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Abstract

How do language models (LMs) represent characters’ beliefs, especially when those
beliefs may differ from reality? This question lies at the heart of understanding the
Theory of Mind (ToM) capabilities of LMs. We analyze Llama-3-70B-Instruct’s
ability to reason about characters’ beliefs using causal mediation and abstraction.
We construct a dataset that consists of simple stories where two characters each
separately change the state of two objects, potentially unaware of each other’s
actions. Our investigation uncovered a pervasive algorithmic pattern that we call a
lookback mechanism, which enables the LM to recall important information when
it becomes necessary. The LM binds each character-object-state triple together by
co-locating reference information about them, represented as their Ordering IDs
(OIs) in low rank subspaces of the state token’s residual stream. When asked about
a character’s beliefs regarding the state of an object, the binding lookback retrieves
the corresponding state OI and then an answer lookback retrieves the state token.
When we introduce text specifying that one character is (not) visible to the other,
we find that the LM first generates a visibility ID encoding the relation between
the observing and the observed character Ols. In a visibility lookback, this ID is
used to retrieve information about the observed character and update the observing
character’s beliefs. Our work provides insights into the LM’s belief tracking
mechanisms, taking a step toward reverse-engineering their ToM capabilities.

1 Introduction

The ability to infer the mental states of others—known as Theory of Mind (ToM)—is an essential
aspect of social and collective intelligence [Premack and Woodruff] 1978 Riedl et al.| 2021]]. Recent
studies have established that language models (LMs) can solve some tasks requiring ToM reasoning
[Street et al.,|2024, [Strachan et al.,[2024b| |[Kosinskil, [2024]], while others have highlighted shortcom-
ings [Sclar et al., [2025] |Shapira et al., 2024, Kim et al., 2023al inter alia]. Nonetheless, most existing
work relies on behavioral evaluations, which do not shed light on the internal mechanisms by which
L.Ms encode and manipulate representations of mental states to solve (or fail to solve) such tasks [Hu
et al., 2025, |Gweon et al., 2023]].

In this work, we investigate how LMs represent and update characters’ beliefs, which is a fundamental
element of ToM [Dennett, 1981, Wimmer and Perner;, 1983]]. For instance, the Sally-Anne test [Baron{
Cohen et al.l[1985]], a canonical test of ToM in humans, evaluates this ability by asking individuals to
track Sally’s belief, which diverges from reality due to missing information, and Anne’s belief, which
updates based on new observations.

We construct CausalToM, a dataset of simple stories involving two characters, each interacting with
an object to change its state, with the possibility of observing one another. We then analyze the
internal mechanisms that enable Llama-3-70B-Instruct [Grattafiori et al., 2024 to reason about and
answer questions regarding the characters’ beliefs about the state of each object (for a sample story,
see Section [3]and for the full prompt refer to Appendix [A]).
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We discover a pervasive computation that performs multiple subtasks, which we refer to as the
lookback mechanism. This mechanism enables the model to recall important information only when
it becomes necessary. In a lookback, two copies of a single piece of information are transferred to
two distinct tokens. This allows attention heads at the latter token to look back at the earlier one when
needed and retrieve vital information stored there, rather than transferring that information directly.

We identify three key lookback mechanisms that col-
lectively perform belief tracking: 1) Binding lookback
(Fig.[2afi)): First the LM assigns ordering IDs (Ols) [Dai
et al., 2024]] that encode whether a character, object, or
state token appears first or second. Then, the character and
object OlIs are copied to low-rank subspaces of the corre-
sponding state token and the final token residual stream.
Later, when the LM needs to answer a question about a
character’s beliefs, it uses this information to retrieve the
answer state OL. 2) Answer lookback (Fig.[2afii)): Uses the
answer state Ol from the binding lookback to retrieve the
answer state token value. 3) Visibility lookback (Fig. [6):
When an explicit visibility condition between characters
is mentioned, the model employs additional reference in-
formation called the visibility ID to retrieve information
about the observed character, augmenting the observing

character’s awareness. Source  Recalled Lookback
Token Token Token

Overall, this work not only advances our understanding of
the internal computations in LMs that enable ToM capa-
bility but also uncovers a pervasive mechanism that serves
as the foundation for executing complex logical reasoning
with conditionals.

Figure 1: The lookback mechanism
is used to perform conditional reason-
ing. The source token contains infor-
mation that is copied into two instances
via attention to create a pointer and an
address. Alongside the address in the
2  The Lookback Mechanism residual stream is a payload of infor-
mation. When necessary, the model re-
trieves the payload by dereferencing the
pointer. Solid lines represent movement
of information, while the dotted line indi-
cates the attention “looking back” from
pointer to address.

Our investigation of belief tracking uncovers a recurring
pattern of computation that we call the lookback mecha-
nism|'| Here we give a brief overview of this mechanism;
subsequent sections provide detailed experiments and anal-
yses. In lookback, source information is copied (via at-
tention) into an address copy in the residual stream of a
recalled token and a pointer copy in the residual stream of
a lookback token that occurs later in the text. The LM places the address alongside a payload of the
recalled token’s residual stream that can be brought forward to the lookback token if necessary. Fig.
[T} schematically describes a generic lookback.

That is, the LM can use attention to dereference the pointer and retrieve the payload present in
the residual stream of the recalled token (that might contain aggregated information from previous
tokens), bringing it to the residual stream of the lookback token. Specifically, the pointer at the
lookback token forms an attention query vector, while the address at the recalled token forms a key
vector. Because the pointer and the address are copies of the same source information, they would
have a high dot-product, hence a QK-circuit [Elhage et al., [2021] is established forming a bridge
from the lookback token to the recalled token. The LM uses this bridge to move the payload that
contains information needed to complete the subtask through the OV-circuit.

To develop an intuition for why an LM would learn to implement lookback mechanisms to solve
reasoning tasks such as our belief tracking task, consider that during training LMs process text
in sequence with no foreknowledge of what might come next. Then, it would be useful to mark

! Although this mechanism may resemble induction heads [Elhage et al.| 2021} |Olsson et al.| [2022], they
differ fundamentally. In induction heads, information from a previous token occurrence is passed only to the
subsequent token through, without being duplicated to its next occurrence. In contrast, the lookback mechanism
copies the same information not only to the location where the vital information resides but also to the target
location that needs to retrieve that information.
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Figure 2: Belief Tracking in Language Models: We task the LM with tracking the beliefs of two characters
that manipulate the states of two objects. We hypothesize that the LM solves this task by implementing a causal
model with two lookback mechanisms (2a). To support our hypothesis, we conduct a causal analysis where we
measure whether interventions on a high-level causal model produce the same output as equivalent interventions
on the LM. For instance in[2b] we show results for an experiment distinguishing the pointer and payload in the
answer lookback.

