A← a overrides the mechanisms888

of variable A, fixing it to a constant value a.889

Interchange Interventions We perform interchange interventions [Vig et al., 2020, Geiger et al.,890

2020] where a variable (or set of features) A is fixed to be the value it would take on if the LM were891

processing counterfactual input c. We write A← Get(M(c), A) where Get(M(c), A) is the value892

of variable A whenM processes input c. In experiments, we will feed a original input o to a model893

under an interchange interventionMA←Get(M(c),A))(o).894

Featurizing Hidden Vectors The dimensions of hidden vectors are not an ideal unit of analysis895

[Smolensky, 1986], and so it is typical to featurize a hidden vector using some invertible function,896

e.g., an orthogonal matrix, to project a hidden vector into a new variable space with more inter-897

pretable dimensions called “features”[Mueller et al., 2024]. A feature intervention Fh ← f edits the898

mechanism of a hidden vector h to fix the value of features Fh to f .899

Alignment The LM is a low-level causal model L where variables are dimensions of hidden vectors900

and the hypothesis about LM structure is a high-level causal modelH. An alignment Π assigns each901

high-level variable A to features of a hidden vector FA
h , e.g., orthogonal directions in the activation902

space of h. To evaluate an alignment, we perform intervention experiments to evaluate whether903

high-level interventions on the variables in H have the same effect as interventions on the aligned904

features in L.905

Causal Abstraction We use interchange interventions to reveal whether the hypothesized causal906

modelH is an abstraction of an LM L. To simplify, assume both models share an input and output907

space. The high-level modelH is an abstraction of the low-level model L under a given alignment908

when each high-level interchange intervention and the aligned low-level intervention result in the same909

output. For a high-level intervention on A aligned with low-level features FA
h with a counterfactual910

input c and original input b, we write911

GetOutput(LFA
h←Get(L(c),FA

h ))(o)) = GetOutput(HA←Get(H(c),A))(o)) (1)
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If the low-level interchange intervention on the LM produces the same output as the aligned high-level912

intervention on the algorithm, this is a piece of evidence in favor of the hypothesis. This extends913

naturally to multi-variable interventions [Geiger et al., 2024].914

Graded Faithfulness Metric We construct counterfactual datasets for each causal variable where915

an example consists of a base prompt and a counterfactual prompt . The counterfactual label is the916

expected output of the algorithm after the high-level interchange intervention, i.e., the right-side of917

Equation 1. The interchange intervention accuracy is the proportion of examples for which Equation 1918

holds, i.e., the degree to whichH faithfully abstracts L.919

Aligning Features to Causal Variables In our experiments, we use Singular Vector Decomposition920

(SVD) to featurize residual stream vectors, i.e., features are the orthogonal singular vectors. For921

a given transformer layer and token location, we collect the residual stream vectors across a large922

number of examples and compute the singular vectors. Given singular vector features Fh of a hidden923

vector h in the residual stream of the LM L, we select features to align with a causal variable A in924

causal modelH using Desiderata-based Component Masking (DCM) [De Cao et al., 2020, Davies925

et al., 2023, Prakash et al., 2024]. Given original input o and counterfactual input c, we train a mask926

m ∈ [0, 1]|Fh| on the following objective927

CE
(
GetLogits

(
LFh←m◦Get(L(c),Fh))(b)

)
,GetLogits

(
HA←Get(H(c),A))(b)

))
(2)
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F Pseudocode for the Belief Tracking High-Level Causal Model928

Algorithm 2 High-level causal model for the no visibility

1: procedure BELIEFTRACKING(c1, o1, s1, c2, o2, s2, qc, qo)
2: Ordering ID assignment
3: cOI

1 , oOI
1 , sOI

1 ← AssignOIs([c1, o1, s1], 1)
4: cOI

2 , oOI
2 , sOI

2 ← AssignOIs([c2, o2, s2], 2)
5:
6: Binding lookback mechanism
7: binding_address1 ← (copy(cOI

1 ), copy(oOI
1 ))

8: binding_address2 ← (copy(cOI
2 ), copy(oOI

2 ))
9:

