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1. THE TRADING APPROACH TO TEST-
ING FOR PREDICTABILITY AND MARKET
EFFICIENCY

1.1 Introduction

The notion of market efficiency, broadly understood as impossibility of obtaining abnormal
returns, has been a subject of intensive discussion since the seminal paper by Fama (1970).
Numerous theoretical and empirical studies have been devoted to testing the hypothesis of
market efficiency. By neglecting a possibility of time-varying risk premia and ignoring all sorts of
operational market inefficiencies such as transactions costs and infrequent trading, one reduces
the problem to testing the conditional mean independence property of returns (i.e. that the
return has constant expectation conditional on past information). For decades, testing for
efficiency was performed via regression-based tests, although it is not clear how the significance of
coefficients in estimated regressions can be transformed into profits. For numerous other caveats
in market efficiency testing, see Timmermann and Granger (2002) for an excellent survey.

In recent years there has been an increasing attention to measuring profitability instead of
coefficient significance in the context of testing for market efficiency. Several studies evaluate
various technical trading rules for their ability to generate excess returns in “real time” by
simulating traders’ decisions. For example, Brock, Lakonishok and LeBaron (1992) find that
such simple rules as moving averages and trading-range breaks have predictive power; Pesaran
and Timmermann (1995) examine profitability of a portfolio generated by a recursive search for
a model specification that maximizes certain financial criteria among available linear forecasting
equations; Gençay (1998) evaluates profitability of a simple trading strategy, the one which is
at the core of our analysis in this paper, relative to the “buy-and-hold” strategy.

In this paper, we show that the trading approach may be used to construct a formal test for
mean predictability and market efficiency. The trading strategy that we use is a rule which issues
a buy signal if the next period return forecast is greater than 0 and a sell signal otherwise, where
the forecasts are generated by an arbitrary forecasting model. Using this trading strategy, we
construct a new test for conditional mean independence of returns in the spirit of Pesaran and
Timmermann’s (1992) directional accuracy (DA) test. Our test is based on a suitably normalized
profitability of the portfolio implied by the trading strategy over a certain “coin toss” portfolio,
which we call a profitability statistic. The asymptotic distribution of this statistic is standard
normal. We study power and size properties of the profitability and DA test statistics via
simulations. Owing to its orientation towards detecting profitability, the profitability statistic
proves to have superior power and acceptable size properties.

Furthermore, motivated by the idea that the very fact that some strategy is able to obtain
an abnormal profit during a certain period of time does not imply inefficiency (Pesaran and
Timmermann (1995)), we propose computing the profitability statistic from data in a moving
time window of fixed length. In this way, we are able to assess the degree of inefficiency in
various time periods, and thus track the evolution of market efficiency through time.

THE TRADING APPROACH TO TESTING FOR PREDICTABILITY AND MARKET EFFICIENCY 5



Naturally, the better the forecasting model that underlies the trading strategy is, the higher
power we can expect from our test. A forecasting model may be taken from a simple class such
as the class of linear autoregressive models, or it may be more sophisticated than that and try
to exploit nonlinear predictability. Even though it is generally accepted that various financial
time series exhibit nonlinear patterns in their behavior (e.g., Abhyankar, Copeland and Wong
(1997)), it is still an open question whether it is possible to build an econometric model capable
of capturing this nonlinearity and yielding good out-of-sample forecasts. Among most popu-
lar parametric methods used in applied literature are threshold and Markov switching models
(e.g., Aslanidis, Osborn and Sensier (2002), Turner, Startz and Nelson (1989)). Nonparamet-
ric methods are less prone to misspecification biases and are able to detect unknown sources
of nonlinearity. Very popular are various local regression and nearest neighbors methods used
in numerous studies on nonparametric prediction of stock market indices (e.g., Hsieh (1991),
Gençay (1998)) and exchange rates (e.g., Diebold and Nason (1990), Mizrach (1992), Satchell
and Timmermann (1995)). In this paper, we explore various nonparametric models to construct
the forecasts, including a nearest neighbor local regression with our special bandwidth selection
rule.

We apply our tests to two stock market indices. One is a half of a century long weekly
S&P500 index. The other is a 7.5-year series of the daily RTS (“Russian Trading System”) stock
index. The RTS index has been used in several other studies (Hall and Urga (2000), Fedorov
and Sarkissian (2000)), and is a most frequently used indicator of the Russian stock market.
The papers by Hall and Urga (2000), Rockinger and Urga (2000) and Urga and Rockinger
(2001) analyze the Russian and other Eastern European stock markets for informational market
efficiency by looking at evolution of a time-varying autoregressive parameter. Our results on
the whole agree with conclusions of this alternative approach giving evidence of improving
weak form efficiency in Russian financial markets. For the S&P500 index we observe a non-
trivial dynamics of the level of weak form market efficiency throughout the last half of the 20th
century. In particular, we provide some evidence that it has substantially decreased during the
last decade.

The paper is organized as follows. In Section 2 we discuss the statistical and trading ap-
proaches to predictability, introduce a simple trading strategy and show how it may be used
for testing purposes. In Section 3 we construct a new test for conditional mean independence,
and discuss its power and size properties. In Section 4 we digress to outline the nonparametric
techniques that lie in the heart of our trading strategy. In Section 5 we describe the data and
report and discuss testing results. In Section 6 we apply our test for tracking the evolution of
market efficiency through time. Finally, Section 7 concludes.

1.2 Trading approach and trading strategy

Usually, to make predictions of some economic or financial variable, one first constructs a regres-
sion model of this variable on its past. The quality of this model is usually judged by in-sample
or, more appropriately, out-of-sample fit summarized in certain statistics. In the latter case
these statistics are usually mean squared or absolute prediction error, or other predictability
measures such as the directional accuracy statistic of Pesaran and Timmermann (1992). This
“statistical” approach to forecasting model building actually aims at minimizing some unrelated
to profitability loss functional rather than at getting a significant outcome from the viewpoint
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of profit maximization, the ultimate goal of making predictions in the context of forecasting
returns in a financial market.

Hellström (1998) argues that the “trading” and “statistical” forecasting problems should
be separated and different quality measures should be used depending on what the objective
of model construction is. A more formal approach is found in Leitch and Tanner (1991) who
ask the following question: “Why do profit maximizing firms buy professional forecasts when
statistics such as MSPE or MAPE often indicate that a naive model will forecast about as well?”
They analyze the performance of several linear forecasting models and professional services for
the three-month Treasury bill rate. It appears that although the “naive” forecast is best in
terms of conventional forecast quality measures, it is inferior to professional service forecasts
in terms of profit obtained via various trading strategies based on corresponding forecasts. By
splitting the dataset into several periods they also find that the correlation between the MSPE
and profits is positive in most cases. Ramaswamy (1998) also offers examples where the model
with smaller MSPE is less profitable, and uses the total return over an investment period to
formulate an optimization problem and to compute optimal weights for the Nadaraya–Watson
estimator.

We conclude that it is likely that the formal inference on predictability and efficiency, if based
on profitability measures rather than on standard forecasting quality statistics, may turn out to
be more successful in identifying predictable patterns. Let the variable yt represent the return
on some financial asset or index. Let ŷt be a forecast of yt provided by a meaningful parametric
or nonparametric regression of yt on elements of its past {yt−1, yt−2, · · ·}, or, more generally,
on elements of the extended information set It−1 ⊃ {yt−1, yt−2, · · ·} which may include other
historical variables. The forecast ŷt is allowed to depend only on the data at or before time
t− 1.1 Consider the following trading rule based on ŷt:{

buy if ŷt > 0,
sell otherwise.

(1.2.1)

That is, a trader goes long if the prediction of the next period return is positive, and goes short
otherwise. For brevity, we will call this rule the trading strategy. Equipped with the trading
strategy, a trader forms a portfolio and modifies it each trading period. The one period return
of this portfolio is

rt = sign(ŷt)yt. (1.2.2)

The profitability of the trading strategy (1.2.1) was evaluated by Gençay (1998) to measure
whether forecasts have economic value in practice. Using two and a half decades of the DJIA
data Gençay (1998) finds that such trading strategy is able to provide perceptible profits relative
to the “buy-and-hold” strategy. We will use this trading approach to construct a formal test of
conditional mean independence of returns.

Let us first illustrate how the series of returns rt can be useful for testing purposes. Suppose
we want to test the null hypothesis that the return yt is a martingale difference sequence (MDS)
relative to It−1, i.e. E[yt|It−1] = 0. Under this null, the return rt is an MDS, too. Indeed,

E[rt|It−1] = E[sign(ŷt)yt|It−1] = E[sign(ŷt) E[yt|It−1]] = 0.

Moreover, if we assume that the distribution of ŷt is continuous, under the null we have

var[rt] = E[sign(ŷt)2y2
t ] = E[y2

t ] = var[yt].
1For example, estimates of unknown parameters in a parametric predictor should not utilize future observations.
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Then under the null the appropriately normalized cumulative return of the corresponding port-
folio is asymptotically distributed as standard normal:∑

t
rt√∑
t
y2
t

d→ N(0, 1). (1.2.3)

The same null could be tested by using a similar statistic based on the normalized cumulative
original return yt. However, the test (1.2.3) is expected to be more powerful. Indeed, if under
the alternative the underlying forecasting model has high predictive power, the absolute value

of the test statistic (1.2.3) should be much greater than that of
∑

t yt/
√∑

t y
2
t .

1.3 Test for conditional mean independence

In this section we introduce a test for the null hypothesis of conditional mean independence, i.e.
that the return series has constant expectation conditional on the information set It−1. This
test may be viewed as a generalization of our illustration given in the previous section. Under
the assumption of a constant risk premium and no operational market imperfections, such tests
are usually referred to as tests of “informational market efficiency”. We elaborate the link to
market efficiency more in Section 6.

The test is based on the out-of-sample profitability of the trading strategy (1.2.1). For-
mally, we are interested in testing the null hypothesis H0 : E[yt|It−1] = const, where It−1 ⊃
{yt−1, yt−2, · · ·} is some information set relative to which the forecast ŷt is measurable. Techni-
cally, we require that under the null a stronger property hold, that ŷt be independent from yt
for all lags and leads. See the discussion of this technical issue at the end of this section.

The expected one period return of the trading strategy (1.2.1) is E[rt], which is consistently
estimable under the null by the following two estimators:

AT =
1
T

∑
t

rt (1.3.4)

and

BT =

(
1
T

∑
t

sign(ŷt)

)(
1
T

∑
t

yt

)
. (1.3.5)

Indeed, under the null, AT
p→ E[rt] and

BT
p→ E[sign(ŷt)] E[yt] = E[sign(ŷt) E[yt]]

H0= E[sign(ŷt) E[yt|It−1]]
= E[sign(ŷt)yt] = E[rt].

