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Abstract

Recent studies have shown that the domain match-
ing of text representations will help improve the
generalization ability of asymmetrical domains
text matching tasks. This requires that the distribu-
tion of text representations should be as similar as
possible, similar to matching with heterogeneous
data domains, in order to make the data after fea-
ture extraction indistinguishable. However, how
to match the distribution of text representations
remains an open question, and the role of text
representations distribution match is still unclear.
In this work, we explicitly narrow the distribution
of text representations by matching them with the
same prior distribution. We theoretically prove
that narrowing the distribution of text representa-
tions in asymmetrical domains text matching is
equivalent to optimizing the information bottle-
neck (IB). Since the interaction between text rep-
resentations plays an important role in asymmetri-
cal domains text matching, IB does not restrict the
interaction between text representations. There-
fore, we propose the adequacy of interaction and
the incompleteness of a single text representation
on the basis of IB and obtain the representation
matching information bottleneck (RMIB). We the-
oretically prove that the constraints on text repre-
sentations in RMIB is equivalent to maximizing
the mutual information between text representa-
tions on the premise that the task information is
given. On four text matching models and five text
matching datasets, we verify that RMIB can im-
prove the performance of asymmetrical domains
text matching. Our experimental code is available
at https://github.com/chenxingphh/rmib.
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1. Introduction
Text matching is a basic task in natural language processing
(NLP). The purpose of this task is to predict the semantic
relationship between two input texts. Text matching can be
applied to many natural language processing scenarios. For
example, in question-and-answer matching, it is necessary
to judge whether the given candidate answers match the
given question (Tan et al., 2016); In natural language rea-
soning, for a given hypothesis and premise, it is necessary
to judge whether the hypothesis and premise are entailment,
contradiction or neutral (Bowman et al., 2015); In infor-
mation retrieval, it is necessary to determine the correlation
between the searched information and the returned candi-
date (Reimers & Gurevych, 2019).

Asymmetrical text matching refers to two input texts from
different domains. For example, the question and the candi-
date answers can be viewed as being sampled from two dif-
ferent distributions in question-and-answer matching. One
approach of asymmetrical domains text matching is to pro-
cess text from different domains into text representation
through deep learning models. In the common semantic
space, text representations from different domains have the
same dimensions, so it is easy to define semantic match-
ing functions. The current mainstream approaches mainly
focus on how to design more effective models to increase
the interaction between input texts from different domains
to obtain better text representations (Chen et al., 2017;
Wang et al., 2017; Gong et al.; Kim et al., 2019; Yang et al.,
2019). In the actual text matching, (Yu et al., 2022) finds an
interesting phenomenon that the text representations from
different domains are usually separated in the early stage of
training. However, with the deepening of training, the text
representations from different domains gradually begin to
mix with each other. The explanation for this phenomenon
is that there is a lexical gap between texts from different do-
mains (Tay et al., 2018), so it is necessary to bridge this gap
in the process of learning, which is similar to cross-modal
matching. Existing researches (Li et al., 2020; Hazarika
et al., 2020) shows that the matching model should generate
domain invariant features, that is, the global distribution of
text representations from different domains in the common
semantic space should be as similar as possible, so as to
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capture the commonality between potential text representa-
tions. However, existing text matching models lack explicit
constraints to make text representations domain invariant.
It is still an open question to make it clear how to align
the text representation distribution of different domains in
the common semantic space. Meanwhile, the role of align-
ing the distribution of text representation from different
domains remains unclear. (Yu et al., 2022) designs a regu-
larizer based on distributed distance to explicitly promote
domain invariant features. Unlike (Yu et al., 2022), which
directly optimizes the distribution of text representations
from different domains, we reduce the distance between the
distribution of text representations from different domains
by explicitly aligning the distribution of text representations
from different domains with the same prior distribution. We
theoretically prove that narrowing the distribution of text
representations in asymmetrical domains text matching is
equivalent to optimizing the information bottleneck (IB).
For text matching, the interaction between texts has an im-
portant impact on the matching effect (Chen et al., 2017;
Wang et al., 2017; Gong et al.; Kim et al., 2019; Yang et al.,
2019). However, IB does not restrict the interaction between
text representations. Therefore, we propose the adequacy
of interaction and the incompleteness of a single text repre-
sentation on the basis of IB and obtain the representation
matching information bottleneck (RMIB). We theoretically
prove that the constraints on text representations in RMIB is
equivalent to maximizing the mutual information between
text representations on the premise that the task information
is given. The contributions of this work can be summarized
as follows:

• We improve domain invariant features by explicitly
aligning the text representations distribution from dif-
ferent domains with the same prior distribution. We
theoretically prove that narrowing the text representa-
tions distribution is equivalent to optimizing the infor-
mation bottleneck (IB) in asymmetrical domains text
matching.

• We propose the adequacy of interaction and the in-
completeness of a single text representation for text
representations on the basis of IB and obtain the repre-
sentation matching information bottleneck (RMIB).

• We theoretically prove that the constraints on text rep-
resentations in RMIB is equivalent to maximizing the
mutual information between text representations on the
premise that the task information is given.

• We give the concrete implementation method of opti-
mizing RMIB. On four text matching models and five
text matching datasets, we verify that RMIB can im-
prove the performance of asymmetrical domains text
matching.

2. Methodology
2.1. Notation and Definitions

We use capital letters for random variables and lowercase
letters for realizations. Let X and Y be random variables,
then the information entropy of random variable X is de-
fined as H(X) = Ep(x)[− log p(x)]. The definition of
conditional entropy is H(Y |X) = Ep(x,y)[− log p(y|x)].
The mutual information between X and Y is defined as
I(X;Y ) = H(X) − H(X|Y ). The Kullback-Leibler
(KL) divergence between two distributions is defined as
KL(p(x) ∥ q(y)) = Ep(x)[log

p(x)
q(y) ].

2.2. Information Bottleneck

Information bottleneck (IB) (Tishby et al., 2000), also
known as representation information bottleneck (RIB), re-
gards the feedforward calculation process of deep neural
network as a Markov chain. Let X be the model input, then
Y is the task label, Ŷ is the prediction result of the model
and Z is the output of the middle layer, that is, the represen-
tation of the model input. If the above variables are regarded
as random variables, the following Markov chain is formed
as:

Y → X → Z → Ŷ (1)

This means that Y ⊥ Z | X or P (Z | X) = P (Z | X,Y )
is satisfied, that is, under the premise that X is known, the
existence of Y will not affect Z, indicating that Y and Z
are independent of each other. IB put forward the following
two requirements for the representation Z learned by the
deep learning model.

Sufficient: The representation Z should contain as much
information related to the target label as possible.