10: qOI
c ← copy({c1 : cOI

1 , c2 : cOI
2 }[qc])

11: qOI
o ← copy({o1 : oOI

1 , o2 : oOI
2 }[qo])

12: binding_pointer← (qOI
c , qOI

o )
13:
14: if binding_address1 = binding_pointer then
15: binding_payload← copy(sOI

1 )
16: else if binding_address2 = binding_pointer then
17: binding_payload← copy(sOI

2 )
18: end if
19:
20: Answer lookback mechanism
21: answer_pointer← binding_payload
22: answer1_address← sOI

1
23: answer2_address← sOI

2
24: if answer1_address = answer_pointer then
25: answer_payload← s1
26: else if answer2_address = answer_pointer then
27: answer_payload← s2
28: end if
29: return answer_payload
30: end procedure

G Desiderata-based Component Masking929

While interchange interventions on residual vectors reveal where a causal variable might be encoded930

in the LM’s internal activations, they do not localize the variable to specific subspaces. To address931

this, we apply the Desiderata-based Component Masking technique [De Cao et al., 2020, Davies et al.,932

2023, Prakash et al., 2024], which learns a sparse binary mask m over the singular vectors of the LM’s933

internal activations. We first cache the internal activations from 500 samples at the token positions934

specified in the main text for each experiment. Next, we apply Singular Value Decomposition to935

compute the singular vectors as a matrix V ∈ Rd×500 where d is the dimensionality of the residual936

stream. We then masked this matrix using a learnable binary vector m ∈ [0, 1]d to choose a subset of937

singular vectors938

Vmasked = V m (3)
The chosen subset of vectors is used to construct a projection matrix Wproj ∈ Rd×d.939

Wproj = VmaskedV
T
masked (4)

Then, we perform subspace-level interchange interventions (rather than replacing the entire residual940

vector) using the following equations:941

hnew = Wprojhc + (I −Wproj)ho (5)

where ho is the full residual stream of the original run, hc is the full residual stream of the counterfac-942

tual run, and hnew is the intervened vector where the chosen subspace of ho is replaced with that of943

hc.944
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The core idea is to first remove the existing information from the subspace defined by the projec-945

tion matrix and then insert the counterfactual information into that same subspace using the same946

projection matrix.947

In order to find the optimal subspace, we optimize m to maximize the agreement between the causal948

model output and the LM’s output. To do so, we train the mask for each experiment on 80 examples949

of the same counterfactual datasets specified in the main text and use another 80 samples as the950

validation set. We use the following objective function, which maximizes the logit of the causal951

model output token:952

L = −logitcausal_model_output_under_intervention + λ
∑

m (6)

Where λ is a hyperparameter used to control the rank of the subspace and m is the learnable mask.953

See Appendix E for details on how the causal model output under intervention are computed. We954

trained m for one epoch with ADAM optimizer, on batches of size 4 and a learning rate of 0.01.955

During training, the parameters of m are continuous and constrained to lie within the range [0, 1].956

To enforce this constraint, we clamp their values after each gradient update. During evaluation, we957

binarize the mask by rounding each parameter to the nearest integer, i.e., 0 or 1.958

H Aligning Character and Object OIs959

As mentioned in section 4.2, the source information, consisting of character and object OI, is960

duplicated to form the address and pointer of the binding lookback. Here, we describe another961

experiment to verify that the source information is copied to both the address and the pointer. More962

specifically, we conduct the same interchange intervention experiment as described in Fig. 5, but963

without freezing the residual vectors at the state tokens. Based on our hypothesis, this intervention964

will not be able to change the state of the original run, since the intervention at the source information965

will affect both address and pointer, hence making the model form the original QK-circuit.966

Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with coffee. Then Bob grabs another opaque bottle
and fills it with beer.
Question: What does Carla believe the cup contains?
Answer: coffee

Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Intervention: Binding Source ( , )
Causal Model Output: beer
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Figure 12: Source Information of Binding lookback: In this interchange intervention experiment,
the source information—i.e., the character and object OIDs ( , )—is modified, while the address
and payload ( , , ) are recomputed based on the modified source. Since both the address and
pointer information are derived from the altered source, the binding lookback ultimately retrieves the
same original state token as the payload. As a result, we do not observe high intervention accuracy.