(a) Belief Tracking with No Visibility between Characters: Our hypothesized causal model for this kind
of story has two lookbacks that operate on ordering IDs (OlIs) that encode whether a token appears first or
second. In the binding lookback (i), the LM first represents the two events in the story by binding together
each character-object-state triple in the residual stream of the state token. When questioned about a particular
character and object, the LM looks back to the corresponding triple and retrieves an Ol to that state token. Notice
that in this lookback, that payload is later used as a pointer, i.e., what a C programmer would call a double
pointer. In the answer lookback (ii), the LM dereferences the pointer to the answer token to generate the correct
answer. Color indicates the information content, while shape indicates the role of that information in lookback
(see Fig.[I), e.g., the state Ol is a payload (A) in the binding lookback and a pointer/address (©) in the answer
lookback.

(b) Answer Lookback Pointer and Payload: To test our hypothesized causal model, we run the LM on pairs of
slightly different stories, and then intervene by patching a specific representation state from the counterfactual
run to the original run, observing any change in the output. The causal model predicts that if we alter the
“answer payload A” of the original to instead take the value of the counterfactual answer payload, the output
should change from to tea; the gray curve in the line plot shows this does occur with p ~ 1.0 when
patching states at the “:”” token beyond layer 56, providing evidence that the answer payload resides in those
states. On the other hand the causal model predicts that taking the counterfactual “answer pointer ©” would
change the original run output from to —a new output that matches neither the original nor the
counterfactual!—and we do see this surprising effect, again with p ~ 1.0, when patching layers between 34
and 52, providing strong evidence that the answer pointer is encoded at those layers. Collected over N = 80
samples, these measurements suggest the Answer Lookback occurs between layers 52 and 56. Furthermore the
representations of the causal variables are small: the interventions can be localized even further to subspaces of
dimension 33 (payload) or 20 (pointer), tiny portions of the 8192-dimensional state space.
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Figure 3: Tracing information flow of crucial input tokens using causal mediation analysis.

addresses alongside payloads that might be useful for downstream tasks. In our setting, the LM
constructs a representation of the story without any knowledge of what questions it may be asked
about, so the LM concentrates pieces of information in the residual stream of certain tokens which
later become payloads and addresses. When the question text is reached, pointers are constructed that
reference this crucial story information and dereference it as the answer to the question.

3 Preliminaries

Dataset Existing datasets for evaluating ToM capabilities of LMs are designed for behavioral
testing and lack counterfactual pairs needed for causal analysis [[Kim and Sundar, 2012]. To
address this, we constructed CausalToM, a structured dataset of simple stories, where each story
involves two characters, each interacting with a distinct object causing the object to take a unique
state. For example: “Characterl and Character2 are working in a busy restaurant.
To complete an order, Characterl grabs an opaque and fills it with
Then Character2 grabs another opaque and fills it with

.” We then ask the LM to reason about one of the characters’ beliefs regarding the state
of an object: “What does Characterl believe contains?” We analyze the LM’s
ability to track characters’ beliefs in two distinct settings. (1) No Visibility, where both characters
are unaware of each other’s actions, and (2) Explicit Visibility where explicit information about
whether a character can/cannot observe the other’s actions is provided, e.g., “Bob can observe
Carla’s actions. Carla cannot observe Bob’s actions.” We also provide general task
instructions (e.g., answer unknown when a character is unaware); refer to Appendix [A] & [C] for the
full prompt and additional dataset details. Our experiments analyze the Llama-3-70B-Instruct model
in half-precision, using NNsight [Fiotto-Kaufman et al., [2025]. The model demonstrates a high
behavioral performance on both the no-visibility and explicit-visibility settings, achieving accuracy
of 95.7% and 99% respectively. For all subsequent experiments, we filter out samples that the model
fails to answer correctly.

Causal Mediation Analysis

Our goal is to develop a mechanistic understanding of how Llama-3-70B-Instruct reasons about
characters’ beliefs and answers related questions [Saphra and Wiegreffe, [2024]. A key method for
conducting causal analysis is interchange interventions [[Vig et al.l 2020, |Geiger et al., 2020, Finlayson
et al., 2021]], in which the LM is run on paired examples: an original input o and a counterfactual
input c and certain internal activations in the LM run on the original are replaced with those computed
from the counterfactual.

Drawing inspiration from existing literature [Vig et al., 2020, Meng et al.|[2022] |Wang et al., 2023,
we begin our analysis by performing interchange interventions with counterfactuals that are identical
to the original except for key input tokens. We trace the causal path from these key tokens to the
final output. This is a type of Causal Mediation Analysis [Mueller et al.l |2024]]. Specifically, we
construct a counterfactual dataset where o contains a question about the belief of a character not
mentioned in the story, while c is identical except that the story includes the queried character. The
expected outcome of this intervention is a change in the final output of o from unknown to a state
token, such as . We conduct similar interchange interventions for object and state tokens (refer
to Appendix [D]for more details).

Figure [3| presents the aggregated results of this experiment for the key input tokens Characterl,
, and . The cells are color-coded to indicate the interchange intervention accuracy
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[ITA; |Geiger et al.,2022]]. Even at this coarse level of analysis, several significant insights emerge: 1)
Information from the correct state token ( ) flows directly from its residual stream to that of the
final token in later layers, consistent with prior findings [Lieberum et al., 2023 |Prakash et al., 2024];
2) Information associated with the query character and the query object is retrieved from their earlier
occurrences and passed to the final token before being replaced by the correct state token.

Desiderata Based Patching via Causal Abstraction

The causal mediation experiments provide a coarse-grained analysis of how information flows from
an input token to the output but do not identify what that information is. A fact about transformers is
that the input to the first layer contains input tokens and the output from the final layer contains the
output token, but what is the information content of representations along the active causal path in
between the input and output?

To answer this question, we turn to Causal Abstraction [|Geiger et all 2021}, |2024]. We align the
variables of a high-level causal model with the LM’s internal activations and verify the alignment by
conducting targeted interchange interventions for each variable. Specifically, we perform aligned
interchange interventions at both levels: interventions that target high-level causal variables and
interventions that modify low-level features of the LM’s hidden activations. If the LM produces the
same output as the high-level causal model under these aligned interventions, it provides evidence
supporting the hypothesized causal model. The effect of these interventions is quantified using
ITA, which measures the proportion of instances where intervened high-level causal model and
low-level LM have the same output (refer to Appendix [E]for more details about the causal abstraction
framework and Appendix [F for the belief tracking causal model).

In addition to performing interchange interventions on entire residual stream vectors in LMs, we
also intervene on specific subspaces to further localize causal variables. To identify the subspace
encoding a particular variable, we employ the Desiderata-based Component Masking [De Cao et al.,
2020, Davies et al., 2023 |Prakash et al., 2024] technique, which learns a sparse binary mask over the
internal activation space by maximizing the logit of the causal model output token. Specifically, we
train a mask to select the singular vectors of the activation space that encode a high-level variable
(see Appendix |G|for details).