I(Y ;Z) = I(X;Y ) (2)

Minimal: The representation Z should contain as little
information as possible about input X .

min I(X;Z) (3)

On the premise of meeting the sufficient, IB requires that
the representation Z should contain as little information as
possible in input X , which means that it contains as little
redundant information as possible. Combining sufficient
and minimal, we can get the optimization objective of IB as
follows:

Z∗ = argmin
Z

I(X;Z) s.t. I(Y ;Z) = I(X;Y ) (4)

By using the Lagrange multiplier method, we can remove
the constraint and equivalently express the above formula
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as:

Z∗ = argmin
Z

I(X;Z) + β(I(X;Y )︸ ︷︷ ︸
contant

−I(Y ;Z))

∝ argmin
Z

I(X;Z)− βI(Y ;Z)
(5)

where β is a positive constant. The optimization objective
of Equation (5) is also called IB Lagrangian.

2.3. Information Bottleneck in Text Matching

In the asymmetrical domains text matching task, the input
of the model contains two texts, which are represented by
two random variables, X1 and X2. Usually X1 and X2 are
sampled from different domains. Then the asymmetrical
domains text matching task can be expressed as:

θ∗ = argmax
θ

Ep(x1,x2,y)[log pθ(y | x1, x2)] (6)

where θ represents the parameters of the constructed text
matching model, x1 ∈ X1, x2 ∈ X2 and y ∈ Y . The
samples are assumed to come from an unknown distribution
p(x1, x2, y). The current text matching mainly includes two
types of matching models: text encoding model and text
interaction model. The text encoding model will encode
the input texts X1 and X2 respectively, and there will be no
interaction between X1 and X2 during the encoding process.
A typical model of text encoding model is siamese neural
network (Koch et al., 2015). The text interaction model
will interact with the text representation in the feedforward
calculation, and usually get better results. A typical text
interaction model is ESIM (Chen et al., 2017). However,
no matter which text matching model is used, two input
text representations will be obtained in the feedforward
calculation process. Therefore, the Markov chain in the
process of text matching can be expressed as:

Y → (X1, X2) → (Z1, Z2) → Z → Ŷ (7)

where Z1 and Z2 are the representations of X1 and X2 re-
spectively and Z represents the final representation after the
fusion of two text representations, usually the output of the
representation fusion layer. Accordingly, the optimization
objective of the information bottleneck in the text matching
can be expressed as:

Z∗
1 , Z

∗
2 = arg min

Z1,Z2

I(X1, X2;Z1) + I(X1, X2;Z2)

s.t. I(Y ;Z1, Z2) = I(Y ;X)
(8)

2.4. Text Domain Alignment Based on Prior
Distribution

Recent studies have shown that domain matching of text
representation will help improve the generalization ability

of text matching (Yu et al., 2022). To effectively align the
distribution of text representation, (Yu et al., 2022) designs
a regularizer based on distributed distance to narrow the text
representations:

θ∗ = argmin
θ

Ep(x1,x2,y)[− log pθ(y | x1, x2)]

s.t. D(pθ(z1 | x1, x2), pθ(z2 | x1, x2)) = 0
(9)

where D(·) is a metric function of distribution distance. Un-
like (Yu et al., 2022), we narrow the distribution between
text representations by explicitly aligning text representa-
tions with a prior distribution in text matching. Specifically,
let the prior distribution be p(Z) and two input text repre-
sentations be Z1 and Z2. To make the distribution between
Z1 and Z2 as close as possible, we expect the distribution
of Z1 and Z2 to be as close as p(Z) on the premise that
the model can correctly predict the target label. Therefore,
the optimization objective of text matching based on text
representations alignment can be expressed as:

θ∗ = argmin
θ

Ep(x1,x2,y)[− log pθ(y | x1, x2)]

s.t.

{
KL(pθ(z1 | x1, x2) ∥ p(Z)) = 0
KL(pθ(z2 | x1, x2) ∥ p(Z)) = 0

(10)

We can use our method to explain DDR-Match (Yu et al.,
2022). Let p(ẑ) be the distribution after DDR-Match align-
ment, then in our method it can be expressed as:

θ∗ = argmin
θ

Ep(x1,x2,y)[− log pθ(y | x1, x2)]

s.t.

{
KL(pθ(z1 | x1, x2) ∥ p(ẑ)) = 0
KL(pθ(z2 | x1, x2) ∥ p(ẑ)) = 0

(11)

By using the Lagrange multiplier method, we can remove
the constraint and equivalently express the above formula
as:

θ∗ = argmin
θ

Ep(x1,x2,y)[β1KL(pθ(z1 | x1, x2) ∥ p(Z))

+β2KL(pθ(z2 | x1, x2) ∥ p(Z))− log pθ(y | x1, x2)]

(12)

where β1 and β2 are positive constants. Although some
studies have shown that domain alignment of text represen-
tations will help improve the performance of text matching,
the role of text representations distribution alignment is still
unclear. We analyze this phenomenon and get Theorem 2.1.
The proof of Theorem 2.1 can be found in appendix.

Theorem 2.1 shows that domain matching in text matching
is equivalent to optimizing the information bottleneck in
text matching, which indicates that domain alignment of
input texts can make the learned text representation forget
the input redundant information as much as possible.

Theorem 2.1. Given matching texts X1, X2, text represen-
tations Z1, Z2 and task label Y , then it satisfies in asymmet-
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rical domains text matching:

Z∗
1 , Z

∗
2 ∝ arg min

Z1,Z2

I(X1, X2;Z1) + I(X1, X2;Z2)

− βI(Y ;Z1, Z2)

∝ arg min
z1,z2

Ep(x1,x2,y)[β1KL(pθ(z1 | x1, x2) ∥ p(Z))

+ β2KL(pθ(z2 | x1, x2) ∥ p(Z))− log pθ(y | x1, x2)]

where β1, β2 and β are positive constants.

2.5. Representation Matching Information Bottleneck

Information bottleneck (IB) only requires that the learned
representations retain as much information as possible about
the task label and as little information as possible about the
input and does not impose any explicit constraints on the
interaction between text representations. In text matching,
the performance of text interaction model is usually better
than that of text encoding model, which indicates that in-
teraction on text representations has an important impact
on the result of text matching. Therefore, we extend IB
and obtain representation matching information bottleneck
(RMIB) in text matching. Specifically, RMIB’s constraints
on text representations and input are consistent with IB,
but RMIB puts forward the following constraints on the
interaction between text representations and the relationship
between text representations and task label.

Sufficient: The representations Z1 and Z2 should contain
as much information related to the target label as possible.
This constraint is consistent with the Sufficient of IB.