Note that AT represents the average one period return of the portfolio based on the trading
strategy, and BT can be interpreted as the average return of the portfolio based on the “coin
toss” strategy with the same proportion of “buy” and “hold” signals as the trading strategy
(1.2.1). We base our test statistic on the difference between AT and BT . Under the alternative,
if the underlying forecasting model has predictive power, the trading strategy will generate a
higher cumulative return than the “coin toss” strategy, and the test will have power. The power
of the test will be greater the better the underlying forecasting model is.
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To complete the construction of the test, it remains to compute the asymptotic variance of
AT−BT under the null. Let pŷ = Pr{sign(ŷt) = 1}, then E[sign(ŷt)] = 2pŷ−1 and var[sign(ŷt)] =
4pŷ(1 − pŷ). Recall that under H0 the series ŷt and yt are independent for all lags and leads.
Then we have

var(AT ) =
1
T

E[sign(ŷt)2y2
t ]−

1
T

E[sign(ŷt)yt]2
H0=

1
T

E[y2
t ]−

1
T

(2pŷ − 1)2 E[yt]2,

var(BT ) = E[(
1
T

∑
t

sign(ŷt))2(
1
T

∑
t

yt)2]− E[(
1
T

∑
t

sign(ŷt))(
1
T

∑
t

yt)]2

H0= E[(
1
T

∑
t

sign(ŷt))2] E[(
1
T

∑
t

yt)2]− E[
1
T

∑
t

sign(ŷt)]2 E[
1
T

∑
t

yt]2

=
1
T

(2pŷ − 1)2 var(yt) +
4
T
pŷ(1− pŷ)

(
1
T

E[y2
t ] + (1− 1

T
) E[yt]2

)
.

cov(AT , BT ) = E[(
1
T

∑
t

sign(ŷt)yt)(
1
T

∑
t

sign(ŷt))(
1
T

∑
t

yt)]

−E[(
1
T

∑
t

sign(ŷt)yt)] E[(
1
T

∑
t

sign(ŷt))(
1
T

∑
t

yt)]

H0=
1
T 2 E[sign(ŷt)2y2

t ] +
T − 1
T 2 E[sign(ŷt)2yt] E[yt]

+
T − 1
T 2 E[sign(ŷt)y2

t ] E[sign(ŷt)] +
(T − 1)2

T 2 E[sign(ŷt)]2 E[yt]2

−E[sign(ŷt)]2 E[yt]2

=
1
T

(2pŷ − 1)2 var(yt) +
4
T
pŷ(1− pŷ)

(
1
T

E[y2
t ] + (1− 1

T
) E[yt]2

)
= var(BT ).

Taking things altogether2, we obtain

var(AT −BT ) = 4
T − 1
T 2

pŷ(1− pŷ) var(yt).

We can estimate this variance in a variety of ways. The most straightforward is

V̂ =
4
T 2
p̂ŷ(1− p̂ŷ)

∑
t

(yt − ȳ)2,

where we corrected for degrees of freedom when estimating the variance of yt, and

p̂ŷ =
1
2

(
1 +

1
T

∑
t

sign(ŷt)

)
2That the test is of Hausman type can be seen from the following argument: the estimator BT is semipara-

metrically efficient for E[sign(ŷt)] E[yt] as it is a product of independent semiparametrically efficient estimators of

E[sign(ŷt)] and E[yt]. However, this argument is based on asymptotic considerations, while in the text we showed
explicitly that cov(AT , BT ) equals var(BT ) in finite samples.
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is a consistent estimator of pŷ. The estimate V̂ is positive by construction unless by chance all
forecasts are of the same sign. The test statistic and its asymptotic distribution are

AT −BT√
V̂

d→ N(0, 1). (1.3.6)

We will refer to this as the profitability statistic.
The profitability statistic (1.3.6) is reminiscent of the directional accuracy (DA) test of Pe-

saran and Timmermann (1992) that is routinely used as a predictive-failure test in constructing
forecasting models. Let us have a quick look at the construction of the DA statistic. Under the
same null hypothesis as before, the success ratio defined as

ÃT =
1
T

T∑
t=1

I [ytŷt ≥ 0] ,

cannot differ much from the expected success ratio that would obtain in case yt and ŷt were
independent. An efficient estimate of the latter, say, B̃T , can be expressed in terms of shares of
positive values among yt and ŷt in the sample. The variances of ÃT and B̃T can be straight-
forwardly estimated, so that the Hausman-type DA test statistic, an appropriately normalized
difference between ÃT and B̃T , is asymptotically distributed as standard normal.

Note that, apart from certain renormalization, a typical summand in ÃT equals

sign(ŷt) sign(yt),

while that in AT equals
sign(ŷt) sign(yt)|yt|.

This implies that if the series of returns yt is predictable, our test takes fuller advantage of this
predictability, while the DA test exploits it prudently and ignores the fact that higher returns are
associated with better forecasts. Further note that the DA test will successfully detect deviations
from the null of no predictability when yt exhibits sign predictability, while the profitability
statistic (1.3.6) will when yt exhibits conditional mean dependence. Christoffersen and Diebold
(2002) show that the sign predictability may be merely a result of volatility dependence in the
absence of conditional mean dependence, and that sign dependence does not imply violation of
market efficiency. Thus, our profitability statistic is better suited for predictability and efficiency
considerations.

We investigate the power of both tests in a small Monte–Carlo experiment. We use two data
generating processes (DGPs) that exhibit different types of predictability and whose coefficients
are calibrated using the S&P500 index during the period from 1954 to 1973 when the index
seems to be most mean predictable. The DGPs are:

AR: yt = 0.1256 · yt−1 + εt, σ
2 = 0.000249;

SETAR: yt =
{

0.000844 + 0.2453 · yt−1, |yt−1| ≤ 0.01848
0.002679 + 0.0664 · yt−1, |yt−1| > 0.01848

+ εt, σ
2 = 0.000245.

The sample length is 1, 000. In each of 10, 000 simulations, estimation is performed over a
rolling sample with 100 observations. The DA and profitability statistics are computed over
900 predictions. The two top panels of Table 1 show actual rejection frequencies corresponding
to nominal rejection frequencies of 10%, 5%, and 1% for two- and right one-sided alternatives.
We use the least squares linear predictor (labeled OLS) and nearest neighbors local regression
(labeled NNA), the latter being detailed in Section 4. The power of our test appreciably exceeds
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that of the DA test, sometimes by a factor greater than 1.5. It can be also seen how much the
power of either test may vary with the choice of a forecasting model. When the DGP is truly
linear, fitting a linear model has a much greater predictive power than nonparametric methods,
which, in turn, increase power when the series is nonlinearly predictable.

To conclude the discussion of properties of the tests, it should be noted that in derivations of
the asymptotic distribution of the DA3 and our profitability statistics, it is presumed that under
H0 there is independence of yt and ŷt at all lags and leads. Under the null of interest when
we posit only the contemporaneous independence between yt and ŷt, the total independence
is questionable. Indeed, even under no predictability it is highly unlikely that the forecast is
completely unrelated to the variable being forecast. For example, when a lagged value yt−1 is
used to make a prediction of yt, this prediction is by construction not independent from yt at
lag one. Thus, in practical situations when the total independence does not hold both tests may
have wrong sizes. To assess size distortions, we perform a small Monte–Carlo experiment with
the design outlined above, and the following DGP:

GARCH: yt = 0.002483 + εt, σ
2
t = 0.0000223 + 0.1773 · ε2

t−1 + 0.7397 · σ2
t−1.

Thus, we deliberately invoke strong GARCH effects to introduce volatility predictability and
further exacerbate the dependence between returns and their forecasts. The two bottom panels
of Table 1 show actual sizes corresponding to nominal sizes of 10%, 5%, and 1%. In spite of
possible distortions, the actual sizes of both tests are very close to nominal.

1.4 Nonparametric prediction

In this section we digress to outline the nonparametric predictors we will use in the empirical
analysis. We consider the nonparametric time series regression

yt = m(yt−1, yt−2, · · · , yt−k) + εt, (1.4.7)

with E [εt|It−1] = 0. Let us denote zt = (yt−1 yt−2 · · · yt−k)′ and zt,i = yt−i. The aim is to
construct a forecast ŷ(z) of yt given the history z = (z1 z2 · · · zk)′. One class of predictors uses
the Nadaraya–Watson nonparametric kernel estimators:

ŷ(z) =

t−1∑
s=k+1

ysK(z − zs, h(z))

t−1∑
s=k+1

K(z − zs, h(z))
,

another uses locally weighted linear estimators

ŷ(z) = α̂+ (z − zs)′β̂,

where

(α̂, β̂) = arg min
α,β

t−1∑
s=k+1

(ys − α− (z − zs)′β)2K(z − zs, h(z)).

3See the manipulations below equation (4) in Pesaran and Timmermann (1992, page 462).
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In these formulas, K(·, ·) is kernel function and h(z) is (possibly non-scalar) bandwidth. Both
estimators are special cases of local polynomial kernel estimators. For more on nonparametric
kernel regression, see Härdle (1990) and Härdle and Linton (1994). Below, we discuss options
for the kernel function, the use of nearest neighbors, and bandwidth selection rules, paying close
attention to the specifics of prediction of financial data.

Although there is a theory of optimal kernels, the choice of the shape of the one-dimensional
kernel function is not most important, because the loss of efficiency from the use of non-optimal
kernels is negligible in practice (Härdle (1990, section 4.5)). In the empirical literature the most
commonly used kernels are uniform, triangle, tricube and standard normal. For example, in the
context of time series prediction Diebold and Nason (1990) and Meese and Rose (1990, 1991) use
the tricube kernel, Mizrach (1992) and Barkoulas and Baum (1996) employ the triangle kernel.

In cases when k > 1 a multi-dimensional kernel should be constructed from one-dimensional
ones. There are two main approaches. In the first approach, one forms the product kernel:

K(z − zs, h(z)) =
k∏
i=1

K

(
zi − zs,i
hi(z)

)
. (1.4.8)

In the second approach, one transforms a vector argument into its scalar norm:

K(z − zs, h(z)) = K

(∥∥∥∥(z1 − zs,1
h1(z)

,
z2 − zs,2
h2(z)

, · · · ,
zk − zs,k
hk(z)

)∥∥∥∥) , (1.4.9)

where ‖·‖ is some norm on Rk, and K(·) is one-dimensional kernel function. All empirical papers
mentioned in the previous paragraph use the Euclidean norm in (1.4.9).