4 Belief Tracking via Ordering IDs and Lookback Mechanisms

The LM solves the no visibility setting of the belief tracking task using three key mechanisms: Order-
ing ID assignment, binding lookback, and answer lookback. Figure|2alillustrates the hypothesized
high-level causal model implemented by the LM, which we evaluate in the following subsections.
The LM first assigns ordering IDs (Ols; O, ©, ©O) to each character, ,and in the story
that encode their order of appearance (e.g., the second character Carla is assigned @). These Ols
are used in two lookback mechanisms. (i) Binding lookback: Address copies of each character Ol
(©) and object OI (©) are placed alongside their corresponding state OI payload (A) in the residual
stream of each state token, binding together each character-object-state triple. When the model is
asked about the belief of a specific character about a specific object, it moves pointer copies of
the corresponding Ols (O, ©) to the final token’s residual stream. These pointers are dereferenced,
bringing the correct state Ol into the final token residual stream. (ii) Answer lookback: An address
copy of the state OI (O) is alongside the state token payload (A) in the residual stream of the correct
state token, while a pointer copy (O) is moved to the final token residual stream via the binding
lookback. The pointer is dereferenced, bringing the answer state token payload into the final token
residual stream, which is predicted as the final output. Refer to Appendix [F| for pseudocode defining
the causal model for the belief tracking task. In Appendices[M|and[[] we show parts of our analysis
generalizing to the Llama-3.1-405B-Instruct model and the BigToM dataset [|Gandhi et al.| [2024].

4.1 Ordering ID Assignment

The LM assigns an Ordering ID (OI; |Dai et al.[2024) to the character, object, and state tokens. These
Ols, encoded in a low-rank subspace of the internal activation, serve as a reference that indicates
whether an entity is the first or second of its type independent of its token value. For example, in
Fig.[2al Bob is assigned the first character OI, while Carla receives the second. In the subsequent
subsections and Appendices [H| & [I} we validate the presence of Ols through multiple experiments,
where intervening on tokens with identical token values but different Ols alters the model’s internal
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Figure 4: Binding lookback payload and address: We intervened on both the high-level causal
model and the LM running on the original story, modifying their variables and internal activations
respectively, to match those from a counterfactual scenario. In the causal model intervention, we
update the addresses (character and object Ols; © and ©) and the payloads (state Ols; A). This
causes the binding lookback mechanism to attend to and retrieve the state OI corresponding to the
alternate state token, which is then dereferenced by answer lookback to yield the alternate state token
(e.g., instead of ). In the LM interchange intervention, modifying the residual stream at
the state token results in identical outputs between layers 33 and 38. This confirms our hypothesis
that both the address and payload information are represented in the residual stream of state tokens.

computation, leading to systematic changes in the final output predicted by our high-level causal
model. The LM then uses these Ols as building blocks, feeding them into lookback mechanisms to
track and retrieve beliefs.

4.2 Uncovering the Binding Lookback Mechanism

The Binding Lookback is the first operation applied to these OlIs. The character and object Ols,
serving as the source information, are each copied twice. One copy, referred to as the address, is
placed in the residual stream of the state token (recalled token), alongside the state OI as the payload
to transfer. The other copy, referred to as the pointer, is moved in the residual stream of the final
token (lookback token). These pointer and address copies are then used to form the QK-circuit at the
lookback token, which dereferences the state OI payload, transferring it from the state token to the
final token. See Fig[24| (i) for a schematic of this lookback and see Fig[I] for the general mechanism.

The Hypothesized Address and Payload. In our first experiment, we localize the address copies
of the character and object OIs and the state OI payload to the residual stream of the state token
(recalled token, Fig. [2a). We sampled a counterfactual dataset where each example consists of an
original input o with an answer that isn’t unknown and a counterfactual input ¢ where the character,
object, and state tokens are identical, except the ordering of the two sentences is swapped while
the question remains unchanged, as illustrated in Fig. 4] The expected outcome predicted by our
high-level causal model under intervention is the other state token from the original example, e.g.,

, because reversing the address and payload values without changing the pointer flips the output.

Testing Address and Payload Hypothesis. We perform an interchange intervention experiment
layer-by-layer, where we replace the residual stream vectors at the first state token in the original run
with that of the second state token in the counterfactual run and vice versa for the other state token. It
is important to note that if the intervention targets state token values instead of their Ols, it should not
produce the expected output. (This happens in the earlier layers.)

As shown in Fig. ] the strongest alignment occurs between layers 33 and 38, supporting our
hypothesis that the state token’s residual stream contains both the address information (character and
object OIs) and the payload information (state OI). These components are subsequently used to form
a QK-circuit between the pointer at the lookback token and the address at the other state token and
OV-circuit that retrieves its state Ol as the payload.

Localizing the Source Information As shown in Fig. the source information is copied as
both the address and the pointer at different token positions. To localize the source information, we
conduct intervention experiments with a dataset where the counterfactual example, ¢, swaps the order
of the characters and objects as well as replaces the state tokens with entirely new ones while keeping
the question the same as in o.
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Figure 5: Source Information of Binding lookback: We run the causal model and the LM on an
original story, then update their variables and activations, respectively, to the values they would take
on for a counterfactual story with swapped characters and objects and new states. The interchange
intervention on the high-level causal model swaps the sources of the binding lookback (character
and object Ols; O, ©) while freezing the addresses and payloads of the binding lookback (character,
object, and state Ols; ©, ©, A) and the answer lookback (state OI and token; ©, A). By altering the
sources, but freezing the addresses and payloads, only the pointer is changed so the binding lookback
retrieves the other state OI which is dereferenced by the answer lookback to the other state token
(e.g., instead of ). We perform the same interchange intervention on the LM and measure
the agreement with the intervened causal model. Our results localize the source to the character and
object token residual streams between layers 20 and 34.

With this dataset, an interchange intervention on the high-level causal model that targets the source
information will have downstream effects on both the address and the pointer, so no change in output
occurs. However, if we additionally freeze the payloads and addresses, the causal model outputs the
other state token, e.g., in Fig.[5] due to the mismatch between address and pointer.

In the LM, we interchange the residual streams of the character and object tokens while keeping the
residual stream of the state token fixed. When the output of the intervened LM aligns with that of the
intervened causal model, it indicates that the QK-circuit at the final token is attending to the alternate
state token. As shown in Fig.[5] the second experiment reveals alignment between layers 20 and 34.
This suggests that source information—specifically, the character and object OIs—is represented in
their respective token residual streams within this layer range.

We provide more experimental results in Appendix [H where we show in Fig. [I2]that freezing the
residual stream of the state token is necessary. In sum, these results not only provide evidence for the
presence of source information but also establish its transfer to the recalled and lookback tokens as
addresses and pointers, respectively.

