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ABSTRACT

Genome-scale metabolic modeling enables omic data integration through mathe-
matical simulation and has become an indispensable cornerstone for understand-
ing cellular metabolism. Traditional analysis tools, such as mechanistic modeling
and flux balance analysis, require deep domain expertise to specify the kinetic pa-
rameters or significant manual effort to acquire fluxomic data to formulate the con-
strained optimization problem. To circumvent the above limitations, we develop a
novel metabolic dynamics modeling framework, which learns a structured neural
ODE process (SNODEP) model to predict the time-varying flux and balance dis-
tributions by leveraging the more accessible single-cell RNA sequencing (scRNA-
seq) technology. Compared with ML-based alternatives, our method achieves en-
hanced prediction performance, not only due to the intrinsic suitability of neural
ODE for modeling dynamics-governed time series data but also because the de-
sign of SNODEP explicitly accounts for the destructive measurement process of
scRNA-seq and the sequential dependence between context points. Comprehen-
sive evaluations across 4 metabolic pathways (340 experiments in total) show that
our method can predict future gene expression, flux, and balance dynamics well,
even generalizing to more challenging settings of irregularly sampled data and
unseen gene knockout configurations. We hope our work can catalyze the devel-
opment of more robust and scalable models for metabolic pathway analysis.

1 INTRODUCTION

A distinctive characteristic of deep neural networks (DNNs) is their capability to automatically learn
generalizable features from data, significantly saving human effort in devising handcrafted features
to model complex systems. Therefore, there has been a growing interest in applying them to various
scientific contexts, such as quantum chemistry (von Glehn et al., 2022), tokamak controller design
(Degrave et al., 2022), climate sciences (Lam et al., 2022; Nguyen et al., 2023), and molecule gen-
eration (Hoogeboom et al., 2022). Particularly for drug discovery problems (Askr et al., 2023), it is
essential to answer the questions of where and how the drug should be targeted. The machine learn-
ing community has attracted increased attention in molecular design to address the latter question
(Luo et al., 2022; Corso et al., 2022). On the other hand, computational metabolic analysis tools,
such as flux balance analysis (FBA) (Orth et al., 2010) and dynamic FBA (Mahadevan et al., 2002),
have been shown highly effective in finding drug targets (Sen & Orešič, 2023). These methods are
widely employed to study the effect of drugs or environmental stress simulated by gene knockouts
on unwanted cells by curbing their metabolism (Raškevičius et al., 2018). However, several key pa-
rameters in their LP formulation are difficult to determine, especially at the single-cell level. These
challenges arise because of a lack of generalized heuristics to formulate the optimization objective
(e.g., maximizing the biomass) and a lack of special instruments (e.g., Mass Spectrometer (Dettmer
et al., 2007)) or techniques (e.g., Isotope Subtyping (Roci et al., 2016)) to measure the in-context
fluxomic data to determine the optimization constraint coefficient properly.
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Recently, there has been a push towards determining the metabolomic and fluxomic quantities using
scRNA-seq data (Naseri et al., 2019; Alghamdi et al., 2021; Steach et al., 2024) because measur-
ing the single-cell gene expression is much more accessible and scalable compared to acquiring
fluxomic data. Nevertheless, these methods still need time-varying scRNA-seq samples to perform
dynamic analysis, which can further increase costs and efforts. While dynamic analysis using ML
techniques has been explored, these approaches either require access to a mechanistic model of
metabolic pathways for their architectures and are limited to next-step predictions (Aghaee et al.,
2024), or they artificially impute irregularly sampled data to estimate reaction fluxes (Costello &
Martin, 2018). Besides, they are unsuitable for handling single-cell-derived data and its challenges.
In contrast, our method is more suitable for handling single-cell data and irregularly sampled time
series, does not impose mechanistic assumptions, inherently learns the underlying dynamics, and is
not limited to next-step prediction, thus making it a much more scalable and usable solution.

Contribution. In this work, we develop a novel data-driven framework to predict the dynamics of a
metabolic system under various configurations, avoiding the deep domain knowledge or extra human
labor to formulate the optimization objective and LP constraints needed for flux balance analysis.
In particular, we use single-cell RNA sequencing (scRNA-seq) time-series data (Chen et al., 2019),
which we then feed into a single-cell flux estimation analysis (scFEA) estimator (Alghamdi et al.,
2021) to obtain the corresponding flux and balance estimates (Section 2).

Since the time-varying metabolic concentrations are known to follow a non-linear ordinary differen-
tial equation (ODE), we propose a novel Structured Neural ODE Process (SNODEP) architecture
that is built on top of the standard neural ODE processes (Norcliffe et al., 2021) to predict the under-
lying dynamics of the metabolic system (Section 3). We notice that standard neural ODE processes
have several design choices that might not help to model the ODE dynamics in our case, like lack
of structure in the encoder to get the latent distribution from the context points and the use of Gaus-
sian parametric family for latent posterior and decoder distributions. Thus, we design SNODEP
to bypass these shortcomings, showing improved performance in tasks such as predicting gene ex-
pression, metabolic-flux, and metabolic-balance distributions on unseen timesteps and predicting
the corresponding distributions for gene-knockout cases, considering both regularly and irregularly
sampled data, all for several metabolic pathways (Section 4).

1.1 RELATED WORK

Metabolic Pathway Analysis. Genome-scale metabolic modeling (GSMM) has proven to be in-
strumental in the design of therapeutic treatments. For instance, Raškevičius et al. (2018) employed
GSMM to identify therapeutic windows for cancer treatment, while Larsson et al. (2020) used them
to simulate gene knockouts in a Glioblastoma cancer cell model, identifying potential therapeutic
targets and predicting side effects in healthy brain tissue. Despite their importance, GSMM is time-
consuming and requires significant domain expertise to use. Therefore, recent studies propose to
integrate machine learning techniques in GSMM, as reviewed in Sahu et al. (2021).

From a dynamical standpoint, Costello & Martin (2018) proposed XGBoost models to predict dy-
namics, but they first inflate the existing concentration values using interpolation techniques to es-
timate gradient for training, which may not be ideal in the real world. More recently, Aghaee et al.
(2024) introduced a GNN model that predicts the next step value. However, the model itself uses
and assumes access to mechanistic information and is trained on simulated data from the mechanis-
tic model, limiting its scalability and extension to continuous and irregular time steps. In addition,
RNA velocity (La Manno et al., 2018) estimates the time derivative of gene expressions but needs
spliced and unspliced mRNA counts, usually not reported in the experiments, and it’s unclear how
it could be used to estimate metabolomic quantities. Similarly, Klumpe et al. (2023) investigated
single-cell time series prediction using synthetic data with no specific focus on metabolic pathways.
To our knowledge, our work is the first to comprehensively study the dynamically varying flux and
balance of metabolic pathways derived from real-world single-cell gene expression time-series data.