More important is the choice of the way the function h(z) is constructed. In dealing with
financial data we have a high degree of non-uniformity of the regressor space. This implies
that adjusting the bandwidth at the boundary of the regressor space becomes critical, and
suggests that various global bandwidth selection rules, such as cross-validation, are not likely
to perform well. The situation becomes exacerbated when we deal with the multi-dimensional
locally weighted linear regression as we have to increase the bandwidth at the boundary of the
regressor space for each of the regressors.

A family of nearest neighbors algorithms offers a neat solution to this problem. Unlike
various global bandwidth selection methods they allow for the automatic bandwidth adjustment
at boundaries of the space of regressors. The idea is that a set of n nearest neighbors of z in the
sample is used to determine the bandwidth. More precisely, a set of neighbors of the point z is
identified, and every component of h(z) is set to be the distance from z to its farthest neighbor
or some other measure of the set of neighbors.

Nearest neighbor methods seem to be most popular in the literature. Cleveland and Loader
(1996b) note that they provide the control over the number of points smoothed over, which is
convenient from the practical point of view. Cleveland and Loader (1996a) find that estimation
with a global bandwidth turns out to perform worse in practice than nearest neighbors methods.
In empirical work, Diebold and Nason (1990) and Meese and Rose (1990, 1991) use the distance
to the farthest neighbor as the bandwidth, while the number of neighbors is selected manually;
Mizrach (1992) and Barkoulas and Baum (1996) – the sum of distances to all neighbors as the
bandwidth, while the number of neighbors is also selected manually.

We propose and exploit in our empirical investigation a bandwidth selection rule in the frame-
work of the nearest neighbors procedure, which tends to work better in the case of predicting
stock indices. The idea of this rule is based on the following observation. Suppose that one
of the components of z, say, zi, is relatively close to the boundary of the corresponding one-
dimensional regressor space. It is natural to presume that the corresponding component of the
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optimal bandwidth, hi(z), should be greater than in the case when zi is in the interior of the
regressor space. Let Nn(z) be the set of n nearest neighbors of the point z in the L∞ metric.
Then set

hi(z) = sup
ζ∈Nk(z)

(|zi − ζi|). (1.4.10)

1.5 Data and testing results

We apply our analytical results to two stock market indices. One is the daily RTS (“Russian
Trading System”) index for the period from September 01, 1995 to April 18, 2003, totaling to
1909 observations. This index is a most frequently used indicator of the Russian stock market,
and has been used in several studies (Hall and Urga (2000), Fedorov and Sarkissian (2000)). As
of the beginning of the year 2003 it was comprised of dollar prices of 59 shares of 35 leading
Russian companies, weighted according to their capitalization. Detailed information on the
index’s construction and the data are available from www.rts.ru. The second series we analyze
is the weekly S&P500 stock market index for the period from January 03, 1950 to May 05, 2003,
totaling to 2783 observations, which we obtained from finance.yahoo.com. We use it to see,
on the one hand, how sensitive our results are to the choice of a dataset, and on the other hand,
how our methods work with less frequently sampled data on a longer time scale. Before the
analysis we take first differences of logarithms of the indices to obtain series of returns.

We employ various nonparametric predictors, and use as benchmarks the “naive” random
walk (RW) forecasts implied by the “buy-and-hold” strategy, and forecasts provided by a linear
model estimated by OLS. After some experimentation, we chose the number of lags k in the
regression to be 5 for the daily RTS index, and 1 for the weekly S&P500 index. The motivation
for these numbers is that in the former case we expect to find a lot of predictability at the day-
to-day frequency, while in the latter we can hardly expect any dependence for the lags beyond
the first. We assess the quality of one step ahead forecasts using rolling regression with blocks
of constant length. The block length equals 300 for the RTS data (which corresponds to a little
more than one year), and 104 (which corresponds to two years) for the S&P500 data. This
scheme results in 1603 (= 1909 − 1 − 5 − 300) and 2677 (= 2783 − 1 − 1 − 104) predictions,
respectively.

We use the standard normal kernel function as its unbounded support allows one to set a
smaller global bandwidth, and the product kernel in the multivariate case. We show the results
for nonparametric predictors implied by the Nadaraya–Watson (NW) and locally weighted lin-
ear regression (LWR) with a global scalar bandwidth, and the nearest neighbors local regression
(NNA) augmented by our bandwidth selection rule (1.4.10). The global bandwidth for the NW
and LWR estimators is chosen manually as cross-validation produces unstable results which
though did not differ much from the eventually chosen bandwidth. After some limited experi-
mentation we selected a couple of bandwidth values h = 0.03 and h = 0.1 noting that excessive
playing with smoothing parameters may result in data-snooping biases (cf., for example, Lo
and MacKinlay (1990)). Similarly, for the NNA estimator the number of neighbors selected by
the cross-validation tends to be greater than optimal, hence it is manually set to n = 10 and
n = 100.

The testing results are reported in Table 2. As follows from its column 2, no model succeeded
in improving upon RW forecasts in terms of mean squared prediction error (MSPE), which is
in line with empirical literature. However, the results of the DA test of Pesaran and Timmer-
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mann (1992) in column 3 show strong predictability even in the case of the linear model. The
results become even more impressive, at least for the RTS index, when we take into account the
profitability of the trading strategy based on corresponding predictors. Column 4 reports the
values of the profitability statistic which are highly significant in most cases. It is clear that the
conditional mean independence hypothesis both for the daily RTS index and the weekly S&P500
index is strongly rejected.

An interesting thing to note is that while the MSPE tends to decrease when a smoothing
parameter (h or n) increases, the other forecast quality measures behave in the opposite way.
Taking a smaller number of neighbors (or smaller h) weights more heavily similar histories in the
data and allows one to capture subtler forms of dependence. In this case outliers can strongly
influence the quality of forecasts as measured by the MSPE. However, the DA and profitability
statistics are driven by prediction errors only to the extent to which they may change the sign of a
prediction. The following explanation for the apparent impossibility of a significant improvement
of the MSPE can be suggested. Even if the data does contain predictable nonlinearity, it is clear
that the stochastic unpredictable component dominates the data (cf. Abhyankar, Copeland and
Wong (1997)), and its variance dominates in the MSPE. In contrast, a properly normalized
out-of-sample profitability is free from this drawback, and hence may be suggested as the right
measure of forecast quality in the case of financial data.

Column 5 reports cumulative returns that a trader would obtain if equipped with the trading
strategy and corresponding forecasting models. Although these figures are quite impressive,
especially for the NNA model, they should be taken with a grain of salt, especially in case of
RTS data, since no transaction costs and market restrictions are taken into account. Illuminating
patterns unfold on Figures 1 and 2 which show the graphs of the log cumulative returns (for
h = 0.03 and n = 10) of portfolios based on our trading strategy and various forecasting
models. For the RTS index the cumulative returns rank according to our perception of relative
powers of forecasting methods, obtained from Table 1. The best performing one is the nearest
neighbors local regression with the bandwidth (1.4.10), then come the locally weighted linear
regression with a global bandwidth, the Nadaraya–Watson estimator with a global bandwidth,
and, finally, the linear least squares model. The only difference for the S&P500 index is that the
Nadaraya–Watson estimator performed worst of all linear and locally linear estimators. This can
be explained by the fact that it is a locally constant estimator, thus, if a linear model is a better
proxy for the true data generating process, this estimator has a substantial bias at boundaries
of the regressor space, which is the most critical region for profitability. The apparent similarity
between the graphs of cumulative returns should also be noted. The periods where the gains
from the trading strategy are most evident are the same for all predictors. The robustness to
a choice of a forecasting model gives us grounds to interpret different trading possibilities as
evidence of time-varying level of market efficiency.

1.6 Evolution of market efficiency

As noted before, under the assumption of a constant risk premia and no operational market
imperfections, tests of the hypothesis H0 : E[yt|It−1] = const are usually referred to as tests of
“informational market efficiency”. If by It−1 we mean information embedded in the historical
values of yt, we obtain a test of the “weak form” market efficiency, which can be interpreted
as the impossibility of profitable trading on the basis of only historical price information. If
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we add to It−1 other variables publicly observable at moment t − 1, we obtain a test of the
“semi-strong form”, the impossibility of obtaining abnormal profits on the basis of the publicly
available information.

Our results of the previous section can be used to answer the question of whether the Russian
and American stock markets were “weak form” efficient during the periods under consideration.
The answer is firm “no”. However, it is more interesting to have an answer to the question:
in which periods of time were these markets inefficient? Indeed, the recent literature points
out that the period of inefficiency may alternate with those of efficiency, and that the degree of
predictability is different in different periods (Timmermann and Granger (2002)). If we base our
profitability statistic on predictors estimated from the data in a moving time window of fixed
length, we can assess the degree of inefficiency during the period of this window, and thus track
the evolution of market efficiency through time.

The length of the time window should satisfy the following two conditions: it should not
be too small in order not to include too much noise, and it should not be too large in order
not to smooth out interesting details. For the daily RTS data we find the compromise at the
block length equal to 250 (which corresponds to approximately 1 year); for the weekly S&P500
data – to 520 (which corresponds to approximately 10 years). As the nearest neighbors local
regression with the bandwidth (1.4.10) showed to advantage before, we report the results with
this predictor.

The tracks of the profitability statistics for the RTS and S&P500 indices, along with the
upper 5% critical value line, are depicted on Figures 3 and 4, respectively. Recall that the
market inefficiency at a point in time is unobservable, so the values of the profitability statistic
over the designated period of 1 year (10 years) should be interpreted as the measure of market
inefficiency over the whole period. We are interested in periods when a track exceeds the bound
of the critical line, as well as global minima and maxima that may be interpreted as an indication
of structural breaks in the evolution of market efficiency.

For the RTS data our results are not completely in line with those of Hall and Urga (2000)
who claim a substantial increase in the market efficiency of the Russian stock market starting
from the first quarter of the year 1999. The first period for which the hypothesis of conditional
mean independence is not rejected at the 5% level by our test is 08.1999− 07.2000. This is more
in line with the results of Rockinger and Urga (2000) who notice that the predictability of the
Russian market remains high up until the end of the year 1999. From the beginning of 2001
there is no evident trend in the data and the hypothesis of conditional mean independence is
not rejected.