Localizing the Pointer Information The pointer copies of the character and object OI are first
formed at the character and object tokens in the question before being moved again to the final token
for dereferencing (see Appendix |I| for experiments and more details).

4.3 Uncovering the Answer Lookback Mechanism

The LM answers the question using the Answer Lookback. The state OI of the correct answer serves
as the source information, which is copied into two instances. One instance, the address copy of
the state OI, is in the residual stream of the state token (recalled token) with the state token itself
as the payload. The other instance, the pointer copy of the state O, is transferred to the residual
stream of the final token (lookback token) as the payload of the binding lookback. This pointer is
then dereferenced, bringing the state token as the payload into the residual stream of the final token,
which is predicted as the final output.

Localizing the Pointer Information We first localize the pointer of the answer lookback, which is
the payload of the binding lookback. To do this, we conduct an interchange intervention experiment
where the residual vectors at the final token position in the original run are replaced with those from
the counterfactual run, one layer at a time. The counterfactual inputs have swapped objects and
characters and randomly sampled states. If the answer pointer is targeted for intervention in the
high-level causal model, the output is the other state in the original input, e.g., . As shown
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Figure 6: Visbility Lookback When one character (the observing character) can see another (the
observed character), the LM assigns a visibility ID (©) to the visibility sentence (where this relation
is defined). An address copy of this visibility ID remains in the visibility sentence’s residual stream.
A pointer copy of the visibility ID is transferred to the subsequent tokens’ residual stream (lookback
tokens). During processing, the model dereferences this pointer through a QK-circuit, bringing
forward the payload (A ). Based on initial evidence, this payload contains the observed character’s
OI(O). Refer to Appendix for more details. This mechanism allows the model to incorporate the
observed character’s knowledge into the observing character’s belief state, enabling more complex
belief reasoning.

in Fig. 2b] alignment begins at layer 34, indicating that this layer contains pointer information, in
low-rank subspace, which remains causally relevant until layer 52.

Localizing the Payload To determine where the model uses the state OI pointer to retrieve the
state token, we use the same interchange intervention experiment. However, if the answer payload is
targeted for intervention in the high-level causal model, the output is the correct state token from the
counterfactual example, e.g., tea, rather than the state token from the original example, as illustrated
in Fig.2b] The alignment occurs after layer 56, indicating that the model retrieves the correct state
token (payload) into the final token’s residual stream by 56, which is used to generate the final output.

S Impact of Visibility Conditions on Belief Tracking Mechanism

In the previous section, we demonstrated how the LM uses ordering IDs and two lookback mechanisms
to track the beliefs of characters that cannot observe each other. Now, we explore how the LM updates
the beliefs of characters when provided with additional information that one of the characters
(observing) can observe the actions of others (observed). We hypothesize that the LM employs
another lookback mechanism, which we refer to as the Visibility Lookback, to incorporate information
about the observed character.

As illustrated in Fig. [f] we hypothesize that the LM first generates a Visibility ID at the residual
stream of the visibility sentence, serving as the source information. The address copy of the visibility
ID remains in the residual stream of the visibility sentence, while its pointer copy gets transferred
to the residual streams of the subsequent tokens, which are the lookback tokens. Then LM forms a
QK-circuit at the lookback tokens and dereferences the visibility ID pointer to bring the payload.

Although we were unable to determine the exact semantics of the payload in this lookback, we
speculate that it encodes the observed character’s OI. We propose the existence of another lookback,
where the story sentence associated with the observed character serves as the source, and its payload
encodes information about the observed character. That payload information, encoding observed
character’s Ol, is then retrieved by the lookback tokens of the Visibility lookback, which contributes
to the queried character’s enhanced awareness (see Appendix J| for more details).

5.1 Uncovering the Visibility Lookback Mechanism

Localizing the Source Information To localize the source information, we conduct an interchange
intervention experiment where the counterfactual is a different story with altered visibility information.
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Figure 7: Visibility Lookback: We conduct three interchange intervention experiments to support
the Visibility Lookback hypothesis: (1) Source Alignment: We align the source information (O) by
intervening on the visibility sentence-replacing it with its representation from a counterfactual run
where the visibility sentence causes the queried character to become aware of the queried object’s
contents. We observe that source information aligns between layers 10 and 23. (2) Payload Alignment
(&): We intervene on all subsequent tokens and observe alignment only after layer 31. (3) Address
and Pointer Alignment: When intervening on both the address and pointer information (O), we
observe alignment across a broader range of layers, particularly between layers 24 and 31, because of
the enhanced alignment between the address and pointer copies at the recalled and lookback tokens.

In the original example, the first character cannot observe the second character’s actions, whereas in
the counterfactual example, the first character can observe them (Fig.[7). The causal model outcome
of this intervention is a change in the final output of the original run from “unknown” to the state token
associated with the queried object. The interchange intervention is executed on visibility sentence
tokens. As shown in Fig.[7](— line), alignment occurs between layers 10 and 23, indicating that the
visibility ID remains encoded in the visibility sentence until layer 23, after which it is duplicated into
address and pointer copies on visibility sentence and subsequent tokens respectively.

Localizing the Payload To localize the payload information, we use the same counterfactual
dataset. However, instead of intervening on the source or recalled tokens, we intervene on the
lookback tokens, specifically the question and answer tokens. As in the previous experiment, we
replace the residual vectors of these tokens in the original run with those from the counterfactual run.
As shown in Fig.[7] (— line), alignment occurs only after layer 31, indicating that the information
enhancing the queried character’s awareness is present in the lookback tokens only after this layer.

Localizing the Address and Pointer The previous two experiments suggest the presence of a
lookback mechanism, as there is no signal indicating that the source or payload has been formed
between layers 24 and 31. We hypothesize that this lack of signal is due to a mismatch between the
address and pointer information. Specifically, when intervening only on the recalled token after layer
25, the pointer is not updated, whereas intervening only on the lookback tokens leaves the address
unaltered, leading to the mismatch. To test this hypothesis, we conduct another intervention using
the same counterfactual dataset, where we intervene on the residual vectors of both the recalled and
lookback tokens. As shown in Fig.[7](— line), alignment occurs after layer 10 and remains stable,
supporting our hypothesis. This intervention replaces both the address and pointer copies of the
visibility IDs, enabling the LM to form a QK-circuit and retrieve the payload.