Neural ODE. The neural ODE family of models has shown strong capabilities in modeling dynamic
systems, particularly when the underlying dynamics are known to follow an ODE (Rubanova et al.,
2019). While latent neural ODEs have been applied to interpolation and extrapolation tasks, they
are not suitable for modeling random processes. In contrast, neural processes (NP) (Garnelo et al.,
2018) can be used for modeling time-varying distributions, but they have no consideration for the
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Figure 1: Overall pipeline of our framework for predicting time-varying distributions, such as gene
expressions, flux, and balance, with (green) and without (orange) gene knockouts.

underlying dynamics. These observations motivate us to explore models like neural ODE processes
(NODEP) (Norcliffe et al., 2021), where the dynamics are defined over the parametric space of these
distributions. Other models, such as those proposed in Kidger et al. (2021), assume a noisy evolution
of dynamics, which does not align with our prediction problems of time-varying distributions in
metabolic systems. Our work adapts standard neural ODE processes (Norcliffe et al., 2021) to better
suit our specific settings, showing improvements across various tasks and metabolic pathways.

2 PROBLEM FORMULATION

We consider the setting where we have a collection of time-varying samples {Y0,Y1, · · · ,YT } with
Yt = {y1,t, · · · , y|Yt|,t} sampled at different timesteps. Here, yi,j represents the i-th sample from
the j-th timestep, Yt is the set of samples from time t, y is any quantity of interest s.t. y ∈ Rdy ,
|Yt| is the number of samples from timestep t, and the quantity y is varying according to some
unknown underlying process whose trajectory cannot be tracked over time due to the destructive
measurement process. Let IT denote the index of timesteps that we used or observed during the
training process. Given the observed samples, our goal is to estimate probability distributions Yi(θj)
and generate samples yi,j for timesteps that we’ve not observed yet such that they are close to the
actual samples for those timesteps. In our study, we consider five different settings of interest,
namely, gene expression, metabolic flux, metabolic balance, and the respective gene knockout cases.

Destructive Measurement Process. One of the challenges with working with dynamic scRNA-
seq data is its destructive measurement process, due to which once the gene expression is read,
the cell dies, and thus we cannot track the gene-expression trajectory of an individual cell, and by
extension, we cannot track dynamic flux-balance estimates of an individual cell as well. Instead,
we have samples of quantities, each from a different cell, coming from different time points, which
can be viewed as samples from a time-varying distribution resembling a random process. We thus
model the dynamic quantities as a random process, and instead of simply predicting a quantity at
some timestamp, we also give a distribution to capture the underlying uncertainty. And even if we
discount the destructive measurement process, it’s well known that gene transcription is inherently
stochastic, especially when considered at the single-cell level (Thattai & Van Oudenaarden, 2001),
meaning that we never get an identical gene-expression trajectory for a single cell. Thus the amounts
of molecules produced, or the chemical concentration, from a collection of cells can be considered
to be sampled from some distribution, with the amounts of mRNA molecules showing a Poisson-like
behavior in a steady state as shown in Thattai & Van Oudenaarden (2001).

Gene Expression, Flux and Balance. Suppose we have a gene count matrix of dimension K ×N ,
where N is the total number of cells and K is the total number of genes, with gene counts measured
at each regular timestep t and total V timesteps. Let Bt be the index set representing the cells whose
gene counts ∈ RK are observed at time t. Then, we have

∑
t |Bt| = N , indicating that all N cells

get their expressions counted over various timesteps. For a metabolic pathway, we only extract the
relevant d genes from the total set of K genes. Let gi,t ∈ Rd be the gene-expression array for cell
i ∈ Bt at time t, and Gt ∈ Rd×|Bt| be the corresponding matrix. For a certain metabolic pathway
with u modules and v metabolites and each batch Bt of cells at time t, we estimate the flux mf and
balance mb using the scFEA framework detailed in Appendix B.2. Specifically, we define:
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• Sf
t : {gi,t}i∈Bt

→ {mf
i,t}i∈Bt

as the mapping that estimates the flux mf
i,t ∈ Ru for each cell

i based on its gene expression. Let Mf
t ∈ Ru×|Bt| be the matrix of the flux samples.

• Sb
t : {gi,t}i∈Bt → {mb

i,t}i∈Bt as the analogous mapping for estimating the metabolic balance
mb

i,t ∈ Rv . Let Mb
t ∈ Rv×|Bt| be the matrix of the balance samples.

We note that scFEA was originally developed for static-FBA, but since the static-DFBA formulation
(Equation 4 in Appendix B.1) can be interpreted as solving the static-FBA for different timesteps,
we use scFEA to estimate flux-balance values for different timesteps.

Gene-knockout. Gene knockout is a way to understand how a gene influences the metabolic net-
work, for example, in understanding how essential genes in pathogens affect metabolic pathways
to design drugs to inhibit those pathways (Larsson et al., 2020); it’s also widely used in synthetic
biology Dalvie et al. (2021). In the gene-knockout simulations in FBA models, the constraints of the
reaction fluxes affected by essential genes are usually modified (Maranas & Zomorrodi, 2016). In
contrast, we train a model on certain gene-knockout configurations and then predict quantities during
test time on unseen configurations and timesteps. To simulate gene-knockout conditions, we ran-
domly sample S subsets of k most expressed genes, set the gene-expression of genes from those sub-
sets to zero (See Algorithm 1 for more details), and estimate the flux-balance values again based on
the scFEA techniques. For s ∈ {1, 2, . . . , S}, we analogously define {m̃f

i,t}s,i∈Bt
and {m̃b

i,t}s,i∈Bt

as gene-knockout flux and balance estimates, respectively, where we use M̃f
s,t ∈ Ru×|Bs,t| and

M̃b
s,t ∈ Rv×|Bs,t| to denote the corresponding matrix of samples.

Essentially, our framework assumes that metabolic flux and balance from scRNA-seq data can be es-
timated using scFEA techniques, that knocking out a subset of genes does not change the expression
levels of the rest of the genes, and that gene essentiality and gene expression levels are correlated.

Learning Objective. For data from each of the five settings above, we train a separate neural net-
work. Let C < T < V be the length of context, target, and total available timesteps, respectively.
Let yt ∼ Yt for any t ∈ {1, . . . , V }. During training, our model’s encoder takes as input the context
data, which consists of samples till context length from set Yt or C = {(t1, y1), . . . , (tC , yC)}, and
decoder then gives us distribution on target timesteps or {(t1, Y (θ1)), . . . , (tT , Y (θT ))}. During
inference, the encoder again takes some context data as input, based on which we get latent distri-
butions L0, D, and the decoder gives us distribution for each prediction on every timestep available,
including hitherto unseen timesteps {(t1, Y (θ1)), . . . , (tT , Y (θV ))}. Thus our trained neural net-
work is a function F : t, C → Y (θt) that’ll give us time-varying prediction via its distribution. In
the following discussions, we denote IC = {1, . . . , C} and IT = {1, . . . , T} for simplicity.

3 METHODOLOGY

Since we cannot precisely track the properties of a single cell over time, predicting its value at the
next time step is inherently uncertain and should be modeled as probabilistic. Neural ODE methods
do not account for this issue, so we believe that neural ODE processes are a better fit for modeling.

