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ABSTRACT

Text-to-Image (T2I) models have achieved great success in generating high-
quality images with diverse prompts. The emerging personalized textual embed-
ding technology further empowers T2I models to create realistic images based on
users’ personalized concepts. This leads to a new AI business, with many commer-
cial platforms for sharing or selling valuable personalized embeddings. However,
this powerful technology comes with potential risks. Malicious users might ex-
ploit personalized textual embeddings to generate illegal content. To address this
concern, these public platforms need reliable methods to trace and hold bad actors
accountable. In this paper, we introduce concept watermarking, a novel approach
that embeds robust watermarks into images generated from personalized embed-
dings. Specifically, an encoder embeds watermarks in the embedding space, while
a decoder extracts these watermarks from generated images. We also develop a
novel end-to-end training strategy that breaks down the diffusion model’s sam-
pling process to ensure effective watermarking. Extensive experiments demon-
strate that our concept watermarking is effective for guarding personalized textual
embeddings while guaranteeing their utility in terms of both visual fidelity and
textual editability. More importantly, because the watermark exists at the concept
level, it is robust against different processing distortions, diffusion sampling con-
figurations, and adaptive attacks. Ablation studies are also conducted to validate
the design rationale of each key component.

1 INTRODUCTION

With the rapid progress of generative models and cross-modal visual and language representation
learning (Radford et al., 2021; Weng et al., 2023), it becomes remarkably simple to create high-
resolution and realistic images from natural language descriptions (Dhariwal & Nichol, 2021; Nichol
et al., 2022; Wei et al., 2022; 2023; Ramesh et al., 2022; Saharia et al., 2022; Rombach et al., 2022).
We have witnessed the emergence of diverse Text-to-Image (T2I) generative models, represented by
the diffusion model (Ho et al., 2020) and its variants. Although powerful, these T2I models have
limited capabilities to handle the generation tasks with update-to-date or personalized concepts.
Examples of such concepts include an ordinary person in our daily life, a unique object, or an
artistic style that has never been seen before (Richardson et al., 2023). It is urgent to grant the T2I
models the capability of generating arbitrary concepts.

To achieve this, researchers proposed some lightweight personalization techniques to customize T2I
models (Gal et al., 2022; Ruiz et al., 2023; Kumari et al., 2023; Gal et al., 2023; Shi et al., 2023).
One of the most popular solutions is Textual Inversion (TI) (Gal et al., 2022), which trains a per-
sonalized textual embedding for one specific concept. This textual embedding can be seamlessly
integrated into a T2I model to generate images of this concept. Figure 1 (a) shows an example
of such technique. The Stable Diffusion (SD) model is unable to generate a correct image of the
“Toronto Tower” because its training dataset does not provide a sufficient impression of it. To ad-
dress this, we can prepare a few images of the Toronto Tower and use them to train the personalized
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Figure 1: (a) Textual Inversion empowers Stable Diffusion to produce more realistic images via per-
sonalized textual embeddings (highlighted in blue). (b) The concept sharing scenario and its poten-
tial misuse, e.g., generating unsafe images and inducing copyright infringement. (c) The overview
of concept watermarking for tracing the misuse of personalized concept (i.e., textual embedding).

textual embedding of the concept “Tor-tower.” This textual embedding can then be added to the em-
bedding dictionary of the SD model. Consequently, this enhanced SD model can generate images
of the Toronto Tower using prompts like “A photo of Tor-tower.”

The advent of textual embedding fosters a new AI business. As training textual embeddings require
a certain level of expertise in data collection and hyper-parameter configuration, new commercial
platforms emerge for the sharing or sale of various personalized concepts in the form of textual
embeddings. For instance, CivitAI (Civitai) is a popular website for AI content creators to share
their personalized concepts, with 3 million registered users. PromptHero (prompthero) is the top-1
website for prompt engineering, offering the sharing of personalized textual embeddings. Hugging-
Face (Huggingface), one of the most popular AI communities, provides a wide range of personalized
concepts uploaded by users. Figure 1 (b) describes the common scenario of concept sharing, wherein
there are three parties: 1) the concept owner owns some valuable personalized textual embeddings
representing novel concepts; 2) the concept-sharing platform allows the concept owners to upload
their valuable concepts for sharing or for profit; 3) the concept user can download/buy his desired
concept and plug it into the off-the-shelf T2I model (e.g., SD model) for generating images with this
new concept.

Problem Statement. Unfortunately, the personalized textual embedding technique and concept-
sharing paradigm bring new security concerns. They can exacerbate the potential misuse of genera-
tive models, allowing malicious users to generate harmful or illegal content of more concepts with
less effort. Figure 1 (b) shows two examples of such misuse. (1) A malicious user can download
concepts representing landmarks to create dangerous fake images to cause public panic or concepts
representing specific characters to produce violent, nude, or inappropriate images (not shown here
due to ethical concerns). (2) A malicious user can leverage these concepts to generate images in
similar styles without giving proper credit to the original authors, which may constitute copyright
infringement (cri) and significantly affect the motivation of creative creators.

The concept-sharing platform is responsible for detecting the violations of the terms-of-use (ToU)
and tracing the misuse of their concepts. A promising solution is to apply watermarking to person-
alized concepts. Adding watermarks to AI-generated content has increasingly become a consensus
among large tech-companies and governments (OpenAI; Walker; Whitehouse). In our context, as
shown in Figure 1 (c), the platform can integrate distinct watermark strings into the pristine concept
embeddings to get different concept versions for different users. Subsequently, for any suspicious
image on the Internet, the platform can apply a private decoder to extract the watermark from it.
Based on the watermark information, it can trace the malicious user and provide evidence for foren-
sics and accountability.

Challenges. However, it is non-trivial to achieve an effective concept watermarking. The Stable
Diffusion official repository (Diffusion) lists some watermarking methods as options, e.g., DWT-
DCT (Rahman, 2013), DWT-DCT-SVD (Rahman, 2013), and RivaGAN (Zhang et al., 2019). Re-
searchers have also proposed more advanced watermarking solutions including StegaStamp (Tancik
et al., 2020), CIN (Ma et al., 2022), and RoSteALS (Bui et al., 2023). However, these solutions
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are mainly used for the protection of conventional image media. When applied to the personalized
textual embedding scenario, they all fail (as displayed in Table 1). This is mainly due to the unique
features of textual embeddings and its extra requirements for concept watermarking:

1. Fidelity. For traditional image watermarking, fidelity means preserving the original visual quality
of the watermarked images. However, concept watermarking has an extra fidelity requirement:
preserving the generation ability and editability of the watermarked embeddings. Conventional
techniques embed watermark patterns at the pixel level, which could easily get lost during the
training process of personalized textual embedding.