I(Y ;Z1, Z2) = I(X;Y ) (13)

Interaction: The interaction between text representations
should be sufficient, which means there should be enough
mutual information between the two text representations.

max I(Z1;Z2) (14)

Inadequacy: The final correct result cannot be obtained
only by using a single text representation in text matching.
In text matching, the model needs to make right decisions
based on text representation of two input texts, which means
that only using a single text representation can not get the
right result. For example, in the text encoding model, due
to the lack of interaction between the two input texts during
the feedforward calculation, it is extremely absurd to use
only a single text representation to accurately predict the
target.

min I(Y ;Z1) + I(Y ;Z2) (15)

Based on the constraints proposed by RMIB for text rep-
resentations, we can obtain the optimization objective of

RMIB:

Z∗
1 , Z

∗
2 = arg min

Z1,Z2

I(X1, X2;Z1) + I(X1, X2;Z2)

s.t. max I(Z1;Z2) + I(Z1, Z2;Y )

−(I(Y ;Z1) + I(Y ;Z2))

A more intuitive RMIB optimization objective is shown in
Figure 1. Although RMIB requires that the interaction be-
tween text representations should be sufficient, it is difficult
to know the impact of the interaction of text representations
on task label if we only consider the interaction of text rep-
resentations without associating with task label. Further, we
prove that the constraints of RMIB on text representation
and task is equivalent to maximizing the mutual information
between text representations on the premise that the task
information is given and get the Theorem 2.2. The proof of
Theorem 2.2 can be found in appendix. Theorem 2.2 shows
that the optimization objective of RMIB can be expressed
as:

Z∗
1 , Z

∗
2 = arg min

Z1,Z2

I(X1, X2;Z1) + I(X1, X2;Z2)

s.t. max I(Z1;Z2 | Y )

(16)

Although we can see the differences between RMIB and
IB from the sufficiency of text representation interaction
and the inadequacy of a single text representation, we can
see the differences between RMIB and IB more intuitively
from Theorem 2.2. IB only requires text representation to
contain as much task information as possible, but it lacks
constraints on the interaction between text representations.
While RMIB requires that the interaction between text repre-
sentations should be as much as possible on the premise of
giving task label. This shows that RMIB is more suitable for
text matching than IB. Another function of Theorem 2.2 is to
provide a transformation method for optimizing conditional
mutual information.

Theorem 2.2. Given text representations Z1, Z2 and task
label Y , then it satisfies in asymmetrical domain text match-
ing:

I(Z1;Z2|Y ) = I(Z1;Z2) + I(Z1, Z2;Y )

−I(Y ;Z1)− I(Y ;Z2)

2.6. Equivalent Optimization Objective of
Representation Matching Information Bottleneck

Although RMIB gives optimization objective in text match-
ing based on mutual information, it is difficult to directly
optimize mutual information items during training process.
Fortunately, as mutual information has received more at-
tention in deep learning recently, some methods for ap-
proximate estimation of mutual information have also been
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Figure 1: The optimization objective of RMIB. min I(X1, X2;Z1) and min I(X1, X2;Z2) indicate that text representations
Z1 and Z2 should contain as little input information as possible. min I(Y ;Z1) and min I(Y ;Z2) indicate that a single text
representation cannot complete correct text matching. max I(Z1;Z2) explicitly requires as much interaction as possible
between Z1 and Z2.

proposed (Alemi et al., 2016; Belghazi et al., 2018; Hjelm
et al.), which makes the optimization objective of RMIB
tractable. For the optimization objective of RMIB, we can
further equivalently express it as:

Z∗
1 , Z

∗
2 = arg min

Z1,Z2

I(X1, X2;Z1) + I(X1, X2;Z2)

s.t. C − I(Z1;Z2 | Y ) = 0

(17)

where the constant C is the tightest upper bound of the
theory of I(Z1;Z2 | Y ), and it can be easily proved that
C ≤ min {log |Z1| , log |Z2|}. The proof of Theorem 2.3
can be found in appendix.

Theorem 2.3. Given text representations Z1, Z2 and task
label Y , let C := sup I(Z1;Z2 | Y ), then it satisfies in
asymmetrical domains text matching:

C ≤ min {log |Z1| , log |Z2|}

Based on the Lagrange multiplier method and Theorem 2.2,
we can further equivalently express Equation (17) as:

Z∗
1 , Z

∗
2 = arg min

Z1,Z2

I(X1, X2;Z1) + I(X1, X2;Z2)

−β1I(Z1;Z2)− β2I(Z1, Z2;Y ) + β3(I(Y ;Z1) + I(Y ;Z2))

(18)

where β1, β2 and β3 are positive constants. For
I(Z1, Z2;Y ), we can also replace it with I(Z;Y ) where Z
is the fusion of Z1 and Z2. Theorem 2.4 shows that if the
costs of optimizing I(Y ;Z1, Z2) and I(Y ;Z) to the same
value are of no different, then directly optimizing I(Y ;Z)
will give the optimization target of RMIB a smaller value,

that is, a more optimized Z∗
1 and Z∗

2 . The proof of Theo-
rem 2.4 can be found in appendix. Based on Equation (18),
Theorem 2.5 gives the objective function of the RMIB that
is ultimately used for optimization in the training process.
The proof of Theorem 2.5 can be found in appendix. It is
worth noting that the application of RMIB is not limited to
text encoding model or text interaction model, because text
representations Z1 and Z2 can be generated in either model.

Theorem 2.4. Given text representations Z1, Z2, fusion text
representation Z and task label Y , if the cost of optimizing
I(Y ;Z1, Z2) and I(Y ;Z) to the same value is the identical,
then optimizing I(Y ;Z) will obtain better Z∗

1 and Z∗
2 in

RMIB.

Theorem 2.5. The optimization objective of RMIB can be
equivalently expressed as:

Z∗
1 , Z

∗
2 ∝ arg min

Z1,Z2

Ep(x1,x2,y)[

α1(KL(pθ(z1 | x1, x2) ∥ p(Z))

+KL(pθ(z2 | x1, x2) ∥ p(Z)))

− α2(Epθ(z1,z2)[f ]− logEpθ(z1)pθ(z2)[e
f ])

− pθ(z1, z2 | x1, x2) log pθ(y | z1, z2)
+ α3(pθ(z1|x1, x2) log pθ(y|z1)
+ pθ(z2|x1, x2) log pθ(y|z2))]

where α1, α2 and α3 are positive constants and f is a multi-
layer perceptron whose output layer activation function is
sigmoid.
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3. Experiment
3.1. Dateset and Metric

SICK (Sentences Involving Compositional Knowledge)
(Marelli et al., 2014) is a dataset for compositional distribu-
tional semantics, which consists of 9.8k pairs of sentences.
Each sentence pair is labelled as either contradiction, neutral
or entailment. Accuracy is used as an evaluation metric for
this dataset.

SciTail (Science Entailment) (Khot et al., 2018) is an entail-
ment dataset created from multiple-choice science exams
and web sentences. The label could be entailment or neutral.
The dataset contains a total of 27k samples, of which 10k
samples have entailment labels, and the remaining 17k are
marked neutral. Accuracy is used as an evaluation metric
for this dataset.

WikiQA (Yang et al., 2015) is a retrieval-based question
answering dataset based on Wikipedia. The binary label in-
dicates whether the candidate sentence matches the question.
The dataset contains 20.4k training pairs, 2.7k development
pairs, and 6.2k test pairs. Mean average precision (MAP)
and mean reciprocal rank (MRR) are used as the evaluation
metrics for this dataset.