For the S&P500 data one can clearly observe two points when the structural breaks in the
market efficiency may have occurred. The first corresponds to the global maximum of the
profitability statistic over the whole sample, which occurs for the period from 1963 to 1973.
Starting from the end of this period and up to the year 1992 one can see an apparent trend
towards improving market efficiency. In fact, for the period from 1982 to 1992 the value of the
profitability statistic is close to zero. However, after the year 1992 this trend is reversed, and
for the period from 1993 to 2003 the hypothesis of conditional mean independence can be only
marginally accepted. If this 11-year trend continues, we are likely to see the hypothesis of weak
form informational market efficiency rejected for the S&P500 index in the nearest future.
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1.7 Conclusions

We have proposed a forecast quality measure which, in case of a series of returns, has a clear
interpretation as a properly normalized return of a certain trading strategy that uses as an input
forecasts generated by an arbitrary forecasting model. Based on this measure, we have developed
a new formal test for conditional mean independence based on a suitably normalized profitability
of the portfolio implied by the trading strategy, over a certain “coin toss” portfolio. To make
forecasts for the trading strategy, we use rolling regressions and nearest neighbor methods with
a new rule of bandwidth selection.

In our empirical study we have applied the constructed test to examine the efficiency of
Russian and American stock markets and track the evolution of the degree of efficiency in time.
We have found that although for the daily RTS and weekly S&P500 indices the hypothesis of
conditional mean independence is rejected, there is remarkable dynamics in the degree of market
efficiency throughout the observation period.
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Table 1
DA statistic Profitability statistic

Model 10% 5% 1% 10% 5% 1%
OLS NNA OLS NNA OLS NNA OLS NNA OLS NNA OLS NNA

Power, testing against two-sided alternatives
AR 40.7 25.0 30.1 16.3 13.5 5.8 51.9 32.5 40.9 22.6 21.5 9.15
SETAR 39.3 39.8 29.3 29.6 14.3 13.9 50.2 52.1 40.1 41.1 22.6 22.1

Power, testing against right one-sided alternatives
AR 53.3 36.6 40.2 24.2 18.9 8.8 64.0 44.2 51.7 32.0 28.7 13.6
SETAR 51.2 53.2 38.8 39.6 19.4 19.1 61.5 63.9 49.8 51.9 29.0 29.3

Size, testing against two-sided alternatives
GARCH 9.3 9.9 4.5 4.9 0.7 1.0 14.1 11.3 7.9 6.1 2.5 1.2

Size, testing against right one-sided alternatives
GARCH 9.9 9.9 4.6 4.8 0.9 1.0 8.7 9.2 4.4 4.7 1.0 1.0

Notes:

Entries in the table are actual rejection frequencies from 10, 000 simulations of series with sample
size 1, 000, corresponding to nominal rejection frequencies of 10%, 5%, and 1%.

For power properties, the following DGPs are used:

AR: yt = 0.1256 · yt−1 + εt, σ
2 = 0.000249;

SETAR: yt =
{

0.000844 + 0.2453 · yt−1, |yt−1| ≤ 0.01848
0.002679 + 0.0664 · yt−1, |yt−1| > 0.01848

+ εt, σ
2 = 0.000245.

For size properties, the following DGP is used:

GARCH: yt = 0.002483 + εt, σ
2
t = 0.0000223 + 0.1773 · ε2

t−1 + 0.7397 · σ2
t−1.

OLS refers to least squares on a linear projection, NNA – to the nearest neighbors local regression
using a bandwidth selected according to the rule (1.4.10). One lag of yt is used in the regression
function.

The profitability statistic is defined in (1.3.6). The DA and profitability statistics are asymp-
totically distributed as N(0,1) under the null of no predictability.

In each simulation, estimation is performed over a rolling sample with 100 observations. The
DA and profitability statistics are computed over 900 predictions.
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Table 2
Prediction Sum of squared Pesaran–Timmermann Profitability Cumulative

method prediction errors DA statistic statistic return

Forecasting performance: daily RTS index
RW 1.62 2.10
OLS 1.65 3.36∗∗ 4.56∗∗ 345.89
NW, h = 0.1 1.61 1.71∗ 1.33∗ 6.35
NW, h = 0.03 1.69 3.05∗∗ 4.66∗∗ 362.22
LWR, h = 0.1 1.67 4.03∗∗ 5.24∗∗ 811.80
LWR, h = 0.03 2.43 3.67∗∗ 5.81∗∗ 1680.21
NNA, n = 100 1.63 4.31∗∗ 5.69∗∗ 1462.77
NNA, n = 10 1.70 4.15∗∗ 5.98∗∗ 2090.73

Forecasting performance: weekly S&P500 index
RW 1.07 38.97
OLS 1.10 2.52∗∗ 2.48∗∗ 50.94
NW, h = 0.1 1.08 −0.05 0.10 10.80
NW, h = 0.03 1.09 0.18 0.13 9.82
LWR, h = 0.1 1.10 2.92∗∗ 2.73∗∗ 64.56
LWR, h = 0.03 1.16 2.31∗ 2.97∗∗ 77.63
NNA, n = 100 1.10 2.63∗∗ 2.66∗∗ 60.40
NNA, n = 10 1.14 4.24∗∗ 4.03∗∗ 138.50

Notes:

OLS refers to least squares on a linear projection, NW – to the Nadaraya–Watson estimator,
LWR – to the locally weighted linear regression using a global bandwidth, NNA – to the nearest
neighbors local regression using a bandwidth selected according to the rule (1.4.10). Five lags
of yt are used in the regression function for the RTS index, one lag – for the S&P500 index.
Estimation is performed over a rolling sample with 300 (104) observations for the RTS (S&P500)
index. The DA and profitability statistics are computed over 1603 (2677) predictions.

The cumulative return is defined as exp (
∑

t rt) except in the case of RW when it equals
exp (

∑
t yt). DA is the directional accuracy statistic of Pesaran and Timmermann (1992).

The profitability statistic is defined in (1.3.6). The DA and profitability statistics are asymp-
totically distributed as N(0,1) under the null of no predictability.

∗ (∗∗) indicates that the corresponding statistic is significant at 5% (1%) level.
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Figure 1. Cumulative returns, daily RTS index

Figure 2. Cumulative returns, weekly S&P500 index
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Figure 3. Evolution of market e¢ciency, daily RTS index

Figure 4. Evolution of market e¢ciency, weekly S&P500 index
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2. HIGH FREQUENCY TRANSACTIONS AT
AN EMERGING STOCK MARKET

2.1 Introduction

Modeling high frequency transaction data has been an intensive topic of research during recent
decades. The seminal papers of Engle and Russell (1998) and Engle (2000) generated a burst of
new interest to modeling the dynamics of duration and price processes and gaining understanding
of market microstructure. In this paper, we contribute to both theoretical and applied sides of
this literature by analyzing tick-by-tick data from one of emerging stock markets.

We use the data on trades in seven most frequently traded common stocks at the Moscow
Interbank Currency Exchange (MICEx). The total value of trades in these stocks takes around
97% of the overall value of trades. Thus, in contrast to other studies which analyze one stock or
a tiny sample from a large population of stocks, we essentially investigate the whole population.
In the existing literature, most frequent is the analysis of IBM stocks at the NYSE (Engle
and Russell 1998, Ghysels and Jasiak 1998, Jasiak 1999, Engle 2000, McCulloh and Tsay 2000,
Hafner 1999, Zhang, Russell and Tsay 2001, Tsay 2002), different studies often using the same
database. Some exploit data for other stocks at the NYSE (Engle and Lunde 1998, Dufour
and Engle 1999, Bauwens and Giot 2000). Exploration of other stock exchanges is much more
rare and is not left unnoticed. Several papers (e.g., Jasiak 1999 and Ghysels, Gourieroux and
Jasiak 2002) use data from the Paris Bourse, Grammig and Wellner (2002) – from the German
Security Exchange and its electronic trading system IBIS, Tyurin (2002) – from the Reuters
D2000-2 foreign exchange electronic brokerage system. To our knowledge, there does not exist
any study that analyzes high frequency data from an emerging stock market in a transitional
country.

There do exist a number of papers devoted to the microstructure of Russian financial markets.
Medvedev and Kolodyazhny (2001) investigate the behavior of non-residents in the state bond
market, and find evidence of herding behavior. Barinov, Pervozvansky and Pervozvanskaya
(1999) study the behavior of traders at the Russian bond market and test some implications
of the optimal portfolio theory. They also find that market microstructure theories work well
for Russian financial markets. Goldberg and Tenorio (1997) apply the auction theory to the
investigation of the Russian market for foreign exchange. None of these and other researchers
though makes an attempt to investigate the microstructure of the Russian stock markets from
the viewpoint of high frequency data.

In this paper, we use our own modifications of the classic autoregressive conditional duration
(ACD) model of Engle and Russell (1998) and ultra high frequency (UHF) GARCH model of
Engle (2000). We arrive at more flexible specifications that fit the data under study better,
as indicated by the Ljung–Box and Nyblom tests. Our Log–ARMA–GARCH specification for
durations accounts better for some of intrinsic features of their dynamics than the ACD and
closely connected Log–ACD models, and at the same time is computationally simpler than
the stochastic volatility duration (SVD) model of Ghysels, Gourieroux and Jasiak (2002). We
model the process for returns by a new FTS–ARMA–GARCH specification which in turn is
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a generalization of the UHF–GARCH model and admits endogenous determination of time
standardization for measuring volatility of high frequency returns.

An inspection of the data reveals that along with intraday deterministic patterns there are
also interday variations in durations and return volatilities. We remove both sorts of nonstation-
arity from the data prior to the analysis. Subsequent estimation of both Log–ARMA–GARCH
and FTS–ARMA–GARCH models on the adjusted data show that the behavior of Russian
traders is quite similar to that of traders at developed financial markets. We find that the
Russian stock market data support some of the implications of Admati and Pfleiderer (1988)
and Easley and O’Hara (1992) models. At the same time, no evidence is found in favor of the
Diamond and Verrecchia (1987) model which assumes constraints on short selling.

The plan of the paper is following. The description of our database to some detail is given in
Section 2 and Appendices A and B. Section 2 also describes the data adjustment, characterizes
our empirical strategy, and reviews market microstructure theories we intend to test. Section
3 is devoted to the development of a new model for evolution of intertrade durations, together
with its empirical implementation, Section 4 – to the analysis of high frequency returns. Section
5 concludes.