3.1 ISSUES WITH STANDARD NEURAL ODE PROCESS

The standard neural ODE process (NODEP) model (Norcliffe et al., 2021) employs an encoder-
decoder model architecture, where the context points {(ti, yi)}i∈IC are used to calculate the latent
distributions L0(θl0) and D(θd), and the latent l0 ∼ L0 evolves over target timesteps {ti}i∈IT ,
according to an ODE that is modeled by a neural network fw as follows:

l(ti) = l0 +

∫ ti

t0

fw(l(t), d, t)dt. (1)

The time-evolving latent distributions are fed into a decoder to obtain the target samples and their
distributions: {Ni(yi|µw1(l(ti)), σw2(l(ti)))}i∈IT . Although NODEP has been shown effective in
modeling ODE dynamics for scientific discovery, it has a few limitations if applied to our task:
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1. The decoding distributions are treated as Normal. This is not the best choice of distributions to
model gene-expression data, which is usually discrete and Poisson-like (Thattai & Van Oude-
naarden, 2001) and confirmed by Figures 5a and 5b in Appendix F.

2. The encoded representation ri = fe({tCi , yCi }) is calculated using context points without any
particular structure in NODEP. These ri’s are then order-invariantly aggregated to give r, and
finally D ∼ qD(d|C) = N (d|µD(r), diag(σD(r))), similarly for L0. The order between the
context points and their sequential dependence on each other is not efficiently utilized. En-
forcing this sequential dependence can be highly useful for guiding the ODE decoder because
otherwise, it might lead to unintended attention to certain context points.

This sequential dependence of context points is even more important for irregularly sampled data,
where an order-invariant encoder might lead to different representations for different timesteps sam-
pled, even though the underlying condition is the same. This further motivates us to employ a
GRU-ODE encoder to capture the underlying dynamics and thus not be sensitive to irregularity.

While structured encoder has been previously explored in Latent-ODE (LODE) (Rubanova et al.,
2019) for irregularly sampled data, we think it’s unsuitable for our task with the destructive measure-
ment process, because it expects an exact trajectory and predicts a single point, not a distribution;
thus, does not inherently tackle uncertainty in predictions like NODEP (Norcliffe et al., 2021). Addi-
tionally, LODE also lacks a control latent D and only has a trajectory latent L0, which is why LODE
cannot achieve competitive prediction performance, particularly for gene-knockout experiments.

3.2 STRUCTURED NEURAL ODE PROCESS (SNODEP)

Encoder with Regularly Sampled Data. To address the above issues, we propose a modified ar-
chitecture where the encoder leverages Long Short-Term Memory (LSTM) (Hochreiter, 1997). The
LSTM encoder is designed to capture dependencies between context points across time, allowing
for a more informed and contextually-aware calculation of latent distributions L0(θl0) and D(θd).
We run the LSTM backward since we want the initial value of the latent variable l0. Formally, the
encoder takes the context sequence {(ti, yi)}i∈IC and computes hidden representations {hi}i∈IC :

hbwd
i = LSTMbwd(yi, h

bwd
i+1 ), for i ∈ IC .

We use this encoder for regularly sampled data since it’s much faster than the GRU-ODE below, but
it’s not ideal for irregularly sampled data.

Encoder with Irregularly Sampled Data. Recurrent networks assume inputs to be regularly spaced
and have no consideration for the actual time the input was sampled, not applicable to irregularly
sampled data (Rubanova et al., 2019). Thus, our hidden state varies according to a GRU-ODE:

ĥbwd
i−1 = hbwd

i +

∫ ti−1

ti

gϕ(h
bwd(t)) dt, hbwd

i−1 = GRU(yi, ĥ
bwd
i−1 ), for i ∈ IC ,

where gϕ is the network supposed to capture the time-dependent underlying dynamics of the hidden
state, and GRU stands for the Gated Recurrent Unit (Cho, 2014), a gating mechanism typically
employed in recurrent neural networks. For irregular data, our encoder uses the final hidden state
hbwd
0 to calculate the parameters of the initial latent l0 and control d, which then evolves to give

us the time-varying probability distributions. But in Rubanova et al. (2019), the hbwd
0 is used to

get the initial latent, l0 which then evolves directly, giving us quantities of interest and there’s no
time-varying distribution involved. For both regular and irregular scenarios, the final hidden state
from the backward pass gives us the representation r = [hbwd

0 ], which is then used to parameterize
the latent distributions L0 and D, via a feed-forward layer (FFW in Figure 2).

Latent distributions. For latent distributions with respect to L0(θl0) and D(θd) of metabolic-flux
and balance data, we model them using Gaussian distributions:

l0 ∼ N (µL0(r),diag(σL0(r))) and d ∼ N (µD(r),diag(σD(r))).

Here, µL0
, σL0

, µD and σD are learned functions. For gene expression, we model the latent distri-
bution as a LogNormal distribution, ensuring that we can resemble the Poisson-like nature of gene
expressions while still being able to use the re-parametrization trick (Kingma & Welling, 2013).
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Figure 2: Illustration of the overall pipeline of the proposed SNODEP model architecture.

Decoder. The decoder relies on evolving the latent variable l(t) over time based on a neural ODE.
For a given latent state at time t0, the evolution is governed by:

l(ti) = l0 +

∫ ti

t0

fθ(l(t), d, t) dt,

where fθ represents the dynamics defined by the Neural ODE, and d is used for tuning the trajectory.
At each target time {ti}i∈IT , the latent state l(ti) is used to determine the target distributions. For
gene expressions, we model the predicted distributions as a Poisson distribution:

yi ∼ Poisson(λy(l(ti))) for i ∈ IT .

Whereas for metabolic flux and balances, we model the predicted distributions as a Gaussian:

yi ∼ N (µy(l(ti)), σy(l(ti))) for i ∈ IT ,

where λy , µy and σy are again learned functions. The decoding distributions are meant to capture the
nature of the corresponding data. The output distribution is motivated by the nature of distribution
that we observe in the datasets as seen in Figure 5. During inference, we use the learned fθ to give
latent values over unseen timesteps, from V , as well.

3.3 OPTIMIZATION OBJECTIVE

Since the generative process is highly nonlinear, the true posterior is intractable. Thus, the model is
trained using the amortized variational inference method using the evidence lower bound (ELBO),
same as in Norcliffe et al. (2021):

Eq(l0,d|T )

[∑

i∈IT

log Y (yi | l0, d, ti) + log

(
L0 (l0 | C)
L0 (l0 | T )

)
+ log

(
D (d | C)
D (d | T )

)]
, (2)

where the expectation is taken over joint latent distribution q(l0, d) = L0(θl0)×D(θd).

4 EXPERIMENTS

In this section, we evaluate the performance of SNODEP in predicting time-varying flux and balance
samples under various configurations, including irregular data sampling and gene knockouts.

Dataset. We evaluate SNODEP using the gene-expression time-series dataset (Ori et al., 2021) with
four metabolic pathways (Table 3 in Appendix D). To estimate flux and balance at the single-cell
level, we employ scFEA (Alghamdi et al., 2021). The total number of timesteps available to us is
16, and we set our context as IC = {0, 1, . . . , 8} and our target as IT = {0, 1, · · · , 12}, while at
inference, we predict for all the timesteps IV = {0, 1, . . . , 15}. Our context length corresponds to
the standard 80%/20% split in time, which we determined after experiments where we varied it
(Appendix E.1). To simulate irregularity, we randomly set the data for a fraction of timesteps—both
in context and target—to zero, concatenate a binary mask (one for present, zero for absent), and
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Table 1: Comparisons of mean squared errors (MSE) across different ML methods and sampling
rates for predicting metabolic-flux. For each setting, we highlight the best result in bold.

