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Abstract

We present a new and improved version of DensEMANN, an algorithm that grows1

small DenseNet architectures virtually from scratch while simultaneously training2

them on target data. Following a finite-state machine based on the network’s3

accuracy and the evolution of its weight values, the algorithm adds and prunes dense4

layers and convolution filters during training only when this leads to significant5

accuracy improvement. We show that our improved version of DensEMANN can6

quickly and efficiently search for small and competitive DenseNet architectures7

for well-known image classification benchmarks. In half a GPU day or less, this8

method generates networks with under 500k parameters and between 93% and 95%9

accuracy on various benchmarks (CIFAR-10, Fashion-MNIST, SVHN). For CIFAR-10

10, we show that it comes very close to the state-of-the-art Pareto front between11

accuracy and size, finding networks with 98.84% of the accuracy and 98.08%12

of the size of the closest Pareto-optimal competitor, in only 0.70% of the search13

time it took to find that competitor. We also show that DensEMANN generates14

its networks with optimal weight values, and identify a simple mechanism that15

allows it to generate such optimal weights. All in all, we show this “in-supervised”16

essentially incremental approach to be promising for a fast design of competitive17

while compact convolution networks.18

1 Introduction19

The architecture of a neural network (NN) is known to have a great impact on its performance20

on a target task—on par with that of the training process through which the NN learns the task21

[1, 2, 3, 4, 5]. The main motivation behind neural architecture search (NAS) is precisely to find the22

most adequate architecture for a task, in the sense of achieving the highest accuracy [6, 7, 8], but also23

of using resources as efficiently as possible [7, 9, 8]. To this aim, NAS algorithms must compare the24

performance a great number of candidate architecture designs. Since naïvely training all of them25

from scratch would be very inefficient, the NAS community has put much effort into developping26

reliable and ressource-efficient performance estimation strategies [6, 7, 2, 3, 8].27

In this respect, so-called “growing”, “constructive” or “incremental” algorithms provide an interesting28

approach to NAS and performance estimation. They simultaneously build and train candidate29

architectures, by adding elements such as weights, neurons, layers etc. during the training process30

[10, 11, 12, 13]. Since new candidate networks are evaluated on basis of the weights learned by31

previous candidates [14, 15], the time and computation resources consumed by the entire NAS32

process are equivalent to those required for training a single NN [12, 14]. Furthermore, the search33

space is not bounded, as new elements may be added ad infinitum [13, 16].34

This paper presents our research on DensEMANN [1], an algorithm that simultaneously grows and35

trains small and efficient DenseNets [17] virtually from scratch. Encouraged by previous positive36
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results found by its authors [1, 18], and by the great success of other similar methods [13, 19], we37

created a new version of this algorithm with the aim of approaching state-of-the-art performance38

for well-known benchmarks, or at least the state-of-the-art Pareto front between performance and39

model size. As a secondary goal, we tested the authors’ claim that DensEMANN-generated networks40

perform equally or better than similar NN even when these are trained from scratch [1].41

Section 2 provides some background on growing-based NAS and related research. Section 3 contains42

a presentation of DensEMANN’s inner workings 3.1 and lists our modifications with regards to [1]43

3.2. Section 4 presents our experiments and their results, and Section 5 includes our conclusions and44

suggestions for future research.45

2 Rediscovery of an incremental approach46

Most likely [18, 13, 20], the first growing-based NAS algorithm was Dynamic Node Creation (DNC)47

[21] or the cascade-correlation algorithm (CC-Alg) [22]. During the 1990’s, the research field of48

“constructive” algorithms (as they were called) was so active that at least two contemporary surveys49

exist of this field [23, 24]. To our knowledge, research on growing-based NAS for convolution50

neural networks (CNN) only took off after the introduction of Net2Net operators [25] and network51

morphisms [26], which can instantly make a CNN wider or deeper while not changing its behaviour.52

We have observed a recurring pattern of rediscovery, or convergence, between early growing tech-53

niques and more recent ones. Parallels can be made, for instance, between some network morphisms54

[25, 26] and early node-splitting techniques [27], or between the “backwards steps” in some modern55

algorithms [19, 28] and early growing-pruning hybridations [24, 23]. We believe that this convergence56

is helped by a direct correspondence (described in [25, 29]) between pioneering neural architectures57

such as multi-layer perceptrons, and more recent ones like CNN: perceptron layers correspond to58

convolutional layers, and perceptron neurons correspond to 3D convolution filters.59