2. Robustness. Prior image watermarking methods mainly consider the robustness against some dig-
ital post-processing distortions (e.g., affine transformations and JPEG) and cross-channel trans-
mission distortions (e.g., printing and scree-shooting), which are all at the pixel space. However,
concept watermarking faces more severe distortions such as the change of layouts and back-
grounds guided by diverse prompts. Moreover, it is required to resist different diffusion processes
with diverse sampler methods, configurations, model versions, etc.

Thus, it is important to design a new watermarking solution tailored to personalized embeddings.

Contributions. To address the above challenges, we present a new watermarking methodology
with innovative designs of training strategies, model architectures, and loss functions. First, to bal-
ance the trade-off between fidelity and watermark extraction effectiveness, we adopt a progressive
training strategy that initially achieves acceptable fidelity before refining for effectiveness. Also,
considering the practical scenario where the concept-sharing platform has limited training images
of the concept owner, we introduce a sampling-online training framework. This framework back-
propagates gradients based on denoised results, strategically detaching gradients at suitable points
to ensure computational efficiency (see Figure 2 and Sec. 4). Second, since model architecture sig-
nificantly impacts fidelity (see Table 4), we employ the best U-Net with long-range skip connections
as our watermark encoder. Third, besides pixel-level distortions, the malicious user may deliber-
ately add distortion to the watermarked concept to remove the watermark. Therefore, we design a
contrastive loss to improve the robustness against such embedding level distortions (See Table 6)
to remedy this threat. Extensive experiments demonstrate that our proposed concept watermarking
approach can effectively guard Textual Inversion against malicious usage. Specifically, our concept
watermarking exhibits great robustness against different diffusion sampling configurations, such
as samplers, sampling steps, CFG scales, and base models. It is also inherently robust against most
pixel-level distortions as it is added within the highly compressed semantic space of the text encoder.
Furthermore, it can resist some potential adaptive attacks. Many ablation studies are conducted to
verify our key designs.

In summary, the primary contributions of our work are concluded as follows:

• We point out the necessity of tracing the misuse in the scenario of concept sharing and propose
the novel concept watermarking as a feasible solution.

• To overcome the challenges for concept watermarking, we adopt a progressive training strategy
to satisfy fidelity and explore different decoder architectures for effective forensics. To resist
deliberate concept-level distortion, we design a contrastive loss.

• Extensive experiments demonstrate that our proposed method is effective for protecting textual
embeddings comprehensively when facing various attacks. We also conduct many ablation stud-
ies to justify our elaboration.

2 PERSONALIZED TEXTUAL EMBEDDING

The mainstream SD model has a fixed and finite knowledge base. It is unable to generate many
unique and emerging concepts (e.g., Toronoto Tower in Figure 1 (a)), which appear less frequently
in its training data. To adapt to users’ diverse demands, it is an urgent requirement to enhance
the model’s knowledge with arbitrary concepts efficiently, an operation we typically refer to as
personalization.

Researchers have proposed many personalization techniques, e.g., Textual Inversion (Gal et al.,
2022), DreamBooth (Ruiz et al., 2023), Lora-DreamBooth (Hu et al., 2021). Among them, Textual

3



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Inversion (TI) is the most attractive method. We only need to train a textual embedding for one spe-
cific concept, which can be seamlessly integrated into existing SD models to generate high-quality
images with this new concept. TI offers several advantages over other personalization methods. (1)
Lightweight: a textual embedding has a much smaller size, making it easy to share. For instance, a
textual embedding for SD version 1.5 is approximately 30KB, whereas a personalized model fine-
tuned using Dreambooth is more than 5 GB. (2) User-friendly: as a plug-in method, a user only
needs to add the embedding to the embedding folder of the SD model, which can then generate the
output with the desired concept. Due to these appealing features, we are witnessing many online
platforms for users to share or sell their valuable concepts in the form of textual embeddings (Civitai;
Huggingface; Patreon).

Technically, in order to create a textual embedding for a personalized concept with Textual Inversion
(Gal et al., 2022), we need to prepare a few images with the target concept. Then, we optimize
a textual embedding s∗ based on a frozen SD model ϵθ by minimizing the distance between the
generated and targeted images. This is formulated as follows:

s∗ = argmin
s

Ez0∼E(x),y,ϵ∼N (0,I),t

[
∥ϵ− ϵθ (zt, t, τθ′,s(y))∥22

]
, (1)

where x is one image from a set of the target images and y is the condition (i.e., different prompts),
τ is the text-encoder. This optimization process allows the textual embedding s∗ to capture some
detailed features of the target concept. Since s∗ does not correspond to any existing vocabulary
in any language, it is referred to as a pseudo-word embedding. In other words, the pseudo-word
embedding s∗ can be considered as the textual representation of the target concept.

We also provide preliminary of diffusion models in Appendix A.2

3 RELATED WORK ABOUT WATERMARKING

Watermarking is a common solution for the copyright protection of multimedia. In the era of gen-
erative AI, this technology is applied to guard the AI-Generated Content. Specifically for T2I tasks,
we can add watermarks on the generated images before releasing them to the public. These water-
marks can be later extracted for multiple purposes: e.g., distinguishing if an image is AI-generated
or real, identifying the harmful generated images, and tracing the malicious users, etc. Many large
tech companies and government have adopted this proactive detection strategy (OpenAI; Walker;
Whitehouse). Existing watermarking methods for AI-generated images can be categorized into two
types1: (1) post-hoc watermarking: this strategy applies conventional methods to add watermarks
on the images after they are generated. For example, the SD official repository (Diffusion) pro-
vides watermarking options with some suggested methods such as DWT-DCT (Rahman, 2013),
DWT-DCT-SVD (Rahman, 2013), and RivaGAN (Zhang et al., 2019). (2) Watermarking with dif-
fusion: this strategy combines the watermark embedding with the image generation (i.e., diffusion)
process, achieved by modifying certain components of the diffusion models. For instance, we can
adjust the diffusion sampling process to learn a specific watermarked sampling (Wen et al., 2023;
Alemohammad et al., 2023), or embed watermarks into the Variational Autoencoder of the SD mod-
els (Fernandez et al., 2023). After that, images generated by these models will inherit the desired
watermark automatically.

These methods may work well for the base SD models. However, when applied to personalized
embeddings, they become completely ineffective. Firstly, these methods require full control over
the sampling process when using the Stable Diffusion model, to add watermarks either during or post
diffusion. This prerequisite is not met in our context, as concept users employ the concepts locally,
so the concept sharing platform cannot add the watermarks. Secondly, utilizing image watermarking
techniques to train Textual Inversion proves unsuccessful (see our evaluations in Sec. 5.2). This is
mainly because they fail to satisfy the extra requirements introduced by the personalized process,
where concepts are compressed into high-dimensional embedding spaces. To combat these, for the
first time, we introduce a novel concept watermarking approach, dedicated to the protection
of personalized embeddings.