SNLI (Stanford Natural Language Inference) (Bowman
et al., 2015) is a benchmark dataset for natural language
inference which contains 570k human annotated sentence
pairs. One of the two sentences is used as ”premise” and
the other is used as ”hypothesis”. The label is one of ”en-
tailment”, ”neutral”, ”contradiction” and ”-”. We follow the
practice in (Bowman et al., 2015) and the data labeled ”-”
is deleted. Accuracy is used as an evaluation metric for this
dataset.

Quora Question Pair is a dataset for paraphrase identifica-
tion. Quora Question Pair contains 400k question pairs with
binary label collected from the Quora website. This task is
to determine whether two sentences are the interpretation
of each other. Accuracy is used as an evaluation metric for
this dataset.

3.2. Implementation Details

The data preprocessing of SNLI, Quora Question Pair, Sci-
Tail and WikiQA is consistent with RE2 (Yang et al., 2019).
We use 840B-300d GloVe (Pennington et al., 2014) to ini-
tialize the embedded layer of RE2 (Yang et al., 2019) and
ESIM (Chen et al., 2017). We choose the standard Gaus-
sian distribution as p(Z), because on the premise that the
mean and variance are known, the entropy of the Gaussian
distribution is the maximum, that is, the minimum prior
knowledge is introduced. For the KL term in RMIB, we use
the reparameter trick (Kingma & Welling, 2013) to optimize
it. The hyper-parameters of ESIM and RE2 is consistent

with (Yang et al., 2019). For BERT (Kenton & Toutanova,
2019) and SBERT (Reimers & Gurevych, 2019), we use the
max pooling to obtain the text representations, the learning
rate is 2e-5 and the epoch is 6. We use BERT-base to ini-
tialize BERT and SBERT in our experiments. For SBERT,
we minimize I(Z;X1, X2) instead of I(Z1;X1, X2) and
I(Z2;X1, X2) because X1 and X2 don’t interact before
the fusion layer. All experiments use Adam (Kingma &
Ba, 2014) as the optimizer and the hyper-parameters search
range for α1, α2 and α3 in RMIB is {0.01, 0.02, 0.03}. To
ensure the reproducibility of the results, all experiments use
the same seed.

3.3. Performance of RMIB

To verify the validity of RMIB, we conduct the experiment
using four common text matching models on five public
datasets. BERT and SBERT are pre-training models while
RE2 and ESIM are non-pre-training models. Meanwhile,
BERT, RE2 and ESIM are text interaction models while
SBERT is text encoding model. The experimental results
are shown in Table 1. From Table 1, it can be seen that
compared to the vanilla model, almost all models show
significant improvements on the five datasets after using
RMIB. We can find that compared with BERT, RE2 and
ESIM, RMIB improves SBERT significantly in the five pub-
lic datasets. For example, SBERT with RMIB can achieve
12.54% gain on accuracy on SICK. Although the effect of
SBERT is not as superior as that of BERT, the difference be-
tween the two decreases sharply after the addition of RMIB.
For example, the F1 difference between the original SBERT
and BERT on SICK is 14.64%, but after the addition of
RMIB, the F1 value difference is reduced to 2.81%. Since
the optimization goal of RMIB is the premise of known task
information, the interaction between text representations
should be as much as possible, while SBERT itself does
not interact with text representations before the fusion layer.
Therefore, RMIB can improve SBERT’s model performance
by explicitly increasing the interaction between text repre-
sentations. This also indicates that for text matching tasks,
the interaction between text representations is crucial to the
final result.

We find that RMIB can bring greater improvement in the
case of data hunger. The improvement of the four text
matching models on SICK, SciTail and WikiQA is signifi-
cantly greater than that on SNLI and Quora. We think this is
because SNLI and Quora have significantly more data than
SICK, SciTail, WikiQA. For example, SNLI has about 57
times the data than SICK. (Koltchinskii, 2001) indicates
that when the number of training data sets increases, the
generalization performance of the model will also increase.
When there are enough training sets, the model itself has
good generalization performance, so RMIB can bring less
improvement. We also find that BERT’s accuracy on SNLI
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Table 1: Performance of four text match model with RMIB on five public dataset. Right superscript * represents the results
reproduced in our experimental environment. The other data in the table is obtained from (Yu et al., 2022). Due to the lack
of results reported on Quora in (Yu et al., 2022), we use - for representation.

SICK SciTail WikiQA SNLI Quora
Models Acc. Acc. F1 MAP MRR Acc. Acc.
RE2 84.20 86.61 88.73 74.96 76.58 89.00 -
RE2(DDR-Match,JS) 84.30 86.74 88.85 73.93 76.04 88.75 -
RE2(DDR-Match,MMD) 84.35 87.39 89.58 74.84 76.24 89.02 -
RE2(DDR-Match,WD) 85.39 87.04 89.12 75.31 76.89 89.09 -
RE2∗ 84.96 86.27 88.54 74.28 76.05 88.94 89.52
RE2(RMIB) 86.53(+1.57) 87.68(+1.41) 89.82(+1.28) 75.54(+1.26) 77.73(+1.68) 89.19(+0.25) 89.85(+0.33)
BERT 86.65 89.56 91.52 77.52 78.95 87.91 -
BERT(DDR-Match,JS) 85.04 90.40 92.13 79.03 80.87 87.90 -
BERT(DDR-Match,MMD) 86.68 90.22 91.96 79.54 81,21 88.02 -
BERT(DDR-Match,WD) 86.72 90.53 92.29 79.58 81.23 88.23 -
Bert∗ 86.69 93.79 94.88 83.40 85.01 90.46 90.41
BERT(RMIB) 87.40(+0.71) 94.12(+0.33) 95.16(+0.28) 84.29(+0.89) 86.02(+1.01) 90.43(-0.03) 90.72(+0.31)
SBERT 63.31 79.23 83.74 68.38 69.74 83.76 -
SBERT(DDR-Match,JS) 63.35 80.75 83.68 68.89 70.27 84.01 -
SBERT(DDR-Match,MMD) 65.29 81.67 84.49 68.85 70.16 83.91 -
SBERT(DDR-Match,WD) 64.39 81.93 84.77 69.04 70.43 84.17 -
SBERT∗ 72.05 83.44 86.27 71.22 72.67 80.04 86.46
SBERT(RMIB) 84.59(+12.54) 87.72(+4.28) 90.52(+4.25) 74.73(+3.51) 76.28(+3.61) 81.91(+1.87) 87.34(+0.88)
ESIM∗ 82.59 85.04 87.24 72.38 74.10 87.51 88.09
ESIM(RMIB) 83.29(+0.70) 86.03(+0.99) 88.29(+1.05) 72.99(+0.61) 74.55(+0.45) 87.53(+0.02) 88.26(+0.17)

decreased by 0.03% after adding RMIB. We believe that
this may be because of the less significant heterogeneity of
the text to be matched in SNLI. We also evaluate the perfor-
mance of RMIB on three additional datasets, the results of
which are shown in the appendix.