The most serious competitor to growing-based NAS algorithms are trainless or zero-cost algorithms60

[30, 31, 2]. These evaluate candidate NN on basis of their performance with random weights. Such61

methods can explore large search spaces in a matter of minutes or even seconds [31, 2]. However,62

extra time is still needed for training the final candidate architecture in order to use it.63

3 DensEMANN: building a DenseNet one filter at a time64

DensEMANN [1] is a growing algorithm that simultaneously builds and trains DenseNets [17]65

virtually from scratch. It is based on EMANN [16], an algorithm that grows multi-layer perceptrons66

with an analogous connection scheme to that of DenseNet, and on previous research on DenseNet-67

growing techniques by the same authors [18]. Based on an introspective “self-structuring” or68

“in-supervised” approach, much more in line with real neurology than purely performance-based69

NAS, it grows and prunes the candidate NN on basis of the evolution of its internal weight values.70

3.1 General presentation of DensEMANN71

By default, DensEMANN’s seed architecture is a DenseNet containing a single dense block, inside72

which there is a single dense layer producing k = 12 feature maps. “Dense layers” may either be73

DenseNet or DenseNet-BC composite functions, with the same characteristics as in [17]. Also like in74

[17], the DenseNet’s inputs are pre-processed by an initial convolution layer with 2 ∗ k = 24 filters,75

and its final outputs are generated through 2D batch normalization [32] and a fully connected layer.76

Paralleling EMANN’s “double level adaptation” [16], DensEMANN consists of two components, the77

macro-algorithm and the micro-algorithm [1]. Each of them builds the seed network’s dense block at78

a different granularity level. Afterwards, the dense block may be replicated a certain user-set number79

of times to produce an N -block DenseNet (see Section 3.1.3).80

3.1.1 The macro-algorithm81

The macro-algorithm works at the level of dense layers, and is reminiscent of CC-Alg [22]. It82

iteratively stacks up dense layers in the block until there is no significant change in the accuracy (see83

Algorithm 1 for its pseudocode).84
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Algorithm 1 DensEMANN macro-algorithm
1: procedure MACROALGORITHM(model)
2: accuracylast ← 0
3: modellast ← model
4: model, accuracy ← MICROALGORITHM(model)
5: while |accuracy − accuracylast| ≥ IT do
6: accuracylast ← accuracy
7: modellast ← model
8: model← ADDNEWLAYER(model)
9: model, accuracy ← MICROALGORITHM(model)

10: end while
11: return modellast
12: end procedure

Each new layer is created with the same initial number of 3D convolution filters, set by a growth rate85

parameter (by default k = 12). In the case of DenseNet-BC, the dense layer’s first convolution is86

created with 4 ∗ k filters, and its second convolution with k filters.87

Before each layer addition, the macro-algorithm saves the current NN model (architecture and88

weights) and its accuracy. It then adds the new layer and calls the micro-algorithm to build it. Once89

the micro-algorithm finishes, the macro-algorithm compares the current accuracy to the one before the90

new layer was added. If the absolute difference between the two accuracies surpasses an improvement91

threshold (by default IT = 0.01), the macro-algorithm loops and creates a new layer. Otherwise, the92

algorithm undoes the layer’s addition by loading back the last saved model, and stops there.93

3.1.2 The micro-algorithm94

The micro-algorithm works at the level of convolution filters. It operates only in the dense block’s95

last layer (for DenseNet-BC, the second convolution in the last dense layer), and follows a finite-state96

machine with states for growing, pruning, and performance recovery.97

While the network is trained through standard backpropagation, the micro-algorithm establishes98

different categories of filters on basis of their kernel connection strength (kCS). For filter λ, its kCS99

is the arithmetic mean of its absolute weight values w1, ..., wn.100

kCSλ =
∑n

i=1|wi|/n (1)

A filter is declared “settled” if its kCS remains near-constant for the last 40 training epochs.1 After at101

least k/2 filters have settled, settled filters can be declared “useful” if their average kCS over the last102

10 epochs falls above a usefulness threshold (UFT), and “useless” if that same value falls below a103

uselessness threshold (ULT). During the micro-algorithm’s improvement stage (1), the UFT and ULT104

are recalculated after each training epoch on basis of the maximum and minimum kCS among settled105

filters, and of user-settable parameters UFTauto and ULTauto (by default respectively 0.8 and 0.2):106

UFT = UFTauto ∗
(

max
λ is settled

(kCSλ)− min
λ is settled

(kCSλ)

)
+ min

λ is settled
(kCSλ) (2)