In section 4.2, we identified the source of the information but did not fully determine the locations of967

each character and object OI. To address this, we now localize the character and object OIs separately968

to gain a clearer understanding of the layers at which they appear in the residual streams of their969

respective tokens, as shown in Fig.13 and Fig.14.970
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Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with tea. Then Bob grabs another opaque bottle and
fills it with water.
Question: What does Carla believe the bottle contains?
Answer: unknown

Intervention: Character OI ( )
Frozen: Object OI, Binding and Answer Addresses+Payloads ( , , ; ,

)
Causal Model Output: water
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Figure 13: Character OI: This interchange intervention experiment swaps the character OI ( ),
while freezing the object OI as well as binding lookback address and payload ( , , ). Swapping
the character OIs in the story tokens changes the queried character OI to the other one. Hence, the
final output changes from unknown to water.

Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with tea. Then Bob grabs another opaque bottle and
fills it with water.
Question: What does Carla believe the bottle contains?
Answer: unknown

Intervention: Binding Source ( , )
Frozen: Binding and Answer Addresses+Payloads, Queried Character OID
( , , ; , )
Causal Model Output: tea
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Figure 14: Object OI: This interchange intervention experiment swaps both the character and object
OIs ( , ), while freezing the address and payload of binding lookback ( , , ) as well as queried
character OI ( ). Swapping both character and object OIs in the story tokens ensures that the queried
object gets the other OI. Hence, the final output changes from unknown to tea.

I Aligning Query Character and Object OIs971

In section 4.2, we localized the pointer information of binding lookback. However, we found that this972

information is transferred to the lookback token (last token) through two intermediate tokens: the973

queried character and the queried object. In this section, we separately localize the OIs of the queried974

character and queried object, as shown in Fig. 15 and Fig. 16.975

J Speculated Payload in Visibility Lookback976

As mentioned in section 5, the payload of the Visibility lookback remains undetermined. In this977

section, we attempt to disambiguate its semantics using the Attention Knockout technique introduced978

in [Geva et al., 2023], which helps reveal the flow of crucial information. We apply this technique to979

understand which previous tokens are vital for the formation of the payload information. Specifically,980

we "knock out" all attention heads at all layers of the second visibility sentence, preventing them981

from attending to one or more of the previous sentences. Then, we allow the attention heads to attend982

to the knocked-out sentence one layer at a time.983

If the LM is fetching vital information from the knocked-out sentence, the interchange intervention984

accuracy (IIA) post-knockout will decrease. Therefore, a decrease in IIA will indicate which attention985
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Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with tea. Then Bob grabs another opaque bottle and
fills it with water.
Question: What does Carla believe the bottle contains?
Answer: unknown

Intervention: Binding Pointer ( )
Causal Model Output: water
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Figure 15: Query Character OI: This interchange intervention experiment alters the OI of the
queried character ( ) to the other one. Hence, the final output changes from unknown to water.

Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with tea. Then Bob grabs another opaque bottle and
fills it with water.
Question: What does Bob believe the cup contains?
Answer: unknown

Intervention: Binding Pointer ( )
Causal Model Output: water
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Figure 16: Query Object OI: This interchange intervention experiment alters the OI of the queried
object ( ) to the other one. Hence, the final output changes from unknown to water.

heads, at which layers, are bringing in the vital information from the knocked-out sentence. If,986

however, the model is not fetching any critical information from the knocked-out sentence, then987

knocking it out should not affect the IIA.988
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Figure 17: At the second visibility sentence, attention heads are restricted to retrieve information
from one of three prior contexts: (1) both the second story sentence and the first visibility sentence (–
line), (2) only the first visibility sentence (– line), or (3) only the second story sentence (– line).