6 Conclusion

Through a series of desiderata-based patching experiments, we have mapped the mechanisms un-
derlying the processing of partial knowledge and false beliefs in a set of simple stories. We are
surprised by the pervasive appearance of a single recurring computational pattern: the lookback,
which resembles a pointer dereference inside a transformer. The LMs use a combination of several
lookbacks to reason about nontrivial visibility and belief states. Our improved understanding of these
fundamental computations gives us optimism that it may be possible to fully reveal the algorithms
underlying not only Theory of Mind, but also other forms of reasoning in LMs.
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A Full prompt

No Visibility

Instruction: 1. Track the belief of each character as described in the
story. 2. A character’s belief is formed only when they perform an action
themselves or can observe the action taking place. 3. A character does

not have any beliefs about the container and its contents which they cannot
observe. 4. To answer the question, predict only what is inside the queried
container, strictly based on the belief of the character, mentioned in the
question. 5. If the queried character has no belief about the container in
question, then predict ‘unknown’. 6. Do not predict container or character
as the final output.

Story: Bob and Carla are working in a busy restaurant. To complete an

order, Bob grabs an opaque and fills it with beer. Then Carla grabs
another opaque and fills it with coffee.

Question: What does Bob believe the contains?

Answer:

\ J
Explicit Visibility

Instruction: 1. Track the belief of each character as described in the
story. 2. A character’s belief is formed only when they perform an action
themselves or can observe the action taking place. 3. A character does

not have any beliefs about the container and its contents which they cannot
observe. 4. To answer the question, predict only what is inside the queried
container, strictly based on the belief of the character, mentioned in the
question. 5. If the queried character has no belief about the container in
question, then predict ‘unknown’. 6. Do not predict container or character
as the final output.

Story: Bob and Carla are working in a busy restaurant. To complete an

order, Bob grabs an opaque and fills it with beer. Then Carla
grabs another opaque and fills it with coffee. Bob can observe Carla’s
actions. Carla cannot observe Bob’s actions.
Question: What does Bob believe the contains?
Answer:
\ J

B Related Work

Theory of mind in LMs A large body of work has focused on benchmarking different aspects of
ToM through various tasks that attempt to assess LMs’ performance such as [2019],
let al.| [2024], Shapira et al.| [2023]], Jin et al.| [2024]], [Wu et al| [2023]], Kim et al.| [2023b]},|Chan et al.

2024]), Strachan et al.|[2024a] and many more. In addition, there are various methods tailored to
improve ToM ability in LMs through prompting [e.g.,[Sclar et al.| [2023| [Zhou et al.| [2023| [Wilf et al.,
[2024} Moghaddam and Honey}, 2023} [Hou et al.| 2024].

Entity tracking in LMs Entity tracking and variable binding are crucial abilities for LMs to exhibit
not only coherent ToM capabilities, but also neurosymbolic reasoning. Many existing works have
attempted to decipher this ability in LMs [Li et al.| Davies et al.,[2023| [Kim and Schuster;, [2023|
[Prakash et al.} 2024} [Feng and Steinhardt, [2023] [Feng et al., 2024} Dai et al.,[2024]. Our work builds

on their empirical insights and extends the current understanding of how LMs bind various entities
defined in context.

Mechanistic interpretability of theory of mind Only a few empirical studies explored the
underlying mechanisms of ToM of LM [Zhu et al., 2024} Bortoletto et al.,[2024]] [Herrmann and
Levinstein|, 2024] is a notable theoretical paper]. Those studies focus on probing techniques [Belinkov,

022} |Alain, |2016] to identify internal representations of beliefs and used steering techniques
et al, 2024} Rimsky et all, [2023]] to improve LM performance by manipulating their activations.
However, the mechanism by which LMs solve those tasks remains a black box, limiting our ability to
understand, predict, and control LMs’ behaviors.
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C The CausalToM Dataset

In total, there are 4 templates (one without and 3 with explicit visibility statements). Each template
allows 4 different types of questions (CharacterX asked about ObjectY). We used lists of 103
characters, 21 objects, and 23 states. In our interchange intervention experiments, we randomly
sample 80 pairs of original and counterfactual stories.

D Causal Mediation Analysis

= 'Bob and Carla are working in a busy restaurant. To complete
£ | an order, Bob grabs an opaque and fills it with
€ | Then Carla grabs another opaque and fills it with
§ Question What does Bob believe the contains?
5 _Answer:
(David and Carla are working in a busy restaurant. To
El complete an order, David grabs an opaque and fills
% it with . Then Carla grabs another opaque and fills
S | it with
Question: What does Bob believe the contains?
 Answer: )
Causal Model Output:

Figure 8: Causal Mediation Analysis: The original example produces the output unknown because
Bob is not mentioned in the story, leaving the model without any information about his beliefs.
However, when the residual stream vectors corresponding to Bob from the counterfactual run are
patched into the original run, the model acquires the necessary information about that character and
consequently updates its output to beer.

In addition to the experiment shown in Fig[8] we conduct similar experiments for the object and
state tokens by replacing them in the story with random tokens, which alters the original example’s
final output. However, patching the residual stream vectors of these tokens from the counterfactual
run restores the relevant information, enabling the model to predict the causal model output. The
results of these experiments are collectively presented in Fig[3] with separate heatmaps shown in
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Figure 9: Information flow of character input tokens using causal mediation analysis.
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Figure 11: Information flow of state input tokens using causal mediation analysis.

E Desiderate Based Patching Via Causal Abstraction

Causal Models and Interventions A deterministic causal model M has variables that take on
values. Each variable has a mechanism that determines the value of the variable based on the values of
parent variables. Variables without parents, denoted X, can be thought of as inputs that determine the
setting of all other variables, denoted M (x). A hard intervention A < a overrides the mechanisms
of variable A, fixing it to a constant value a.

Interchange Interventions We perform interchange interventions [[Vig et al., [2020} Geiger et al.,
2020] where a variable (or set of features) A is fixed to be the value it would take on if the LM were
processing counterfactual input c. We write A <— Get(M(c), A) where Get(M(c), A) is the value
of variable A when M processes input c. In experiments, we will feed a original input o to a model
under an interchange intervention M 4. get(A(c),A))(0)-

Featurizing Hidden Vectors The dimensions of hidden vectors are not an ideal unit of analysis
[Smolenskyl [1986]], and so it is typical to featurize a hidden vector using some invertible function,
e.g., an orthogonal matrix, to project a hidden vector into a new variable space with more inter-
pretable dimensions called “features”[Mueller et al., 2024]]. A feature intervention F}, < f edits the
mechanism of a hidden vector h to fix the value of features Fy, to f.

Alignment The LM is a low-level causal model L where variables are dimensions of hidden vectors
and the hypothesis about LM structure is a high-level causal model H. An alignment 11 assigns each
high-level variable A to features of a hidden vector Fﬁ, e.g., orthogonal directions in the activation
space of h. To evaluate an alignment, we perform intervention experiments to evaluate whether
high-level interventions on the variables in # have the same effect as interventions on the aligned
features in L.

