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Abstract
Language and Vision-Language Models exhibit001
impressive language capabilities akin to hu-002
man reasoning. However, unlike humans who003
acquire language through embodied, interac-004
tive experiences, these models learn from static005
datasets without real-world interaction. This006
difference raises questions about how they con-007
ceptualize abstract notions and whether their008
reasoning aligns with human cognition. We009
investigate spatial conceptualizations of LLMs010
and VLMs by conducting analogy prompting011
studies with LLMs, VLMs, and human par-012
ticipants. We assess their ability to generate013
and interpret analogies for spatial concepts.014
We quantitatively compare the analogies pro-015
duced by each group, examining the impact016
of multimodal inputs and reasoning mecha-017
nisms. Our findings indicate that generative018
models can produce and interpret analogies but019
differ significantly from human reasoning in020
their abstraction of spatial concepts – variabil-021
ity influenced by input modality, model size,022
and prompting methods, with analogy-based023
prompts not consistently enhancing alignment.024
Contributions include a methodology for prob-025
ing generative models through analogies; a026
comparative analysis of analogical reasoning027
among models, and humans; and insights into028
the effect of multimodal inputs on reasoning.1029

1 Introduction030

Large language models (LLMs) have revolution-031

ized natural language processing, achieving re-032

markable language proficiency and emergent abili-033

ties that seem to parallel human reasoning (Brown034

et al., 2020; Achiam et al., 2023; Kojima et al.,035

2022). Trained on vast corpora of text – or036

paired text and images for vision-language models037

(VLMs) – these models’ learning paradigms funda-038

mentally differ from human language acquisition,039

1Code available at:
https://github.com/anonymousACL/analogy_
prompting

Figure 1: Human participants (e.g., participant #02),
LLMs (e.g., GPT-4) and VLMs (e.g., Qwen2-VL) are
prompted to provide an analogy for their choice of 1 of
4 items (↑, ↓, ←, →) that best represents 1 of 30 words.

raising questions about how they represent mean- 040

ing, form abstract ideas, and structure knowledge. 041

LLMs learn from static, digital artifacts, pro- 042

cessing accumulated language data without real- 043

time interaction or sensory experience. Their train- 044

ing spans weeks to months using massive compu- 045

tational resources (Hoffmann et al., 2022; Scao 046

et al., 2023). In contrast, human language ac- 047

quisition is an embodied process: children learn 048

through dynamic interactions with their environ- 049

ment – observing, testing, and experiencing the 050

world around them (Mandler, 1992). First words 051

emerge around 12 months, alongside nonverbal 052

communication (Bretherton and Bates, 1979; Iver- 053

son, 2010), and foundational language abilities de- 054

velop over approximately five years, with sensory 055

experiences and social interactions playing crucial 056

roles (Clark and Casillas, 2015). 057

Despite these differences, both LLMs and hu- 058

mans produce language artifacts and exhibit rea- 059

soning grounded in language. This raises a fun- 060

damental question: How can LLMs exhibit rea- 061
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soning abilities seemingly analogous to human062

cognition when their training procedures are063

so fundamentally different? Addressing this is064

crucial as we integrate LLMs/VLMs into systems065

where reasoning and understanding are essential.066

Studies have highlighted limitations in LLM rea-067

soning capabilities – they often struggle with com-068

plex reasoning tasks (Mondorf and Plank, 2024;069

Stechly et al., 2023), arithmetic operations (Gam-070

bardella et al., 2024), planning (Valmeekam et al.,071

2022), and other challenges (Sobieszek and Price,072

2022). One potential issue is how LLMs abstract073

from their knowledge. It is argued that human cog-074

nition largely relies on analogical reasoning, i.e.,075

understanding abstract concepts by relating them076

to familiar ones (Gentner, 1983; Hofstadter, 2001).077

Analogies facilitate learning and are a crucial com-078

ponent for human cognitive development (Vosni-079

adou and Ortony, 1989; Holyoak, 2012).080

We focus on analogical reasoning to investigate081

whether LLMs and VLMs can generate and in-082

terpret analogies like humans to understand ab-083

stract spatial associations. Specifically, we address:084

(RQ1): How do LLMs and VLMs conceptualize085

semantic notions through spatial analogies com-086

pared to humans? (RQ2): How do multimodal087

inputs (e.g., text and images) affect the models’088

analogical reasoning? To answer these questions,089

we conduct analogy prompting studies (i.e., requir-090

ing to produce an analogy to answer a question)091

with LLMs, VLMs, and human participants. We092

systematically categorize and compare the analo-093

gies generated by each group. Our experiments094

examine the influence of different modalities, test-095

ing state-of-the-art VLMs with image inputs to096

assess how sensory information impacts reasoning097

outcomes. Our contributions are:098

1. Methodology for probing conceptualization099

in models through analogy generation;100

2. Comparative analysis of analogical reasoning101

abilities of LLMs, VLMs and humans, using102

both quantitative and qualitative approaches;103

3. Insights into how multimodal inputs influence104

models toward human-like reasoning;105

4. Evaluation whether different types of models,106

e.g., those with enhanced reasoning, improve107

analogy and conceptual understanding.108

2 Related Work 109

2.1 Analogical Reasoning in Cognition 110

Analogical reasoning is a key cognitive strategy 111

which allows individuals to draw parallels between 112

disparate domains by mapping relational structures. 113

Gentner’s structure-mapping theory posits that anal- 114

ogy involves aligning relational structures from 115

a base domain to a target domain, emphasizing 116

the importance of systematic correspondences over 117

mere attribute similarities. Gust et al. (2008) ar- 118

gue that analogies underpin key cognitive abilities – 119

memory adaptation, transfer learning, reasoning, 120

and creativity – by enabling the application of prior 121

knowledge to novel contexts; they propose that 122

analogical reasoning is fundamental for integrating 123

diverse cognitive processes in large-scale systems. 124

Evidence for the connection between human rea- 125

soning and analogies comes from several psycholin- 126

guistic studies (Richardson et al., 2001; Beitel et al., 127

2001; Gibbs et al., 1994). They provide evidence 128

that certain linguistic representations are grounded 129

in spatial schemas, which operate as analogical 130

structures for language comprehension. 131

2.2 Analogical Reasoning in AI Models 132

Analogical reasoning in AI has gained attention 133

through various benchmarks and methodologies, re- 134

vealing both the strengths and limitations of LLMs. 135

Sourati et al. (2024) introduce the Analogical Rea- 136

soning on Narratives (ARN) benchmark, which ex- 137

tends traditional analogy evaluations by integrating 138

narrative elements. This framework distinguishes 139

near from far analogies, demonstrating LLMs’ pro- 140

ficiency in surface mappings yet exposing their 141

limitations with abstract, far analogies under zero- 142

shot conditions. Building on this, Yu et al. (2023) 143

propose Thought Propagation (TP), a method that 144

leverages the generation and resolution of analo- 145

gous problems to iteratively refine model outputs, 146

thereby achieving significant improvements over 147

conventional baselines. Complementing these ap- 148

proaches, Webb et al. (2023) compare LLM perfor- 149

mance with human reasoning across varied anal- 150

ogy tasks, showing that while models like GPT-3 151

rival humans in structured analogies, they struggle 152

with causal and cross-domain reasoning. Further- 153

more, Petersen and van der Plas (2023) align model 154

evaluations with human-like paradigms, and Hu 155

et al. (2023) show how encoding visual informa- 156

tion into textual representations enhances LLMs’ 157

performance on visual analogical reasoning, as they 158
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demonstrate with Raven’s Progressive Matrices.159

Chain-of-thought prompting encourages step-by-160

step reasoning in zero-shot settings (Kojima et al.,161

2022). In few-shot settings, when examples contain162

analogies, the model is explicitly guided to apply163

analogical reasoning (Wei et al., 2022b,a).164

2.3 Spatial Schemas165

Understanding how LLMs and VLMs conceptu-166

alize foundational spatial schemas is crucial for167

robust, intelligent systems. These schemas are the168

basic building blocks that infants use for spatial in-169

tegration – a process described by Mandler (1992)170

as synthesizing perceptual experiences into concep-171

tual representations via analogical reasoning.172

Richardson et al. (2001) study spatial schemas173

in adults and finds that commonly used verbs are174

consistently associated with a specific spatial direc-175

tion (horizontal vs. vertical), which highlights the176

importance of spatial schemas in semantic repre-177

sentations even after the developmental stage.178

Wicke and Wachowiak (2024) and Wicke et al.179

(2024) focus on the same stimuli used in Richard-180

son et al. (2001) and assess whether a suite of181

LLMs and VLMs exhibits word-direction associa-182

tions similar to humans’. Our work substantially183

extends their effort by using analogy-based prompt-184

ing to gain deeper insights into model reasoning,185

incorporating state-of-the-art VLMs, and conduct-186

ing a human subject study that not only validates187

previous results but also provides human analogies188

for direct comparison with those of models.189

3 Methods190

3.1 Experimental Setup191

Our aim is to explore spatial intuitions in both hu-192

mans and multimodal models by bridging a psy-193

cholinguistic study with computational modeling.194

We build upon the original study by Richardson195

et al. (2001), which provides the experimental stim-196

uli of words and schematic directions (up, down,197

left, right) but has not been reproduced in over 20198

years and did not explore the use of analogies. We199

conduct a human subject experiment where partic-200

ipants associate words with schematic directions201

and, additionally, provide the analogies they use for202

these associations (see Fig. 1). We query a variety203

of LLMs and VLMs – including GPT-4o (OpenAI,204

2024a), Llama3 (AI@Meta, 2024), Molmo (Deitke205

et al., 2024), Qwen2-VL (Wang et al., 2024b), and206

others – with regular and analogy (i.e., explicitly207

Figure 2: Left: Schematic directions used in all exper-
iments. Right: Action words as experimental items.
Both sets are adapted from Richardson et al. (2001).