3.4. Ablation Study

As shown in Theorem 2.5, the optimization objective of
RMIB consists of four parts. In addition to cross entropy
loss, we use ablation experiments on the other three items
to explore the role of each item. Since RMIB is obtained
by adding Interaction and Inadequacy to IB, we also per-
form ablation on these two items to compare the differences
between RMIB and IB. By setting α2 and α3 in the RMIB
optimization objective to 0, IB can be obtained. The results
of the ablation experiment are shown in Table 2. From Ta-
ble 2, it can be seen that in most cases, the results of ablation
of the components of RMIB have decreased compared to
the model with RMIB. This is consistent with Theorem 2.2,
because the information theory interpretation of the three
ablation items of RMIB is to maximize the mutual informa-
tion between text representations on the premise of knowing
the task information. When we ablate one of the items, the
information theory interpretation is no longer valid. For
RMIB and IB, we find that RMIB consistently outperforms
IB on all datasets and models. This also indicates that RMIB
is more suitable for text matching tasks. We find that the
ablation term in RMIB plays different roles on different
datasets. For example, when we set α1 in RMIB to 0, com-

pared to the original model, BERT’s performance on SICK
decreased by 0.06%, but it improved by 0.16% on Quora.
We also find that for text encoding models like SBERT, no
matter how RMIB is ablated, it can always bring improve-
ments on SICK, SciTail, and WikiQA. We believe that this
is because of the small number of the three datasets and the
lack of explicit interaction in SBERT itself, so increasing
even some of the items in RMIB can bring gains.

4. Related Work
Text matching can be mainly divided into two methods: text
encoding model and text interaction model. Early work
explored encoding each text individually as a vector and
then building a neural network classifier on both vectors.
In this paradigm, several different models are used to en-
code the input text individually. Recurrent neural networks
and convolutional neural networks are used as text encoder
(Bowman et al., 2015; Tai et al., 2015; Yu et al., 2014; Tan
et al., 2016). SBERT (Reimers & Gurevych, 2019) uses the
pre-trained model BERT (Kenton & Toutanova, 2019) as the
text encoder. The text encoding model does not explicitly
consider interactions between texts, while text interaction
models consider adding interactions between input texts to
improve performance. ESIM (Chen et al., 2017) uses atten-
tion mechanisms to interact between input texts. BiMPM
(Wang et al., 2017) utilizes a variety of attention to increase
the interaction between input texts. DIIN (Gong et al.)
uses DenseNet (Huang et al., 2017) as a deep convolutional
feature extractor to extract information from the alignment
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Table 2: Ablation of RMIB. The superscript - indicates that we set the corresponding coefficient to 0. For example, (RMIB,
α1, α−

2 , α−
3 ) indicates that we set α2 and α3 to 0, in which case RMIB will degenerate to IB.

SICK SciTail WikiQA SNLI Quora
Models Acc. Acc. F1 MAP MRR Acc. Acc.
RE2 84.96 86.27 88.54 74.28 76.05 88.94 89.52
RE2(RMIB) 86.53(+1.57) 87.68(+1.41) 89.82(+1.28) 75.54(+1.26) 77.73(+1.68) 89.19(+0.25) 89.85(+0.33)
RE2(RMIB, α−

1 , α2, α3 ) 85.96(+1.00) 86.83(+0.56) 89.05(+0.51) 72.01(-2.27) 74.05(-2.05) 86.42(-2.52) 90.24(+0.72)
RE2(RMIB, α1, α

−
2 , α3 ) 86.20(+1.24) 86.08(-0.19) 88.77(+0.23) 73.31(-0.97) 75.35(-0.70) 86.28(-2.66) 89.67(+0.15)

RE2(RMIB, α1, α2, α
−
3 ) 86.16(+1.2) 86.83(+0.56) 89.16(+0.62) 73.29(-0.99) 74.88(-1.17) 88.61(-0.33) 89.79(+0.27)

RE2(RMIB, α1, α
−
2 , α

−
3 ) 86.02(+1.06) 87.16(+0.89) 89.32(+0.78) 72.79(-1.49) 74.42(-1.63) 89.00(+0.06) 89.59(+0.07)

BERT 86.69 93.79 94.88 83.40 85.01 90.46 90.41
BERT(RMIB) 87.40(+0.71) 94.12(+0.33) 95.16(+0.28) 84.29(+0.89) 86.02(+1.01) 90.43(-0.03) 90.72(+0.31)
BERT(RMIB, α−

1 , α2, α3) 86.63(-0.06) 93.18(-0.61) 94.32(-0.56) 83.71(+0.31) 85.02(+0.01) 90.27(-0.19) 90.57(+0.16)
BERT(RMIB, α1, α

−
2 , α3 ) 86.87(+0.18) 93.37(-0.42) 94.60(-0.28) 84.56(+0.16) 85.78(+0.77) 90.35(-0.11) 90.38(-0.03)

BERT(RMIB, α1, α2, α
−
3 ) 86.53(-0.16) 93.56(-0.23) 94.68(-0.20) 83.93(+0.53) 85.38(+0.37) 90.31(-0.15) 90.21(-0.20)

BERT(RMIB, α1, α
−
2 , α

−
3 ) 87.28(+0.59) 93.60(-0.19) 94.81(-0.07) 83.52(+0.12) 85.18(+0.17) 90.03(-0.43) 90.49(+0.08)

SBERT 72.05 83.44 86.27 71.22 72.67 80.04 86.46
SBERT(RMIB) 84.59(+12.54) 87.72(+4.28) 90.52(+4.25) 74.73(+3.51) 76.28(+3.61) 81.91(+1.87) 87.34(+0.88)
SBERT(RMIB, α−

1 , α2, α3) 82.55(+10.50) 86.92(+3.48) 89.97(+3.70) 72.79(+1.57) 74.71(+2.04) 79.78(-0.26) 87.56(+1.10)
SBERT(RMIB, α1, α

−
2 , α3 ) 83.57(+11.52) 87.39(+3.95) 90.26(+3.99) 73.90(+2.68) 75.06(+2.39) 79.42(-0.62) 87.01(+0.55)

SBERT(RMIB, α1, α2, α
−
3 ) 82.59(+10.54) 87.11(+3.67) 90.07(+3.80) 71.92(+0.70) 73.72(+1.05) 73.79(-6.26) 86.46(+0.00)

SBERT(RMIB, α1, α
−
2 , α

−
3 ) 82.63(+10.58) 86.69(+3.25) 89.71(+3.44) 73.80(+1.58) 75.20(+2.53) 79.64(-0.40) 86.75(+0.29)