ULT = ULTauto ∗
(

max
λ is settled

(kCSλ)− min
λ is settled

(kCSλ)

)
+ min

λ is settled
(kCSλ) (3)

The micro-algorithm uses these three filter categories—settled, useful and useless—as references for107

building the network’s last layer. To do this, it alternates between three stages (see Figure 1):108

1. Improvement: the network starts training with initial learning rate LR0 = 0.1, and filters109

are progressively declared settled, then useful or useless. Meanwhile, a countdown begins110

with a fixed length in training epochs: the patience parameter (by default PP = 40 epochs).111

1The actual criterion is: if the first derivative of the kCS, calculated as the difference between the current
kCS and the one 10 epochs ago divided by 10-1=9, remains near-zero for the last 30 epochs.
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All the filters are settled
AND

At least one filter is useless ?

Yes

No

LR = 0.001 * LR0
AND

accuracy ≥ pre-pruning_accuracy

All or none of the
filters are useless

Pruning

PP countdown is over
AND

All the filters are settled

Recovery

Pruning operation
was successful

End

New layer is created

Undo
pruning
and end

Recovery stage's duration
exceeds PPre epochs

Improvement

Figure 1: Flowchart of the finite-state machine for DensEMANN’s micro-algorithm.

The learning rate (LR) is divided by 10 after 50% and 75% of this countdown has elapsed.112

If at any point during this stage the number of useful filters exceeds its last maximum value,113

a new filter is added and the countdown and LR are reset. The stage ends when (1) the114

countdown is over and (2) all filters have settled. The next stage is always 2 (pruning).115

2. Pruning: if all or none of the layer’s filters are useless, the micro-algorithm ends here.116

Otherwise, the micro-algorithm saves the NN model and its accuracy (like the macro-117

algorithm does before creating a new layer), deletes all useless filters, and moves to stage 3118

(recovery). From the first pruning stage onwards, the UFT and ULT values are frozen.119

3. Recovery: the network is trained again, with the same PP -epoch countdown and the same120

initial and scheduled LR values as in stage 1 (improvement), but without filter additions.121

There are two additional countdowns, one with the same length as the last improvement122

stage (PP + the number of epochs it took for all filters to settle), and another one with a123

length of PPre > PP epochs (by default PPre = 130). Three things may happen:124

(a) If (1) the learning rate has already reached its lowest scheduled value (i.e. in practice125

after 0.75 ∗ PP epochs) and (2) the current accuracy has reached or surpassed its126

pre-pruning value, the stage ends. If at this point (3) all the filters have settled and127

(4) there is at least one useless filter, the next stage is 2 (pruning). Otherwise, the128

micro-algorithm ends.129

(b) If the stage’s duration exceeds PPre epochs, the previous pruning operation is con-130

sidered “fruitless” and undone. The pre-pruning model is loaded back, and the micro-131

algorithm ends.132

(c) If the stage’s duration exceeds that of the previous improvement stage, the filters’ kCS133

values are considered “frozen”. In practice, this means that all filters are declared134

settled at most 40 epochs after this point, and that the frozen kCS values will be used135

as the reference for any subsequent pruning.136

DensEMANN’s weight initialization mechanisms are also worth commenting:137

1. The weights for new layers are initialized along a truncated normal distribution, similar138

to that of TensorFlow v1’s [33] “variance scaling initializer”. For this initializer, the139

distribution’s standard deviation (SD) is usually inversely proportional to each layer’s140

number of input features and to its filters’ dimensions. However, for layers that the micro-141

algorithm can act upon, the distribution’s SD only depends on the filters’ dimensions,142

resulting in bigger initial weights in these layers.143

2. The weights of new filters are initialized using a special complementarity mechanism144

borrowed from EMANN [16]. The weights’ absolute values are random, and follow the same145

truncated normal distribution as weights in new modifiable layers. Their sign configuration,146

however, is not random: it is the inverted sign configuration of the filter with the lowest kCS.147

This is done to ensure the mutual complementarity and co-adaptation of new and old filters.148
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3.1.3 Building more than one dense block149

DensEMANN can also be set to build DenseNets with a user-set number of dense blocks N . To do150

this, DensEMANN first uses the macro- and micro-algorithms to build a one-block DenseNet, and151

then replicates the generated dense block N − 1 times to create a N -block DenseNet.152

Between blocks, transition layers are created with a similar architecture to that in [17], i.e. with a153

batch normalisation [32], a ReLU function [34], a 1x1 convolution and a 2x2 average pooling layer154