asking the model to provide an analogy and to use 208

it to provide its answer) prompts. We quantify 209

the correlation between model and human schema 210

selection in both prompting conditions and sys- 211

tematically compare the analogies generated by 212

humans and models. These comparisons provide 213

insights into how prompting strategies, modalities, 214

and model architectures affect spatial associations. 215

Stimuli and Modalities In order to keep our 216

results comparable to those by Richardson et al. 217

(2001), we use the same stimuli as the original 218

study (depicted in Fig. 2). The original stimuli 219

include 30 verbs and pictures showing arrows. In 220

Richardson et al.’s study, participants were asked 221

to choose a preferred arrow (spatial schema) to rep- 222

resent each verb. In case of our studies, we present 223

these spatial schemas in three different renderings: 224

i) a reproduction of the original images (visual con- 225

dition), ii) an equivalent Unicode version (↑, ↓, ←, 226

→) of the arrows (pseudo-visual condition), and 227

iii) a textual description (up, down, left, right) of 228

the spatial schemas (textual condition). 229

3.2 Human Subject Study 230

We replicate the experiment by Richardson et al. 231

(2001) with two key modifications designed to en- 232

hance both the task setup and subsequent analysis. 233

First, we introduce a one-shot example that di- 234

verges from the original relational schema (up, 235

down, left, right) but retains a similar structure, 236

designed to familiarize participants with the task 237

without revealing the target relations (see App. 6). 238

Second, we ask participants to provide an analogy 239

explaining their choice before selecting one of the 240

four options (see App. 7). Participants are asked 241

to provide informed consent and demographic in- 242

formation (reported in App. A.2). We recruit 24 243
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native English speakers, resulting in a total of 240244

responses (30 items with 8 responses per item).245

Schema Choice Evaluation To compare the re-246

sults of our human study with those of Richardson247

et al. (2001), we calculated item-level agreement us-248

ing a normalized concentration metric. This metric249

is based on the squared proportions of values within250

each distribution, ensuring it ranges from 0 (com-251

plete disagreement) to 1 (complete agreement). To252

account for sample size differences, scores were253

weighted by the number of observations (N) in both254

datasets. Overall agreement was computed as the255

weighted average across all items, with variability256

assessed via standard deviation, offering insights257

into the consistency of item-level distributions.258

Labeling Analogies To facilitate comparisons259

between human and model-generated analogies,260

we design a classification schema that categorizes261

them into four types (more details in App. A.4):262

• Physical Action Representation263

• Interaction or Relationship Between Entities264

• Cultural or Conventional Associations265

• No Analogy or Direct Explanation Provided266

The creation of these labels was guided by prior267

NLP work in analogy classification (Mikolov et al.,268

2013; Gladkova et al., 2016; Drozd et al., 2016),269

as well as recent advancements in analogy eval-270

uation (e.g., Wijesiriwardene et al., 2025). With271

guidance from these sources and insights from their272

analysis, our labels account for semantic and prag-273

matic influences on the structure of the analogy.274

To label our dataset of +7,000 analogies, we275

employ LLMs as judges while acknowledging276

their limitations in reliability (Zheng et al., 2023;277

Bavaresco et al., 2024). On samples of 3x30 analo-278

gies from both human and LLM data, two annota-279

tors achieve an agreement of Cohen’s κ = 0.6277280

after three annotation schema revisions, indicating281

their substantial agreement (Cohen, 1960).282

When prompted according to this revised283

schema, GPT-4o achieves an agreement with two284

human annotators of Fleiss’ κ = 0.6024 (Fleiss285

and Cohen, 1973) (see details in App. A.4).286

3.3 Generative Model Study287

Large Language Models We select a diverse288

set of state-of-the-art LLMs, including both289

open-source and proprietary architectures. As290

open-source models, we include two variants291

of Llama 3.1 – Llama-70B and Llama-70B- 292

Instruct (AI@Meta, 2024) – and DeepSeek’s R1- 293

Distill-Llama (DeepSeek-AI et al., 2025), based 294

on Llama-3.3-70B-Instruct. As proprietary mod- 295

els, we evaluate GPT-3.5-Turbo (OpenAI, 2023), 296

GPT-4o, GPT-4o-Mini (OpenAI, 2024a), and GPT- 297

o1-Preview (OpenAI, 2024b), accessed via the 298

OpenAI API. LLMs were prompted by passing 299

schemas as textual and pseudo-visual renderings. 300

Vision-language Models Given the documented 301

limitations of vision-language models in spatial rea- 302

soning (Kamath et al., 2023; Wang et al., 2024a), 303

we conduct a preliminary analysis to verify their 304

ability to correctly process the input images used 305

in the main experiment (see App. B.2 for more de- 306

tails). VLMs from the LLaVA family (Liu et al., 307

2024c,a,b) were found to be incapable of reliably 308

identifying our stimuli, and therefore excluded 309

from our main experiment. Our selection of VLMs 310

includes Molmo-7B, Molmo-72B (Deitke et al., 311

2024), Qwen2-VL-7B, and Qwen2-VL-72B (Wang 312

et al., 2024b). These models were prompted with 313

schemas in their visual rendering (as images). 314

Prompts We test both LLMs and VLMs in two 315

prompting conditions (all with temperature 0, ex- 316

cept for GPT-o1). In regular prompting, models 317

are simply asked to provide their chosen schema 318

for each verb; in the analogy prompting condition, 319

they are asked to rely on an analogy to choose a 320

schema, and to include both analogy and chosen 321

schema in their response. Both kinds of prompts 322

are one-shot, i.e., they include an example question, 323

in-line with the human subject study. The complete 324

list of prompts used for all models is provided in 325

App. B.3. As suggested by Aher et al. (2023), we 326

employ prompt validation to enhance the validity 327

of model responses (see App. B.1 for more details). 328

Despite these mitigation efforts, some invalid re- 329

sponses persisted (see App. B.4 for details). 330

3.4 Evaluation Metrics 331

We evaluate our models along two main dimen- 332

sions: schema selection and labeled analogies. 333

For both dimensions, we compare model outputs 334

and human responses with Spearman correlations 335

and F1 scores (see App. A.6 and B.5 for more 336

details). While the schema selection evaluation 337

was performed against both human datasets, the 338

one regarding analogy labels is only applicable to 339

our dataset, because Richardson et al.’s data does 340

not include human-generated analogies. 341
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Figure 3: Spearman correlations between model and human chosen-concept distributions in the textual, pseudo-
visual, and visual condition for our and Richardson et al.’s data. Values were computed per direction (‘horizontal’:
up/down and ‘vertical’: left/right). Note that the x-axis range in the visual condition is different from the other two.

In addition to these task-level comparisons, we342

perform item-level analyses. For the human data,343

we assess the agreement between our human sam-344

ples and the original data using item-level agree-345

ment measures. Moreover, we examine the item-346

level correlations of analogy types between se-347

lected models by comparing their outputs to our348

human-sampled analogies.349

4 Results and Discussion350

4.1 Human Subject Study351

Our human study partially aimed to replicate352

Richardson et al. (2001), albeit with significant353

procedural differences. The item-level agreement354

analysis that we performed to compare Richardson355

et al.’s results to ours yields an overall weighted356

agreement of 0.49 (±0.15) for Richardson et al.’s357

schema choices and 0.62 (±0.26) for ours. Notably,358

items such as pointed at (0.80), pushed (0.78), and359

bombed (0.76) obtain the highest agreement in the360

Richardson dataset, whereas our dataset shows per-361

fect agreement for items like fled, pulled, sank, and362

increased, albeit with a smaller sample size.363

Altogether, our results indicate that the overall364

item-level agreement for our data is higher than that365

reported by Richardson et al. (2001). For further366

details, please refer to App. Tab. 2. We interpret the367

higher agreement in our dataset as suggesting that368

analogy prompting induces participants to deeply369

engage their knowledge about spatial schemas, as370

opposed to relying on simpler associations.371

4.2 Generative Model Study372

Our study with generative models focuses on com-373

paring model outputs with human responses on two374

levels. First, we investigate how strongly the spa-375

tial schemas chosen by models align with those376

chosen by human participants from both our exper- 377

iment and Richardson’s. Second, we explore the 378

similarity between analogies generated by models 379

and those provided by participants in our study. 380

4.2.1 Alignment of Spatial Schema Selection 381

We quantify alignment between models’ and hu- 382

mans’ schema choices by computing Spearman 383

correlations and F1 scores. The former are shown 384

in Fig. 3 and consider answer distributions aggre- 385

gated per main direction (‘horizontal’ vs. ‘verti- 386

cal’); this choice was favored over considering all 387

four spatial schemas as it yielded more statistically 388

significant correlations. F1 scores are reported in 389

Tab. 1 and were calculated considering all four 390

spatial schemas (up, down, left, right). Both Spear- 391

man correlations and F1 scores were computed per 392

prompting condition (regular and analogy) and in- 393

put type (textual, pseudo-visual, and visual). 394

Regular vs. analogy prompting Since we ex- 395

plicitly instructed our participants to employ ana- 396

logical reasoning while Richardson et al. did not, 397

we expected analogy-prompting model responses 398

to align more closely with our dataset, and regular- 399

prompting ones to be more aligned with Richard- 400

son et al.’s dataset. However, the Spearman cor- 401

relations visualized in Fig. 3 indicate that none 402

of the prompting conditions results in systemati- 403

cally stronger correlations with human responses. 404

Moreover, the effect of the prompting condition 405

is inconsistent even when the same model outputs 406

are compared with different human datasets – e.g., 407

in the textual condition, analogy prompting results 408

in GPT-4o correlating more strongly with Richard- 409

son’s data than ours (ρRich. = 0.45 > ρOurs = 410

0.29) – or the same model appears in different ex- 411

perimental conditions – e.g., for Llama-70B anal- 412
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ogy prompting yields higher correlations with our413