2.2 Data, data adjustment, and preliminaries

2.2.1 MICEx electronic trading system

The electronic system at the MICEx is organized as an order-driven market. An excellent
explanation of an order-driven system can be found in Tyurin (2002); here we provide only a
brief description. At each moment of time the system keeps track of all buy and sell offers for
each particular security in a so called order book ; these offers, in particular, include prices and
amounts. As soon as there is a buy offer with a price which is at least as great as the price
of some sell offer for the same security, the bargain is immediately executed, and these two
offers in the order book are modified according to the bargain’s amount. However, along with
this “normal” trading regime with continuous matching of orders, there are special regimes of
trades in the same security described in Appendix A. Undoubtedly, the trades in these regimes
are observed by traders and their results may be taken into account when making decisions.
However, these data are very noisy (especially for the “negotiated deals” regime when trades
are not executed immediately at the time they are recorded, but may be delayed for days or
weeks). We remove such trades from the sample and concentrate on trades in the “normal”
trading regime which opens at 10:30AM and closes at 6:45PM.

2.2.2 MICEx database

For the analysis we take the period from August 12, 2002 to October 27, 2002, composed of
50 trading days. We consider common stocks of Lukoil, Yukos, SurgutNefteGaz, Rostelecom,
Sberbank, MosEnergo, and UES. These are seven most frequently traded stocks during the
period under consideration. For each of the seven corporations we identify the most heavily
traded release of common stocks and ignore all other stock releases. The total value of trades
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in these seven stocks takes nearly 97% of the overall value of trades. A description of the stocks
under study can be found in Appendix B. In what follows, we will report ultimate estimation
results for all stocks, and intermediate and illustrative results – for Lukoil only.

Each record in our database corresponds to one trade transaction for which the following
three characteristics are available:

1. Time Tt (with the precision of one second) when the transaction occurred;

2. Price Pt at which the transaction occurred;

3. Number of shares Vt bought or sold.

The database does not contain bid or ask data. Using the available characteristics we generate
the following three variables of primary interest:

1. Duration between consecutive trades: d̂t = Tt − Tt−1;

2. Log return: r̂t = lnPt − lnPt−1;

3. Log volume: v̂t = lnVt.

It is worth noting that the price step for all stocks is tiny in contrast to that at other
exchanges such as the NYSE. This can be clearly seen from Figure 1 which shows the histogram
of nonzero price changes for Lukoil; about one third of transactions having no price change are
excluded (cf., for example, Russell and Engle 1998, Figure 1). Even then, the discreteness of
price movements, together with the associated microstructure questions such as the analysis of
possible front-running behavior on the part of small traders, is an additional interesting issue
that deserves separate investigation (e.g., along the lines of Russell and Engle 1998, Rydberg
and Shephard 1998, Darolles, Gourieroux and Le Fol 2000).

When generating the variables we pay special attention to simultaneous transactions. Such
transactions arrive from two sources. First, simultaneous transactions are recorded when a new
buy (sell) offer matches several sell (buy) offers and is in sufficient amount to execute all these
matching offers. It is natural to treat such trades as one big transaction. The characteristic
feature of simultaneous transactions of this type is that their prices are either non-increasing
or non-decreasing. The second possibility is that a duration between consecutive trades is so
small that the precision of one second is not sufficient for their discrimination and they are
marked with the same time stamp. Since we cannot distinguish between the two sources, we
use the following mnemonic procedure. If there are several transactions recorded at the same
time stamp, we aggregate transactions with non-increasing or non-decreasing prices, using for
these aggregated transactions a weighted average price and aggregate volume, and remove all
remaining transactions with this time stamp.1

Table 1, upper panel, shows descriptive statistics of transaction variables for Lukoil. Some
specific characteristics of high-frequency data can be noted. First, both durations and returns
exhibit very strong autocorrelation, which is reported by the Ljung–Box statistics with fif-
teen lags Q(15) whose 1% critical value is 30.58. Another feature of the duration process is
overdispersion (when the standard deviation is higher than the mean), which is often observed
in high-frequency duration data. Transaction returns have a much higher kurtosis than that
implied by the normal distribution.

1This deletion is relatively innocuous because the number of such situations is small for all stocks (except very
heavily traded UES).
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2.2.3 Interday seasonal adjustment

Most of previous literature studying high frequency transactions data does not reveal significant
interday variation in variables under investigation. In contrast, we find that in different days
the transaction activity and price volatility at the MICEx fluctuate noticeably. In particular,
running a Wald test for equality of all coefficients in a regression of average durations on five
day-of-the-week dummies using the Newey–West variance estimator yields rejections at the 1%
significance level for all stocks except Sberbank. The interday variations may be easily detected
in Figures 2 and 3, where the plots of average durations and return volatilities throughout
trading days are depicted. For the volume variable v̂t, the effect of interday variations is also
present, although not as clearly as for durations and returns.

Several explanations can be suggested for these interday movements. First, there are day-of-
the-week deterministic patterns: on average the durations are larger on Mondays and Fridays
than on Tuesdays, Wednesdays and Thursdays. Second, Russian stocks are strongly dependent
on external factors. For example, the prices of oil extractor stocks (Lukoil, Yukos, Surgut-
NefteGaz) are closely tied to world oil prices, hence the volatility of their returns may vary
significantly from one day to another. Finally, different intensities of trades may be caused
simply by the highly varying number of players in the market.

One way to deal with the interday variations is to create a dummy variable for each day, akin
to fixed time effects in the panel data analysis, or to apply the model to each day separately.
Another approach was taken in the hierarchical model of McCulloch and Tsay (2001) where the
parameters are modeled as random variables which are drawn from some distribution and take
new values every day, akin to random time effects in the panel data analysis. We instead remove
interday variations from the data from the outset in the following way:

d̃t =
d̂t

d̂s
,

r̃t =
r̂t√
r̂2
s

,

ṽt = v̂t − v̂s,

where d̂s is the average duration for day s if observation t belongs to day s, r̂2
s is the average

squared return for day s, and v̂s is the average log volume for day s. For durations and returns we
use a multiplicative form of adjustment as durations and squared returns are naturally positive.
However, for log volumes we use additive adjustment as this variable may take any sign; this
adjustment implies the multiplicative form for volumes in levels as well.

2.2.4 Intraday seasonal adjustment

Beside interday variations in the data, there are specific intraday patterns of deterministic
nature in the duration, return, and volume series. It is conventional in the literature to remove
such patterns prior to estimation by using various nonparametric methods. Most of papers
(e.g., Ghysels and Jasiak 1998, Engle and Lunde 1998, Engle 2000, Grammig and Wellner
2002) use cubic or piecewise linear splines, while some authors estimate regressions based on
kernels methods (e.g. Hafner 1999, Tsay 2002, Zhang, Russell and Tsay 2001). Yet more rarely
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they include diurnal dummy variables (as in Dufour and Engle 1999), or remove the seasonal
component by a linear regression on time (as in Ghysels, Gourieroux and Jasiak 2002) or by
simple averaging over a moving window and linear interpolation (as in Bauwens and Giot 2000).

Here we estimate the equations

E[d̃t|Tt−1] = f1(Tt−1),
E[r̃2

t |Tt−1] = f2(Tt−1),
E[ṽt|Tt−1] = f3(Tt−1),

by using the local linear regression with the gaussian kernel and manually selected bandwidth.
Moreover, we do not assume that the intraday patterns are the same across different days of
the week, and do estimation for each of them separately. This is also different from previous
studies some of which allow but do not detect weakly seasonal components, e.g., Ghysels and
Jasiak (1998), Bauwens and Giot (2000), although Grammig and Wellner (2002) also fit separate
splines for different weekdays and a few other special dates. The estimates of intraday patterns
for durations and squared returns of the Lukoil stocks are presented in Figures 4 and 5. The
pictures are consistent with previous studies: the durations are longer in the mid-day and shorter
in the morning and in the evening; the return volatility is high in the morning and pretty stable
during the rest of the day. Note that there is a noticeable day-of-the-week effect, especially
Monday and Friday patterns differ from those of the other days of the week. It is interesting
that there is no increase in volatility in evenings, which can be explained by the fact that
although at 6:45PM the “normal” trading regime is over, there is a possibility to trade in other
regimes (see Appendix A).

We use the obtained estimates to generate final adjusted versions of our variables with the
forms of adjustment from the previous subsection:

dt =
d̃t

f̂1(Tt−1)
,

rt =
r̃t√

f̂2(Tt−1)
,

vt = ṽt − f̂3(Tt−1).

Sample statistics for the deseasonalized variables are shown in Table 1, lower panel. Again, all
characteristic features of high frequency data, such as the overdispersion in durations, excess
kurtosis in returns and high autocorrelation in all series, are present, although to a lesser degree
compared to the original data (see Table 1, upper panel).

2.2.5 Empirical strategy

In the next two sections we will present new models for durations and returns. These models
are motivated, on the one hand, by econometric considerations, and on the other hand, by the
degree of fit they provide to our data. We follow the prevailing tendency in the high frequence
literature that the process for durations is modeled conditionally on the history, and the process
for returns is modeled conditionally on the history and current durations (e.g., Engle 2000).
Gourieroux and Jasiak (2001, p. 404) argue that different sets of non-causality restrictions may
also be interesting (e.g., Darolles, Gourieroux and Le Fol 2000).

DATA, DATA ADJUSTMENT, AND PRELIMINARIES 25



For making judgments about the quality of fit, we use the Ljung–Box tests for autocorrelation
of order 15 of (standardized) residuals and their squares, and the Nyblom test (Nyblom 1989)
for structural stability of single coefficients as well as of a whole submodel. The use of the
Ljung–Box test is pretty standard in empirical implementation of high frequency data models,
despite the literature points out the inappropriateness of usual asymptotic critical values (Li
and Mak 1994, Tse 2002). It is sometimes reported that parameters in high-frequency data
models are highly unstable. For example, Zhang, Russell and Tsay (2001) used structural break
tests of Andrews and Ploberger (1994) and found six structural breaks in their three-month
sample. The Nyblom test that we use as a portmanteau check for structural stability has been
popularized by Bruce Hansen in a number of articles (e.g., Hansen 1994), and is natural to
use when the estimation framework is the method of maximum likelihood. It is based on the
average normalized inner square of cumulative sums of estimated score vectors, its critical values
depending on the number of coefficients in the model (see Nyblom 1989 and Hansen 1994 for
more details).

It is well known that portmanteau test statistics often reject models with a handful of pa-
rameters estimated with a large number of observations. The high frequency literature often
considers as a success a significant reduction in values of these statistics relative to those for
raw data. We are not trying to improve upon the existing models by relaxing the degree of
parsimony, so we treat diagnostic testing results liberally and display reasonable tolerance to
rejections by portmanteau statistics. It is worth saying, however, that values of the Ljung–Box
statistic in our models are never as high as, for example, in Engle (2000), and our minimal
P -values are much greater than typical P -values in, for example, Hafner (1999) and Bauwens
and Giot (2000).