ESIM 82.59 85.04 87.24 72.38 74.10 87.51 88.09
ESIM(RMIB) 83.29(+0.70) 86.03(+0.99) 88.29(+1.05) 72.99(+0.61) 74.55(+0.45) 87.53(+0.02) 88.26(+0.17)
ESIM(RMIB, α−

1 , α2, α3) 83.27(+0.68) 85.65(+0.61) 87.84(+0.60) 71.05(-1.33) 72.76(-1.34) 87.12(-0.39) 88.02(-0.07)
ESIM(RMIB, α1, α

−
2 , α3 ) 82.98(+0.39) 85.79(+0.75) 87.78(+0.54) 70.31(-2.07) 72.36(-1.74) 87.75(+0.24) 88.07(-0.02)

ESIM(RMIB, α1, α2, α
−
3 ) 83.04(+0.45) 85.18(+0.14) 87.46(+0.22) 70.75(-1.63) 72.03(-2.07) 87.60(+0.09) 87.99(-0.10)

ESIM(RMIB, α1, α
−
2 , α

−
3 ) 83.29(+0.70) 84.67(-0.37) 86.76(-0.48) 70.53(-1.85) 72.76(-1.34) 87.49(-0.02) 88.08(-0.01)

results. DRCN (Kim et al., 2019) stacks encoding layers
and attention layers and then connects all previously aligned
results. RE2 (Yang et al., 2019) introduces an architecture
based on convolutional layer and attention layer reinforce-
ment residual connection. DDR-Match (Yu et al., 2022) is a
regularizer based on distribution distance to directly narrow
the encoding distribution of input texts.

The information bottleneck (IB) is proposed by (Tishby
et al., 2000) as a generalization of the minimum adequacy
statistic, allowing trade-offs between the adequacy and com-
plexity of the representation. Later (Tishby & Zaslavsky,
2015) and (Shwartz-Ziv & Tishby, 2017) advocate using
IB between test data and deep neural network activation to
study the adequacy and minimality of the representation.
Since it is difficult to directly calculate mutual information,
VIB (Alemi et al., 2016) gives the lower bound of the
optimization goal for the information bottleneck based on
the variational method, so that the optimization goal of the
information bottleneck can be combined into the training
process. DisenIB (Pan et al., 2021) introduces disentangled
information bottleneck from the perspective of supervised
detangling. PIB (Wang et al., 2021) establishes an infor-
mation bottleneck between the accuracy of neural networks
and the complexity of information based on information
stored in weights.

5. Relationship between RMIB and
Contrastive Learning

Contrastive loss (Chen et al., 2020) aims at pulling in sam-
ples with similar semantics in the semantic vector space and
pushing out samples with significant semantic differences.
Let x be a sample, then the core of contrastive learning is
how to efficiently construct positive and negative sample
pairs. SimCSE(Gao et al., 2021) proposes two methods for
constructing (xi, x

+
i ) for NLP scenarios. For supervised

versions, SimCSE will treat the dataset labeled as ”entail-
ment” as x+ and the dataset labeled as ”contradict” as x−.
Contrastive learning emphasizes the distance between dif-
ferent semantic samples, while RMIB emphasizes that the
distribution of texts in different input domains should be as
similar as possible. The output of RMIB is of discrete type,
while contrastive learning is of continuous type.

Since the aim of contrastive learning is different from text
matching, we find it impossible to extend RMIB directly to
SimCSE. The Inadequacy constraint on representations in
RMIB cannot be applied to contrastive learning. However,
drawing on the ideas of contrastive learning, we may be
able to extend RMIB to unsupervised learning. We can
treat (x1, x

+
1 ) as one class and (x1, x2) as another class to

form binary dataset. Further, we use RIBM to learn this
task. The difference here with SimCSE is that our aim is to
classify rather than learn the similarity of representational
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semantics.

6. Conclusion
In this paper, we theoretically prove that narrowing text
representations distribution in asymmetrical domains text
matching is equivalent to optimizing the information bottle-
neck. Since the information bottleneck does not constrain
the interaction of text representations, we extend the infor-
mation bottleneck in asymmetrical domain text matching
and obtain the representation matching information bottle-
neck (RMIB). We also theoretically prove that the optimiza-
tion objective of RMIB is equivalent to maximizing mutual
information between text representations given task infor-
mation. The experimental results show the effectiveness
of RMIB. The main limitation of RMIB is that there are
some hyper-parameters in the optimization goal of RMIB
that need to be set manually. We will also explore how to
set the hyper-parameters adaptively in future work.

Impact Statement
For addressing the problem of handling domain variance
in text matching tasks, we introduce the Representation
Matching Information Bottleneck (RMIB) framework. We
provide both theoretical foundations and empirical evidence
to verify the effectiveness of RMIB.
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Appendix
The Performance of RMIB on Additional Datasets

We also evaluate the performance of RMIB on three additional data sets. MRPC(Microsoft Research Paraphrase Corpus)
(Dolan & Brockett, 2005) is a corpus consisting of 5,801 sentence pairs collected from newswire articles. Each pair is
labeled if it is a paraphrase or not annotated by human annotators. The RTE(Recognizing Textual Entailment) (Wang et al.,
2018) datasets come from a series of textual entailment challenges. Examples are constructed based on news and Wikipedia
text. The WNLI (Wang et al., 2018) contains pairs of sentences, and the task is to determine whether the second sentence is
an entailment of the first one or not. The dataset is used to train and evaluate models on their ability to understand these
relationships between sentences. The experimental results are as follows and the experimental results show that RMIB can
improve the performance of the model significantly.

Table 3: Performance of BERT and SBERT with RMIB on three additional datasets.

MRPC(Acc.) WNLI(Acc.) RTE(Acc.)
BERT 85.54 53.52 62.82
RMIB(BERT) 87.01 56.34 69.31
SBERT 71.57 50.70 54.51
RMIB(SBERT) 77.21 60.56 62.82

Proof of Theorem 2.1

Theorem 2.1. Given matching texts X1, X2, text representations Z1, Z2 and task label Y , then it satisfies in asymmetrical
domains text matching:

Z∗
1 , Z

∗
2 ∝ arg min

Z1,Z2

I(X1, X2;Z1) + I(X1, X2;Z2)

− βI(Y ;Z1, Z2)

∝ arg min
z1,z2

Ep(x1,x2,y)[β1KL(pθ(z1 | x1, x2) ∥ p(Z))

+ β2KL(pθ(z2 | x1, x2) ∥ p(Z))− log pθ(y | x1, x2)]

where β1, β2 and β are positive constants.