dataset than regular prompting in the textual con-414

dition (ρAnalog. = 0.70 > ρReg. = 0.57), but the415

reversed trend is observed in the pseudo-visual con-416

dition (ρAnalog. = 0.60 < ρReg. = 0.82). Regard-417

ing the schema-wise F1 scores reported in Tab. 1,418

they do not indicate a systematic advantage of anal-419

ogy prompting for our human data. However, an420

interesting trend is that, albeit with a few excep-421

tions, analogy prompting tends to result in higher422

F1 scores for Richardson et al.’ data. Taken to-423

gether, these findings suggest that models may pro-424

cess analogical relationships differently from hu-425

mans, potentially relying more on learned associa-426

tive patterns than true analogical reasoning.427

Textual condition

Model Our Richardson
R A R A

GPT-3.5 0.46 0.49 0.60 0.63
GPT-4o 0.33 0.29 0.40 0.45
GPT-4o-Mini 0.46 0.35 0.45 0.40
GPT-o1-Preview 0.35 0.44 0.35 0.49
Llama-70B 0.50 0.38 0.51 0.40
Llama-70B-Inst 0.33 0.37 0.41 0.48
R1-Distill-Llama-70B 0.45 0.41 0.53 0.58

Pseudo-visual condition

Model Our Richardson
R A R A

GPT-3.5 0.35 0.50 0.53 0.61
GPT-4o 0.41 0.42 0.58 0.63
GPT-4o-Mini 0.48 0.45 0.64 0.63
GPT-o1-Preview 0.50 0.46 0.64 0.67
Llama-70B 0.34 0.47 0.44 0.51
Llama-70B-Inst 0.46 0.49 0.6 0.63
R1-Distill-Llama-70B 0.49 0.45 0.69 0.63

Visual condition

Model Our Richardson
R A R A

Molmo-72B 0.05 0.16 0.05 0.15
Qwen2-VL-7B 0.23 0.22 0.18 0.34
Qwen2-VL-72B 0.35 0.38 0.41 0.51

Table 1: Weighted F1 scores between human and mod-
els’ concept preferences in the textual, pseudo-visual
and visual conditions. Scores are reported for both our
collected dataset and Richardson’s, and for the two dif-
ferent prompting conditions (R indicates regular prompt-
ing and A analogy prompting). Figures were computed
concept-wise, i.e., considering all four spatial schemas.

Effect of input type Spearman correlations vi- 428

sualized in Fig. 3 allow a comparison among be- 429

tween input types (textual, pseudo-visual, visual). 430

Overall, we observe stronger correlations in the 431

pseudo-visual condition (ρ = 0.56–0.90) than in 432

the textual condition (ρ = 0.58–0.85), but the trend 433

is not systematic. A similar trend can be detected in 434

the F1 scores (Tab. 1), whose range is 0.29–0.63 in 435

the textual condition and 0.34–0.69 in the pseudo- 436

visual condition. One plausible explanation for this 437

is that Unicode symbols reduce semantic ambigu- 438

ities – particularly for words like "right" – which, 439

in textual contexts, could be conflated with its "cor- 440

rectness" meaning. By providing a less ambiguous 441

representation, pseudo-visual prompts may thus 442

facilitate more accurate analogical mappings. Fi- 443

nally, correlations achieved by VLMs in the visual 444

condition are, in general, lower than those achieved 445

by LLMs in the other conditions (ρ = 0.28–0.79). 446

This may be due to the visual condition posing the 447

extra challenge of decoding the content of the vi- 448

sual stimuli. In other words, while LLMs receive 449

abstract textual or pseudo-visual stimuli – which 450

they can directly combine with their pretraining 451

knowledge – VLMs are first tasked with mapping 452

the different image(s) to abstract spatial notions 453

and, only after completing this initial step, can they 454

engage with their pretraining knowledge. 455

F1 scores and unbalanced concept productions 456

For some models, we observe systematic con- 457

cept over- and underproductions, which affect the 458

weighted F1 scores provided in Tab. 1. For exam- 459

ple, Molmo-72B never produces ‘down’ and ‘right’ 460

in the regular-prompt setup, while overproducing 461

the answer ‘up’ (in 97% of its outputs); this results 462

in an extremely low F1 score (0.05) for both our 463

human responses and Richardson et al.’s. Simi- 464

larly, Qwen2-VL-7B generates ‘up’ in 73% of the 465

cases in the regular-prompting setup. Across all 466

LLMs, there is a systematic trend to underproduce 467

the concept ‘left’, and in some cases ‘down’. This 468

tendency is especially extreme, e.g., for GPT-3.5 469

regular-prompted in the pseudo-visual condition 470

(5% of ‘left’ responses), GPT-4o analogy-prompted 471

in the textual condition (9% of ‘left’ responses), 472

and Llama-70B regular-prompted in the pseudo- 473

visual condition (8% of ‘down’ responses); in these 474

cases, unbalanced model responses are again re- 475

flected in comparatively low F1 scores. Notably, 476

while human participants also underproduce ‘left’ 477

(19% in both datasets), this imbalance is not sub- 478
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stantial enough to suggest a bias in the stimuli479

themselves. Instead, the models’ consistent un-480

derrepresentation of ‘left’ is more likely an artifact481

of biases in training data.482

4.2.2 Human- vs. Model-generated Analogies483

The Spearman correlations quantifying the similar-484

ity between analogies provided by human partici-485

pants and models are visualized in Fig. 4. Although486

correlations are non-significant, some interesting487

trends emerge. First, the types of analogies gener-488

ated by VLMs are the most aligned with those pro-489

vided by humans (ρ = 0.23–0.55). Second, LLMs490

do not systematically generate more human-like491

analogies in the textual vs. pseudo-visual condition492

(ρText. = 0.00–0.17, ρPseudo−vis = 0.00–0.20).493

Finally, it is interesting that the types of analogies494

produced by GPT-o1-Preview – the only reason-495

ing model – are the least similar to the human-496

provided ones, with a Spearman correlation of 0 in497

the pseudo-visual condition. These findings sug-498

gest that multimodal pretraining, while not result-499

ing in models closely mirroring human schema500

choices, may help VLMs generate analogy types501

that are more similar to human ones than LLMs’502

(examples of generated analogies in App. Tab. 4).503

In a more focused analysis, we pick one LLM504

(GPT-4o) and check whether the items where its505

schema preferences align with the human ones are506

also those for which it generates more human-like507

analogy types. The results of this analysis are dis-508

played in Fig. 5, which shows item-wise Spearman509

correlations with spatial schemas and analogy la-510

bels for the pseudo-visual condition. The correla-511

tions reveal a marked divergence between the mod-512

els’ analogical mappings and schema selections for513

several verbs (e.g., gave to, impacted, obeyed).514

0.0 0.2 0.4 0.6 0.8 1.0
Average Spearman Correlation

GPT-o1-preview
GPT-4o-mini

GPT-4o
GPT-3.5

R1-Distill-Llama-70B
Llama-70B-Instruct

Llama-70B
Qwen2-VL-72B
Qwen2-VL-7B

Molmo-72B

Analogy Label Correlations

Text
Pseudo-Visual
Visual

Figure 4: Correlations of the model’s chosen analogy
types with those analogy types chosen by humans.