To determine if any vital information is influencing the formation of the Visibility lookback payload,989

we perform three knockout experiments: 1) Knockout attention heads from the second visibility990

sentence to both the first visibility sentence and the second story sentence (which contains information991

about the observed character), 2) Knockout attention heads from the second visibility sentence to992

only the first visibility sentence, and 3) Knockout attention heads from the second visibility sentence993

to the second story sentence. In each experiment, we measure the effect of the knockout using IIA.994
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Fig.17 shows the experimental results. Knocking out any of the previous sentences affects the model’s995

ability to produce the correct output. The decrease in IIA in the early layers can be explained by the996

restriction on the movement of character OIs. Specifically, the second visibility sentence mentions the997

first and second characters, whose character OIs must be fetched before the model can perform any998

further operations. Therefore, we believe the decrease in IIA until layer 15, when the character OIs999

are formed (based on the results from Section H), can be attributed to the model being restricted from1000

fetching the character OIs. However, the persistently low IIA even after this layer—especially when1001

both the second and first visibility sentences are involved—indicates that some vital information is1002

being fetched by the second visibility sentence, which is essential for forming the coherent Visibility1003

lookback payload. Thus, we speculate that the Visibility payload encodes information about the1004

observed character, specifically their character OI, which is later used to fetch the correct state OI.1005

K Correlation Analysis of Causal Subspaces and Attention Heads1006

This section identifies the attention heads that align with the causal subspaces discovered in the1007

previous sections. Specifically, first we focus on attention heads whose query projections are aligned1008

with the subspaces—characterized by the relevant singular vectors—that contain the correct answer1009

state OI. To quantify this alignment between attention heads and causal subspaces, we use the1010

following computation.1011

Let Q ∈ Rdmodel×dmodel denote the query projection weight matrix for a given layer:1012

We normalize Q column-wise:1013

Q̃:,j =
Q:,j

∥Q:,j∥
for each column j (7)

Let S ∈ Rdmodel×k represent the matrix of k singular vectors (i.e., the causal subspace basis). We1014

project the normalized query weights onto this subspace:1015

Qsv = Q̃ · S (8)

We then reshape the resulting projection into per-head components. Assuming Qsv ∈ Rdmodel×k, and1016

each attention head has dimensionality dh, we write:1017

Q
(i)
head = Q(i)

sv ∈ Rdh×k for i = 1, . . . , nheads (9)

Finally, we compute the norm of each attention head’s projection:1018

head_normi =
∥∥∥Q(i)

head

∥∥∥
F

for i = 1, . . . , nheads (10)

We compute the head_norm for each attention head in every layer, which quantifies how strongly a1019

given head reads from the causal subspace present in the residual stream. The results are presented1020

in Fig. 18, and they align with our previous findings: attention heads in the later layers form the1021

QK-circuit by using pointer and address information to retrieve the payload during the Answer1022

lookback.1023

We perform a similar analysis to check which attention heads’ value projection matrix align with1024

the causal subspace that encodes the payload of the Answer lookback. Results are shown in Fig. 19,1025

indicating that attention heads at later layers primarily align with causal subspace containing the1026

answer token.1027

L Belief Tracking Mechanism in BigToM Benchmark1028

This section presents preliminary evidence that the mechanisms outlined in Sections 4 and 5 generalize1029

to other benchmark datasets. Specifically, we demonstrate that Llama-3-70B-Instruct answers the1030

belief questions (true belief and false belief) in the BigToM dataset Gandhi et al. [2024] in a manner1031
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Figure 18: Alignment between the Answer lookback pointer causal subspace and the query projection
matrix in Llama-3-70B-Instruct.
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Figure 19: Alignment between the Answer lookback payload causal subspace and the value projection
matrix in Llama-3-70B-Instruct.

similar to that observed for CausalToM: by first converting token values to their corresponding OIs1032

and then performing logical operations on them using lookbacks. However, as noted in Section 3,1033

BigToM—like other benchmarks—lacks the coherent structure necessary for causal analysis. As1034

a result, we were unable to replicate all experiments conducted on CausalToM. Thus, the results1035

reported here provide only preliminary evidence of a similar underlying mechanism.1036