MSE without Gene-Knockout (×10−2)

Method
MHC-i M171 Iron-Ions Glucose-TCACycle

1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4

LODE 1.00 103.5 92.2 91.4 0.018 2.4 5.4 1.7 0.80 83.4 76.6 67.3 0.60 70.0 61.1 54.4
RNN-VAE 1.10 106.4 105.8 97.5 0.018 1.9 1.8 7.1 0.90 89.9 83.6 83.9 0.70 71.9 66.7 67.0
NP 0.80 99.8 82.2 56.4 0.021 1.9 1.8 1.9 0.80 80.6 65.1 44.4 0.90 65.6 54.5 39.4
NODEP 0.80 103.3 84.4 59.0 0.016 2.3 1.8 1.4 0.70 81.3 66.0 44.7 0.60 67.3 55.5 39.6
SNODEP 0.50 96.1 78.8 52.6 0.011 2.9 2.5 1.3 0.50 78.2 63.1 41.4 0.40 63.1 52.1 37.4

MSE with Gene-Knockout (×10−2)

LODE 1.40 410.5 814.7 1995.5 0.60 272.3 474.0 1433.0 3.30 485.8 901.3 1561.4 5.40 585.1 959.1 1487.8
RNN-VAE 1.70 389.0 954.5 1995.5 0.80 258.5 742.1 1651.6 3.40 482.6 955.2 1777.5 6.00 685.8 1050.8 1680.5
NP 1.60 163.7 149.4 660.3 0.60 59.6 94.1 824.4 3.40 284.5 332.5 577.3 6.50 539.2 491.2 454.8
NODEP 1.50 152.6 175.1 585.1 0.60 94.3 163.7 853.2 3.20 308.3 301.5 225.1 5.50 541.6 465.3 350.8
SNODEP 1.50 144.5 127.9 92.5 0.60 54.5 47.4 37.5 3.20 327.2 265.2 194.7 5.00 543.3 466.8 347.1

evaluate on timesteps having a mask of one (Appendix E). To obtain metabolic-flux and balance
for our gene-knockout experiments, we use Algorithm 1, considering the top k = 20 maximally
expressed genes and setting the number of knockout subsets to S = 5 for all four pathways. The
train and test knockout sets are set using an 80%/20% split as well.

Method. We compare and evaluate structured architectures proposed for irregularly sampled time-
points like Latent-ODE (LODE) (Rubanova et al., 2019) and baseline latent variable models like
RNN-VAEs (Rubanova et al., 2019), to see whether formulating our setting as a random process
gives an improvement, and we also compare with neural process (NP) (Garnelo et al., 2018) archi-
tecture to get insights on modeling our problems as a differentiable random process without con-
sidering the underlying dynamics. Furthermore, we compare performances between neural ODE
process (NODEP) (Norcliffe et al., 2021) and SNODEP, which have a neural-ODE decoder, with
the latter exploiting sequential relationships between the context points via its encoder.

Evaluation Metric. We choose the mean squared error (MSE) as our primary evaluation metric, as
it is commonly used in neural ODE literature and also because it can be interpreted as the distance
between distribution means (Appendix E). We also test our method using the 1-Wasserstein distance
metric (Appendix G), which reveals similar trends with our main experimental results using MSE.

4.1 METABOLIC-FLUX

Applying techniques from single-cell flux estimation analysis (scFEA) on the gene-expression time
series, we obtain samples of metabolic-fluxes for the considered metabolic pathways. Specifically
for each time t, given a metabolic pathway with d genes and u modules with gene-expression matrix
Gt ∈ Rd×|Bt|, we get Sf

t (Gt) = Mf
t , where Mf

t ∈ Ru×|Bt| is the flux values for cell batch Bt.
In addition, we perform gene-knockout experiments to simulate the effect of disturbances in the
pathway, such as the effect of any drug or environmental stress. We model this by assuming that
the gene expression level is correlated with how sensitive the metabolic pathway is with respect
to the enzymes/proteins encoded by the gene. We consider k most-expressed genes in the dataset
and sample random subsets of these k genes with the maximum cardinality of k//2. We call these
random subsets “knockout sets”, where the gene expression for the genes contained is set to zero.
We again calculate flux samples using scFEA corresponding to each knockout set, with train and
test containing data corresponding to different knockout sets. For completeness, Algorithm 1 in
Appendix C describes the algorithmic pseudocode for our creation of knockout data.

Table 1 shows that SNODEP performs better than the alternative methods across different metabolic
pathways, and the improvement becomes more notable as the sampling frequency decreases. There
are a few reasons that could explain this: firstly, methods like LODE do not perform the best despite
having a structured encoder, which is due to the fact that the acquired data is not the exact trajectory
of any cell because of the destructive measurement process, and thus has noise and uncertainty which
is better captured by modeling it as a random process. But even then, it is still difficult to model the
underlying dynamics with a non-structured order invariant encoder at low sampling regimes, such as
NP and NODEP, so SNODEP performs well. For the gene-knockout settings, having a control latent
D as in the SNODEP architecture also helps capture more information about the kind of knockout.
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Table 2: Comparisons of mean squared errors (MSE) across different ML methods and sampling
rates for predicting metabolic-balance. For each setting, we highlight the best result in bold.

MSE without Gene-Knockout (×10−2)

Method
MHC-i M171 Iron-Ions Glucose-TCACycle

1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4

LODE 0.16 18.11 15.75 15.40 0.014 4.83 2.05 2.55 0.66 70.61 63.53 54.94 0.32 32.76 29.11 26.82
RNN-VAE 0.18 16.75 15.67 14.31 0.014 1.43 1.47 6.78 0.80 74.90 69.77 59.56 0.37 33.68 30.94 25.80
NP 0.18 16.27 14.06 11.02 0.17 1.46 1.25 1.00 0.66 68.74 58.14 40.53 0.56 31.99 27.75 20.43
NODEP 0.15 16.97 14.84 11.79 0.015 1.96 1.63 1.13 0.61 69.88 58.61 40.98 0.39 33.72 29.96 20.90
SNODEP 0.12 17.22 14.94 11.23 0.015 2.55 2.02 1.60 0.44 67.88 56.93 39.00 0.30 33.29 28.81 21.13

MSE with Gene-Knockout (×10−2)

LODE 1.51 422.89 605.69 1718.41 0.67 322.70 900.94 1629.63 3.27 489.56 734.63 1572.29 5.25 609.23 824.02 1577.68
RNN-VAE 1.65 382.08 962.65 2009.62 0.67 288.46 846.50 1842.54 3.52 504.79 1003.41 2009.51 6.24 706.71 1106.26 1364.32
NP 1.55 145.48 216.17 547.37 0.68 68.99 224.04 1250.47 4.44 335.44 316.54 480.28 6.00 561.46 493.34 372.50
NODEP 1.84 177.47 228.62 337.00 0.59 94.52 157.94 857.47 2.88 336.64 300.49 266.29 6.72 561.83 487.13 356.69
SNODEP 1.54 143.93 125.53 94.10 0.63 61.74 53.97 39.85 2.00 321.49 265.51 200.24 6.15 545.31 480.77 350.82

Such a control latent variable is absent in LODE, which potentially explains why SNODEP achieves
much better performance in knockout settings.