These differences may be due to two possible 515

scenarios. First, a model might produce analo- 516

gies similar to human analogical associations while 517

choosing different spatial schemas; this would sug- 518

gest a decoupling between analogical similarity 519

and spatial mapping within the model’s reasoning 520

process. Alternatively, a model might arrive at a 521

similar directional assignment as humans, yet the 522

underlying analogical reasoning, as reflected in the 523

label correlation, diverges markedly from human 524

responses. Both of these scenarios occur 8 times in 525

our example (highlighted bars and words in Fig. 5). 526

Overall, both model-wise correlations (Fig. 4) 527

and the item-level analysis (Fig. 5) seem to point 528

towards a similar conclusion, i.e., that models’ 529

ability to produce analogies that resemble human 530

ones does not necessarily result in human-aligned 531

spatial-schema choices, and vice versa. This di- 532

vergence is especially critical given that the words 533

span abstract to concrete concepts, suggesting that 534

the integration of analogical and spatial reasoning 535

may be more fragile in contexts where multiple 536

interpretative routes coexist. 537

4.3 Summary of Findings 538

Our analyses compare humans’ and generative 539

models’ spatial intuitions on multiple levels 540

(schema selection & analogy types) and con- 541

sider two main experimental factors (prompting & 542

modality). We now turn to our research questions. 543

RQ1 – Conceptualization of Abstract Notions 544

through Analogies Our experiments reveal sub- 545

stantial discrepancies between models’ and hu- 546

mans’ spatial conceptualizations. At the level of 547

alignment between spatial choices, we do not ob- 548

serve a systematic improvement associated with 549

analogy vs. regular prompting. These findings, to- 550

gether with a comparison between analogy types 551

generated by humans and models, show that, even 552

when models generate analogies similar to the 553

human ones, these do not result in more human- 554

aligned spatial schema choices. More importantly, 555

this is true even when considering our human 556

dataset, which was collected by explicitly asking 557

participants to rely on analogical reasoning. The 558

discrepancies we document suggest that the pro- 559

found differences between humans’ and models’ 560

concept-learning processes are indeed reflected in 561

spatial schemas, which appear to be supported by 562

analogical reasoning in humans and simpler associ- 563

ations in models. 564
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Figure 5: Spearman correlations for GPT-4o in the pseudo-visual condition, comparing human-model alignment
on analogy labels (teal) and schema selection (ochre) responses for 30 words. Highlighted bars and labels denote
words where analogy and direction correlations are opposed, showing cases of potential decoupling of the two.

RQ2 – Effect of Multimodal Inputs on Analogi-565

cal Reasoning Our comparisons between experi-566

mental conditions employing different input types567

(textual, pseudo-visual, and visual) reveal three568

interesting trends. First, LLMs tend to produce569

mode human-aligned schema choices in the pseudo-570

visual condition, which is likely due to reduced se-571

mantic ambiguity. Second, VLMs’ schema choices572

are, in general, less human-aligned than LLMs’573

ones. Indeed, while images should be, in princi-574

ple, the least semantically ambiguous input type,575

they still posit the extra challenge of extracting ab-576

stract meaning from the input stimuli. Finally, we577

observe that VLMs tend to generate types of analo-578

gies that are more similar to the human ones than579

LLMs. Taken together, these findings suggest that580

VLMs’ ability to process visual inputs proves ad-581

vantageous in terms of producing human-like ana-582

logical reasoning. However, when focusing solely583

on associations between words and spatial schemas,584

Unicode arrows are the stimulus type associated585

with the most human-like choices; this may be due586

to them being abstract enough to not require per-587

ceptual processing and, at the same time, being less588

semantically ambiguous tokens than words.589

5 Conclusions590

Our study evaluates a suite of LLMs and VLMs591

concerning their ability to use analogical reason-592

ing to support associations between verbs and spa-593

tial schemas, a core component of human con-594

cept learning processing. We employ regular and595

analogy prompts to elicit these associations and596

compare them with human data from Richardson597

et al. (2001) and a set of newly collected human598

responses which, in contrast to Richardson et al.,599

include human-written analogies. In addition, we600

explore how stimulus types varying in their degree 601

of abstractness (textual, pseudo-visual, visual) in- 602

fluence model responses. Our experiments reveal 603

substantial discrepancies between models’ ability 604

to generate analogies similar to the human ones and 605

their ability to associate verbs to spatial schemas 606

in a human-like way. LLMs and VLMs are increas- 607

ingly applied in domains beyond language, includ- 608

ing robotics, navigation, medicine, scientific dis- 609

covery, and autonomous systems. However, their 610

limitations in complex tasks suggest that perfor- 611

mance gaps cannot be solely attributed to model 612

size. While scaling improves alignment with hu- 613

man responses, our findings indicate that underly- 614

ing analogical structures and spatial intuitions may 615

diverge from human reasoning. This study high- 616

lights the need to examine fundamental conceptual- 617

ization mechanisms to better understand these dis- 618

crepancies and refine future models accordingly. 619

Limitations 620

A key limitation of our study is the potential for 621

data contamination in Richardson et al.’s dataset. 622

While it is unlikely that proprietary LLMs were 623

explicitly fine-tuned on this dataset, it is possi- 624

ble that Richardson et al.’s paper was included 625

in the pretraining data of certain models. This 626

raises concerns that some observed correlations 627

may not reflect genuine analogical reasoning, but 628

rather memorized associations from training cor- 629

pora. At present, a key mitigation effort is the 630

dataset collected in our study, which was not pub- 631

licly available during our evaluation phase and thus 632

was not included in the training data of any model. 633

Additionally, differences in experimental de- 634

sign between our dataset and Richardson et al.’s 635

may introduce confounds. Our explicit analogy- 636
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based prompting method engages different cogni-637

tive strategies than the spontaneous associations638

likely employed in Richardson et al.’s experiment.639

While we anticipated that this methodological dis-640

tinction would result in stronger correlations for641

analogy-prompted responses in our dataset, our642

findings did not consistently support this hypothe-643

sis. This discrepancy highlights the need for further644

research into how different prompting strategies in-645

teract with model architectures and training data to646

shape analogical reasoning performance.647

We employed LLMs as annotation judges to as-648

sist in labeling our analogy dataset. This process649

followed an iterative refinement of the label classi-650

fication schema, involving two human annotators,651

three rounds of revision, and the development of a652

carefully engineered prompt to ensure substantial653

agreement (Cohen, 1960). While we acknowledge654

the reliability limitations of LLM-based annota-655

tion (Zheng et al., 2023; Bavaresco et al., 2024),656

this approach offered certain advantages over hu-657

man annotators, particularly in mitigating inconsis-658

tencies that arose even within the same annotator.659

While our study examines the reasoning capabil-660

ities of models, we include only a single designated661

“reasoning model” (o1-Preview). We acknowledge662

that such models may provide additional insights663

into underlying reasoning processes. However, as664

of now, they rely on advanced, predefined reason-665

ing templates that are non-deterministic and not666

openly accessible. Furthermore, our focus is on667

capturing the models’ intuitions after a single ana-668

logical reasoning step, rather than tracing multiple,669

potentially opaque reasoning iterations.670

Responsible Research671

Use of Artifacts We use both open and propri-672

etary language models in our work. For all models,673

we include model cards or references to their re-674

spective providers, which specify their licenses and675

intended usage. Additionally, we use GitHub Copi-676

lot, powered by OpenAI Codex, and ChatGPT to677

generate code snippets. These tools provide outputs678

that are licensed for free use, ensuring compliance679

with their intended access conditions.680

We also utilize research data from Richardson681

et al. (2001) and Wicke and Wachowiak (2024),682

which are publicly available research papers. The683

data derived from these sources is used strictly684

within research contexts, in accordance with their685

original access conditions. To the best of our knowl-686

edge, the use of all artifacts aligns with their speci-687

fied terms, ensuring compliance with licensing and 688

intended use policies. 689

Use of AI Assistance We used AI assistance 690

tools (ChatGPT, OpenAI Playground, and GitHub 691

Copilot) to aid in rewriting code, filter large 692

datasets to identify additional trends, and refining 693

our labeling schema. All AI-generated content was 694

thoroughly reviewed and verified by the authors. 695

AI was not used to generate new research ideas 696

or original findings; rather, it served as a support 697

tool to improve clarity, efficiency, and organization. 698

In accordance with ACL guidelines, our use of AI 699

aligns with permitted assistance categories, and we 700

have transparently reported all relevant usage in 701

this paper. While AI contributed to enhancing the 702

quality of the work, no direct research outputs are 703

the result of AI assistance. 704
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A Human Study955

A.1 Survey Design956

The survey was conducted using Google Forms.957

All participants provided their informed consent958

to participate in our study. No names, addresses,959

IPs or traceable information was collected, and960

the participants could decide to end the study at961

any point. In order to familiarize the participants962

with the task, an example task was provided (Fig.963

6). The example task used the same format as964

the real task, but the symbols and the direction965

(diagonal as opposed to vertical/horizontal) were966

different. We tested the survey design with peers967

before collecting responses from non-peers. The968

test responses have not been included in the final969

data collection.970

Figure 6: All participants in the study are presented
with an example item (one-shot) at the start of the ques-
tionnaire. This allows the participants to familiarize
themselves with the task, while not providing a priming
effect due to the use of a different directionality (di-
agonal as opposed to vertical/horizontal) and different
symbols (triangles as opposed to circle/square).

For each of the 30 items, we generated a question 971

shown in Fig. 7. We use the same visual stimuli 972

as Richardson et al. (2001) for our human subject 973

study. We note that in the original study, the par- 974

ticipants were presented with the entire list of 30 975

items at once (next to the same picture, which we 976

repeat for each item). 977

Figure 7: Example item presented to the participants.
First, they are asked to provide an analogy, then they
are asked to choose one of four images that best relates
to the options (A, B, C, D).

A.2 Demographics 978

Figure 8: Distribution of age for N = 24 participants.
Average age is 35.54.
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We sampled N = 24 participants with two restric-979

tions: (i) Native English speakers, (ii) no prior980

knowledge about this research. To the best of our981

knowledge, no participant self-reported significant982

or severe visual or cognitive impairments.983

Figure 9: Kernel density estimate (KDE) to represent
participants’ (N = 24) age as spectrum, with an average
around 35 years.

Figure 10: Gender distribution of all N = 24 partici-
pants: Male: 14 participant(s), female: 8 participant(s),
other: 1 participant, prefer not to say: 1 participant.