2.2.6 Market microstructure theories

In this subsection we briefly review some theories of market microstructure whose implications
we want to test using our data. More extended discussions of these theories are contained in
Engle and Russell (1998, section 7), Engle (2000, section 6A), and the three source papers:
Diamond and Verrecchia (1987), Easley and O’Hara (1992), and Admati and Pfleiderer (1988).

We concentrate on three models that describe the behavior of traders on the basis of asym-
metric information. All models assume that there are two types of traders: informed and
uninformed. The first model is Diamond and Verrecchia (1987) where constraints on short
selling imply that informed traders who receive bad news and want to short sell have no such
possibility. Consequently, if long intertrade intervals are observed, market participants are in-
clined to think that there are bad news. Thus, if durations are long, the returns decline and
volatility increases because new information is revealed by the fact of slow trading. The second
model, Easley and O’Hara (1992), has completely different implications. Here there are no short
selling constraints, hence long durations are associated with the absence of new information. In
this case the volatility is lower for longer durations. In the third model, Admati and Pfleiderer
(1988), short durations are a result of bunching of liquidity traders, who trade for the reasons
that are not directly connected with profits (e.g, liquidity, portfolio diversification, etc.). Thus,
since short durations accompanied with large volume are not informative, the volatility declines.
Also, this model predicts that liquidity traders tend to trade together, hence trade events are
clustered and this clustering should strengthen when volumes are high.
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2.3 Modeling durations

2.3.1 ACD-type models

The class of autoregressive conditional duration (ACD) models was proposed by Engle and
Russell (1998). Their idea was to capture the persistence in durations, which is often found
in high frequency data, by means of an autoregressive model for conditional means. Let dt be
the duration between consecutive trades occurred at times Tt−1 and Tt, which is assumed to be
strictly greater than zero. This duration is decomposed in the following way:

dt = E[dt|It−1]εt ≡ πtεt, (2.3.1)

where It−1 is the information set embedding all previous durations and possibly other variables,
and εt is a shock independent of variables in It−1, with a mean of unity. Engle and Russell
(1998) use the following functional form of evolution for the conditional expectation πt:

πt = ω +
p∑
i=1

φidt−i +
q∑
i=1

ψiπt−i, (2.3.2)

Such specification is called ACD(p, q). To complete this parametric model one specifies the
distribution for εt, which can be done in a variety of ways. The most popular choices are
exponential, Weibull, and generalized gamma distributions2. Given the specified density, one
can proceed with the maximum likelihood (ML) estimation. When the above distributions do
not fit the data well, one may treat the ACD model as semiparametric, and run quasi-maximum
likelihood (QML) estimation presuming the exponential density for εt, with robust computation
of standard errors. The ACD model also allows a researcher to investigate the influence of
external factors by introducing additional regressors in equation (2.3.2).

An arguably more suitable parameterization for dynamics of πt may be the Log–ACD(p, q)
model (Bauwens and Giot 2000) where

πt = exp

(
ω +

p∑
i=1

φi ln dt−i +
q∑
i=1

ψi lnπt−i

)
(2.3.3)

or

πt = exp

(
ω +

p∑
i=1

φiεt−i +
q∑
i=1

ψi lnπt−i

)
. (2.3.4)

As Bauwens and Giot (2000) argue, these specifications have an advantage that the conditional
mean πt is always positive, so there is no need to impose non-negativity constraints neither on
the coefficients φi and ψi, nor on the coefficients belonging to additional structural variables on
the right side of (2.3.3) or (2.3.4). In addition, the authors find that the specification (2.3.4) fits
their data better than the ACD specification (2.3.2).

The ACD model may be extended in many other ways using the analogy with the GARCH
class. For instance, it is often reported that the sum of autoregressive coefficients in Equa-
tion (2.3.2) is very close to unity, which may imply the presence of long memory. This ob-
servation leads to the fractionally integrated ACD (FIACD) model proposed by Jasiak (1999).

2There exist more exotic specifications, e.g. the Burr distribution used by Grammig and Maurer (2000).
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Introducing nonlinearities leads to, for example, the threshold ACD (TACD) model of Zhang,
Russell and Tsay (2001).

In spite of the ability of ACD models to capture high persistence in the duration process
well, the major shortcoming3 of models of this type is that the conditional mean and variance
are tied to each other:

V [dt|It−1] = π2
tV [εt],

where V [εt] is a constant depending on the error distribution. To separate out the persistence
in the mean and that in variance, Ghysels, Gourieroux and Jasiak (2002) propose a stochastic
volatility duration (SVD) model. They argue that their model is quite successful in capturing
these two different sources of persistence. However, the likelihood function has a complicated
form due to the presence of latent factors, and thus simulation-based techniques have to be
applied for estimation and inference.

In the next subsection we propose a model that combines the simplicity of ACD models and
the flexibility of SVD models using an ARMA specification for durations in logs. Such model
can be easily estimated with the use of standard econometric packages.

2.3.2 Log–ARMA model

Consider the following ARMA(p, q) representation for log durations:

ln dt = α+
p∑
i=1

βi ln dt−i +
q∑
i=1

γiζt−i + ζt, (2.3.5)

where ζt = σtηt follows GARCH(r, s):

ηt ∼ IID(0, 1), (2.3.6)

σ2
t = µ+

r∑
i=1

λiζ
2
t−i +

s∑
i=1

νiσ
2
t−i. (2.3.7)

In the model (2.3.5)–(2.3.7), α, βi, γi, µ, λi and νi are unknown parameters. We call this spec-
ification the Log–ARMA(p, q)–GARCH (r, s) model, or Log–ARMA for brevity. As before, we
have two options to complete the model. One is to specify the distribution of ηt, natural choices
for which are the normal and possibly Student t distributions, and proceed with ML estimation.
The second option is to view the model as semiparametric and run QML using the normal
density.

The Log–ARMA specification (2.3.5)–(2.3.7) has been overlooked in the previous literature.
We explain this by the fact that it hides the nature of dt as a duration variable. At the same time,
this specification is natural to consider, it is flexible, and its properties are familiar. In addition,
the Log–ARMA model fits our data much better than the ACD and Log–ACD models, as we will
see in the next subsection, while the degree of parsimony is comparable. The main advantage
of the Log–ARMA model lies in its greater flexibility which originates from the separation of
the persistence in conditional mean and that in conditional variance. Thus, we may think of
this specification as a simple, it terms of complicatedness of estimation, alternative to the SVD
model, and a practitioner may easily use standard statistical software to estimate the parameters
in (2.3.5)–(2.3.7).

3See the discussion on this issue in Gourieroux and Jasiak (2000, p. 462).
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Let us see how the Log–ARMA model compares with the Log–ACD(p, q) model (2.3.3). From
equations (2.3.3) and (2.3.1),

ln dt = ω +
p∑
i=1

φi ln dt−i +
q∑
i=1

ψi lnπt−i + ln εt

= ω +

(
1−

q∑
i=1

ψi

)
m+

max(p,q)∑
i=1

(φi + ψi) ln dt−i + ζt −
q∑
i=1

ψiζt−i,

where m = E [ln εt] and ζt = ln εt − m, so that ln dt follows an ARMA(max(p, q), q) process.
If εt is distributed lognormally4 with parameters5 (−σ2/2, σ2), then ζt is distributed normally
with parameters (0, σ2). Thus, the model under consideration is equivalent to the conditionally
normal homoscedastic Log–ARMA model. Other distributional specifications for εt would imply
conditionally non-normal homoscedastic Log–ARMA models. A conditionally heteroskedastic
specification (2.3.7) relaxes the serial independence of ζt and thus that of εt. If we start from
the Log–ACD(p, q) model (2.3.4), however, the nesting of models breaks as the old innovations
ζt−i then enter the ARMA equation nonlinearly.

Another interesting feature of the Log–ARMA model is the type of the implied conditional
hazard function for the duration process. For a conditionally normal homoscedastic Log–ARMA
model, the conditional distribution of durations is lognormal and thus the hazard function is
non-monotonic, while the exponential, Weibull and generalized gamma ACD models imply a
monotone hazard. Moreover, in a heteroscedastic Log–ARMA model, the hazard function is
time-varying.

In addition, the time-varying conditional variance in the Log–ARMA model can take ac-
count of the dynamics of overdispersion in transaction data. Gourieroux and Jasiak (2000,
p. 462) argue that the overdispersion in data is time varying. In the ACD model the conditional
overdispersion is constant (recall that V [dt|It−1]/π2

t = V [εt]), while in the Log–ARMA it is path
dependent. Moreover, the coefficients in the variance equation (2.3.7) provide an idea about the
clustering of observations with over- or underdispersion.

2.3.3 Empirical results

To begin with we estimate6 the semiparametric ACD(2, 2) model

dt = πtεt,

πt = ω + φ1dt−1 + φ2dt−2 + ψ1πt−1 + ψ2πt−2 + δvt−1.

Here the lagged volume variable vt−1 is introduced to capture the effect of large trades. For
the Lukoil stocks, the duration process shows high persistence, with the sum of φ- and ψ-
coefficients greater than 0.95. The value of the Ljung–Box test statistic for the standardized

4Such a choice may be viewed as a limiting case of the generalized gamma distribution.
5Recall that if x is distributed lognormally with parameters (µ, σ2), then lnx is distributed normally with

parameters (µ, σ2), and E [x] = exp(µ + σ2/2). Due to the constraint E [εt] = 1, µ and σ must be related by
µ = −σ2/2.

6We estimate all models using Gauss v. 4.0.23 with the maximum likelihood library maxlik v. 4.0.24. For
numerical optimization, the BFGS and BHHH algorithms are utilized, standard errors are computed using nu-
merical derivatives. All autoregressive processes are reinitialized at the beginning of each day, as in, for example,
Engle and Russell (1998) and Zhang, Russell and Tsay (2001).

MODELING DURATIONS 29



residuals (Q(15) = 32.67) is significant at 1% level (the critical value is 30.58). Moreover, there
is significant autocorrelation in the squared standardized residuals, with the Ljung–Box statistic
44.90, and the excess dispersion test shows that there is still overdispersion in the standardized
residuals (the value of an asymptotically standard normal statistic is 13.50). The parametric
ACD(2, 2) models with the Weibull and generalized gamma distributions also fail to capture
the autocorrelation in the squared standardized residuals. The semiparametric Log–ACD(2, 2)
model with specification (2.3.3) does not pass both Ljung–Box tests, with the corresponding
statistics 108.57 and 137.92 for standardized residuals and their squares.