4.2 METABOLIC-BALANCE

Once we get the flux values for all the modules, we can immediately obtain the change in concen-
tration of a particular metabolite, known as balance in flux balance analysis, by multiplying the flux
with the stoichiometric matrix. We thus performed analogous experiments as in Section 4.1. Table 2
demonstrates that for metabolic-balance, though SNODEP is among the better models, other models
also perform reasonably well. We hypothesize that this may be due to simplistic dynamical evolu-
tion (e.g., linearly), where contextual information might not be needed after a point. However, we
observe that SNODEP is the best model for the gene-knockout cases, especially for low sampling
regimes, aligned with our observations in the experiments on metabolic-flux in Section 4.1.

4.3 GENE-EXPRESSION

Ideally, we would like to have collected the ground-truth metabolic flux and balance at an indi-
vidual cell or tissue level. However, this is challenging because there is very little data on them.
Gene-expression counts can be considered as a rough approximation for the concentration of pro-
teins, metabolites, and enzymes they encode since they are highly correlated. Specifically, mRNA
molecules are transcribed at a certain rate from the template DNA strand, which are then translated
into proteins at some rate. Therefore, we explore the timestep prediction task on log-normalized and
scaled gene-expression time-series data. The results are shown in Table 4 in Appendix G, where
we present MSE for the regular data sampling regime (i.e., with the frequency set as 1.0). We can
observe that SNODEP achieves much lower MSE across different pathways. Setting the sampling
distribution as Poisson and using the contextual information for the latent variables in conjunction
helps obtain better performance. Even though we are working with ground-truth gene expressions,
this result should encourage further study on ground-truth flux datasets.

4.4 HEATMAP VISUALIZATIONS

To highlight the difference in metric values between SNODEP and other models, we further sum-
marize the differences in heatmaps (Figures 6 and 7 in Appendix G), where each cell shows how
SNODEP compares to the best or second-best model for a specific pathway and sampling frequency
combination. More precisely, if SNODEP has the lowest (best) metric value, the cell displays the
difference between the second-best model’s metric and SNODEP. Otherwise, it shows the difference
between the best model’s metric and SNODEP. We observe that SNODEP consistently outperforms
other models by a good margin, especially in the low-frequency regimes. Few cells have negative
values and are usually low, showing that even when SNODEP is not the best model, the perfor-
mance does not differ greatly. These results confirm the advantages of using SNODEP to model the
underlying dynamics of complex metabolic systems in terms of prediction accuracy.
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5 CONCLUSION AND FUTURE WORK

In this work, we have shown how to infer time-varying metabolic flux using genomics data rather
than metabolomics data, which is much harder to procure. Our proposed method leverages learned
dynamics to generate quantities at future time steps and unseen gene-knockout configurations with-
out requiring domain expertise. That said, our flux and balance results and the corresponding gene-
knockout results are based on data estimated via scFEA. In the future, we would like to evaluate
the performance of our method using a gene-expression time series sampled with metabolic path-
ways in mind—covering normal conditions, metabolic stresses, ground-truth flux, and balance mea-
surements—along with an alternative DFBA formulation for benchmarking. Our method has the
potential to help integrate genomic and metabolomic data to better model the underlying metabolic
dynamics. We see our work as a starting point for making metabolic pathway analysis more scalable.
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Partho Sen and Matej Orešič. Integrating omics data in genome-scale metabolic modeling: A
methodological perspective for precision medicine. Metabolites, 13(7):855, 2023.

Holly R Steach, Siddharth Viswanath, Yixuan He, Xitong Zhang, Natalia Ivanova, Matthew Hirn,
Michael Perlmutter, and Smita Krishnaswamy. Inferring metabolic states from single cell tran-
scriptomic data via geometric deep learning. In International Conference on Research in Compu-
tational Molecular Biology, pp. 235–252. Springer, 2024.

Mukund Thattai and Alexander Van Oudenaarden. Intrinsic noise in gene regulatory networks.
Proceedings of the National Academy of Sciences, 98(15):8614–8619, 2001.

Ingrid von Glehn, James S Spencer, and David Pfau. A self-attention ansatz for ab-initio quantum
chemistry. arXiv preprint arXiv:2211.13672, 2022.

11



Published as a workshop paper at MLGenX 2025

A TERMINOLOGY

The key notations and terms used throughout this paper are defined below for clarity.

A.1 INDICES AND SETS

• t ∈ {t1, t2, . . . , tV }: Discrete timesteps where measurements are collected, with V repre-
senting the total number of timesteps.

• Bt: The set of cells whose gene counts are measured at timestep t, such that the total
number of cells across all timesteps is N =

∑
t |Bt|.

• IC = {1, . . . , C}: Index set representing context points (i.e., the known timesteps used
during model training).

• IT = {1, . . . , T}: Index set representing target points (i.e., the timesteps over which the
model makes predictions).

• V: The set of including unseen timesteps for which we aim to make predictions.

A.2 GENE EXPRESSION DATA

• K: Total number of genes measured.

• N : Total number of cells.

• gi,t ∈ Rd: Gene-expression vector for cell i at time t, with d representing the number of
genes relevant to a particular metabolic pathway.

• Gt ∈ Rd×|Bt|: Gene-expression matrix at time t for the set of cells Bt.

A.3 METABOLIC QUANTITIES

• mf
i,t ∈ Ru: Metabolic-flux vector for cell i at time t, with u representing the number of

modules.

• mb
i,t ∈ Rv: Metabolic-balance vector for cell i at time t, with v representing the number of

metabolites.

• Mf
t ∈ Ru×|Bt|: Matrix of metabolic-fluxes for the set of cells Bt at time t.

• Mb
t ∈ Rv×|Bt|: Matrix of metabolic-balances for the set of cells Bt at time t.

A.4 GENE-KNOCKOUT QUANTITIES

• S: The subset of gene-knockout configurations sampled.

• k: The number of most expressed genes selected for knockout.

• g̃i,t,s ∈ Rd: Gene expression vector for cell i at time t under the s-th knockout configura-
tion (where s ∈ {1, . . . , S}).

• G̃t,s ∈ Rd×|Bt|: Gene-expression matrix at time t for the set of cells Bt under the s-th
knockout configuration.

• m̃f
i,t,s ∈ Ru: Metabolic-flux vector for cell i at time t under the s-th knockout configura-

tion.

• m̃b
i,t,s ∈ Rv: Metabolic-balance vector for cell i at time t under the s-th knockout configu-

ration.

• M̃
f

s,t ∈ Ru×|Bs,t|: Matrix of metabolic-fluxes for the set of cells Bt at time t under the s-th
knockout configuration.