Figure 11: All participants declared that they are na-
tive English speakers. The regional distribution is as
follows: Europe: 13 participant(s), North America: 6
participant(s), Africa: 1 participant, Asia/Pacific: 3 par-
ticipant(s), Prefer not to say: 1 participant.

A.3 Human Study Results 984

Figure 12: Comparison of the data by Richardson et al.
(2001) with the human choices gathered in our study.
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A.4 Analogy Annotation Methodology985

We sampled 30 analogies (15 human-created,986

15 GPT-4o-generated) and classified them987

into four categories: “Physical Action,” “Cul-988

tural/Convention,” “Interactive Entities,” or “No989

Analogy/Explanation.” In a second round, two990

authors annotated a different set of 30 analogies991

using this scheme. Annotator agreement was992

measured using Cohen’s κ (Cohen, 1960). After993

three revisions of the annotation scheme, we994

achieved κ = 0.6277, indicating substantial995

agreement. All annotation schema versions are996

available in the code repository. The final schema,997

incorporating these revisions as additional rules,998

was then formalized into a prompt:999

Task: You will be provided with an explanation that
uses a directional or movement analogy to describe
an event, action, or reaction. Your job is to carefully
read the explanation, assess the type of analogy it
employs, and select one of the following labels that
best corresponds to it:

• Physical Action – This label applies if the ex-
planation relies on tangible movements, forces,
or physical processes.

• Cultural/Convention – This label applies if the
explanation relies on societal norms, symbolic
interpretations, or culturally shared meanings
related to direction or movement.

• Interactive Entities – This label applies if the
explanation emphasizes the interaction or rela-
tionship between distinct entities (e.g., square
and circle).

• No Analogy/Explanation – This label applies
if the explanation is purely descriptive, with
no directional, movement-based, or analogical
content.

Additional rules:
• If the explanation mentions “square” or “circle,”

it is always labeled Interactive Entities.

• If the explanation does not mention these shapes
implicitly or explicitly, and no entities are
present, then it is not Interactive Entities.

• If the explanation mentions “culture,” it is al-
ways Cultural/Convention.

• If the explanation includes technical or scien-
tific analogies (e.g., diagrams or systems), it is
always Cultural/Convention.

• If the explanation references gravity, understand
gravity as a physical action and assign Physical
Action.

Here is the explanation: Explanation

Based solely on your analysis of the explanation

above, provide only one label from the following:

Physical Action, Cultural/Convention, Interactive
Entities, or No Analogy/Explanation.

1000

A.5 Choice Coherence 1001

Item Richardson Our (w/ analogy)

pointed at 0.80 0.78
pushed 0.78 1.00
lifted 0.77 0.78
bombed 0.76 1.00
fled 0.67 1.00
gave to 0.67 0.78
perched 0.60 0.78
pulled 0.59 1.00
sank 0.57 1.00
increased 0.57 1.00
smashed 0.53 0.62
hunted 0.52 0.50
obeyed 0.48 0.53
walked 0.47 0.34
showed 0.47 0.34
argued with 0.44 0.59
warned 0.44 0.38
floated 0.43 0.78
wanted 0.43 1.00
impacted 0.42 0.62
owned 0.39 0.47
respected 0.39 0.28
rushed 0.38 0.53
flew 0.36 0.34
hoped 0.34 0.41
rested 0.32 0.28
tempted 0.32 0.28
succeeded 0.32 0.41
regretted 0.29 0.28
offended 0.29 0.59

Overall 0.49 (±0.15) 0.62 (±0.26)

Table 2: Item-wise agreement scores for the choice
(of direction) measure computed using a normalized
concentration metric (i.e., squared proportions weighted
by the number of observations, yielding values from
0 to 1). This metric quantifies how concentrated the
responses are for each item -— scores near 1 signify that
nearly all raters converge on the same label (indicating
high consensus), whereas lower values reflect greater
variability in judgments. “Richardson” refers to the
human data reported by Richardson et al. (2001) and
“Our” refers to the data collected in the present study.
The final row gives the overall weighted agreement and
its standard deviation.

A.6 Label Evaluation 1002

For each word, we first compute frequency dis- 1003

tributions over the four label categories from hu- 1004

man responses (8 responses) and model responses 1005

(24 responses). These distributions are then con- 1006

verted into ranked vectors by ordering categories 1007

according to their frequencies. Spearman correla- 1008

tion is computed between the human and model 1009

ranked frequency vectors, quantifying the mono- 1010

tonic agreement in label usage. In parallel, for each 1011
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category, the F1 score is calculated via1012

F1 =
2×min(counthuman, countmodel)

counthuman + countmodel
(1)1013

(with a default score of 1 when both counts are1014

zero).1015

Model Condition Int. Coh. ↑ JS Div. ↓ Entr. ↓

Human Reference Ref. 0.550 — 1.760

gpt-3.5 Pseudo 0.933 0.436 0.920
gpt-4 Pseudo 0.876 0.443 0.883
gpt-4-mini Pseudo 0.839 0.443 0.904
llama-70b Pseudo 0.929 0.399 0.830
llama-70b-inst Pseudo 0.922 0.436 0.642

gpt-3.5 Text 0.907 0.417 0.813
gpt-4 Text 0.861 0.449 0.981
gpt-4-mini Text 0.874 0.450 0.678
llama-70b Text 0.929 0.409 0.885
llama-70b-inst Text 0.856 0.443 0.910

Table 3: Evaluation metrics for five LLM configura-
tions under Pseudo and Text conditions compared to
a human reference. “Int. Coh.” (Internal Coherence)
is the average fraction of label agreement per item, re-
flecting labeling consistency. “Entr.” (Entropy) quanti-
fies the diversity of the label distribution, and “JS Div.”
(Jensen–Shannon Divergence) measures the similarity
of the model’s distribution to that of humans.

A.7 Label Examples1016

B Model Studies1017

B.1 Validation Scores1018

In order to improve model responses, we tested dif-1019

ferent prompt endings and calculated a validation1020

score that measured how often the model, when1021

given a regular prompt, produced a valid response.1022

To achieve this, we generated a model response for1023

each of the 30 action words using the following1024

prompt:1025

Given the concepts: ’X’, ’-’,1026

’)’, ’/’. For the concept1027

that best represents the event1028

’stopped’, what concept would1029

you choose?1030

[ending]: ’X’1031

1032

Given the concepts: ’[concept]’.1033

For the concept that best1034

represents the event ’[event]’,1035

what concept would you choose?1036

[ending]:1037

where [ending] is one possible prompt ending1038

(e.g., “CONCEPT”, “Choice”, and “selection”),1039

[concept] refers to the four spatial concepts, and 1040

[event] is an action word. We employed Llama3.1- 1041

8B (AI@Meta, 2024) as the LLM for this experi- 1042

ment, based on the rationale that if a smaller model 1043

can produce a valid answer with a specific ending, 1044

then larger models are likely to do so as well. As 1045

described in Wicke and Wachowiak (2024), the 1046

validity score is calculated as follows: 1047∑
a∈V

p(a|k) (2) 1048

for a specific prompt k and a set of valid answers 1049

V . 1050

This evaluation was conducted under both tex- 1051

tual and pseudo-visual conditions, and an average 1052

validation score was computed for each ending. As 1053

a result, the ending “concept” was selected, achiev- 1054

ing a 74% validation score. The full list of prompt 1055

endings, along with their corresponding validation 1056

scores, is presented in Table 5. 1057

B.2 Vision-language Models Validation 1058

The task considered in our main experiment is chal- 1059

lenging even for current vision-language models 1060

for two main reasons. First, it requires correctly 1061

distinguishing the arrow depictions mainly based 1062

on their spatial orientation. Second, it requires the 1063

ability to process multiple images simultaneously. 1064

Since most state-of-the-art VLMs still struggle with 1065

spatial reasoning (Kamath et al., 2023; Wang et al., 1066

2024a) or are simply not trained for multi-image 1067

inference, we designed a simple validation task to 1068

help us select VLMs that could be suitably included 1069

in our main experiment. The task consisted in re- 1070

sponding correctly to the four possible variations 1071

of the prompt: 1072

Which of the following is the [up, 1073

down, left, right]ward-pointing 1074

arrow? 1075

Image SHTL: <image up> 1076

Image XHWK: <image down> 1077

Image AKRC: <image left> 1078

Image ZHRN: <image right> 1079

Please respond with the 1080

four-letter image id. 1081

The following similar prompt was used for a 1082

single-image scenario, where all the concepts were 1083

provided within the same image: 1084

Which is the [up, down, left, 1085

right]ward-pointing arrow? SHTL, 1086

XHWK, AKRC or ZHRN? 1087
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Action Contributor Example Analogy Assigned Label

wanted Human circle wants square. as circle is first its on the left, furthermore
the arrow should point towards the square as it shows circle
acting towards square

Interactive Entities

fled GPT-3.5
(pseudo-visual) ’Fled’ often involves moving quickly away from a dangerous

or threatening situation. An analogy could be a person run-
ning away from a predator in a straight line to escape.

Physical Action

pointed at GPT-4o-mini
(pseudo-visual) ’Pointing at’ something typically involves directing attention

towards a specific object or direction, often using a finger
or hand to indicate where to look. The action of pointing is
about indicating a specific location or item in space.

Physical Action

pulled GPT-4o
(pseudo-visual) ’Pulling’ often involves drawing something towards oneself

or in a specific direction. When you pull an object, you
typically exert force to bring it closer to you or to move it
in a desired direction. In a directional sense, pulling can be
associated with moving something from a lower position to a
higher one, as if lifting or drawing it upwards.