Dissatisfied with these results, we estimate the following Log–ARMA(1, 2):

ln dt = α+ β ln dt−1 + γ1ζt−1 + γ2ζt−2 + δvt−1 + ζt, (2.3.8)
ζt = σtηt,

σ2
t = µ+ λζ2

t−1 + νσ2
t−1.

The results for seven stocks are presented in Table 4. It can be seen from the table that all models
pass the Ljung–Box tests both for standardized residuals and squared standardized residuals at
the 1% level. It can be also seen that Lukoil, UES, Sberbank, Yukos, SurgutNefteGaz, and
Rostelecom pass Nyblom tests both for individual coefficients and for a whole model at the 1%
level. The instability of the model for MosEnergo can be explained by an unstable coefficient
for the lagged volume.

It is interesting to look at the distribution of standardized residuals. A nonparametric density
estimate for the Lukoil standardized residuals is shown in Figure 77. The residual distribution is
very close to the normal, although the Kolmogorov–Smirnov, Jarque–Bera, Cramer–von Mises,
and Anderson–Darling tests all reject the null hypothesis of normality. In fact, the distributions
for all stocks except UES are slightly skewed to the left and insufficient kurtosis (for Lukoil, the
skewness is −0.174, the kurtosis is 2.678). We thus treat our estimation procedure as quasi-
maximum likelihood.

We can compare the corresponding (quasi-)loglikelihood functions of the semiparametric
ACD, Log–ARMA and the two versions of the Log–ACD models8. For all stocks the mean values
of loglikelihood functions for the EACD(2, 2) and both Log–ACD(2, 2) models are appreciably
below that for the Log–ARMA(1, 2) specification. For example, if we take the Lukoil stocks, the
mean loglikelihood values are −0.9229 for the ACD(2, 2), −0.9226 for the Log–ACD(2, 2) with
specification (2.3.3), −0.9243 for the Log–ACD(2, 2) with specification (2.3.4), and −0.8398 for
the Log–ARMA(1, 2) model. The big gap between the Log–ARMA and the other models is so
large that it also justifies the use of a larger number of parameters: the Akaike and Schwartz
information criteria favor the Log–ARMA model. Exactly the same ranking happens with the
other stocks, except that for UES, the specification (2.3.4) works better than (2.3.3). We can
conclude that the movements in the conditional mean and conditional variance of duration
process should not be tied as in the ACD-type models.

Let us now look at the obtained estimates. Very significant AR and MA coefficients indicate
high persistence in the mean equation which is consistent with previous results (e.g., Engle and
Russell 1998, Engle 2000, Zhang, Russell, and Tsay 2001). The lagged volume has negative
sign and is highly significant for all stocks, so we can conclude that if large volumes are traded,
then durations are smaller. This favours the model by Admati and Pfleiderer (1988) and may

7We use the Nadaraya–Watson estimator with the gaussian kernel and Silverman rule for selecting the band-
width (Silverman 1986, eq. 3.31).

8Since the Log–ARMA model is written for logarithms of durations, we multiply the likelihood function by
the corresponding Jacobian to obtain the likelihood function for durations.
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be considered as an indication of the effect of bunching of liquidity traders. Clustering of
transactions revealed by high AR and MA coefficients also supports this view.

The variance equation for durations has further implications. The persistence in variance is
even greater than in the mean: the sum of ARCH and GARCH coefficients is about 0.99 for
almost all stocks. We may interpret this using the hazard functions for the duration process,
implied by the normal distribution for errors. If the values of ζ2

t−1 and σ2
t−1 are high so that a

previous duration is far from its conditional mean, it is more likely that σ2
t will also be high,

and the hazard function will be steep, indicating that this duration will be either very short or
very long. On the other hand, if previous values of ζ2

t−1 and σ2
t−1 are low, the hazard function

will be flatter, implying that the distribution of the next duration is more uniform.

2.4 Modeling price dynamics

2.4.1 UHF–GARCH and ACD–GARCH models

The irregular spacing of stock returns implies that conventional measuring of volatility by the
“traditional” variance, i.e. the conditional mean squared return, is no longer appropriate. Engle
(2000) argued that it is natural to measure it by the return variance per time unit:

π2
t =

V [rt|It−1, dt]
dt

= V

[
rt√
dt
|It−1, dt

]
.

In the UHF–ARMA(p, q)–GARCH(r, s) model, where “UHF” stands for “ultra high frequency”,
or UHF–GARCH for brevity, the weighted return follows ARMA(p, q) process

rt√
dt

=
p∑
i=1

ς i
rt−i√
dt−i

+
q∑
i=1

τ iεt−i + εt,

where εt = πtηt follows GARCH(r, s):

ηt ∼ IID(0, 1),

π2
t = ω +

r∑
i=1

φiε
2
t−i +

s∑
i=1

ψiπ
2
t−i.

Engle (2000) assumed that the durations are not “Granger caused” by prices (see Engle 2000,
p. 11), so additional variables that belong to the information set It−1 ∪ {dt} may be introduced
into the mean and variance equations. Engle (2000) himself added the variable d−1

t to capture
the direct positive effect of data frequency on the volatility. However, although it does seem
natural to measure volatility per time units, the choice of the weighting is quite arbitrary.

An alternative model for the return volatility was proposed by Ghysels and Jasiak (1998) who
used the idea of temporal aggregation for GARCH processes (Drost and Nijman 1993, Drost and
Werker 1996) to account for the irregularity of transaction data. This resulted in the following
equation for return variances:

σ2
t = ωt + φtr

2
t−1 + ψtσ

2
t−1,
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where the time-varying coefficients ωt, φt and ψt are certain known functions of deeper param-
eters and of variables from It−1. Appended by a duration equation of an ACD-type, this model
is called ACD–GARCH. In contrast to the UHF–GARCH model, it does not rely on a specific
choice of time units for returns. The suggested flexible parameterization leads to a sophisticated
GMM estimation procedure where standard errors for some coefficients are hard to compute
because of their complexity (see Ghysels and Jasiak 1998, p. 144). Another problem with this
specification is that the current duration does not affect the current return variance, although
empirically this influence is very significant (see the discussion in Meddahi, Renault and Werker
2003).

In the next subsection we propose a GARCH-like model that tries to remedy the drawbacks
of the UHF–GARCH and ACD–GARCH models.

2.4.2 Flexible Time Standardization GARCH model

In specifying the system of equations which describe the process for returns, we assume an
ARMA(p, q) process for returns

rt = α+
p∑
i=1

βirt−i +
q∑
i=1

γiζt−i + ζt, (2.4.9)

where ζt = σtηt, and a GARCH(r, s) process for the variance of normalized innovations

ηt ∼ IID(0, 1), (2.4.10)

σ2
t

dρt
= µ+

r∑
i=1

λi
ζ2
t−i
dρt−i

+
s∑
i=1

νi
σ2
t−i
dρt−i

. (2.4.11)

In the model (2.4.9)–(2.4.11), α, βi, γi, µ, λi, νi and ρ are unknown parameters. One could also
specify the distribution for η, but we prefer to treat the problem as semiparametric9. We will
refer to such specification as the FTS–ARMA(p, q)–GARCH (r, s) model, where “FTS” stands
for “flexible time standardization”, or FTS–GARCH for brevity. As usual, additional variables,
such as lagged volumes and durations, may be included in the mean and variance equations to
test implications of microstructure theories.

The FTS–GARCH specification assumes that there is a high frequency measure of volatility
σ2
t /d

ρ
t , where the parameter ρ ∈ [0, 1] is determined endogenously. This parameter indicates the

“equilibrium” weighting for the “traditional” volatility for a particulat stock. Putting ρ = 1
makes the FTS–GARCH model similar (though not equivalent) to the UHF–GARCH model.
Let us rewrite the variance equation (2.4.11) with r = s = 1 in the form

σ2
t

dt
= dρ−1

t

[
µ+ λd1−ρ

t−1

ζ2
t−1

dt−1
+ νd1−ρ

t−1

σ2
t−1

dt−1

]
.

When ρ = 1, given the past information, the variance per time unit does not depend on the
current duration; when 0 ≤ ρ < 1, given the past information, the variance per time unit depends

9Imposing normality or Studentcy on this distribution is unreasonable because it may inherit a point mass from
the cluster of price changes at zero (recall the discussion in subsection 2.2). On the other hand, the distribution
is nearly symmetric, hence the QML estimation must work sufficiently well.

32 HIGH FREQUENCY TRANSACTIONS AT AN EMERGING STOCK MARKET



on it negatively. Thus, our specification is richer than the one implied by the UHF–GARCH
model. As presented in the next subsection, the estimates of the coefficient ρ are far below unity.
To analyze the differences between the UHF–GARCH(1, 1) and FTS–GARCH(1, 1) equations,
suppose that the previous duration dt−1 equals 1, the sample mean of adjusted durations. Then
we have σ2

t = dts
2
t−1 for the UHF–GARCH and σ2

t = dρt s
2
t−1 with small ρ for the FTS–GARCH,

where s2
t−1 = µ + λζ2

t−1 + νσ2
t−1. Thus, the “traditional” volatility σ2

t in the FTS–GARCH
model is a severely concave function of the current duration and depends on it in higher degree
for small values of dt and in lower degree for large values of dt than in the UHF–GARCH model.

Note that the variance equation (2.4.11) can be viewed as a GARCH-type specification with
respect to the “traditional” variance σ2

t with time-varying coefficients that are functions of cur-
rent and previous durations. Thus, we may think of the FTS–GARCH model as a generalization
of the UHF–GARCH model in the direction of the ACD–GARCH. Note however, that in the
ACD–GARCH model current durations do not enter the time-varying coefficients. The lat-
ter feature of the ACD–GARCH model is heavily criticized by Meddahi, Renault and Werker
(2003). When comparing the Engle (2000) and Ghysels and Jasiak (1998) specifications, these
authors give a preference to the UHF–GARCH model for that reason, and in addition because
their exact discretization method leads to a formulation in terms of the “natural” rather than
“traditional” volatility.

On the other hand, our FTS–GARCH specification does not support the implications of the
model of Meddahi, Renault and Werker (2003) who propose a continuous time specification for
the process for returns. This specification implies that the variance per time unit converges to
a non-zero limit as dt goes to infinity, hence an indefinite increase in dt implies an indefinite
increase in the “traditional” return variance σ2

t . This does not seem plausible. As dt increases,
the period without new information about the stock value becomes longer, and it is natural to
think that the “traditional” variance should stabilize, i.e. the variance per time unit should go
to zero, which corresponds to the case 0 ≤ ρ < 1 in our specification. Some partial evidence
in support of the view that ρ is less than 1 is provided by the UHF–GARCH model with the
additional variable d−1

t in the variance equation by Engle (2000) who reports that it has a highly
significant positive coefficient.