• M̃
b

s,t ∈ Rv×|Bs,t|: Matrix of metabolic-balances for the set of cells Bt at time t under the
s-th knockout configuration.
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A.5 LATENT VARIABLES AND NEURAL ODE PROCESS

• L0(θl0): Latent distribution of the initial state of the hidden representation l0 for the cells,
parameterized by θl0 .

• D(θd): Latent distribution of an auxiliary control variable d, parameterized by θd, used to
control the trajectory of the latent variables.

• l(ti) ∈ Rz: Latent state at time ti evolved from l0 over time, where z denotes the latent
dimension.

A.6 NEURAL NETWORKS AND FUNCTIONS

• fθ: Neural network modeling the evolution of the latent state l(t) through a Neural ODE.
• gϕ: Neural network modeling the evolution of the hidden state in the irregularly sampled

case.
• µL0

(r), σL0
(r): Mean and standard deviation functions for the latent distribution L0, pa-

rameterized by the hidden representation r.
• µD(r), σD(r): Mean and standard deviation functions for the latent distribution D.
• µy(l(t)), σy(l(t)): Functions parameterizing the distribution of target outputs (gene ex-

pression, metabolic-flux, or balance) at time t, based on the evolved latent state l(t).
• λy(l(t)): Rate parameter for the Poisson distribution used to model gene-expression data.

A.7 DISTRIBUTIONS AND LOSS FUNCTION

• G(θg(t)): Distribution of gene expression at time t, parameterized by θg(t).

• Mf (θf (t)): Distribution of flux at time t, parameterized by θf (t).

• M b(θb(t)): Distribution of balance at time t, parameterized by θb(t).

• M̃f (θf (t)): Distribution of flux under gene-knockout at time t, parameterized by θf (t).

• M̃ b(θb(t)): Distribution of balance under gene-knockout at time t, parameterized by θb(t).
• Y (θt): General distribution (i.e., gene expression, flux and balance, and their gene-

knockout variations) at time t, parameterized by θt.
• ELBO: Evidence lower bound, the objective function used for model optimization, combin-

ing the log-likelihood of observed data and the Kullback-Leibler (KL) divergence between
the true and approximate posterior distributions.
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Figure 3: Different types of GPR relationships. G, E and R denote genes, enzymes and reactions,
respectively. Solid arrows are enzyme production, while dashed arrows denote catalyzing a reaction.

B BACKGROUND

B.1 FLUX BALANCE ANALYSIS

Flux balance analysis (FBA) is by far the most widely used computational method for analyzing
stoichiometric-based genome-scale metabolic models. In this section, we introduce the optimization
formulation of FBA and the meaning of the terms in the formulation. We refer readers to Maranas
& Zomorrodi (2016) for a more detailed description.

Static FBA. In its most general form, FBA is formulated as an LP problem (Dantzig, 2002) max-
imizing or minimizing a linear combination of reaction fluxes subject to the conservation of mass,
thermodynamic, and capacity constraints. The most widely used objective function in the FBA of
metabolic networks is the maximization of the biomass reaction flux built upon the assumption that
a cell is striving to maximally allocate all its available resources towards growth or maximizing the
biomass, which is a predefined reaction that includes all the components required for cell growth
like amino acids, nucleotides, lipids, and cofactors, etc. The formulation is as follows:

maximize z =
∑

j∈{biomass}
cjvj

subject to
∑

j∈J

Sijvj = 0, ∀i ∈ I

LBj ≤ vj ≤ UBj , ∀j ∈ J.

(3)

Equation 3 assumes that the time constants for metabolic reactions are very small, hence a pseudo
steady state constraint S · v = 0. Here, z is the combination of reaction fluxes involved in the
biomass, vj is the j-th reaction flux, I is the set of all reactants, J is the set of the reactions, Sij

is the stoichiometric coefficient of reactant i in reaction j. LBj and UBj are the lower and upper
bounds on the rate of flux for reaction j, which depend on several factors such as reversibility based
on Gibbs Free Energy (∆G), type of reaction, etc. These constraint values typically are hard to
determine since they need to be meticulously determined experimentally for each case.

Depending on the use case, the constraints and the objective change. For example, in the case of
simulating gene knockouts, we set vj = 0,∀j ∈ JKO, and gauge the gene essentiality via the GPR
relationships (see Figure 3), by targeting the biomass to be less than a threshold (no cell growth)
when we want to kill cells, e.g., cancer cells. In metabolic engineering, we want overproduction of
a target metabolic so our objective changes accordingly, and we can try different substrates, growth
conditions, and gene knockout/knockin combinations towards overproduction.
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Dynamic FBA. There are, however, processes where the time constants of the reactions are higher,
like in the case of transcriptional regulation (minutes) or cellular growth (several minutes or hours)
(Maranas & Zomorrodi, 2016). In such cases, the steady-state assumption S · v = 0 isn’t valid.
Mahadevan et al. (2002) forego this steady-state assumption and study dynamic flux balance analysis
in the context of Diauxic growth in E. Coli. Their study explores two separate formulations of
dynamic FBA, namely (a) Dynamic Optimization-based DFBA and (b) Static Optimization-based
DFBA. In (a), the optimization objective is integrated over the entire time duration via a dynamic
function, while in (b), the batch is divided into intervals, and the LP is solved at the starting timestep
of each interval. More precisely, (b) has the following formulation:

maximize z(t) =
∑

j∈{biomass}
cjvj(t)

subject to xi(t+∆T ) ≥ 0, ∀i ∈ I

vj(t) ≥ 0, ∀j ∈ J

ĉ(z(t))v(t) ≤ 0, ∀t ∈ [t0, tf ]

|vi(t)− vi(t−∆T )| ≤ v̇imax∆T, ∀t ∈ [t0, tf ], ∀i ∈ I

xi(t+∆T ) = xi(t) +
∑

j∈J

Sijvj∆T, ∀i ∈ I.

(4)

Here, z is the combination of reaction fluxes involved in the biomass, xi is i-th reactant balance, vj is
j-th reaction flux, I is the set of all reactants, J is the set of the reactions, and Sij is the stoichiometric
coefficient of reactant i in reaction j. In addition, ĉ is a function representing nonlinear constraints
that could arise due to consideration of kinetic expressions for fluxes, and t0 and tf denote the initial
and the final timestamps, respectively.

The static-DFBA formulation has much fewer parameters to solve for and is, therefore, more scal-
able. We would like to highlight the fact that static DFBA can be treated as a series of static FBAs
that are solved locally for each timestep. In our work, for estimating metabolic-flux from gene
expression using techniques from Alghamdi et al. (2021), we thus solve for flux values for each
timestep at the beginning of an interval.

B.2 SINGLE-CELL FLUX ESTIMATION ANALYSIS

Singe-cell flux estimation analysis (scFEA) (Alghamdi et al., 2021) is a computational method to
infer single-cell fluxome from single-cell RNA-sequencing (scRNA-seq) data. And we use it to esti-
mate metabolic-flux for the gene-expression data considered in our study. In scFEA, they reorganize
the metabolic maps extracted from the KEGG database (Kanehisa & Goto, 2000), transporter clas-
sification database (Saier et al., 2006), biosynthesis pathways, etc., into factor graphs of metabolic
modules and metabolites. We use the provided genes for metabolic pathway mappings in scFEA for
several organisms to estimate metabolic-fluxes.