To justify the presence of OIs, we conduct an interchange intervention experiment, similar to1037

the one described in Section I, aiming to localize the character OI at the character token in the1038

question sentence. We construct an original sample by replacing its question sentence with that of a1039

counterfactual sample, selected directly from the unaltered BigToM dataset. Consequently, when1040

processing the original sample, the model has no information about the queried character and, as1041

a result, produces unknown as the final output. However, if we replace the residual vector at the1042

queried character token in the original sample with the corresponding vector from the counterfactual1043

sample (which contains the character OI), the model’s output changes from unknown to the state1044

token(s) associated with the queried object. This is because inserting the character OI at the queried1045

token provides the correct pointer information, aligning with the address information at the correct1046

state token(s), thereby enabling the model to form the appropriate QK-circuit and retrieve the state’s1047

OI. As shown in Fig. 20, we observe a high IIA between layers 9− 28—similar to the pattern seen1048

30



Noor is working as a barista at a busy coffee shop.
Noor wants to make a delicious cappuccino for a
customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who
didn’t hear the customer’s request, swaps the oat milk
in the pitcher with almond milk while Noor is attending
to another task. Noor sees her coworker swapping the
milk.
Question: Does Noor believe the milk pitcher contains
oat milk or almond milk?
Answer: almond milk

Tariq is a fisherman in a coastal village in Indonesia.
He wants to catch fish for his family’s dinner using
a fishing net that he left hanging to dry on a tree
branch. Tariq sees tat the net appears to be dry and
ready to use. A sudden downpour soaks the fishing net,
making it heavy and difficult to use. Tariq notices
the rain soaking the fishing net.
Question: Does Noor believe the fishing net is dry or
soaked?
Answer: unknown

Causal Model Output: soaked
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Figure 20: Query Character OI in BigToM: This interchange intervention experiment inserts
the first character’s OI into the residual stream at the queried character token ( ), resulting in the
movement of pointer information to the last token that aligns with the address information of binding
lookback mechanism. Consequently, the model is able to form the appropriate QK-circuit from the
last token to predict the correct state answer token(s) as the final output, instead of unknown.

in CausalToM—suggesting that the queried character token encodes the character OI in its residual1049

vector within these layers.1050

Next, we investigate the Answer lookback mechanism in BigToM, focusing specifically on localizing1051

the pointer and payload information at the final token position. To localize the pointer information,1052

which encodes the correct state OI, we construct original and counterfactual samples by selecting two1053

completely different examples from the BigToM dataset, each with different ordered states as the1054

correct answer. For example, as illustrated in Fig.21, the counterfactual sample designates the first1055

state as the answer, thrilling plot, whereas the original sample designates the second state, almond1056

milk. We perform an intervention by swapping the residual vector at the last token position from the1057

counterfactual sample into the original run. The causal model outcome of this intervention is that the1058

model will output the alternative state token from the original sample, oat milk. As shown in Fig.21,1059

this alignment occurs between layers 33 and 51, similar to the layer range observed for the pointer1060

information in the Answer lookback of CausalToM.1061

Further, to localize the payload of the Answer lookback in BigToM, we perform an interchange1062

intervention experiment using the same original and counterfactual samples as mentioned in the1063

previous experiment, but with a different expected output—namely, the correct state from the1064

counterfactual sample instead of the other state from the original sample. As shown in Fig. 22,1065

alignment emerges after layer 59, consistent with the layer range observed for the Answer lookback1066

payload in CausalToM.1067

Finally, we investigate the impact of the visibility condition on the underlying mechanism and1068

find that, similar to CausalToM, the model uses the Visibility lookback to enhance the observing1069

character’s awareness based on the observed character’s actions. To localize the effect of the visibility1070

condition, we perform an interchange intervention in which the original and counterfactual samples1071

differ in belief type—that is, if the original sample involves a false belief, the counterfactual involves1072

a true belief, and vice versa. The expected output of this experiment is the other (incorrect) state of1073

the original sample. Following the methodology in Section 5, we conduct three types of interventions:1074

(1) only at the visibility condition sentence, (2) only at the subsequent question sentence, and (3) at1075

both the visibility condition and the question sentence. As shown in Fig. 23, intervening only at the1076

visibility sentence results in alignment at early layers, up to layer 17, while intervening only at the1077

subsequent question sentence leads to alignment after layer 26. Intervening on both the visibility and1078
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Yael is in a small bookstore browsing through the
science fiction section. Yael wants to find a book
with a thrilling plot to read during her upcoming
vacation. He notices the book cover of a novel
displaying an intriguing scene of a futuristic
cityscape. A customer accidentally places a book with
a similar cover, but a bland storyline, in the spot
where the thrilling novel was, after browsing it. Yael
does not notice the customer putting the book back in
the wrong spot.
Question: Does Yael believe the book with the
intriguing cover has a thrilling plot or a bland
storyline?
Answer: thrilling plot