1Note that in addition to protecting the AI-Generated Content, watermarking can also be used for the copy-
right protection of diffusion models (Zhao et al., 2023; Liu et al., 2023) and training datasets (Zhao et al., 2023;
Cui et al., 2023). These methods have totally different goals from ours, and hence are not considered in this
paper.
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Figure 2: The overall framework of our proposed concept watermarking. ⊕ and ⊗ represent con-
catenate and cosine-similarity respectively. In the training stage, we jointly train the Encoder and
Decoder to embed watermarks into the Textual Inversion embedding with online sampling, while
ensuring the generation of semantically coherent images Ic and Iw. In the verification stage, we use
different diffusion configurations, and the watermark can be extracted from the generated images
Ix.

4 METHODOLOGY

4.1 OVERVIEW

The overall pipeline of our methodology is illustrated in Figure 2, which consists of two stages. In
the training stage, the encoder and decoder are jointly trained. Specifically, for each iteration, a
random bit string message m is first mapped to the hidden dimension size of concepts and then con-
catenated with the original concept, serving as the input for the encoder E. The encoder incorporates
the watermark into the embedding, i.e., substituting the original embedding with the watermarked
embedding for the corresponding tokenized prompts. The diffusion model accepts the encoded
prompts with the original concept and watermarked concept as input, and generates both clean and
watermarked images. The decoder D aims to successfully extract the corresponding embedded wa-
termark. In the verification stage, we aim to extract the corresponding message from the generated
images based on the watermarked concept, under different prompts and diffusion configurations.

4.2 TRAINING STAGE

4.2.1 WATERMARK EMBEDDING

This step is responsible for encoding the input bit string to the original Textual Inversion concept,
meanwhile guaranteeing the utility of the watermarked concept.

Our watermark encoder, denoted as E, accepts the Textual Inversion concept s ∈ Rκ×dτ and the
watermark message m ∈ {0, 1}q as its inputs. In order to match the size of the Textual Inversion
embedding, we employ a linear layer to map the bit message m to the same size as the embedding
size dτ . Here, κ signifies the number of tokens in the concept, dτ denotes the representation dimen-
sion of the text encoder, and q indicates the length of the watermark bit string. Following this, the
mapped message and embedding are merged to form a representation of dimension R(κ+1)×dτ . By
treating κ + 1 as the channel, dτ as the sequence length for 1D conv, the U-Net structure can be
utilized to enable the effective encoding of the message within the Textual Inversion concept. We
discover that long-range skip connections in U-Net can effectively control the distance between the
watermarked and original Textual Inversion embeddings, resulting in high editability. More results
with different architectures can be found in the ablation study in Sec. 5.4.
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For training, we incorporate a regularization loss that calculates the L2 distance between the original
embedding s and the watermarked embedding sm = E(s,m):

LReg = ∥s− E(s,m)∥22, (2)

whose purpose is to facilitate the rapid convergence of the encoder output to the original embedding
in the early training stage, enabling a favorable starting point and significantly accelerating the
training process.

Additionally, to improve the embedding-level robustness, we devise a contrastive loss, which aims
to increase the distance between Textual Inversion embeddings with different watermarks. Its cal-
culation is similar to the contrastive learning (Chen et al., 2020) manner, but involves only negative
pairs. The similarity is defined as the cosine values of two vectors. The formulation is as follows:

ri =
E(s,mi)− s

∥E(s,mi)− s∥2
, i = {1, ..., N}, (3)

LCst =
1

N(N − 1)

N∑
i,j=0,i̸=j

⟨ri, rj⟩, (4)

where N denotes the batch size and mi refers to the i-th watermark message employed by the en-
coder. Incorporating this loss can increase the distance between different watermarked embeddings.
In this way, when an attacker directly manipulates the embedding, it is less likely to fall into the
decision boundary of another watermark message. Our ablation study in Sec. A.10 will demonstrate
this.

4.2.2 SAMPLING ONLINE TRAINING

We select Stable Diffusion (Rombach et al., 2022) as our generative model. During training, we
freeze the parameters of the diffusion model ϵθ(zt, t,y), where y represents the text condition.
Since the concept sharing platform cannot access the original training images of the concept, it is
essential to introduce a sampling process. The nature of iterative denoising in diffusion results in
a lengthy backpropagation distance and significant memory and computation costs if we keep the
gradient undetached. To make the watermark training viable, we maintain differentiability only
during the last k steps of the sampling process (e.g., DDPM in Eq. (12) and Eq. (13)). Previous
studies on diffusion models inspire this approach (Balaji et al., 2022): the model mainly focuses on
the image layout in the early stage of diffusion model sampling, and gradually shifts the attention to
producing high-fidelity visual outputs on details in the later stage.

When the gradient is calculated, it is influenced only by the last k steps. However, the output after
the update, Eθ+∆θ, affects all sampling steps. Our solution is to keep a small learning rate and
the sampling process online, to ensure that this misalignment can be addressed in the subsequent
sampling process. During the training process, we let the diffusion model simultaneously forward
multiple embeddings in a single mini-batch, including an original embedding and several embed-
dings with different randomly generated bit strings as watermark messages. The generated images
from the watermarked embeddings must reflect the same concept as the original embedding. A
compelling model is Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021). After
being pre-trained on 400 million image-text pairs, it is highly effective at reflecting the similar-
ity between high-dimensional semantics of images. We employ the CLIP model to calculate the
cosine-similarity loss, which constrains the similarity between the watermarked image and the orig-
inal image:

LCLIP = − 1

N

N∑
i=1

⟨ECLIP(I
c), ECLIP(I

w
i )⟩

∥ECLIP(Ic)∥2 · ∥ECLIP(Iwi )∥2
, (5)

where Ic and Iw denote the clean image and watermarked image, ECLIP denotes the CLIP vision
encoder.

4.2.3 WATERMARK EXTRACTION

In the watermark extraction phase, the decoder D receives watermarked images generated by the
diffusion model and aims to extract the embedded watermark from these images. We employ
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EfficientNet-B3 (Tan & Le, 2019) pretrained on ImageNet (Deng et al., 2009) as our watermark
decoder. We define q as the number of the message-bits encoded into the watermark and turn the
output dimension of D into size 2q. Then, we compute the Binary Cross Entropy (BCE) between
the output logits lj of the decoder D and the pre-defined watermark message m:

lj = softmax(D(Iw)(2j−1), D(Iw)(2j)), (6)

LMsg =
1

q

q∑
j=1

BCE(m(j), lj). (7)

During the inference stage, we only need to compare the values of l2j−1 and l2j to determine whether
the bit m(j) at index j should be 0 or 1. In addition, we assign an all-zero message for images
generated by the original concept.