Proof. The optimization objective of the representation information bottleneck in the text matching can be expressed as:

Z∗
1 , Z

∗
2 = arg min

Z1,Z2

I(X1, X2;Z1) + I(X1, X2;Z2) s.t. I(Y ;Z1, Z2) = I(Y ;X) (19)

∝ arg min
Z1,Z2

I(X1, X2;Z1) + I(X1, X2;Z2)− βI(Y ;Z1, Z2) (20)

For I(Z1;X1, X2), we can get:

I(Z1;X1, X2) =
∑

x1,x2,z1

pθ(x1, x2, z1) log
pθ(z1|x1, x2)

pθ(z1)
(21)

=
∑

x1,x2,z1

pθ(x1, x2, z1) log pθ(z1|x1, x2)−
∑

x1,x2,z1

pθ(x1, x2, z1) log pθ(z1) (22)

We can replace pθ(z1) by the prior distribution p(Z) and according to Gibbs inequality, we can get:

−
∑

x1,x2,z1

pθ(x1, x2, z1) log pθ(z1) ≤ −
∑

x1,x2,Z
pθ(x1, x2, z1) log p(Z) (23)
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Further, we can get:

I(Z1;X1, X2) ≤
∑

x1,x2,z1

pθ(x1, x2, z1) log pθ(z1|x1, x2)−
∑

x1,x2,Z
pθ(x1, x2, z1) log p(Z) (24)

=
∑

x1,x2,z1,Z
pθ(x1, x2, z1) log

pθ(z1|x1, x2)

p(Z)
(25)

=
∑

x1,x2,z1,Z
pθ(x1, x2)pθ(z1|x1, x2) log

pθ(z1|x1, x2)

p(Z)
(26)

= Ep(x1,x2)[KL(pθ(z1|x1, x2) ∥ p(Z))] (27)

We can see that when Ep(x1,x2)[KL(pθ(z1|x1, x2) ∥ p(Z))] is minimized, I(Z1;X1, X2) will also be minimized.

minEp(x1,x2)[β1KL(pθ(z1|x1, x2) ∥ p(Z))] ∝ min I(Z1;X1, X2) (28)

Based on the same proof method, we can also get:

minEp(x1,x2)[β2KL(pθ(z2|x1, x2) ∥ p(Z))] ∝ min I(Z2;X1, X2) (29)

For I(Z1, Z2;Y ), we can get:

I(Z1, Z2;Y ) =
∑

z1,z2,y

pθ(z1, z2, y) log
pθ(y|z1, z2)

pθ(y)
(30)

=
∑

z1,z2,y

pθ(z1, z2, y) log pθ(y|z1, z2)−
∑

z1,z2,y

pθ(z1, z2, y) log pθ(y)︸ ︷︷ ︸
H(Y )≥0

(31)

≥
∑

z1,z2,y

pθ(z1, z2, y) log pθ(y|z1, z2) (32)

Since z1 and z2 is the representation of x1 and x2, we can get:

pθ(z1, z2, y) = pθ(x1, x2, y) (33)
pθ(y|z1, z2) = pθ(y|x1, x2) (34)

Further, we can get:

I(Z1, Z2;Y ) ≥
∑

z1,z2,y,x1,x2

pθ(x1, x2, y) log pθ(y|x1, x2) (35)

= Ep(y,x1,x2)[log pθ(y|z1, z2)] (36)

We can find that when maximizing Ep(y,x1,x2)[log pθ(y|z1, z2)], I(Z1, Z2;Y ) will also be maximized.

maxEp(y,x1,x2)[log pθ(y|z1, z2)] ∝ maxβI(Z1, Z2;Y ) (37)

Then we can get:

Z∗
1 , Z

∗
2 ∝ min

Z1,Z2

I(X1, X2;Z1) + I(X1, X2;Z2)− βI(Y ;Z1, Z2) (38)

∝ min
z1,z2

Ep(x1,x2,y)[β1KL(pθ(z1 | x1, x2) ∥ p(Z)) + β2KL(pθ(z2 | x1, x2) ∥ p(Z))− log pθ(y | x1, x2)] (39)

Therefore, the Theorem 2.1 can be proved.
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Proof of Theorem 2.2

Theorem 2.2. Given text representations Z1, Z2 and task label Y , then it satisfies in asymmetrical domain text matching:

I(Z1;Z2|Y ) = I(Z1;Z2) + I(Z1, Z2;Y )

−I(Y ;Z1)− I(Y ;Z2)

Proof. According to the definition of conditional mutual information, we can get:

I(Z1;Z2|Y ) = H(Z1|Y )−H(Z1|Y,Z2) (40)

We can decompose H(Z1|Y ) and H(Z1|Y,Z2) into:

H(Z1|Y ) = H(Z1, Y )−H(Y ) (41)
H(Z1|Y, Z2) = H(Y,Z1, Z2)−H(Y,Z2) (42)

So we can get:

I(Z1;Z2|Y ) = H(Z1, Y )−H(Y )−H(Y,Z1, Z2) +H(Z2, Y ) (43)

We decompose H(Z1, Y ), H(Y, Z1, Z2) and H(Z2, Y ) into:

H(Z1, Y ) = H(Z1) +H(Y |Z1) (44)
H(Y, Z1, Z2) = H(Z1, Z2) +H(Y |Z1, Z2) (45)

H(Z2, Y ) = H(Z2) +H(Y |Z2) (46)

Further, we can get:

I(Z1;Z2|Y ) = H(Z1) +H(Y |Z1)−H(Y )−H(Z1, Z2)−H(Y |Z1, Z2) +H(Z2) +H(Y |Z2) (47)

We note the following relationship between H(Z1), H(Z2) and H(Z1, Z2):

H(Z1) +H(Z2)−H(Z1, Z2) = I(Z1, Z2) (48)

I(Z1, Z2|Y ) can be expressed as:

I(Z1;Z2|Y ) = I(Z1, Z2) +H(Y |Z1)−H(Y )−H(Y |Z1, Z2) +H(Y |Z2) (49)

We further decompose H(Y |Z1), H(Y |Z1, Z2) and H(Y |Z2) into:

H(Y |Z1) = H(Y )− I(Z1;Y ) (50)
H(Y |Z1, Z2) = H(Y )− I(Y ;Z1, Z2) (51)

H(Y |Z2) = H(Y )− I(Z2;Y ) (52)

Finally, we can get:

I(Z1;Z2|Y ) = I(Z1;Z2) + I(Z1, Z2;Y )− I(Y ;Z1)− I(Y ;Z2) (53)

Therefore, the Theorem 2.2 can be proved.
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Proof of Theorem 2.3

Theorem 2.3. Given text representations Z1, Z2 and task label Y , let C := sup I(Z1;Z2 | Y ), then it satisfies in
asymmetrical domains text matching:

C ≤ min {log |Z1| , log |Z2|}

Proof. According to the definition of conditional mutual information, we can get:

I(Z1;Z2|Y ) = H(Z1|Y )−H(Z1|Y,Z2)︸ ︷︷ ︸
≥0

(54)

≤ H(Z1|Y ) (55)

Since I(Z1;Y ) = H(Z1)−H(Z1|Y ) ≥ 0, we can get:

I(Z1;Z2|Y ) ≤ H(Z1) (56)

Let distribution q(Z1) =
1

|z1| , then:

KL(pθ(Z1) ∥ q(Z1)) =
∑
z1

pθ(z1) log
pθ(z1)

q(z1)
(57)

=
∑
z1

pθ(z1) log pθ(z1)−
∑
z1

pθ(z1) log q(z1) (58)

= −
∑
z1

pθ(z1) log q(z1)− (−
∑
z1

pθ(z1) log pθ(z1))︸ ︷︷ ︸
H(Z1)

(59)

= −
∑
z1

pθ(z1) log
1

|Z1|
−H(Z1) (60)

= log |Z1| −H(Z1) ≥ 0 (61)

where |z1| is the number of elements of random variable Z1. Therefore, we can get:

I(Z1;Z2|Y ) ≤ log |Z1| (62)

Since mutual information meets the exchangeability, it can be obtained:

I(Z1;Z2|Y ) ≤ log |Z2| (63)

Finally, we can get:

I(Z1;Z2|Y ) ≤ min {log |Z1| , log |Z2|} (64)

Therefore, the Theorem 2.3 can be proved.