[35]. The number of filters in the 1x1 convolution depends on whether the network is a DenseNet or155

a DenseNet-BC: for DenseNet it is the same as the previous block’s number of output features, while156

for DenseNet-BC it is multiplied by a reduction factor, by default θ = 0.5.157

The weights for the N − 1 new blocks are initialized using the same method that DensEMANN158

uses for new layers.2 After the new blocks are added, the NN is trained for 300 extra epochs. The159

LR recovers its initial value LR0 at the beginning of these last 300 epochs, and is divided by 10 on160

epochs 150 and 255 (i.e., 50% and 75% through the extra training epochs). During these epochs,161

DensEMANN adopts a “best model saving” approach: the NN’s weights are saved whenever its loss162

reaches a new minimum value, and after the 300 epochs, these “best” weights are loaded back to163

allow the NN to reach optimal performance.164

Although it is in direct contrast with DensEMANN’s incremental philosophy, this method for165

replicating the generated block N − 1 times is activated by default, with N = 3. Its development166

was motivated by previous experimental results with mechanisms that copy DensEMANN-generated167

layers a predefined number of times, and by the good performance of cell-based NAS approaches168

[13, 14, 36] that first search for a small neural pattern (the cell) and then replicate it N times. In169

Appendix A, we give the results of an ablation study that compares, among others, DensEMANN’s170

performance with and without this dense block replication mechanism.171

3.2 Differences with the original DensEMANN172

Below are the differences between our version of the algorithm and the one described in [1]:173

1. Changes to the macro-algorithm:174

(a) The last layer addition is always undone, as it does not fulfil the accuracy improvement175

criterion. This was suggested in [1], and EMANN uses a similar mechanism [16].176

(b) The improvement threshold’s default value was changed to IT = 0.01. Observations177

in [1] suggest that, with the previous default value (0.005), the last few layer additions178

do not have a big impact in the NN’s final accuracy.179

2. Changes to the micro-algorithm:180

(a) Only settled filters may be declared useful or useless. This was proposed in [1] as a181

means to avoid quick cascades of often superfluous filter additions.182

(b) The patience parameter’s default value was changed to PP = 40 epochs. Observations183

in [1] suggest that it takes approximately 40 epochs for all the filters in a layer to settle.184

(c) If at any point during the improvement stage the number of useful filters exceeds its185

last highest value, a new filter is added and the patience countdown is reset. In v1.0,186

this can only happen if the countdown has not yet ended.187

(d) The pruning and recovery stages have been heavily modified to avoid long recovery188

stages and their effects. We indeed observed that the kCS of settled filters is not189

constant but actually decreases very slowly over time. If the recovery stage is too long,190

this causes a very harsh pruning after which the accuracy cannot be recovered.191

3. We added a method that replicates the generated dense block N times.192

4 Experiments193

We re-implemented DensEMANN from scratch using the PyTorch (v1.8 or higher3) [37] and Fastai194

(v2.5.3) [38] Python libraries. Our code is based on the DenseNet implementation for PyTorch by195

2Except for transition layers and the first layers in each block, whose weights are initialized with zero values.
3Depending on the computational environment, we used PyTorch v1.8.1 or v1.10.0+cu113 for running our

experiments. See further below.
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Pleiss et al. [39] and on the original DensEMANN implementation by García-Díaz [40] (both under196

MIT license). We initially replicated the latter as faithfully as possible, including the unusual weight197

initialization described in Section 3.1.2. Then, we made the modifications described in this paper.198

In our experiments we use three well-known image classification benchmarks: CIFAR-10 [41],199

Fashion-MNIST [42] and SVHN [43]. For each training process (either when running DensEMANN200

or training NN from scratch), we split the target data into three parts:201

• Training set: a random set of examples, different for each training process. It is used for202

training the NN. For CIFAR-10 and Fashion-MNIST it contains 45,000 “training” images,203

and for SVHN it contains 6,000 images from the “train” and “extra” sets.204

• Validation set: another random set of examples, different for each training process but205

separate from the training set (there is no overlap between the two sets). It is used for206

estimating the NN’s accuracy and loss during training (and in the case of DensEMANN,207

during growing). For CIFAR-10 and Fashion-MNIST it contains 5,000 “training” images,208

and for SVHN it contains 6,000 images from the “train” and “extra” sets.209

• Test set: a predefined set of examples that the NN never “sees” during training. It is used for210

evaluating the NN’s final performance (accuracy and cross-entropy loss), and to compare it211

against the state of the art. It is the entire set of “test” images provided by each dataset’s212

authors: 10,000 images for CIFAR-10 and Fashion-MNIST, and 26,032 images for SVHN.213