4.2.4 TRAINING DETAILS

In the training phase, we design a progressive loss function to tackle the challenges in concept
watermarking. In the early iterations of training, we add a strong LReg term to ensure that the output
of the encoder quickly fits the Textual Inversion embedding, which contains the original concept.
After that, we remove the LReg term and only keep LCLIP, LMsg and LCst. Specifically, we maintain
a counter u that is decreased by 1 when LReg is below a specified threshold h. When the counter
becomes less than 0, it indicates that the encoder’s output is at a favorable starting point. At this
point, we remove the LReg term. Experimentally, this training strategy significantly accelerates the
fitting speed and produces better results. In general, our loss function can be formulated as follows:

LTotal =

{
LCLIP + LMsg + λLReg + µLCst if u > 0
LCLIP + LMsg + µLCst else ,

(8)

where λ, µ are hyper-parameters to weight each term.

4.3 VERIFICATION STAGE

In the verification stage, the concept sharing platform leverages the decoder D to extract the water-
mark messages from the suspicious images Ix, and then traces back to the malicious users based on
its record of watermark bits and user identification. Our watermarks exhibit strong generalization
and robustness. Even the suspicious images are generated with different prompts, diffusion mod-
els, and configurations (including sampler, sampling steps, CFG scales), the decoder is still able to
extract the watermarks from them accurately if they are from the watermarked embeddings.

Note that our method handles each concept individually, using different watermark decoders
for different concepts. If a unified decoder were used, considering a scenario where two concepts
(m1 and m2) are combined in the same image, attempting to extract either m1 or m2 would lead to
an ill-defined problem. Conversely, if different decoders are used, then decoder D1 can extract m1

and decoder D2 can extract m2 from the same image.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Dataset. We collected and curated various types of concepts from online sources as our test subjects.
Among them, 3 concepts are specific individuals, 2 are related to art styles, and 2 are about certain
objects, including vehicles and rare items. The types of the tested concepts cover mainstream Textual
Inversion concept types to a large extent.

For the prompt to generate images, we apply basic prompts such as (“A photo of S*”) as references
and employ the GPT-3.5 model (Ouyang et al., 2022) to generate more prompt templates that en-
compassed a wider range of scenes. This approach can involve more prompts in the training process,
allowing the watermark to be preserved better in the generated images when the concept is applied
to different prompts. More details of prompt generation can be found in Appendix A.15.
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Previous Methods. Currently, there are no watermarking methods dedicated to concept water-
marking. People may first consider whether existing watermarking methods can be generalized
to this new scenario. We added watermarks to the images in the training dataset for Textual In-
version, then trained the Textual Inversion model to learn the watermarks from the dataset. Upon
completing the training, we sampled images and attempted to extract the watermarks from them.
We conducted experiments using DWT-DCT-SVD (Rahman, 2013), RivaGAN (Zhang et al., 2019),
StegaStamp (Tancik et al., 2020), and the latest methods CIN (Ma et al., 2022) and RoSteALS (Bui
et al., 2023) as representative image watermarks.

Evaluation Metrics. To evaluate our proposed method, we adopt three types of metrics as follows:
Watermark Extraction Ability, Visual Fidelity, and Textual Editability.

More details are provided in Appendix A.1.

5.2 EFFECTIVNESS & FIDELITY

5.2.1 EFFECTIVNESS

Table 1: Evidence shows that previous water-
marking methods failed on this task. Our meth-
ods can effectively inject watermarks into a highly
compressed embedding space.

Method Bit Acc.(%)↑ TPR(%)↑ CLIP-T↑ CLIP-I↑

Original TI - - 25.97 81.70

DWT-DCT-SVD (Rahman, 2013) 49.88 0.0 24.80 81.61
RivaGAN (Zhang et al., 2019) 47.80 0.1 24.28 81.33
StegaStamp (Tancik et al., 2020) 47.31 0.0 21.80 78.38
CIN (Ma et al., 2022) 51.85 0.0 25.08 80.54
RoSteALS (Bui et al., 2023) 55.93 0.1 25.01 81.62

Ours 99.75 98.91 25.04 80.54

Table 1 shows our method and the previous wa-
termarking approaches in terms of the bit ac-
curacy (Bit Acc.) and true positive rate (TPR)
at the controlled false positive rate (FPR).
It shows that previous watermarking methods
could not perform well on this task.

For former methods, their primary failure is due
to watermark patterns manifested at the pixel
level and embedded in high frequency for im-
perceptibility. In contrast, Textual Inversion op-
erates in a highly compressed semantic space.
Therefore, these watermark patterns easily get
lost during TI training. Our method directly
adds watermarks to the existing textual embed-
dings, placing the watermark at the concept
level, which makes it successful.

5.2.2 VISUAL FIDELITY

Figure 3 illustrates qualitative examples of the images generated by watermarked Textual Inversion
embeddings and the original Textual Inversion embeddings. Perceptually, they are indistinguishable
at the concept level, which qualitatively illustrates our approach does well in adding watermarks to
concepts while maintaining their reconstruction. More visual results are provided in Appendix A.16.

In Table 1, we present the quantitative results, where the calculation for image alignment (CLIP-I)
of the original concept was computed by generating 128 images independently using the original
concept with the basic prompt and subsequently calculating pair-wise clip similarity between the
first 64 and the last 64 generated images. It sets an upper bound for this metric since the ultimate
goal is to be as similar to the original concept as possible. Consistent with the perception of visual
results, our method yields results that are very close to the upper bound.

5.2.3 TEXTUAL EDITABILITY

The right side of Figure 3 showcases the editability of the watermarked concept. Using different
prompts, the watermarked concept can generate images that align well with the textual descriptions,
just as the original concept does. Considering the numerical results, Table 1 shows that our approach
achieves favorable text alignment (CLIP-T) scores, indicating that the impact of our watermarks on
editability is minor. Although the watermark information could not be accurately extracted, the
image watermarking methods also demonstrate good editability in the Table 1. The good results
can be attributed to the fact that the added watermarks did not significantly impact the training
process. As a result, the generated Textual Inversion embeddings closely resemble the original
Textual Inversion embeddings, leading to very similar performance in the evaluation metrics.
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Original Concept Watermarked Concept

Gal

Gadot

Monet

style

Autumn

style

Porsche

911

“A photo of S* ”

“A photo of a S* ”

“A painting, art by S* ”

“A painting, art by S* ”

“A photo of S* in library holding a book ”

“Downtown Sydney at sunrise in the style of S* ”

“A photo of a teddy bear, art by S* ”

“A picture of a S* racing down a desert highway ”

Original Concept Watermarked Concept

Figure 3: Comparison between images generated by the original concept and the watermarked con-
cept under basic prompts and diverse editing prompts. We showcase three categories: person, style,
and object. Left: The results obtained from basic prompts demonstrate excellent preservation ability
of original concept semantics. Right: The results from diverse editing prompts showcase that the
concepts with added watermarks maintain the same level of editability as the original concepts.