Causal Abstraction We use interchange interventions to reveal whether the hypothesized causal
model H is an abstraction of an LM L. To simplify, assume both models share an input and output
space. The high-level model # is an abstraction of the low-level model £ under a given alignment
when each high-level interchange intervention and the aligned low-level intervention result in the same
output. For a high-level intervention on A aligned with low-level features Ffl‘ with a counterfactual
input ¢ and original input b, we write

GetOutput(Lpa get(c(c),Fa)) (0) = GetOutput(H A« cet(#(c),4)) (0)) ey

23



912
913
914

915

917
918
919

920
921
922
923
924
925
926
927

If the low-level interchange intervention on the LM produces the same output as the aligned high-level
intervention on the algorithm, this is a piece of evidence in favor of the hypothesis. This extends
naturally to multi-variable interventions [Geiger et al., [2024]).

Graded Faithfulness Metric We construct counterfactual datasets for each causal variable where
an example consists of a base prompt and a counterfactual prompt . The counterfactual label is the
expected output of the algorithm after the high-level interchange intervention, i.e., the right-side of
Equation[T] The interchange intervention accuracy is the proportion of examples for which Equation|[T]
holds, i.e., the degree to which # faithfully abstracts L.

Aligning Features to Causal Variables In our experiments, we use Singular Vector Decomposition
(SVD) to featurize residual stream vectors, i.e., features are the orthogonal singular vectors. For
a given transformer layer and token location, we collect the residual stream vectors across a large
number of examples and compute the singular vectors. Given singular vector features F'y, of a hidden
vector h in the residual stream of the LM L, we select features to align with a causal variable A in
causal model H using Desiderata-based Component Masking (DCM) [De Cao et al., [2020, Davies
et al., 2023 |Prakash et al.| 2024]. Given original input o and counterfactual input c, we train a mask
m € [0, 1]/Frl on the following objective

CE (Getl-ogits(CFhemoGet(L(c),Fh)) (b)) ) GetLogits (HAeGet(H(c),A)) (b))) 2)
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F Pseudocode for the Belief Tracking High-Level Causal Model

Algorithm 2 High-level causal model for the no visibility

1: procedure BELIEFTRACKING(c1, 01, S1, C2, 02, S2, ey Qo)

2: Ordering ID assignment
3: cgl,ogl,s()[ + AssignOIs([eq, 01, 81],1)
4 91 091 9T+ AssignOls([ca, 02, 53], 2)
5:
6: Binding lookback mechanism
7. binding_address; < (copy(c{!),copy(0$?))
8:  binding_address,, + (copy(cS7), copy(0$7))
9:
100 g7+ copy({er : e’ eat e§'}ge])
11: q91 < copy({o1 : 097, 05 : ogf}}[qo})
12: binding_pointer < (¢97, ¢97)
13:
14: if binding_address; = binding_pointer then
15: binding_payload < copy(s97)
16: else if binding_address, = binding_pointer then
17: binding_payload < copy(s$7)
18: end if
19:
20: Answer lookback mechanism
21: answer_pointer <— binding_payload
22: answerl_address < s¢!
23: answer2_address +— s3 I
24: if answerl_address = answer_pointer then
25: answer_payload < s;
26: else if answer2_address = answer_pointer then
27: answer_payload < s,
28: end if
29: return answer_payload

30: end procedure

G Desiderata-based Component Masking

While interchange interventions on residual vectors reveal where a causal variable might be encoded
in the LM’s internal activations, they do not localize the variable to specific subspaces. To address
this, we apply the Desiderata-based Component Masking technique [De Cao et al.| 2020} |Davies et al.|
2023\ |Prakash et al.,[2024], which learns a sparse binary mask m over the singular vectors of the LM’s
internal activations. We first cache the internal activations from 500 samples at the token positions
specified in the main text for each experiment. Next, we apply Singular Value Decomposition to
compute the singular vectors as a matrix V' € R%*°00 where d is the dimensionality of the residual
stream. We then masked this matrix using a learnable binary vector m € [0, 1] to choose a subset of
singular vectors

Vimasked = VM 3)
The chosen subset of vectors is used to construct a projection matrix Wy,.,; € R4*4,
T
Wp7'oj = maskedvmasked 4

Then, we perform subspace-level interchange interventions (rather than replacing the entire residual
vector) using the following equations:

Rnew = Wprojhc + (I - Wproj)ho (5)

where h,, is the full residual stream of the original run, h. is the full residual stream of the counterfac-
tual run, and A, is the intervened vector where the chosen subspace of h,, is replaced with that of
he.
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The core idea is to first remove the existing information from the subspace defined by the projec-
tion matrix and then insert the counterfactual information into that same subspace using the same
projection matrix.

In order to find the optimal subspace, we optimize m to maximize the agreement between the causal
model output and the LM’s output. To do so, we train the mask for each experiment on 80 examples
of the same counterfactual datasets specified in the main text and use another 80 samples as the
validation set. We use the following objective function, which maximizes the logit of the causal
model output token:

L= _IOgitcausaLmodeLoutputfunderﬁintervention +A § m (6)

Where ) is a hyperparameter used to control the rank of the subspace and m is the learnable mask.
See Appendix |E|for details on how the causal model output under intervention are computed. We
trained m for one epoch with ADAM optimizer, on batches of size 4 and a learning rate of 0.01.
During training, the parameters of m are continuous and constrained to lie within the range [0, 1].
To enforce this constraint, we clamp their values after each gradient update. During evaluation, we
binarize the mask by rounding each parameter to the nearest integer, i.e., 0 or 1.

H Aligning Character and Object Ols

As mentioned in section [4.2] the source information, consisting of character and object OI, is
duplicated to form the address and pointer of the binding lookback. Here, we describe another
experiment to verify that the source information is copied to both the address and the pointer. More
specifically, we conduct the same interchange intervention experiment as described in Fig. [5] but
without freezing the residual vectors at the state tokens. Based on our hypothesis, this intervention
will not be able to change the state of the original run, since the intervention at the source information
will affect both address and pointer, hence making the model form the original QK-circuit.

) 1.04
= Carla and Bob are working in a busy restaurant. To g == Full residual
§ complete an order, Carla grabs an opaque and fills 5 0.8 Subspace
T it wit . Then Bob grabs another opaque 3 dimension < 96
S and fills /it with . < 0.6
3 Questioni) What does Carla believe the contains? .g
Answer: = 0.41
- o
- L oP
£ |Bob an¥ Carla are working in a Lusy restaurant. To § 0.21
£ complete an order, Bob grabs an opaque and fills | & IJJV
© it with Then Carla grabs another opaque and - 0.0 T y T T y y y
Tills it with _ 0 10 20 30 40 50 60 70
Question: What does Carla believe the contains? Layers
| Answer:

Intervention: Binding Source (O, ©)
Causal Model Output:

Figure 12: Source Information of Binding lookback: In this interchange intervention experiment,
the source information—i.e., the character and object OIDs (O, ©))—is modified, while the address
and payload (O, ©, A) are recomputed based on the modified source. Since both the address and
pointer information are derived from the altered source, the binding lookback ultimately retrieves the
same original state token as the payload. As a result, we do not observe high intervention accuracy.