Physical Action

showed GPT-3.5
(textual) ’showing’ often involves presenting or revealing something

in a particular direction. For example, pointing towards a
specific direction to indicate where something is located.

Physical Action

obeyed GPT-4o-mini
(textual) ’obeying’ often involves following directions or commands,

which can be likened to moving in a specific direction as
instructed. When someone is told to go ’up’, they are com-
plying with a directive, just as one would follow orders or
rules in a broader sense.

Cultural/Convention

rushed GPT-4o
(textual) ’Rushing’ often involves moving quickly and with urgency

towards a destination or goal. It implies a sense of forward
momentum and progress, similar to how one might move in
a straight line without hesitation. In many contexts, moving
’up’ can symbolize advancement, progress, or moving to-
wards a goal, as it is often associated with positive movement
or elevation.

Cultural/Convention

argued with Qwen-VL-72b ’argued with’ often involves opposing or challenging some-
one’s views. A debate between two people, for example, is a
common representation of this event.

Interactive Entities

hoped Qwen-VL-7b ’hoping’ involves having a desire or wish for something to
happen. It’s like having a goal or aspiration.

No Analogy /
Explanation

Table 4: Examples of different collected analogies from different contributors. Selection was focused on represent-
ing different assigned labels. Full collection of analogies is available at https://github.com/anonymousACL/
analogy_prompting.

Ending Textual Pseudo Avg.

CHOICE 0.53 0.65 0.59
Choice 0.65 0.72 0.68
choice 0.70 0.77 0.73
SELECTION 0.66 0.73 0.69
Selection 0.69 0.75 0.72
selection 0.68 0.75 0.71
CONCEPT 0.68 0.75 0.71
Concept 0.69 0.73 0.71
concept 0.73 0.76 0.74

Table 5: Overview of the validation scores for each
possible prompt-ending, for textual and pseudo-visual
prompts, along with their average.

The models tested in the multi-image 1088

scenario were Qwen2-VL-7B-Instruct2 1089

and llava-onevision-qwen2-7b-ov-hf3. 1090

The models tested in the single-image 1091

scenario were: Molmo-7B-D-09244, 1092

llama3-llava-next-8b-hf5, 1093

llava-v1.6-mistral-7b-hf6, 1094

2https://huggingface.co/Qwen/
Qwen2-VL-7B-Instruct

3https://huggingface.co/llava-hf/
llava-onevision-qwen2-7b-ov-hf

4https://huggingface.co/allenai/
Molmo-7B-D-0924

5https://huggingface.co/llava-hf/
llama3-llava-next-8b-hf

6https://huggingface.co/llava-hf/llava-v1.
6-mistral-7b-hf
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llava-onevision-qwen2-7b-si-hf7, ,1095

llava-interleave-qwen-7b-hf8, and1096

Qwen2-VL-7B-Instruct9.1097

The only models which were able to respond1098

correctly to all variants of the prompts were1099

Molmo-7B-D-0924 in the single-image scenario1100

and Qwen2-VL-7B-Instruct in the multi-image1101

scenario. Given the satisfactory performance of1102

these 7B-parameter models, we decided to in-1103

clude their largest versions (Molmo-72B-0924101104

and Qwen2-VL-72B-Instruct-AWQ11) as well in1105

the main experiment.1106

B.3 Prompts1107

The prompts used for the LLMs and vision-1108

language models are reported, respectively, in Ta-1109

bles 6, 7, and 8. To avoid selection bias (e.g., the1110

model always choosing the option appearing as1111

first), for each prompt we constructed variations1112

corresponding to all the possible label permutations1113

(4! = 24).1114

Note that, since the preview Molmo version1115

available when experiments were conducted (Fall1116

2024) did not support multi-image inference, this1117

model was prompted with a single image including1118

all four spatial schemas. As for the Qwen2-VL1119

models, they were found incapable of discriminat-1120

ing between schemas when they were provided1121

within the same image; therefore, each schema was1122

provided within a separate image.1123

B.4 Parsing of Model Outputs1124

Despite our efforts to validate the prompts, there1125

were still cases where model-generated responses1126

did not exactly match the expected structure. When1127

this occurred, we first tried to exploit other regular-1128

ities (e.g., the model outputting choice: instead1129

of concept:) to isolate the relevant part of the1130

output. When no such regularity was present, we1131

adopted a simpler single-matching approach: if a1132

single concept could be identified in the output,1133

we considered that as a valid answer; if not, or in1134

the case where multiple concepts were present, we1135

considered the output invalid.1136

7https://huggingface.co/llava-hf/
llava-onevision-qwen2-7b-si-hf

8http://llava-hf/llava-interleave-qwen-7b-hf
9https://huggingface.co/Qwen/

Qwen2-VL-7B-Instruct
10https://huggingface.co/allenai/

Molmo-72B-0924
11https://huggingface.co/Qwen/

Qwen2-VL-72B-Instruct-AWQ

To obtain comparable label distributions, we re- 1137

placed the invalid answers with the prevalent valid 1138

answer for the action word. If no valid answer was 1139

returned for a specific action word, we excluded the 1140

action word from further comparisons with human 1141

preferences. The percentage of invalid answers 1142

never exceeded 5%. We report the percentage of in- 1143

valid responses yielded by each model in Table 15. 1144

B.5 Evaluation Metrics 1145

For each model, we obtained 24 outputs for each 1146

verb-stimulus (corresponding to all possible per- 1147

mutations). This allowed us to obtain a percent- 1148

age of ‘up’, ‘down’, ‘left’ and ‘right’ responses 1149

for each verb. Similarly, response distributions 1150

could be obtained for the human datasets based on 1151

multiple participants’ answers. Spearman corre- 1152

lations quantifying the alignment between human 1153

and model responses were computed between the 1154

human and model-generated answer distributions 1155

per each spatial schema. Since most correlations 1156

were non-significant when considering all four spa- 1157

tial schemas, in the main paper we show correla- 1158

tions per direction (‘vertical’ vs. ‘horizontal’). In 1159

the following sections, we report complete results, 1160

including both per-schema and per-direction corre- 1161

lation. 1162

Regarding F1 scores, they were computed be- 1163

tween human and model-generated schema prefer- 1164

ences. For each verb, the schema preference was 1165

defined as the schema appearing in most permuta- 1166

tions or indicated by the majority of participants. 1167

B.6 Extended Results 1168

In Tables 9, 10, and 11 the Spearman correlations 1169

for the LLMs and VLMs are represented. F1 scores 1170

for these models can be seen in Tables 12, 13, and 1171

14. 1172

B.7 Compute Resources 1173

Running our experiments required a total of ap- 1174

proximately 37 hours on an A100 NVIDIA GPU 1175

and 10 hours on an H100 NVIDIA GPU. Labeling 1176

the analogies with GPT-4o using OpenAI’s API 1177

access required approximately 3 hours. 1178
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Model Prompt

Llama (R) <|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a participant in a research
experiment<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the concepts: ’X’, ’-’, ’)’, ’/’. For the concept that
best represents the event ’stopped’, what concept would you
choose?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

concept: ’X’<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the concepts: ’[concept]’. For the concept that best
represents the event ’[event]’, what concept would you choose?
<|eot_id|><|start_header_id|>assistant<|end_header_id|>

concept:

Llama (A) <|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a participant in a research
experiment<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the concepts: ’X’, ’-’, ’)’, ’/’. For the concept
that best represents the event ’stopped’, what concept
would you choose? Explain the analogy, then provide one
choice.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

analogy: ’stopping’ often involves obstructing or halting the
progress of something. Raising both arms and crossing them
defensively to physically block someone for example.

concept: ’X’<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the concepts: ’[concept]’. For the concept that
best represents the event ’[event]’, what concept would
you choose? Explain the analogy, then provide one
choice.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

analogy:

Llama (Z) <|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a participant in a research
experiment<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the concepts: ’[concept]’. For the concept that
best represents the event ’[event]’, what concept would you
choose? Give the chosen concept by surrounding it with
’##’.<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Let’s think step by step.

Table 6: Prompts used for the Llama 3.1 models. The R1-Distill-Llama model used the same prompt as the
regular Llama models. The letters in brackets after the model names refer to the experimental condition (Regular
vs. Analogical vs. Zero-shot.)
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Model Prompt

GPT (R) SYSTEM_PROMPT:

You are a participant in a research experiment. Even if the
answer is subjective, provide it. Do not say it is subjective. Follow
the given structure.

USER_PROMPT:

EXAMPLE TASK: Given the concepts: ’X’, ’-’, ’)’, ’/’. For the
concept that best represents the event ’stopped’, what concept would
you choose?
concept: ’X’

TASK: Given the concepts: ’[concept]’. For the concept that
best represents the event ’[event]’, what concept would you choose?
concept:

GPT (A) SYSTEM_PROMPT:

You are a participant in a research experiment. Even if the
answer is subjective, provide it. Do not say it is subjective. Follow
the given structure.