Table 2: Robustness against different diffusion configurations. For each setting, we showcase the
average results. The gray cell denotes the default setting.

Configurations Bit Acc.(%)↑ TPR(%)↑ CLIP-I↑

Default 99.75 99.89 80.54

Diverse Editing Prompts 98.51 97.51 -

Sampler

DDIM 99.75 99.89 80.54
DDPM 99.36 99.41 80.21
DPM-S 99.11 99.10 79.70
Euler 99.75 99.74 80.15

Sampling Steps

14 98.55 99.10 80.05
25 99.75 99.89 80.54
38 99.33 100.0 79.52
50 99.78 100.0 79.56

CFG Scales
5.0 99.11 99.10 80.48
7.5 99.75 99.89 80.54
10.0 99.56 100.0 79.89

SD Versions

SD v1.5 99.75 99.89 80.54
SD v1.4 98.58 99.55 80.27

Deliberate (XpucT) 93.43 87.39 81.07
Chilloutmix (Anonymous) 91.19 79.68 79.54

5.3 ROBUSTNESS

We comprehensively assess the robustness of our method against various diffusion sampling con-
figurations and post-processing of generated images. In this section, we explore various settings
for the diffusion sampling process. We consider that users can utilize different prompts, samplers,
sampling steps, Classifier-Free Guidance (CFG) scales, and different SD versions. Table 2 shows
strong robustness against different configurations. More details can be founded in Appendix A.3.

5.3.1 POST-PROCESSING ON GENERATED IMAGES

Images typically undergo numerous transformations and processing during transmission. We eval-
uated common post-processing methods: color jitter, crop & resize, rotation, blur, Gaussian noise,
JPEG compress, and sharpness. Referring to Table 3, our method exhibits acceptable robustness

9



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Table 3: Robustness against various post-processing on generated images.

Post-processing Bit Acc.(%)↑ TPR(%)↑ CLIP-I↑

None 99.75 99.89 80.54
Color Jitter 98.55 98.42 77.75
Crop & Resize 99.28 97.93 79.65
Rotation 96.99 97.25 71.41
Blur 99.56 99.27 80.24
Gaussian Noise 95.43 97.15 79.04
JPEG Compress 98.16 97.89 80.08
Sharpness 96.88 98.15 77.34

in most cases. Some illustrations and detailed settings of post-processings can be found in Ap-
pendix A.11.

5.4 ABLATION STUDIES

We conducted many ablation studies on our pipeline, conducted on one concept for demonstration.

The Influence of Encoder Architecture.

In addition to U-Net, we further explore other options, including MLP and ResNet, with more details
of implementation in Appendix A.14.

Table 4: The influence of encoder architectures,
watermark bits and gradient-preserved steps. The
gray cell denotes the default setting.

Settings Bit Acc.(%)↑ TPR(%)↑ CLIP-T↑ CLIP-I↑

Architectures
U-Net 99.11 98.61 23.59 79.02
ResNet 95.63 98.04 23.46 80.10
MLP 73.90 7.03 22.71 81.16

Watermark Bits
4 99.91 100.0 23.01 81.79
8 99.86 99.61 22.80 81.25
12 99.29 98.83 24.01 80.49
16 99.11 98.61 23.59 79.02

Gradient Steps
1 68.50 18.41 24.85 81.19
2 83.19 23.14 24.08 80.15
3 99.11 98.61 23.59 79.02

From Table 4, we can observe that the MLP
encoder under 16-bit settings achieves a rela-
tively low extraction accuracy, making it un-
suitable for practical use. Furthermore, it un-
dergoes a significant decrease in CLIP-T, signi-
fying a considerable loss in editability, which is
unacceptable. While the ResNet encoder shows
excellent fidelity, its extraction accuracy and
CLIP-T are lower than U-Net.

We believe that U-Net’s long-range skip
connections assist in effectively constraining
the watermarked Textual Inversion embedding
within a region of high editability, which is why
it outperforms ResNet.

The Influence of Watermark Bits We evalu-
ated our pipeline’s performance by embedding 4, 8, 12, and 16 bits into Textual Inversion embed-
dings, examining the extraction ability, fidelity, and editability. Table 4 presents our results. As the
number of embedded bits increased, we observed a slight decrease in the extraction accuracy and
fidelity. However, our method consistently maintains high performance within the tested range.

The Influence of Gradient-preserved Steps We examined the impact of retaining different num-
bers of gradient-preserved steps on the results. For Gradient backward steps=0 and 1, we did not
wait for the loss curve to converge before stopping since its loss curve descended very slowly. We
trained all settings for 10,000 steps. In Table 4, we observe that retaining more gradient backward
steps leads to better results. Our current GPU limitations prevent us from increasing the number of
gradient-preserved steps, but we anticipate further room for improvement in the future.

6 CONCLUSION

In this paper, we point out the demand for guarding concept sharing (i.e., Textual Inversion). To
address it, we propose the novel concept watermarking, together with new training strategies and
architecture design. We conduct extensive experiments to justify its practicability in concept-sharing
scenarios, in terms of fidelity, effectiveness, traceability, and robustness. Moreover, adaptive attacks
and ablation studies are also considered.

Aside from the technical aspects, we also advocate for the co-evolution of legislation and technology.
By doing this, we hope to promote the coexistence of concept sharing and generated content safety,
paving the way for a time when original ideas can flourish while still being safeguarded.
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A APPENDIX

A.1 EXPERIMENT SETTING

Evaluation Metrics. To evaluate our proposed method, we adopt three types of metrics as follows:

• Watermark Extraction Ability. We calculated the bit accuracy for N=1,000 images, where
we randomly selected 4 different watermark bit strings, and for each string, we sampled 250
images. For the calculation of the True Positive Rate (TPR), we consider our method as a single-
bit watermark, with a fixed watermark s. We extracted 10,000 clean images using the decoder,
setting a threshold τ such that samples with a bit accuracy higher than this value are considered
false positives. We adjusted τ to control the False Positive Rate (FPR) to be less than 1×10−3. To
mitigate the effects of randomness, we perform 4 trials with different s and compute the average
TPR. The metrics can be formulated as follows:

BitAcc(s, s′) =
1

|N |

|N |∑
i=0

M(si, s
′
i)/len(si) (9)

TPR(τ) = |N(M(s, s′) > τ)|/|N |, (10)

where M(s, s′) denotes the number of matching bits between s and s′, N denotes the set of all
test images, and | · | represents the number of elements in the set.