Flux estimation is a neural network-based optimization problem where the likelihood of tissue-level
flux is minimized. In particular, the network iteratively minimizes the flux balance, L∗

k with respect
to each intermediate metabolite Ck:

L∗
k =

N∑

j=1

( ∑

m∈FCk
in

Flux(j)m −
∑

m′∈FCk
out

Flux
(j)
m′

)2

+
∑

k′

Wk′

N∑

j=1

( ∑

m∈F
C
k′

in

Flux(j)m −
∑

m′∈F
C
k′

out

Flux
(j)
m′

)2

.

(5)

Let Gm
j = {Gm

i1,j
, . . . , Gm

im,j} be the set of genes associated with metabolic module Fm, then here
Flux(j)m = fm

nn(Gm
j |θm), flux of Fm for j-th cell, is modeled as a multi-layer fully connected neural

network with input Gm
j and θm being the parameters. Here, Ck′ denotes the Hop-2 neighbors of Ck

in the factor graph. FCk

in and FCk
out are the set of modules involved in production and consumption

of Ck respectively. The optimization problem of scFEA can be thought of as finding the optimal
neural network configuration that gives us reaction fluxes from gene expressions, such that the total
flux regarding metabolites is minimized when considered across all tissues.

15



Published as a workshop paper at MLGenX 2025

C ALGORITHM PSEUDOCODE FOR GENE-KNOCKOUT EXPERIMENTS

Algorithm 1 Gene-knockout Flux and Balance Calculation

Require: Gene-expression dataset Gt for time t for a pathway with genes H = {g1, g2, . . . , gd},
number of most expressed genes k, number of subsets S

1: Identify the top k most expressed genes: Hk = {gi1 , gi2 , . . . , gik}
2: for j = 1, . . . , S do
3: Randomly sample subset Ss ⊆ Hk where |Ss| ≤ k/2
4: Set gi = 0 for all gi ∈ Ss and let the new dataset be G̃t

5: Calculate flux samples M̃f
t = Sf

t (G̃t) and balance samples M̃b
t = Sb

t (G̃t) using the
scFEA method described in Appendix B.2 for each knockout set Ss

6: Add the knockout information to samples m̃f = [m̃f , bg] and m̃b = [m̃b, bg] where bg is
a binary array such that:

bgi =

{
0 if gi is in the knockout set Ss,
1 otherwise.

7: end for
8: Divide {{m̃f

i,t}s,i∈Bt , {m̃b
i,t}s,i∈Bt}s∈{1···S} into train and test sets with different knockout sets

D CONSIDERED METABOLIC PATHWAYS

Alghamdi et al. (2021) reorganized metabolic reactions from the KEGG database (Kanehisa & Goto,
2000), including import and export reactions, into modules based on their topological structure. This
effectively simplifies the reaction system by grouping connected reactions into modules. Therefore,
when we refer to flux, it is in the context of a module.

Pathway Num Genes Num Metabolites Num Modules
M171 623 70 168

MHC-i 281 6 9

Iron-Ions 136 8 15

Glucose-TCACycle 84 11 15

Table 3: Illustration of considered pathways with the number of genes, metabolites, and modules.

E DETAILS ON EXPERIMENTAL SETTINGS

Data. We use the gene-expression time-series dataset from Ori et al. (2021), which investigates the
differentiation of human pluripotent stem cells into lung and hepatocyte progenitors using single-
cell RNA sequencing to map the transcriptional changes during this process. The gene-count matrix
has dimensions 10667× 26936, with 10667 cells and 26936 genes. The gene expression is counted
regularly across 16 days in batches with Bt being the index set of cells being counted on day t and
|B0|+ |B1|+ . . .+ |B15| = 10667. For each cell batch Bt and a given metabolic pathway, we only
consider genes responsible for encoding the metabolites from the pathway. Table 3 summarizes
the four metabolic pathways from Alghamdi et al. (2021) we considered in this study. Alghamdi
et al. (2021) considered the metabolic reactions from the KEGG database (Kanehisa & Goto, 2000),
import and export reactions, and reorganized them into modules based on the topological structure.
This reorganization is, in essence, the simplification of the system of reactions by coercing connected
reactions into a module. Thus, when we say flux we mean it with regard to a module.
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Hyperparameter. We vary the context length on the largest metabolic pathway, M171, to specify
the hyperparameter setup for context length and train-test splits (see Appendix E.1). We observe that
setting the context length as 8 had a small test-MSE, corresponding to a 80/20 split for train and
test timesteps available. Thus for the experiments below, we set our context as IC = {0, 1, . . . , 8}
and our target as IT = {0, 1, · · · , 12}, while at inference, we predict for all the timesteps IV =

{0, 1, . . . , 15}. Our training input is a sample y ∼ Π
|T |
t=0Y (θy(t)) with context being y[0 : |C|] and

target being y[0 : |T |]. And during testing, we sample y ∼ Π
|V|
t=0Y (θy(t)). For gene-knockout

experiments, we set the train-test split of gene-knockout subsets as 80/20.

Gene-knockout. Gene-knockout experiments are meant to simulate the effect of disturbances in
the pathway, such as the effect of any drug or environmental stress. Algorithm 1 in Appendix C
describes the algorithmic form for our creation of knockout data. We model this by assuming that
the gene expression level is correlated with how sensitive the metabolic pathway is with respect
to the enzymes/proteins encoded by the gene. We consider k most-expressed genes in the dataset
and sample random subsets of these k genes with the maximum cardinality of k//2. We call these
random subsets as knockout sets where the gene expression for the genes contained is set to zero.
We again calculate flux samples using scFEA (Appendix B.2) corresponding to each of knockout
set, with train and test containing data corresponding to different knockout sets. In our experiments,
we set k = 20 and the number of subsets S = 5 for all pathways.

Metric. We use the MSE to measure model performance in predicting unseen timesteps of time-
varying distributions. For interpreting MSE, consider samples s ∼ Ys and s∗ ∼ Ys∗ , where Ys is the
learned distribution, and Ys∗ is the ground-truth distribution, where s, s∗ ∈ R. Let µr and Var(r)
be the mean and variance for any random variable r. Mean Squared Error (MSE) is given by:

E
[
(µs − s∗)

2
]
= E

[
µ2
s + s∗

2 − 2µss∗
]
= Var(s∗) + (µs − µs∗)

2.

Assuming independence between dimensions, MSE =
∑d

i=1 Var(s∗, i)+(µs,i−µs∗,i)
2 for s ∈ Rd.

Since gene-expression data is usually very sparse (Figures 5a and 5b) and we observe the estimated
flux and balance are of low variances (Figures 5c and 5f), minimizing MSE essentially boils down
to bringing the model means µ closer to ground-truth mean µ∗. Besides, 1-Wasserstein distance
is often used as a metric to assess the quality of generated samples with ground truth (Arjovsky
et al., 2017) and can be interpreted as the minimum energy cost of transforming one probability
distribution to another. We provide its evaluations in Appendix G, which reveal similar trends with
our MSE experiments.