Proof of Theorem 2.4

Theorem 2.4. Given text representations Z1, Z2, fusion text representation Z and task label Y , if the cost of optimizing
I(Y ;Z1, Z2) and I(Y ;Z) to the same value is the identical, then optimizing I(Y ;Z) will obtain better Z∗

1 and Z∗
2 in RMIB.

14
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Proof. According to the definition of mutual information:

I(Y ;Z1, Z2, Z) = I(Y ;Z1, Z2) + I(Y ;Z|Z1, Z2) (65)
= I(Y ;Z) + I(Y ;Z1, Z2|Z) (66)

Since Y → (X1, X2) → (Z1, Z2) → Z forms a Markov chain, Y and Z are independent of each other given (Z1, Z2), that
is, I(Y ;Z|Z1, Z2) = 0, then:

I(Y ;Z1, Z2, Z) = I(Y ;Z1, Z2) + I(Y ;Z|Z1, Z2)︸ ︷︷ ︸
0

= I(Y ;Z) + I(Y ;Z1, Z2|Z)︸ ︷︷ ︸
≥0

(67)

Based on the non-negativity of mutual information, then:

I(Y ;Z1, Z2) ≥ I(Y ;Z) (68)

We can see that I(Y ;Z1, Z2) is the upper bound of I(Y ;Z). Therefore, if the cost of optimizing I(Y ;Z1, Z2) and I(Y ;Z)
to the same value is the same, this means that optimizing I(Y ;Z) will result in a higher I(Y ;Z1, Z2). Since one of the
optimization goals of RMIB is to maximize I(Y ;Z1, Z2), the higher the value of I(Y ;Z1, Z2), the better Z∗

1 , Z
∗
2 learned.

Proof of Theorem 2.5

Theorem 2.5. The optimization objective of RMIB can be equivalently expressed as:

Z∗
1 , Z

∗
2 ∝ arg min

Z1,Z2

Ep(x1,x2,y)[

α1(KL(pθ(z1 | x1, x2) ∥ p(Z))

+KL(pθ(z2 | x1, x2) ∥ p(Z)))

− α2(Epθ(z1,z2)[f ]− logEpθ(z1)pθ(z2)[e
f ])

− pθ(z1, z2 | x1, x2) log pθ(y | z1, z2)
+ α3(pθ(z1|x1, x2) log pθ(y|z1)
+ pθ(z2|x1, x2) log pθ(y|z2))]

where α1, α2 and α3 are positive constants and f is a multi-layer perceptron whose output layer activation function is
sigmoid.

Proof. The optimization objective of RMIB is:

Z∗
1 , Z

∗
2 = arg min

Z1,Z2

I(X1, X2;Z1) + I(X1, X2;Z2)− β1I(Z1;Z2)− β2I(Z1, Z2;Y ) + β3(I(Y ;Z1) + I(Y ;Z2))

(69)

∝ arg min
Z1,Z2

α1(I(X1, X2;Z1) + I(X1, X2;Z2))− α2I(Z1;Z2)− I(Z1, Z2;Y ) + α3(I(Y ;Z1) + I(Y ;Z2))

(70)

H(Y ) is a constant when given a dataset. From Theorem 2.1 we can see:

min

{
I(X1, X2;Z1)

I(X1, X2;Z2)
∝ min

{
KL(pθ(z1 | x1, x2) ∥ p(Z))

KL(pθ(z2 | x1, x2) ∥ p(Z))
(71)
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max I(Z1, Z2;Y ) ∝ maxEx1,x2,y[pθ(z1, z2 | x1, x2) log pθ(y | z1, z2)] (72)

min

{
I(Y ;Z1)

I(Y ;Z2)
∝ min

{
Ex1,x2,y(pθ(z1 | x1, x2) log pθ(y | z1))
Ex1,x2,y(pθ(z2 | x1, x2) log pθ(y | z2))

(73)

According to the definition of mutual information and KL divergence, for I(Z1;Z2) there is:

I(Z1;Z2) = KL(pθ(z1, z2) ∥ pθ(z1)pθ(z2)) (74)

Let p̃(z1, z2) be defined as:

p̃(z1, z2) :=
1

ϕ
efpθ(z1)pθ(z2) (75)

where ϕ := Epθ(z1)pθ(z2)[e
f ] and f is a given function. By construction:

Epθ(z1,z2)[f ]− log ϕ = Epθ(z1,z2)[log e
f − log ϕ] (76)

= Epθ(z1,z2)[log
ef

ϕ
] (77)

= Epθ(z1,z2)[log
p̃(z1, z2)

pθ(z1)pθ(z2)
] (78)

We can note that:

KL(pθ(z1, z2) ∥ pθ(z1)pθ(z2))− (Epθ(z1,z2)[f ]− log ϕ) = Epθ(z1,z2)[log
pθ(z1, z2)

pθ(z1)pθ(z2)
]− Epθ(z1,z2)[log

p̃(z1, z2)

pθ(z1)pθ(z2)
]

(79)

= Epθ(z1,z2)[log
pθ(z1, z2)

p̃(z1, z2)
] (80)

= KL(pθ(z1, z2) ∥ p̃(z1, z2)) (81)

Due to the non-negative property of KL divergence, it can be obtained that:

KL(pθ(z1, z2) ∥ pθ(z1)pθ(z2))− (Epθ(z1,z2)[f ]− log ϕ) ≥ 0 (82)

KL(pθ(z1, z2) ∥ pθ(z1)pθ(z2)) ≥ (Epθ(z1,z2)[f ]− log ϕ) (83)

≥ (Epθ(z1,z2)[f ]− logEpθ(z1)pθ(z2)[e
f ]) (84)

Therefore, we can obtain:

max I(Z1;Z2) ∝ maxEpθ(z1,z2)[f ]− logEpθ(z1)pθ(z2)[e
f ] (85)

Based on the above derivation, the Theorem 2.5 can be proved.
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