• Visual Fidelity. We aim for the images generated by the watermarked concept to have high
visual similarity to those generated by the corresponding pristine concept. To assess this, we
follow the methodology outlined in (Gal et al., 2022), employing image alignment (CLIP-I),
which is determined by the cosine similarity of CLIP image embeddings between two images.
Specifically, we calculate the CLIP-I between 64 watermarked images and 64 clean images, using
basic prompts as the basis for generation.

• Textual Editability. Preserving the editability of textual inversion itself, which allows for mod-
ifying the generated content using prompts, is also crucial. To achieve this, we produce a set
of images using prompts that depict a variety of scenes. These range from simple descriptions
(“A photo of S*”), to style changes for non-style concepts (“A colorful graffiti of S*”), and to
compositional prompts (“A photo of S* playing guitar in the forest”). We measure the alignment
between the generated images and the given prompts, ensuring that the alignment does not de-
crease with the watermark add-on. For this, we use the text alignment (CLIP-T), which is used in
custom diffusion(Kumari et al., 2023) and many other works. It is calculated by given prompts
and corresponding images, computing text-image similarity in CLIP feature space.
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Implementation Details. We conducted a survey and found that the number of tokens commonly
used in Textual Inversion is much greater than 5 (see Appendix A.12). Therefore, we encode 16 bits
watermark information into 5 token-length embeddings by default. We set the gradient preserved
steps k to 3, λ value to 10, and the µ value to 1× 10−3. The counter u was set to 200, and threshold
h is set to 1 × 10−2. We used the Adam(Kingma & Ba, 2015) optimizer with a batch size of 8.
The initial learning rate was set to 1 × 10−4 and we use 2 gradient accumulation steps. We chose
Stable Diffusion v1.5 as our base model due to its widespread usage and we adopt fp16 for it. All
our experiments can be conducted on a single A6000 GPU. During the training process, we utilized
DDIM (Song et al., 2020) as our sampling method. Although we used DDIM during training, the
watermark exhibited robustness across various samplers after training completion. Further details
can be found in the Sec. 5.3.

A.2 PRELIMINARY: DIFFUSION MODEL

Recent advances in generative AI have facilitated the emergence of new powerful models, includ-
ing Variational Autoencoders (VAE) (Kingma & Welling, 2013), Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014), Flow-based Models (Rezende & Mohamed, 2015), and Diffu-
sion Models (DM) (Sohl-Dickstein et al., 2015). Among them, DMs have achieved state-of-the-art
results in image synthesis. They employ non-equilibrium thermodynamics principles to gradually
transform a simple prior distribution qT into a complex one q0 over a preset maximum number of
timesteps T in the diffusion process.

The most prevalent variant of DMs is the Latent Diffusion Model (LDM) (Rombach et al., 2022),
which runs the diffusion process in the latent space, making its training and inference more efficient.
Specifically, LDM utilizes an image encoder E to convert an image x ∈ RH×W×3 into a latent
representation z, i.e., z = E(x) ∈ Rh×w×c. Simultaneously, an image decoder D reconstructs
the image from the latent representation z in a reverse fashion, i.e., x = D(z). Additionally, a
conditional denoising autoencoder ϵθ(zt, t,y) generates images from a given specific text y as a
condition, where zt signifies the latent representation at a particular time step t ∈ {1, ..., T}.

During training, a squared error loss L is used to compel LDM to denoise the latent representations
zt := αtz0 + σtϵ as follows:

L = Ez0,ϵ,t,y

[
∥ϵθ (zt, t,y)− ϵ∥22

]
, (11)

where αt and σt represent the parameters of the diffusion process, ϵ is sampled from the Gaussian
distribution N (0, I), and ϵθ(zt, t,y) is implemented as a U-Net (Ronneberger et al., 2015) condi-
tioned on time-steps, and text vector. The text encoder, often utilizing the CLIP (Radford et al.,
2021) text encoder, compresses the text prompt y into a vector, which is then fed into the U-Net.
Given the trained DM ϵθ(zt, t,y), the sampling procedures can be represented as follows:

zT ∼ N (0, I), (12)

zt−1 =
1

√
αt

(zt−
1− αt√
1− ᾱt

ϵθ(zt, t,y)) + σtϵ, (13)

where ᾱt := Πt
i=1αi. Various sampling methods, including Denoising Diffusion Implicit Models

(DDIM) (Song et al., 2020), Analytic-DPMS (Bao et al., 2021), Euler (Karras et al., 2022) and
DPM-Solver (Lu et al., 2022), can utilize the trained model to sample more efficiently and achieve
higher-quality results.

This paper, we focus on the most popular LDM, Stable Diffusion (SD) (Diffusion). SD models
are open-sourced and available on the official website (Diffusion). As demonstrated in prior works
(Qu et al., 2023; Zhang et al., 2023; Thiel, 2023), existing SD models have the inherent capability
of generating harmful content given the sensitive prompts. By integrating with the personalization
solution, they can further output illegal images with any personalized concept. This is the threat we
aim to mitigate. As mentioned above, SD has diverse options for the sampling. This poses a great
challenge for designing a robust concept watermarking method as the embedded watermark needs
to remain effective across different diffusion sampling configurations.
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A.3 DIFFUSION SAMPLING CONFIGURATIONS

Different Prompts. To test different types of concepts, we generate distinct prompts for each cat-
egory. Broadly, our concepts fall into three categories: person, style, and object. Since these cat-
egories exhibit significant differences we aim to ensure prompt diversity. Thus for each category,
we provide an instruction template and employ GPT-3.5 to generate specific prompts. We generated
64 prompts for each category and sampled 256 images for each concept under different watermark
messages. To be specific, we randomly selected 4 different bit strings to get the corresponding water-
marked embeddings, and sampled 64 images for each. More details can be found in Appendix A.15.
As shown in Table 2 despite the high diversity of the prompts, our approach still manages to maintain
a good extraction rate.

Different Samplers. In the denoising process, various types of samplers can be employed. In
our study, we opted for DDIM(Song et al., 2020), DDPM(Ho et al., 2020), DPM-solver (DPM-
S)(Lu et al., 2022), and Euler Scheduler(Karras et al., 2022). Among these, DPM-solver and Euler
Scheduler are currently the most commonly used and widely adopted samplers. For each sampler,
we generated 64 images for our evaluation. We found that changing the sampler has minimal impact
on the watermark extraction (see Table 2) since our watermark existed in the text encoder which
won’t be affected by the sampling method.

Different Sampling Steps. Users have the flexibility to use different sampling steps for content
generation. Thus, we evaluated watermark extraction performance under various sampling step
settings. We observed that when the sampling steps are fewer than 14, the DDPM sampler fails to
produce high-quality results. Consequently, we chose 16 distinct sampling step values that were
almost uniformly spread between 14 and 50. For each step value, we generated 4 different images,
resulting in a total of 64 images, computed the accuracy of watermark extraction, and CLIP-I for
visual fidelity. Based on the results, as the sample steps increase from 14 to 25, the quality of the
samples progressively improves, and the accuracy also increases. Beyond 25 steps, the improvement
in sample quality becomes marginal and the extraction rate stabilizes (see Table 2).