Irregular Samples. Data collection is often irregular since it involves temporal profiling of gene
expression (Rade et al., 2023; Nouri et al., 2023). To account for this, we conduct experiments
where a random fraction of timesteps is masked by setting their values to zero. During training,
we concatenate the data with a binary mask—where zero indicates missing data and one indicates
presence—for each batch from the context IC and target IT . During testing, we evaluate points only
when the mask is one. Unseen future timesteps always have a mask of one, simulating scenarios
where future predictions must be made despite irregular prior observations.

Figure 4: Curve plot of final test-MSE (in log scale) vs. context length.
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E.1 EFFECT OF VARYING CONTEXT LENGTH

To perform our experiments in Section 4, we need to know how many context-target timesteps our
model needs to be able to predict the remaining time steps properly. For this, we used the gene-
expression data of the M171 pathway since it is the largest, and for a context length C, our extra
target length is C//2. In Figure 4, we see that our model is able to learn optimally after C = 6
context steps or C + C//2 = 9 total steps. With little context, the model essentially learns next-
step prediction (e.g., for C = 2 or 3, C//2 = 1), which does not perform well. This experiment
thus validates that with enough context, our model can learn the latent dynamics and can be used to
generate data from future unseen timesteps.

F DATASET VISUALIZATION

(a) Gene-Expression: ALDOA (b) Gene-Expression: GGCT

(c) Flux: M23 (d) Flux: M112

(e) Balance: Glutamine (f) Balance: Threonine

Figure 5: Kernel density estimate plots for the time-varying distributions of some gene, metabolite
balance, and module flux from the largest metabolic pathway M171 for the first five days.
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G ADDITIONAL EVALUATION TABLES & FIGURES

This section provides all the tables and figures mentioned in Section 4, including results for gene-
expression dynamics prediction tasks (Tables 4 and 5), comparison results for metabolic-flux and
metabolic-balance under 1-Wasserstein distance (Tables 6 and 7), and heatmap visualizations for
summarized statistics of SNODEP’s improvement over other methods (Figures 6 and 7).

Table 4: Comparison of MSE for gene expressions under regular conditions.

Method MHC-i M171 Iron-Ions Glucose-TCACycle

LODE 0.214 0.178 0.972 0.592
RNN-VAE 0.225 0.204 0.937 0.739
NP 0.215 0.188 0.899 0.628
NODEP 0.203 0.173 0.872 0.599
SNODEP 0.189 0.149 0.692 0.435

Table 5: Comparison of 1-Wasserstein distance for gene expressions under regular conditions.

Method MHC-i M171 Iron-Ions Glucose-TCACycle

LODE 8.034 11.372 11.491 7.825
RNN-VAE 7.556 10.687 10.966 7.293
NP 8.773 11.221 9.205 6.115
NODEP 8.278 11.009 8.744 5.740
SNODEP 7.846 10.266 8.845 5.572

Table 6: Comparisons of 1-Wasserstein distance for metabolic-flux under various conditions.

1-Wasserstein Distance without Gene-Knockout

Method
MHC-i M171 Iron-Ions Glucose-TCACycle

1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4

LODE 0.47 0.48 0.48 0.47 0.21 1.39 1.15 1.13 0.50 0.53 0.52 0.50 0.41 0.43 0.42 0.41
RNN-VAE 0.46 0.42 0.41 0.39 0.44 0.60 0.54 0.52 0.49 0.52 0.51 0.48 0.40 0.45 0.44 0.42
NP 0.32 0.37 0.36 0.36 1.30 1.30 1.30 1.30 0.43 0.46 0.46 0.45 0.45 0.44 0.44 0.43
NODEP 0.17 0.26 0.25 0.25 0.13 0.18 0.17 0.17 0.22 0.30 0.30 0.28 0.21 0.26 0.25 0.25
SNODEP 0.14 0.25 0.24 0.22 0.10 0.20 0.20 0.21 0.18 0.30 0.29 0.23 0.17 0.27 0.26 0.21

1-Wasserstein Distance with Gene-Knockout

LODE 16.71 16.80 16.75 16.75 25.30 25.20 25.12 25.12 11.39 11.36 11.35 11.35 8.72 8.71 8.71 8.71
RNN-VAE 15.58 15.41 15.21 14.75 23.35 23.09 22.79 22.10 10.76 10.62 10.47 10.15 8.18 8.10 8.00 7.76
NP 3.04 3.13 3.18 6.15 3.83 3.90 4.43 11.17 2.87 2.90 3.10 4.25 2.89 3.09 3.13 3.33
NODEP 0.90 2.17 2.53 5.55 1.96 2.89 4.13 10.94 1.08 2.26 2.42 2.41 0.36 2.46 2.47 2.46
SNODEP 2.06 2.12 2.11 2.10 2.02 2.19 2.26 2.19 1.15 2.24 2.25 2.23 0.87 2.47 2.46 2.47
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Table 7: Comparisons of 1-Wasserstein distance for metabolic-balance under various conditions.

1-Wasserstein Distance without Gene-Knockout (×10−2)

Method
MHC-i M171 Iron-Ions Glucose-TCACycle

1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4

LODE 13.5 16.7 16.3 16.9 9.9 51.8 43.1 42.3 31.2 34.7 33.2 32.5 22.3 20.0 20.0 19.9
RNN-VAE 13.0 12.5 12.6 12.2 24.8 35.3 31.5 31.5 34.3 29.1 28.5 26.9 21.9 23.6 23.1 22.3
NP 21.4 20.8 20.8 20.7 82.8 82.6 82.7 82.6 27.4 28.6 28.4 28.2 33.8 30.5 30.5 30.4
NODEP 7.1 8.2 8.2 8.8 8.1 10.3 10.2 9.6 16.5 20.7 20.7 19.9 16.3 16.4 16.6 15.8
SNODEP 5.2 8.5 8.5 8.6 8.0 11.1 11.3 11.8 13.1 20.5 20.3 16.9 12.6 15.8 15.8 15.4

1-Wasserstein Distance with Gene-Knockout (×10−2)

LODE 1679.3 1685.1 1679.0 1678.6 2525.7 2522.5 2512.7 2512.0 1142.5 1138.7 1138.0 1138.0 875.9 867.3 866.9 866.8
RNN-VAE 1562.4 1536.3 1516.3 1470.1 2330.1 2324.9 2295.4 2226.5 1065.4 1052.1 1039.4 1007.5 814.8 812.1 801.8 777.3
NP 302.9 303.8 353.7 563.7 369.3 379.1 541.3 1272.2 292.9 292.4 300.3 385.9 280.3 307.4 308.8 309.1
NODEP 85.1 233.6 289.8 440.4 178.8 270.3 379.2 1026.4 152.3 230.5 235.3 255.7 21.0 246.0 247.4 244.5
SNODEP 203.3 210.2 209.4 210.7 204.5 220.4 218.5 218.1 165.4 222.7 222.4 221.6 118.9 246.7 243.8 243.9

Figure 6: Heatmap for ∆ improvement of SNODEP with respect to MSE.

Figure 7: Heatmap for ∆ improvement of SNODEP with respect to 1-Wasserstein distance.
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