Noor is working as a barista at a busy coffee shop.
Noor wants to make a delicious cappuccino for a
customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who
didn’t hear the customer’s request, swaps the oat milk
in the pitcher with almond milk while Noor is attending
to another task. Noor sees her coworker swapping the
milk.
Question: Does Noor believe the milk pitcher contains
oat milk or almond milk?
Answer: almond milk

Causal Model Output: oat milk
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Figure 21: Answer Lookback Pointer in BigToM: This interchange intervention experiment
modifies the pointer information ( ) of the Answer lookback, thereby altering the subsequent QK-
circuit to attend to the other state (e.g., oat milk) instead of the original one (e.g., almond milk). As
a result, the model retrieves the token value corresponding to the other state to answer the question.

question sentences results in alignment across all layers. These results align with those found in the1079

CausalToM setting shown in the Fig. 7.1080

Previous experiments suggest that the underlying mechanisms responsible for answering belief1081

questions in BigToM are similar to those in CausalToM. However, we observed that the subspaces1082

encoding various types of information are not shared between the two settings. For example, although1083

the pointer information in the Answer lookback encodes the correct state’s OI in both cases, the1084

specific subspaces that represent this information at the final token position differ significantly. We1085

leave a deeper investigation of this phenomenon—shared semantics across distinct subspaces in1086

different distributions—for future work.1087

M Generalization of Belief Tracking Mechanism on CausalToM to1088

Llama-3.1-405B-Instruct1089

This section presents all the interchange intervention experiments described in the main text, con-1090

ducted using the same set of counterfactual examples on Llama-3.1-405B-Instruct, using NDIF1091

Fiotto-Kaufman et al. [2025]. Each experiment was performed on 80 samples. Due to computational1092

constraints, subspace interchange intervention experiments were not conducted. The results indicate1093

that Llama-3.1-405B-Instruct employs the same underlying mechanism as Llama-3-70B-Instruct to1094

reason about belief and answer related questions. This suggests that the identified belief-tracking1095

mechanism generalizes to other models capable of reliably performing the task.1096
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Yael is in a small bookstore browsing through the
science fiction section. Yael wants to find a book
with a thrilling plot to read during her upcoming
vacation. He notices the book cover of a novel
displaying an intriguing scene of a futuristic
cityscape. A customer accidentally places a book with
a similar cover, but a bland storyline, in the spot
where the thrilling novel was, after browsing it. Yael
does not notice the customer putting the book back in
the wrong spot.
Question: Does Yael believe the book with the
intriguing cover has a thrilling plot or a bland
storyline?
Answer: thrilling plot

Noor is working as a barista at a busy coffee shop.
Noor wants to make a delicious cappuccino for a
customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who
didn’t hear the customer’s request, swaps the oat milk
in the pitcher with almond milk while Noor is attending
to another task. Noor sees her coworker swapping the
milk.
Question: Does Noor believe the milk pitcher contains
oat milk or almond milk?
Answer: almond milk

Causal Model Output: thrilling plot
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Figure 22: Answer Lookback Payload in BigToM: This interchange intervention experiment
directly modifies the payload information ( ) of the Answer lookback, which is fetched from the
corresponding state tokens and predicted as the next token(s). Thus, replacing its value in the original
run, e.g. almond milk, with that from the counterfactual run, e.g. thrilling plot, causes the model’s
next predicted tokens to correspond to the correct answer of the counterfactual sample.