Different CFG Scales. Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) is a sampling
method that offers greater flexibility compared to classifier guidance and has been proven to achieve
better generation quality. We selected 16 different CFG scale values evenly spaced between 5.0 and
10.0. Similarly, for each CFG scale value, we generated 4 different images, resulting in a total of 64
images, and computed the Bit accuracy and True Positive Rate of watermark extraction, CLIP-I for
visual fidelity. We observed that although there is a certain tendency for the watermark extraction
and CFG scales, our extraction ability remains at a relatively high level. Furthermore, excessively
low CFG scales may lead to unusable results.

Different SD Versions. Users have the flexibility to choose different versions of Stable Diffusion,
such as SD v1.4 or other fine-tuned versions of SD models. As shown in Table 2, our method
still maintains good accuracy. For Deliberate (XpucT) and Chilloutmix (Anonymous), although the
accuracy has decreased, it still maintains a high accuracy.

A.4 THE CAPACITY OF THE PROPOSED METHOD

The empirical results demonstrate that our method achieves a remarkable 99.75% Bit Accuracy for
the evaluated concepts using 16-bit settings. This makes it suitable for accommodating up to about
10,000 users. However, we recognize that 16 bits is relatively small for a typical watermarking
scheme. The capacity of the watermark can be further increased by allocating a greater number of
tokens in the Textual Inversion training at a relatively low additional cost. Moreover, expanding
the number of gradient steps k and increasing the sizes of the encoder and decoder models can
potentially improve scalability.

A.5 THE COMPUTATIONAL COST

Training a pair of encoder-decoder requires approximately 2 GPU hours on an A6000 GPU. We did
not use a universal decoder due to the following considerations: concept composition is common
in the use of Stable Diffusion, and for the combination of secret messages m1 and m2, this would
become an ill-defined problem. Neither m1 nor m2 could be the correct answer. Based on this, we
believe training encoder-decoders for specific concepts is necessary.
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A.6 MULTIPLE CONCEPTS REACTIONS

In Stable Diffusion, there’s a possibility of using multiple concepts during the process of generating
images. A pertinent research question arises: will there be any conflicts between the concepts added
as watermarks? We tested different scenarios of the combined use of style-type concepts (e.g., Monet
and Autumn) and person-type concepts (e.g., Trump and Gal), as shown in Table 5. We observed
that when combining person with person it is normal for two individuals to appear in a picture,
resulting in both having high extraction rates. However, when person and style are mixed, there’s a
decrease in accuracy for both but still feasible. When two style-type concepts appear in the prompt
simultaneously, the accuracy of one becomes very low. This is because, for person mixed with
style, since the concepts expressed by the two don’t clash in the image, watermark extraction is still
feasible. But for two styles, one style is often dominated by the other and doesn’t get represented in
the image.

Figure 4 presents the failure cases in multi-concept scenarios. Sometimes certain concepts tend
to be suppressed by others, rendering them invisible in the image. Under these circumstances, the
extraction rate of the dominated concept is typically lower. This validates that our watermarks reside
in a high-dimensional concept space. We believe that even if a malicious user employs the concept
with our watermark, it is reasonable not to extract it if the corresponding concept doesn’t exist in the
generated image.

In summary, when a concept can be fully expressed in an image, even if the image contains other
concepts, our concept watermarking remains effective.

A.7 COMPARISON FOR DIFFERENT SOURCES OF TI

The process of training Textual Inversion requires extensive data collection and experience in pa-
rameter changing. Default settings and poor training data can lead to suboptimal results. In Figure 5,
we display the generated results of Textual Inversion trained under default settings, as well as the
results of downloaded Textual Inversion.

A.8 THEORETICAL VS. EXPERIMENTAL FALSE POSITIVE RATES

We consider all the watermark approach as a single-bit watermark, with a fixed watermark s. A
predetermined threshold value, τ , which ranges from 0 to k, is used to evaluate the watermark’s
presence. If the matching bits number M(s, s′), between the watermark in the image and the fixed
watermark s meets or exceeds this threshold τ , it is concluded that the watermark is indeed present
in the image.

In previous research Yu et al. (2021), it is commonly assumed that the bits extracted from the original
image are independent and identically distributed (i.i.d) Bernoulli random variables with a parameter
of 0.5. Based on this assumption, we can define the theoretical upper limit of the False Positive Rate
(FPR). This probability can be expressed using the regularized incomplete beta function Bx(a; b),

FPR(τ) = P (M(s, s′) > τ) =

k∑
i=τ+1

(
k

i

)
1

2k
= B 1

2
(τ + 1, k − τ). (14)

A photo of {Gal}, art by {Monet}. A photo art by {Monet} and {Autumn-style}.

Balanced Monet dominated Monet dominatedBalanced

Figure 4: The image displays the failure cases in multi-concept scenarios. Moving from left to right,
the second image shows the dominance of the style concept over the person concept. The third
image displays a unique balance between two style concepts, resulting in a distinct style, while the
fourth highlights the dominance of one style over the other.

17



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Default setting self-trained TI Downloaded TI from sharing platform

Figure 5: Comparison of the TI trained using default settings and Downloaded TI which may incor-
porate more expertise.
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Figure 6: Comparison of the theoretical and experimental false positive rate using different water-
mark matching thresholds.

By setting the desired level for FPR, we can use the Equation above to determine the minimum
threshold value τ required for watermark matching.

However, the i.i.d assumption might not be valid for our trained watermark extractor, suggesting
that the watermark bits extracted could be dependent. Consequently, we experiment to estimate the
detection False Positive Rate. We select 100,000 vanilla images from the MSCOCO dataset training
set, resize them to 512×512 pixels, and then extract a watermark from each image, which we denote
as mclean. Then we randomly generated 10 distinct ground truth watermark messages, denoted as
mgt. The watermark matching threshold, τ , is chosen from 10 to 16. For every combination of the
watermark message and watermark matching threshold, we match the extracted watermark messages
with their respective ground truth watermark message and compute the FPR. A false positive is
identified when a vanilla image’s extracted message coincides with the ground truth message, such
that M(mclean,mgt) ≥ τ .

Figure 6 in the paper visualizes and contrasts the FPR for both the estimated and the empirical
calculations. It can be observed that the experimental results are very close to the theoretical values.

Table 5: Accuracy of extraction after the combination of two concepts.