USER_PROMPT:

EXAMPLE TASK: Given the concepts: ’X’, ’-’, ’)’, ’/’. For the
concept that best represents the event ’stopped’, what concept would
you choose? Explain the analogy, then provide one choice.
analogy: ’stopping’ often involves obstructing or halting the progress
of something. Raising both arms and crossing them defensively to
physically block someone for example.
concept: ’X’

TASK: Given the concepts: ’[concept]’. For the concept that
best represents the event ’[event]’, what concept would you choose?
Explain the analogy, then provide one choice.
analogy:

GPT (Z) You are a participant in a research experiment. Even if the answer is
subjective, provide it. Do not say it is subjective. Follow the given
structure. TASK: Given the concepts: ’[concept]’. For the concept that
best represents the event ’[event]’, what concept would you choose?
Give the chosen concept by surrounding it with ’##’. Let’s think step
by step.

Table 7: Prompts used for the GPT models. The letters in brackets after the model names refer to the experimental
condition (Regular vs. Analogical. vs. Zero-shot.)
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Model Prompt

Molmo
(R)

Example task: Consider the event ‘threw’ and the four images below
(SHTL, XHWK, AKRC, ZHRN). Which of the images best represents the
event?
Image: XHWK

Task: Consider the event ‘[event]’ and the four images below
(SHTL, XHWK, AKRC, ZHRN). Which of the images best represents the
event?
Image:

Qwen2-VL
(R)

Example task: Consider the event ’stopped’ and these four images:
SHTL [image], XHWK [image], AKRC [image], ZHRN [image]. Which of the
images best represents the event?
Image: SHTL

Task: Consider the event ’stopped’ and these four images: [image
label][image], [image label]<image>, [image label]<image>, [image
label]<image>. Which of the images best represents the event?
Image:

Molmo
(A)

Example task: Consider the event ‘threw’ and the four images below
(SHTL, XHWK, AKRC, ZHRN). Think of an analogy to help you answer the
following question: Which of the images best represents the event?
Explain the analogy, then provide your image choice.
Analogy: ‘throwing’ often involves launching an object in a horizontal
direction. The trajectory followed by the object could be represented
as a rightward-pointing arrow.
Image: XHWK

Task: Consider the event [event] and the four images below
(SHTL, XHWK, AKRC, ZHRN). Think of an analogy to help you answer the
following question: Which of the images best represents the event?
Explain the analogy, then provide your image choice.
Analogy:

Qwen2-VL
(A)

Example task: Consider the event ‘stopped’ and these four images:
SHTL <image>, XHWK <image>, AKRC <image>, ZHRN <image>. Think of
an analogy to help you answer the following question: Which of the
images best represents the event? Explain the analogy, then provide
your image choice.
Analogy: ‘stopping’ often involves obstructing or halting the progress
of something. Raising both arms and crossing them defensively to
physically block someone for example.
Image: SHTL

Task: Consider the event ‘[event]’ and these four images: [image
label]<image>, [image label]<image>, [image label]<image>, [image
label]<image>. Think of an analogy to help you answer the following
question: Which of the images best represents the event? Explain the
analogy, then provide your image choice.
Analogy:

Table 8: Prompts used for the vision-language models. The letters in brackets after the model names refer to the
experimental condition (Regular vs. Analogical.)
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Llama-70B Llama-70B-Inst R1-Distill-Llama-70B
R A R A Z R A

R
ic

ha
rd

so
n

Up 0.45* 0.53* (+) 0.67* 0.57* (-) 0.61* (-) 0.48* 0.63* (+)
Down 0.47* 0.31 (-) 0.31 0.27 (-) 0.33 (+) 0.37* 0.44* (+)
Left 0.34 0.44* (+) 0.36 0.46* (+) 0.07 (-) 0.25 0.47* (+)
Right 0.58* 0.56* (-) 0.58* 0.57* (-) 0.62* (+) 0.62* 0.61* (-)
↑ 0.67* 0.58* (-) 0.72* 0.66* (-) 0.68* (-) 0.68* 0.57* (-)
↓ 0.66* 0.38* (-) 0.48* 0.49* (+) 0.48* (=) 0.58* 0.62* (+)
← 0.12 0.61* (+) 0.42* 0.44* (+) 0.33 (-) 0.43* 0.62* (+)
→ 0.47* 0.61* (+) 0.67* 0.72* (+) 0.77* (+) 0.69* 0.68* (-)

Hor./Vert.T 0.56* 0.73* (+) 0.72* 0.70* (-) 0.72* (=) 0.76* 0.79* (+)
Hor./Vert.P 0.81* 0.76* (-) 0.89* 0.86* (-) 0.88* (-) 0.85* 0.87* (+)

O
ur

s

Up 0.57* 0.58* (+) 0.56* 0.51* (-) 0.48* (-) 0.47* 0.58* (+)
Down 0.47* 0.45* (-) 0.43* 0.40* (-) 0.40* (-) 0.53* 0.57* (+)
Left 0.38* 0.42* (+) 0.39* 0.36 (-) 0.17 (-) 0.36* 0.49* (+)
Right 0.47* 0.41* (-) 0.37* 0.35 (-) 0.37* (=) 0.36* 0.33 (-)
↑ 0.70* 0.52* (-) 0.64* 0.60* (-) 0.66* (+) 0.64* 0.50* (-)
↓ 0.60* 0.51* (-) 0.52* 0.53* (+) 0.52* (=) 0.50* 0.50* (=)
← 0.12 0.59* (+) 0.38* 0.53* (+) 0.44* (+) 0.44* 0.55* (+)
→ 0.37* 0.45* (+) 0.50* 0.52* (+) 0.56* (+) 0.53* 0.41* (-)

Hor./Vert.T 0.57* 0.70* (+) 0.64* 0.65* (+) 0.62* (-) 0.64* 0.64* (=)
Hor./Vert.P 0.82* 0.60* (-) 0.74* 0.77* (+) 0.70* (-) 0.66* 0.65* (-)

Table 9: Spearman correlations between concept distributions by humans and the open-source models (Llama3.1
and DeepSeek R1 Distill Llama). The last four rows report results aggregated into two main directions (‘up’ and
‘down’ into ‘vertical’ and ‘left’ and ‘right’ as ‘horizontal’), for textual (T ) and pseudo-visual (P ) concepts. Values
in the ‘R’ column refer to the regular prompting condition, while ‘A’ indicates analogy prompting, and ‘Z’ indicates
zero-shot prompting. The signs in brackets indicate whether analogy prompting results in an improved correlation
with respect to regular prompting (+), remained the same (=), or didn’t improve (-). Asterisks mark statistical
significance (p < 0.05).
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GPT-3.5 GPT-4o GPT-4o-Mini GPT-o1-Preview
R A R A R A R A Z

R
ic

ha
rd

so
n

Up 0.63* 0.48* (-) 0.59* 0.61* (+) 0.61* 0.63* (+) 0.60* 0.58* (-) 0.57* (-)
Down 0.51* 0.35 (-) 0.41* 0.45* (+) 0.26 0.22 (-) 0.41* 0.34 (-) 0.35 (-)
Left 0.43* 0.52* (+) 0.32 0.45* (+) 0.36 0.47* (+) 0.35 0.45* (+) 0.26 (-)
Right 0.69* 0.68* (-) 0.52* 0.65* (+) 0.59* 0.60* (+) 0.59* 0.69* (+) 0.55* (-)
↑ 0.58* 0.47* (-) 0.73* 0.68* (-) 0.69* 0.63* (-) 0.64* 0.69* (+) 0.66* (+)
↓ 0.55* 0.32 (-) 0.59* 0.52* (-) 0.56* 0.36 (-) 0.59* 0.52* (-) 0.47* (-)
← 0.23 0.29 (+) 0.36 0.49* (+) 0.52* 0.43* (-) 0.46* 0.53* (+) 0.21 (-)
→ 0.69* 0.63* (-) 0.68* 0.64* (-) 0.74* 0.76* (+) 0.70* 0.68* (-) 0.67* (-)

Hor./Vert.T 0.72* 0.73* (+) 0.65* 0.77* (+) 0.71* 0.77* (+) 0.71* 0.85* (+) 0.74* (+)
Hor./Vert.P 0.72* 0.71* (-) 0.85* 0.85* (=) 0.85* 0.87* (+) 0.89* 0.90* (+) 0.86* (-)

O
ur

s

Up 0.60* 0.44* (-) 0.63* 0.58* (-) 0.61* 0.56* (-) 0.55* 0.49* (-) 0.49* (-)
Down 0.62* 0.44* (-) 0.49* 0.41* (-) 0.33 0.37* (+) 0.54* 0.48* (-) 0.45* (-)
Left 0.36* 0.56* (+) 0.38* 0.38* (=) 0.38* 0.50* (+) 0.24 0.36 (+) 0.10 (-)
Right 0.47* 0.50* (+) 0.37* 0.36 (-) 0.40* 0.40* (=) 0.43* 0.57* (+) 0.44* (+)
↑ 0.54* 0.46* (-) 0.63* 0.67* (+) 0.59* 0.64* (+) 0.55* 0.56* (+) 0.58* (+)
↓ 0.54* 0.36 (-) 0.55* 0.54* (-) 0.58* 0.45* (-) 0.59* 0.51* (-) 0.39* (-)
← 0.25 0.28 (+) 0.34 0.54* (+) 0.50* 0.42* (-) 0.51* 0.54* (+) 0.35 (-)
→ 0.52* 0.42* (-) 0.44* 0.47* (+) 0.50* 0.54* (+) 0.48* 0.48* (=) 0.50* (+)

Hor./Vert.T 0.76* 0.58* (-) 0.64* 0.59* (-) 0.69* 0.65* (-) 0.64* 0.72* (+) 0.59* (-)
Hor./Vert.P 0.58* 0.56* (-) 0.74* 0.67* (-) 0.72* 0.73* (+) 0.71* 0.67* (-) 0.65* (-)

Table 10: Spearman correlations between concept distributions by humans and the GPT models. The last four
rows report results aggregated into two main directions (‘up’ and ‘down’ into ‘vertical’ and ‘left’ and ‘right’ as
‘horizontal’), for textual (T ) and pseudo-visual (P ) concepts. Values in the ‘R’ column refer to the regular prompting
condition, while ‘A’ indicates analogy prompting, and ‘Z’ indicates zero-shot prompting. The signs in brackets
indicate whether analogy prompting results in an improved correlation with respect to regular prompting (+),
remained the same (=), or didn’t improve (-). Asterisks mark statistical significance (p < 0.05).