2.4.3 Empirical results

The UHF–ARMA(1, 1)–GARCH(1, 1) specification with additional dt in the mean equation and
additional d−1

t in the variance equation turns out to be inadequate as follows from very high
values of the Ljung–Box statistics for pure and squared standardized residuals (e.g., for Lukoil
Q2(15) = 1109.13, while the 1% critical value is 30.58). Next, we estimate the following FTS–
ARMA–GARCH specification:

rt = α+ βrt−1 + γζt−1 + ζt + δ1dt + δ2it−1, (2.4.12)

σ2
t

dρt
= µ+ λ1

ζ2
t−1

dρt−1

+ λ2
ζ2
t−2

dρt−2

+ ν1
σ2
t−1

dρt−1

+ ν2
σ2
t−2

dρt−2

+ δ3it−1.

Here the variable it is generated by it = vt − ln dt and characterizes the intensity of the flow of
shares10. The results of estimation are presented in Table 5. The model passes the Ljung–Box
test at the 1% level for all stocks except UES. Moreover, for Sberbank and Yukos additional

10Recall that vt is the adjusted value of lnVt, logarithm of the number of shares bought at time Tt.
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constraints λ2 = ν2 = 0 can be imposed. The model and all coefficients are stable at the 1% level
(except the coefficient ρ for Lukoil) as reported by the overall and individual Nyblom statistics.

We start from the analysis of the mean equation. As in UHF–ARMA–GARCH models in
Engle (2000) for the IBM data, the MA(1) coefficient is negative and highly significant. The
negative autocorrelation in the returns process is often found in high frequency return data and
may be explained by the bid-ask bounce (Campbell, Lo and MacKinlay 1996, chapter 3) or
structure of electronic trading systems. As Gourieroux and Jasiak (2001, section 14.2) note, this
predictability of returns based on previous information does not contradict market efficiency.
The insignificance of the AR(1) coefficient for five stocks out of seven, which is found significant in
Engle (2000), can be explained by the fact that the MA(1) term explains most of autocorrelation;
in the model without an MA term the first two AR coefficients are negative and significant at
the 5% level. However, the persistence of the returns process is not very high. The coefficient of
the current duration is positive and significant for three stocks and insignificant for others. We
may regard this fact as a contradiction of the Diamond and Verrecchia (1987) model where the
duration should enter with a negative sign. This differs from the results of Engle (2000) who
found a support for this model in the IBM data. It should be noted, however, that Engle used
returns over the square root of duration in place of pure returns, and we may only infer from a
negative signs in his UHF–GARCH model that the returns grow not faster than the square root
of duration. The positive and significant coefficients for the intensity variable for most stocks
can be interpreted as follows. Large trades are likely to be seller initiated, and, consequently,
yield negative returns in most cases (because then several best buy offers will be executed, hence
the average price for this transaction will go down). The negative autocorrelation in the returns
process will most likely lead to a positive return of the next trade. As a result, we observe a
positive impact of lagged volume intensity on returns. This effect is not observed only for the
UES stocks because of distortions introduced by omitting simultaneous transactions (recall that
UES is traded about ten times more frequently than other stocks).

Now let us turn to the analysis of the variance equation. First, there is volatility clustering
for all stocks, and the process is sufficiently persistent as can be inferred by summing up the
ARCH and GARCH coefficients. The coefficient for the intensity variable tends to be positive
and significant, which can be considered as an evidence against the Admati and Pfleiderer (1988)
model where large volumes are associated with liquidity traders and lead to a decline in volatility
as these trades do not carry new information. Finally, we obtain a highly significant coefficient
ρ which ranges from 0.1 for UES to 0.28 for Sberbank, far below unity. The “natural” volatility
π2
t declines very rapidly in the current duration, which agrees with the result by Engle (2000)

who found a significant coefficient on d−1
t . Negative dependence of the “natural” volatility on

the current duration can be interpreted in favour of the Easley and O’Hara (1992) model where
long durations imply that there are no news. This type of dependence contradicts the model
by Diamond and Verrecchia (1987) where long durations imply that the news are bad, and,
consequently, volatility should be higher.

2.5 Conclusion

We have proposed a new flexible specification for the analysis of intertrade durations, which
allows for richer dynamics compared to the ACD model and is computationally more attractive
than the SVD, and a new flexible specification for return volatilities that endogenizes the defi-
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nition of time units in the UHF–GARCH model. Both models very well fit the data on trades
in seven most frequently traded common stocks at the Moscow Interbank Currency Exchange.
We have found that the Russian stock market data support some of the implications of Admati
and Pfleiderer (1988) and Easley and O’Hara (1992) models. At the same time, no evidence is
found in favor of the Diamond and Verrecchia (1987) model which assumes constraints on short
selling. Indeed, the short-selling constraints are not normally an issue for the participants of
electronic trades during tranquil times at financial markets.

Future research includes testing the empirical relevance of the developed econometric models
by comparing their out-of-sample predictive power with the accuracy of predictions obtained
from more traditional models. Another direction is modeling price movements in a framework
that acknowledges discreteness of their changes, along the lines of Russell and Engle (1998),
Rydberg and Shephard (1998), and Darolles, Gourieroux and Le Fol (2000). Finally, as the
analyzed stocks essentially represent the whole bulk of trades at MICEx, the modeling of joint
dynamics of durations and mark processes, including the analysis of effects of market-wide,
industry-wide and stock-specific news, is of great interest.
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2.6 Appendix A: MICEx trading regimes

There are several trading regimes at the MICEx. Regimes and their brief descriptions are
presented in Table 2.

We concentrate on the “trading session”, or “normal” trading regime. All other observations
are excluded from the sample, i.e. the following trades were removed:

1. Trades that are recorded out of trading hours for the “normal” regime (10:30AM–6:45PM);
2. Trades that are marked with the string “ÏÑ:” (they belong to the “negotiated deals”

regime);
3. Trades that are marked with the string “ÅÏ̂I:” (they belong to the “REPO” regime);
4. Trades that are marked with the string “Í̊äîië́iû̊a ë̂iòû” (they belong to the “incomplete

lots” regime).

2.7 Appendix B: stocks under analysis

We use data on common stocks of seven Russian corporations. A brief description of these
securities is presented in Table 3. Among the corporations that we consider, three companies
are oil extractors (Lukoil, SurgutNefteGaz, and Yukos), UES (short for the Unified Energy
System of Russia) and MosEnergo are large electricity producers, Rostelecom is a leading Rus-
sian telecommunication company, and Sberbank is the largest Russian commercial bank. For
some corporations there are several releases of common stocks, as well as preferred stocks and
bonds. However, we focus on only one security for each corporation, the release that is traded
much more frequently than other releases. A more detailed description of the companies, their
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stocks and trades at the MICEx are available in English and Russian from www.micex.com and
www.micex.ru, respectively.

Out of seven stocks, UES is most heavily traded (on average 6000 transactions a day not
counting simultaneous transactions); Lukoil, SurgutNefteGaz, Rostelecom and MosEnergo are
traded at the frequency of about 600–750 transactions a day; for Yukos we have 400 transactions
a day, and only 250 trades for Sberbank. The observation period is 08/12/02–10/27/02, i.e.
50 trading days maximum. Since for UES we have many more transactions than for other
companies, we use only one week for model estimation and four weeks for seasonal adjustment.
Also, for SurgutNefteGaz the data for August 14, 2002 are incomplete, and we omit them.

The column “stock share” of Table 3 shows the share of each stock value in the value of all
trades in stocks at the MICEx during the period 08/19/02–08/23/02. It can be seen that the
total value of trades in these seven stocks take almost 97% of the overall value of trades.
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Table 1. Descriptive statistics of transaction data for Lukoil
Variable Mean Standard deviation Skewness Kurtosis Q(15)

Raw data
dt 43.19 75.43 5.07 44.63 7455.9
rt 1.99 · 10−6 8.99 · 10−4 0.09 8.68 2537.2
vt 4.79 2.19 −0.29 2.62 1439.2

Deseasonalized data

d̂t 1.00 1.56 4.04 28.51 3397.6
r̂t 0.00 0.99 0.06 6.10 2576.5
v̂t 0.00 2.18 −0.28 2.60 918.46

Table 2. Trading regimes at MICEx
Trading regime Timing Description
Pre-trading period 10:00AM–10:30AM During this period the opening price is deter-

mined.
Trading session 10:30AM–6:45PM The usual trading regime.
Post-trading period 6:45PM–7:00PM In this regime trades can be executed at a

weighted average price determined during the
last 30 minutes of the trading session.

Negotiated deals
regime

10:00AM–7:05PM This regime is designed for large trades, which
are not executed immediately, but rather their
execution may be delayed up to 30 days.

Special negotiated
deals regime

7:05PM–10:00PM The same as negotiated deals regime, but only
specific securities can be traded.

REPO regime 10:15AM–7:05PM Repurchase agreement trading regime.
Incomplete lots
regime

5:00PM–7:05PM The period when nonstandard lots can be
traded.

Table 3. Description of securities
Company Security code Price Lot Stock Observation Observations

step share period in sample
Sberbank RU0009029540 1 1 0.75% 08/12/02– 13156

10/27/02
Yukos RU0009054449 1 1 1.99% 08/12/02– 20125

10/27/02
Lukoil RU0009024277 1 1 15.71% 08/12/02– 34316

10/27/02
SurgutNefteGaz RU0008926258 0.1 100 5.27% 08/12/02– 38275

10/27/02
Rostelecom RU0008943394 1 1 2.75% 08/12/02– 38246

10/27/02
MosEnergo RU14MSNG3008 0.1 100 1.88% 08/12/02– 32452

10/27/02
UES RU0008926621 0.1 100 68.75% 08/19/02– 30537

08/23/02
Note: price step is in kopecks (1/100 of the ruble), lots are in shares.
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Figure 1. Histogram of non-zero price changes for Lukoil stocks.

Figure 2. Average durations for different days for Lukoil stocks.
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Figure 3. Average squared returns for different days for Lukoil stocks.

Figure 4. Estimated intraday patterns for durations for Lukoil stocks.
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Figure 5. Estimated intraday patterns for squared returns for Lukoil stocks.

Figure 6. Estimated residual density in Log–ARMA model for Lukoil stocks.
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