Noor is working as a barista at a busy coffee shop.
Noor wants to make a delicious cappuccino for a
customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who
didn’t hear the customer’s request, swaps the oat milk
in the pitcher with almond milk while Noor is attending
to another task. Noor sees her coworker swapping the
milk.
Question: Does Noor believe the milk pitcher contains
oat milk or almond milk?
Answer: almond milk

Noor is working as a barista at a busy coffee shop.
Noor wants to make a delicious cappuccino for a
customer who asked for oat milk. Noor grabs a milk
pitcher and fills it with oat milk. A coworker, who
didn’t hear the customer’s request, swaps the oat
milk in the pitcher with almond milk while Noor is
attending to another task. Noor does not see her
coworker swapping the milk.
Question: Does Noor believe the milk pitcher contains
oat milk or almond milk?
Answer: oak milk

Expected Output: almond milk
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Figure 23: Visibility Lookback in BigToM: We perform three interchange interventions to establish
the presence of the Visibility ID, which serves as both address and pointer information. When
intervening at the source ( )—i.e., the visibility sentence—both the address and pointer are updated,
resulting in alignment across layers. Intervening only at the subsequent question tokens leads to
alignment only at later layers, after the model has already fetched the payload ( ). However,
intervening at both the visibility and question sentences results in alignment across all layers, as the
address and pointer remain consistent throughout.
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Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with coffee. Then Bob grabs another opaque bottle
and fills it with beer.
Question: What does Carla believe the cup contains?
Answer: coffee

Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Causal Model Output: beer
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Figure 24: Payload and address of Binding lookback

Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with tea. Then Bob grabs another opaque bottle and
fills it with water.
Question: What does Carla believe the cup contains?
Answer: tea

Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Causal Model Output: beer
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Figure 25: Source Information of Binding lookback

Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with coffee. Then Bob grabs another opaque bottle
and fills it with beer.
Question: What does Carla believe the cup contains?
Answer: coffee

Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Causal Model Output: beer
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Figure 26: Source Information of Binding lookback without freezing address and payload

Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with tea. Then Bob grabs another opaque bottle and
fills it with water.
Question: What does Carla believe the bottle contains?
Answer: unknown

Causal Model Output: water
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Figure 27: Character OI
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Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with tea. Then Bob grabs another opaque bottle and
fills it with water.
Question: What does Carla believe the bottle contains?
Answer: unknown

Causal Model Output: tea
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Figure 28: Object OI

Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with tea. Then Bob grabs another opaque bottle and
fills it with water.
Question: What does Bob believe the cup contains?
Answer: unknown

Causal Model Output: water

0 10 20 30 40 50 60 70 80 90100110120
Layers

0.0

0.2

0.4

0.6

0.8

1.0

In
te

rv
en

tio
n 

A
cc

ur
ac

y Full residual

C
ou

nt
er

fa
ct

ua
l

O
ri

gi
na

l

Figure 29: Query Object OI

Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with tea. Then Bob grabs another opaque bottle and
fills it with water.
Question: What does Carla believe the bottle contains?
Answer: unknown

Causal Model Output: water
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Figure 30: Query Character OI

Carla and Bob are working in a busy restaurant. To
complete an order, Carla grabs an opaque cup and fills
it with tea. Then Bob grabs another opaque bottle and
fills it with water.
Question: What does Carla believe the cup contains?
Answer: tea

Bob and Carla are working in a busy restaurant. To
complete an order, Bob grabs an opaque bottle and fills
it with beer. Then Carla grabs another opaque cup and
fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Intervention: Answer Pointer ( ), Causal Model Output: beer
Intervention: Answer Payload ( ), Causal Model Output: tea
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Figure 31: Answer Lookback Pointer and Payload
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Carla and Bob are working in a busy restaurant. To complete
an order, Carla grabs an opaque cup and fills it with tea.
Then Bob grabs another opaque bottle and fills it with water.
Bob cannot observe Carla’s actions. Carla can observe Bob’s
actions.
Question: What does Carla believe the bottle contains?
Answer: water

Bob and Carla are working in a busy restaurant. To complete
an order, Carla grabs an opaque cup and fills it with beer.
Then Bob grabs another opaque bottle and fills it with coffee.
Bob cannot observe Carla’s actions. Carla cannot observe
Bob’s actions.
Question: What does Carla believe the bottle contains?
Answer: unknown

Causal Model Output: coffee
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Figure 32: Visibility Lookback
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