Molmo-7B Molmo-72B Qwen2-VL-7B Qwen2-VL-72B
R A R A R A R A

R
ic

ha
rd

so
n

Up 0.11 0.29 (+) 0.19 0.32 (+) 0.22 0.56* (+) 0.53* 0.37* (-)
Down 0.36 -0.17 (-) – -0.04 0.45* 0.52* (+) 0.50* 0.42* (-)
Left – – -0.27 -0.07 (+) 0.05 0.11 (+) 0.31 0.36 (+)
Right 0.34 -0.26 (-) – 0.15 0.19 0.22 (+) 0.44* 0.52 (+)

Hor./Vert. 0.33 -0.25 (-) 0.30 0.52*(+) 0.66* 0.79*(+) 0.71* 0.67* (-)

O
ur

s

Up -0.05 0.03 (+) 0.17 0.30 (+) 0.30 0.46* (+) 0.44* 0.28 (-)
Down 0.11 -0.08 (-) – -0.11 0.26 0.44* (+) 0.31 0.37* (+)
Left – – -0.15 -0.10 (-) 0.25 0.13 (-) 0.41* 0.37* (-)
Right 0.30 -0.24 (-) – 0.05 0.06 0.06 0.30 0.33 (+)

Hor./Vert. 0.23 -0.22(-) 0.28 0.37* (+) 0.61* 0.73* (+) 0.59* 0.56* (-)

Table 11: Spearman correlations between concept distributions by humans and vision-and-language models. Results
are reported both per-concept and per-direction, i.e., aggregating ‘up’ and ‘down’ into ‘vertical’ and ‘left’ and ‘right’
into ‘horizontal’. Values in the ‘R’ columns refer to the regular prompting condition, while ‘A’ indicates analogy
prompting. The signs in brackets signal whether analogy prompting results in an improved correlation with respect
to regular prompting (+) or not (-). Asterisks mark statistical significance (p < 0.05).
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Llama-70B Llama-70B-Inst R1-Distill-Llama-70B
R A R A Z R A

R
ic

ha
rd

so
n ConceptT 0.51 0.40 (-) 0.41 0.48 (+) 0.36 (-) 0.53 0.58 (+)

ConceptP 0.44 0.51 (+) 0.60 0.63 (+) 0.60 (=) 0.69 0.63 (-)
DirectionT 0.73 0.64 (-) 0.65 0.72 (+) 0.53 (-) 0.83 0.87 (+)
DirectionP 0.60 0.70 (+) 0.83 0.90 (+) 0.80 (-) 0.93 0.90 (-)

O
ur

s

ConceptT 0.50 0.38 (-) 0.33 0.37 (+) 0.33 (=) 0.45 0.41 (-)
ConceptP 0.34 0.47 (+) 0.46 0.49 (+) 0.42 (-) 0.49 0.45 (-)
DirectionT 0.67 0.71 (+) 0.58 0.72 (+) 0.67 (+) 0.77 0.73 (-)
DirectionP 0.52 0.70 (+) 0.70 0.77 (+) 0.67 (-) 0.73 0.70 (-)

Table 12: Weighted F1 scores between human and the open-source models’ concept preferences. The first two rows
report results considering all four concepts (up, down, left, right) for textual (T ), and (↑, ↓, ←, →) for pseudo-visual
(P ), while the last two rows aggregating them into two main directions (horizontal and vertical). Values in the ‘R’
column refer to the regular prompting condition, while ‘A’ indicates analogy prompting, and ‘Z’ indicates zero-shot
prompting. The signs in brackets indicate whether analogy prompting results improved F1 score with respect to
regular prompting (+), remained the same (=), or didn’t improve (-).

GPT-3.5 GPT-4o GPT-4o-Mini GPT-o1-Preview
R A R A R A R A Z

R
ic

ha
rd

so
n ConceptT 0.60 0.63 (+) 0.40 0.45 (+) 0.45 0.40 (-) 0.35 0.49 (+) 0.40 (+)

ConceptP 0.53 0.61 (+) 0.58 0.63 (+) 0.64 0.63 (-) 0.64 0.67 (+) 0.67 (+)
DirectionT 0.87 0.90 (+) 0.76 0.76 (=) 0.55 0.68 (+) 0.55 0.64 (+) 0.60 (+)
DirectionP 0.80 0.90 (+) 0.90 0.87 (-) 0.90 0.76 (-) 0.80 0.90 (+) 0.83 (+)

O
ur

s

ConceptT 0.46 0.49 (+) 0.33 0.29 (-) 0.46 0.35 (-) 0.35 0.44 (+) 0.35 (=)
ConceptP 0.35 0.50 (+) 0.41 0.42 (+) 0.48 0.45 (-) 0.50 0.46 (-) 0.46 (-)
DirectionT 0.80 0.63 (-) 0.62 0.55 (-) 0.62 0.61 (-) 0.62 0.71 (+) 0.67 (+)
DirectionP 0.67 0.76 (+) 0.77 0.67 (-) 0.76 0.69 (-) 0.73 0.70 (-) 0.70 (-)

Table 13: Weighted F1 scores between human and GPT’s concept preferences. The first two rows report results
considering all four concepts (up, down, left, right) for textual (T ), and (↑, ↓, ←, →) for pseudo-visual (P ), while the
last two rows aggregating them into two main directions (horizontal and vertical). Values in the ‘R’ column refer to
the regular prompting condition, while ‘A’ indicates analogy prompting, and ‘Z’ indicates zero-shot prompting. The
signs in brackets indicate whether analogy prompting results improved F1 score with respect to regular prompting
(+), remained the same (=), or didn’t improve (-).

Molmo-7B Molmo-72B Qwen2-VL-7B Qwen2-VL-72B
R A R A R A R A

R
ic

h. Concept 0.30 0.15 (-) 0.05 0.15 (+) 0.18 0.34 (+) 0.41 0.51 (+)
Direction 0.39 0.25 (+) 0.33 0.68 (+) 0.60 0.55 (-) 0.60 0.90 (+)

O
ur

s Concept 0.20 0.12 (-) 0.05 0.16 (+) 0.23 0.22 (-) 0.35 0.38 (+)
Direction 0.44 0.32 (-) 0.40 0.61 (+) 0.60 0.62 (+) 0.52 0.69 (+)

Table 14: Weighted F1 scores between VLM and human concept preferences from both Richardson’s and our
dataset. Results are reported for both concept preferences and direction preferences. Values in the ‘R’ columns refer
to the regular prompting condition, while ‘A’ indicates analogy prompting. The signs in brackets signal whether
analogy prompting results in an improved F1 score with respect to regular prompting (+) or not (-).
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Model % Inv. Resp. ↓ # AWs w/ Inv. Resp. ↓ # Removed AWs ↓
R A Z R A Z R A Z

Llama-70BT 9.44 13.89 – 14 18 – 0 0 –
Llama-70BP 2.50 9.72 – 10 14 – 0 0 –
Llama-70B-InstT 0 0.69 1.94 0 2 9 0 0 0
Llama-70B-InstP 0 0.28 6.94 0 2 16 0 0 0
R1-Distill-Llama-70BT 0 0.28 – 0 1 – 0 0 –
R1-Distill-Llama-70BP 0.14 0.69 – 1 2 – 0 0 –

GPT-3.5T 0.14 1.53 – 1 3 – 0 0 –
GPT-3.5P 0 0.42 – 0 1 – 0 0 –
GPT-4oT 2.22 0 – 1 0 – 0 0 –
GPT-4oP 0 0 – 0 0 – 0 0 –
GPT-4o-MiniT 0 0 – 0 0 – 0 0 –
GPT-4o-MiniP 0 0 – 0 0 – 0 0 –
GPT-o1-PreviewT 0 0 0 1 0 0 0 0 0
GPT-o1-PreviewP 0 0 0 1 0 0 0 0 0

Molmo-7BV 17 0 – 5 0 – 5 0 –
Molmo-72BV 0 0 – 0 0 – 0 0 –
Qwen2-VL-7BV 0 0 – 0 0 – 0 0 –
Qwen2-VL-72BV 0 0 – 0 0 – 0 0 –

Table 15: Overview of invalid responses in the Regular, Analogy, and Zero-shot prompting conditions, for the
textual (T ), pseudo-visual (P ), and visual (V ) conditions. The first column contains the overall percentage of invalid
responses, the second the number of action words for which at least one invalid response was generated, and the last
the number of action words that were removed because none of the generated answers was valid. A “–” indicates
that the model was not evaluated under the corresponding prompting condition.
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