In section we identified the source of the information but did not fully determine the locations of
each character and object OI. To address this, we now localize the character and object Ols separately
to gain a clearer understanding of the layers at which they appear in the residual streams of their
respective tokens, as shown in Fig[T3]and Fig[T4]
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Intervention: Character OI (O)
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A)

Causal Model Output:
Figure 13: Character OI: This interchange intervention experiment swaps the character OI (O),
while freezing the object OI as well as binding lookback address and payload (O, ©, ©). Swapping
the character Ols in the story tokens changes the queried character OI to the other one. Hence, the
final output changes from unknown to

, .. 1.0
z | Bob and Carla are working in a busy restaurant. To §‘ == Full residual
£ | complete an order, Bob grabs an opaque and fills g 0.8 Subspace
€ it with . Then Carla grabj another opaque and 8 dimension < 58.0
% | fills 2% jfrith . < 0.61 |
é Question What does Carla bellieve the contains? g 1‘
\Answer: A ) ZE0.41 ’
7—N\ R I f
E] (Carla And Eob are working in g busy restaurant. Tg¢ % 0.21 i
% | complete an order, @a grabs an opaque and fills = : i
S it with . Then Eob grabs another opaque and = 0.0 o
fills it with . 0 10 20 30 40 50 60 70
Question: What does Carla believe the contains? Layers
| Answer:

Intervention: Binding Source (O, ©)

Frozen: Binding and Answer Addresses+Payloads, Queried Character OID
©,0,A;0,4)

Causal Model Output:

Figure 14: Object OI: This interchange intervention experiment swaps both the character and object
OIs (O, ©), while freezing the address and payload of binding lookback (O, ©, ©) as well as queried
character OI (O). Swapping both character and object Ols in the story tokens ensures that the queried
object gets the other OI. Hence, the final output changes from unknown to

I Aligning Query Character and Object OlIs

In section 2] we localized the pointer information of binding lookback. However, we found that this
information is transferred to the lookback token (last token) through two intermediate tokens: the
queried character and the queried object. In this section, we separately localize the Ols of the queried
character and queried object, as shown in Fig.[T5|and Fig. [T

J Speculated Payload in Visibility Lookback

As mentioned in section [5] the payload of the Visibility lookback remains undetermined. In this
section, we attempt to disambiguate its semantics using the Attention Knockout technique introduced
in [Geva et al.| 2023, which helps reveal the flow of crucial information. We apply this technique to
understand which previous tokens are vital for the formation of the payload information. Specifically,
we "knock out" all attention heads at all layers of the second visibility sentence, preventing them
from attending to one or more of the previous sentences. Then, we allow the attention heads to attend
to the knocked-out sentence one layer at a time.

If the LM is fetching vital information from the knocked-out sentence, the interchange intervention
accuracy (ITA) post-knockout will decrease. Therefore, a decrease in IIA will indicate which attention
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Figure 15: Query Character OI: This interchange intervention experiment alters the OI of the
queried character (O) to the other one. Hence, the final output changes from unknown to
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Figure 16: Query Object OI: This interchange intervention experiment alters the OI of the queried
object (©) to the other one. Hence, the final output changes from unknown to

heads, at which layers, are bringing in the vital information from the knocked-out sentence. If,
however, the model is not fetching any critical information from the knocked-out sentence, then
knocking it out should not affect the ITA.

Layer-wise IIA with Attention Knockouts

o Lo
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5 0.4 —8— Second sent + First vis sent

> . .
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0.0
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Layer Index

Figure 17: At the second visibility sentence, attention heads are restricted to retrieve information
from one of three prior contexts: (1) both the second story sentence and the first visibility sentence (—
line), (2) only the first visibility sentence (— line), or (3) only the second story sentence (— line).

To determine if any vital information is influencing the formation of the Visibility lookback payload,
we perform three knockout experiments: 1) Knockout attention heads from the second visibility
sentence to both the first visibility sentence and the second story sentence (which contains information
about the observed character), 2) Knockout attention heads from the second visibility sentence to
only the first visibility sentence, and 3) Knockout attention heads from the second visibility sentence
to the second story sentence. In each experiment, we measure the effect of the knockout using ITA.
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Fig[T7]shows the experimental results. Knocking out any of the previous sentences affects the model’s
ability to produce the correct output. The decrease in IIA in the early layers can be explained by the
restriction on the movement of character Ols. Specifically, the second visibility sentence mentions the
first and second characters, whose character OIs must be fetched before the model can perform any
further operations. Therefore, we believe the decrease in IIA until layer 15, when the character Ols
are formed (based on the results from Section , can be attributed to the model being restricted from
fetching the character OlIs. However, the persistently low IIA even after this layer—especially when
both the second and first visibility sentences are involved—indicates that some vital information is
being fetched by the second visibility sentence, which is essential for forming the coherent Visibility
lookback payload. Thus, we speculate that the Visibility payload encodes information about the
observed character, specifically their character OI, which is later used to fetch the correct state OI.

K Correlation Analysis of Causal Subspaces and Attention Heads

This section identifies the attention heads that align with the causal subspaces discovered in the
previous sections. Specifically, first we focus on attention heads whose query projections are aligned
with the subspaces—characterized by the relevant singular vectors—that contain the correct answer
state OL. To quantify this alignment between attention heads and causal subspaces, we use the
following computation.

Let Q € RémoeXdmeael denote the query projection weight matrix for a given layer:

We normalize () column-wise:

o — C?:Lj
@i = o]

Let S € R ¥F represent the matrix of & singular vectors (i.e., the causal subspace basis). We
project the normalized query weights onto this subspace:

for each column j @)

Qw=0Q-S ®)

We then reshape the resulting projection into per-head components. Assuming Qg, € R%mw** and
each attention head has dimensionality dj,, we write:

Ql(li?dd = QE\Z/) € Ré>E - forj = 1,..., Mheads )

Finally, we compute the norm of each attention head’s projection:

head_norm; = HQ}EQM fori=1,..., Nheads (10)

’

We compute the head_norm for each attention head in every layer, which quantifies how strongly a
given head reads from the causal subspace present in the residual stream. The results are presented
in Fig. [I8] and they align with our previous findings: attention heads in the later layers form the
QK-circuit by using pointer and address information to retrieve the payload during the Answer
lookback.

We perform a similar analysis to check which attention heads’ value projection matrix align with
the causal subspace that encodes the payload of the Answer lookback. Results are shown in Fig.
indicating that attention heads at later layers primarily align with causal subspace containing the
answer token.