Mixed Concepts Decoder Bit Acc.(%) TPR(%)

Monet & Autumn style (Monet) 94.05 85.9
style (Autumn) 64.02 6.30

Trump & Autumn person (Trump) 94.95 89.4
style (Autumn) 87.39 70.2

Gal & Monet person (Gal) 88.45 65.1
style (Monet) 90.16 83.0

Trump & Gal person (Trump) 95.28 95.4
person (Gal) 96.81 96.5
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Figure 7: Traceability results for concept watermarking under the different number of users. Left:
traceability accuracy for individual watermarked images and FPR for clean images. Right: trace-
ability accuracy of 5 images voting for a single user.

In the main body, we examined the metric TPR@FPR=1× 10−3, which corresponds to a matching
threshold of τ = 14.

A.9 TRACEABILITY

The Traceability experiment aims to simulate N users downloading the watermarked concept, with
N ′ users sharing the generated images online (N ′=1,000 in our experiments), and each sharing
10 images, totaling 10,000 images. We then extract the watermark from these images. For each
image, we calculate the bit accuracy between this image and the watermarks assigned to N users,
Acc = {acc1, acc2, . . . , accN}. If max(Acc) < 1, we consider it not to contain a watermark;
otherwise, we consider the image to contain the watermark corresponding to max(Acc). This allows
us to calculate the Accuracy of Traceability by comparing the trace results with the original labels.

Figure 7 shows the traceability accuracy under different post-processing conditions. We examined
two scenarios: treating each image independently, and considering images uploaded by the same
user, performing bit-by-bit voting on the extraction results. For the former condition, even with
N=10,000 users and no distortions, the accuracy is 94.82%. Although traceability is poorer un-
der distortions, for the latter, if a user uploads 5 images and we perform bit-by-bit voting on the
extraction results, the traceability accuracy can be largely increased to nearly 95%.

To measure whether clean images are correctly detected as unwatermarked, we provide the false
positive rate (FPR) results for clean images using our method. We used a total of 10,000 clean
images for detection. Same as the settings we mentioned above, we assume that there are N users
assigned different watermarks. If the information extracted from clean images is recognized as one
of these N watermarks, it is considered a false positive. The experimental false positive rate is
presented as the gray dash line in Figure 7. For up to 5,000 users, we can control the FPR under 5%.

A.10 MORE ABLATIONS

The Effectiveness of Contrastive Loss We tested the impact of Contrastive Loss on enhancing
robustness against embedding distortion for one of the concepts. As illustrated in Table 6, incorpo-
rating this loss significantly enhances performance against embedding distortion. This improvement
is due to the Contrastive Loss causing embeddings with different watermarks to be farther apart in
direction, thus providing better protection against direct distortions applied to the embeddings.

A.11 DETAILS OF POST-PROCESSING DISTORTION

Figure 8 demonstrates the transformations we evaluated in the main body.

We utilized the kornia python library for the following transformations:

19



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Table 6: The impact of the contrastive loss on the robustness against embedding distortion.

Embedding Distortion Contrastive Loss (Bit Acc.(%)↑)
w/o w/

None 99.22 99.11
Gaussian Noise 98.15 98.59
Rescale 92.28 95.60
Smoothing 93.61 95.99

Rotation

JPEG compression Blur Color jitter

Crop&resize

Origin

Sharp Noise

Figure 8: Transformations evaluated in post-processing robustness.

Color jitter. We modified the brightness factor, contrast factor, saturation to 0.3, and hue
factor to 0.1.

crop and resize. We randomly extracted 384 × 384 blocks from the 512 × 512 images and
resized them to 256× 256.

Gaussian blur. We set kernel size of (3, 3) and sigma of (2.0, 2.0) on the images.

Gaussian noise. We added with a standard deviation of 0.05.

JPEG compression. We set with a quality setting of 50.

Rotation. We randomly applied to the images within a range of 0 to 180 degrees.

sharpness. We set the intensity to 10.

A.12 TOKEN NUMBERS IN TEXTUAL INVERSIONS

We downloaded 100 Textual Inversions from Civitai and tallied their token counts (see Figure 9).
The average token count for these 100 Textual Inversions is 8.87.

A.13 DETAILS OF EMBEDDING DISTORTION

The attacker can also distort the download concept before generating images. We consider the
following three distortion operations:

Adding Gaussian Noise. We added Gaussian noise to the embeddings with an intensity of σ = 1 ×
10−1 which is relatively high as we examined 36 Textual Inversion embeddings downloaded from
the internet, with the norm typically around 1× 10−1.

Rescaling Concept Embedding. We rescale the concept embedding by simply multiplying the em-
bedding with a factor. In our experiments, we set this value to 0.4.

Smoothing Concept Embedding. We smooth the embeddings through a conv layer with the 1D kernel
[0.2, 0.6, 0.2].
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Figure 9: Statistical results of token numbers in 100 Textual Inversions.

A.14 IMPLEMENTATION DETAILS OF DIFFERENT ENCODER ARCHITECTURES

MLP. For the implementation of the MLP encoder, we flatten the concept and then repeat the Mes-
sage m to match the size of the embedding. The concatenated data is then sent to the MLP with a
hidden size of 1536. The default MLP consists of 3 layers of Linear transformations and 2 layers of
ReLU.

ResNet. For the implementation of the ResNet encoder, For the implementation of the ResNet en-
coder, we adopted the same strategy as with the U-Net, using a linear layer to map the bit message
m to the same size as the embedding size dτ . In contrast to U-Net, we utilized ResNet blocks here,
retaining only the in-block skip connections. Considering the number of parameters, we did not use
any existing ResNet models but defined a 10-layer ResNet, achieving a parameter size similar to that
of the U-Net encoder.

A.15 PROMPT GENERATION

Due to the existence of various types of concepts, a universal prompt is not applicable. Therefore,
we created different prompt datasets for different types of concepts. We generate our training and
testing prompt using GPT-3.5 by telling it with the following instructions:

[name] represents a (coarse class), take the following prompt as a reference, and generate (number)
more prompts with various scenes and descriptions: (prompt example)

Here, (coarse class) should be replaced according to the category of the current concept, for example,
person, style, car, crystalskull, etc. And (number) should be replaced by the number of prompts you
want to generate. For concepts related to particular persons or objects, we chose (A photo of [name])
as our prompt example. For the style-like concepts, we decided (A painting, art by [name]) as our
prompt example. For cars and other objects in paper, we use (A photo of a [name])

A.16 ADDITIONAL VISUAL RESULTS

See Figure 10.
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“A photo of S* ”

“A photo of a S* ”

“A photo of a S* ”

“A photo of S* ”

“A photo of S* holding a long sword ”

“S* displayed in a glass case ”

“A comic drawing of S* ”

“S* parked on the street in 1950s new york city ”

Original Concept Watermarked Concept
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“A photo of S* ”

“A photo of S* ”

“a colorful graffiti of S* ”

“A photo of S* riding a bycicle under Eiffel Tower ”

Figure 10: Additional visual results.
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