L Belief Tracking Mechanism in BigToM Benchmark

This section presents preliminary evidence that the mechanisms outlined in Sections[and[5|generalize
to other benchmark datasets. Specifically, we demonstrate that Llama-3-70B-Instruct answers the
belief questions (true belief and false belief) in the BigToM dataset|Gandhi et al.| [2024]] in a manner
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Figure 18: Alignment between the Answer lookback pointer causal subspace and the query projection
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Figure 19: Alignment between the Answer lookback payload causal subspace and the value projection
matrix in Llama-3-70B-Instruct.

similar to that observed for CausalToM: by first converting token values to their corresponding OIs
and then performing logical operations on them using lookbacks. However, as noted in Section [3}
BigToM—Ilike other benchmarks—Ilacks the coherent structure necessary for causal analysis. As
a result, we were unable to replicate all experiments conducted on CausalToM. Thus, the results
reported here provide only preliminary evidence of a similar underlying mechanism.

To justify the presence of Ols, we conduct an interchange intervention experiment, similar to
the one described in Section [} aiming to localize the character OI at the character token in the
question sentence. We construct an original sample by replacing its question sentence with that of a
counterfactual sample, selected directly from the unaltered BigToM dataset. Consequently, when
processing the original sample, the model has no information about the queried character and, as
a result, produces unknown as the final output. However, if we replace the residual vector at the
queried character token in the original sample with the corresponding vector from the counterfactual
sample (which contains the character OI), the model’s output changes from unknown to the state
token(s) associated with the queried object. This is because inserting the character OI at the queried
token provides the correct pointer information, aligning with the address information at the correct
state token(s), thereby enabling the model to form the appropriate QK-circuit and retrieve the state’s
OL. As shown in Fig. we observe a high ITA between layers 9 — 28—similar to the pattern seen
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Figure 20: Query Character OI in BigToM: This interchange intervention experiment inserts
the first character’s Ol into the residual stream at the queried character token (©), resulting in the
movement of pointer information to the last token that aligns with the address information of binding
lookback mechanism. Consequently, the model is able to form the appropriate QK-circuit from the
last token to predict the correct state answer token(s) as the final output, instead of unknown.

in CausalToM—suggesting that the queried character token encodes the character Ol in its residual
vector within these layers.

Next, we investigate the Answer lookback mechanism in BigToM, focusing specifically on localizing
the pointer and payload information at the final token position. To localize the pointer information,
which encodes the correct state OI, we construct original and counterfactual samples by selecting two
completely different examples from the BigToM dataset, each with different ordered states as the
correct answer. For example, as illustrated in Fig[21] the counterfactual sample designates the first
state as the answer, , whereas the original sample designates the second state,

. We perform an intervention by swapping the residual vector at the last token position from the
counterfactual sample into the original run. The causal model outcome of this intervention is that the
model will output the alternative state token from the original sample, . As shown in Fig21]
this alignment occurs between layers 33 and 51, similar to the layer range observed for the pointer
information in the Answer lookback of CausalToM.

Further, to localize the payload of the Answer lookback in BigToM, we perform an interchange
intervention experiment using the same original and counterfactual samples as mentioned in the
previous experiment, but with a different expected output—namely, the correct state from the
counterfactual sample instead of the other state from the original sample. As shown in Fig. 22}
alignment emerges after layer 59, consistent with the layer range observed for the Answer lookback
payload in CausalToM.

Finally, we investigate the impact of the visibility condition on the underlying mechanism and
find that, similar to CausalToM, the model uses the Visibility lookback to enhance the observing
character’s awareness based on the observed character’s actions. To localize the effect of the visibility
condition, we perform an interchange intervention in which the original and counterfactual samples
differ in belief type—that is, if the original sample involves a false belief, the counterfactual involves
a true belief, and vice versa. The expected output of this experiment is the other (incorrect) state of
the original sample. Following the methodology in Section[5} we conduct three types of interventions:
(1) only at the visibility condition sentence, (2) only at the subsequent question sentence, and (3) at
both the visibility condition and the question sentence. As shown in Fig. intervening only at the
visibility sentence results in alignment at early layers, up to layer 17, while intervening only at the
subsequent question sentence leads to alignment after layer 26. Intervening on both the visibility and
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Figure 21: Answer Lookback Pointer in BigToM: This interchange intervention experiment
modifies the pointer information (©) of the Answer lookback, thereby altering the subsequent QK-
circuit to attend to the other state (e.g., ) instead of the original one (e.g., ). As
a result, the model retrieves the token value corresponding to the other state to answer the question.

question sentences results in alignment across all layers. These results align with those found in the
CausalToM setting shown in the Fig.

Previous experiments suggest that the underlying mechanisms responsible for answering belief
questions in BigToM are similar to those in CausalToM. However, we observed that the subspaces
encoding various types of information are not shared between the two settings. For example, although
the pointer information in the Answer lookback encodes the correct state’s OI in both cases, the
specific subspaces that represent this information at the final token position differ significantly. We
leave a deeper investigation of this phenomenon—shared semantics across distinct subspaces in
different distributions—for future work.

M Generalization of Belief Tracking Mechanism on CausalToM to
Llama-3.1-405B-Instruct

This section presents all the interchange intervention experiments described in the main text, con-
ducted using the same set of counterfactual examples on Llama-3.1-405B-Instruct, using NDIF
Fiotto-Kaufman et al.|[2025]]. Each experiment was performed on 80 samples. Due to computational
constraints, subspace interchange intervention experiments were not conducted. The results indicate
that Llama-3.1-405B-Instruct employs the same underlying mechanism as Llama-3-70B-Instruct to
reason about belief and answer related questions. This suggests that the identified belief-tracking
mechanism generalizes to other models capable of reliably performing the task.
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Figure 22: Answer Lookback Payload in BigToM: This interchange intervention experiment
directly modifies the payload information (A) of the Answer lookback, which is fetched from the
corresponding state tokens and predicted as the next token(s). Thus, replacing its value in the original

run, e.g.

, with that from the counterfactual run, e.g.

, causes the model’s

next predicted tokens to correspond to the correct answer of the counterfactual sample.
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Figure 23: Visibility Lookback in BigToM: We perform three interchange interventions to establish
the presence of the Visibility ID, which serves as both address and pointer information. When
intervening at the source (©)—i.e., the visibility sentence—both the address and pointer are updated,
resulting in alignment across layers. Intervening only at the subsequent question tokens leads to
alignment only at later layers, after the model has already fetched the payload ( A ). However,
intervening at both the visibility and question sentences results in alignment across all layers, as the
address and pointer remain consistent throughout.
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Figure 24: Payload and address of Binding lookback
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Figure 25: Source Information of Binding lookback
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Figure 28: Object OI
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Figure 29: Query Object OI
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Figure 30: Query Character OI
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Figure 31: Answer Lookback Pointer and Payload
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