A batch size of 64 images is used for all datasets, and for all three of the above splits.214

Our data pre-processing workflow is as follows:215

1. Random crop with 4-pixel padding + random horizontal flip (as in [17]), only for CIFAR-10’s216

training and validation data.217

2. Normalization. For CIFAR-10 we use the dataset’s channel-wise mean and SD values as in218

[17]. For the other two datasets we assume mean and SD values of 0.5 for all channels.219

3. Cutout regularization [44], only for the training and validation data.220

DensEMANN’s parameters were set to their default values: IT = 0.01, PP = 40, PPre = 130,221

LR0 = 0.1, k = 12 for the first layer, N = 3 blocks in the final network. All other default values222

are the same as in [1]. We opted to generate DenseNet-BC architectures, as in past research they223

provided better results than standard DenseNet [1, 18, 17].224

For our experiments, we used the following computation environments:225

• MSi GT76 Titan DT laptop: Windows 10 Pro (64-bit) OS, Intel Core i9-10900K CPU (3.70226

GHz), NVIDIA GeForce RTX 2080 Super GPU, 64.0 GB RAM (63.9 GB usable). Python227

is v3.9.8, PyTorch is v1.10.0+cu113.228

• Internal cluster: Linux Ubuntu 20.04.4 LTS (x86-64) OS, 16 AMD EPYC-Rome Processor229

CPUs (2.35 GHz), NVIDIA GeForce RTX 3090 GPU, 64 GB RAM. Python is v3.8.6,230

PyTorch is v1.8.1.231

In Table 1, GPU times in black were obtained with the MSi GT76, while GPU times in italized purple232

were obtained on the internal cluster. We consider the times obtained on the MSi GT76 to be more233

reliable, as on the internal cluster we have let up to four tests run at a time, whereas on the MSi GT76234

we have only run one test at a time.235

The total computation time for all the experiments in this paper (excluding the appendices) was236

6.49 GPU days (3.61 days on the MSi GT76 and 2.88 days on the internal cluster). Below are the237

computation times for each experiment:238

• 4.1: 4.88 GPU days (2.81 on the MSi GT76, 2.07 on the cluster).239

• 4.2: 1.61 GPU days (0.80 on the MSi GT76, 0.80 on the cluster).240

4.1 DensEMANN’s full potential unlocked241

We began by running DensEMANN 5 times for each dataset, in order to get an idea of the algorithm’s242

performance. The results of this experiment correspond to the two first lines for each dataset in243
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Table 1: Using DensEMANN for growing and training DenseNet-BC on benchmark datasets

Validation set Test set
Dataset Experiment GPU execution

time (hours)
GPU inference
time (seconds)

Num. layers
per block

Trainable
parameters (k) Acc. (%) Loss Acc. (%) Loss

Average performance 13.48 ± 2.72 3.21 ± 0.36 5.8 ± 1.6 186.36 ± 56.68 90.06 ± 1.38 0.30 ± 0.04 93.41 ± 0.90 0.23 ± 0.03
Best network 16.55 (67.39) 3.47 7 245.42 91.34 0.26 93.91 0.21CIFAR-10
Best network retrained 3.86 ± 0.01 3.46 ± 0.04 7 245.42 91.90 ± 0.42 0.25 ± 0.01 94.25 ± 0.16 0.20 ± 0.01

Average performance 6.55 ± 1.80 3.98 ± 0.35 2.2 ± 1.3 51.84 ± 25.51 92.63 ± 0.73 0.20 ± 0.02 93.68 ± 0.68 0.20 ± 0.01
Best network 7.53 (32.75) 4.26 3 68.64 93.62 0.18 94.43 0.19Fashion-

MNIST Best network retrained 2.81 ± 0.02 3.75 ± 0.20 3 68.64 93.70 ± 0.53 0.18 ± 0.01 94.47 ± 0.22 0.19 ± 0.01

Average performance 3.39 ± 0.26 13.36 ± 0.33 11.0 ± 1.2 339.81 ± 63.39 93.38 ± 0.47 0.24 ± 0.02 94.43 ± 0.29 0.27 ± 0.02
Best network 3.23 (16.96) 13.28 11 336.07 94.10 0.22 94.70 0.26SVHN
Best network retrained 1.04 ± 0.17 11.76 ± 2.69 11 336.07 93.81 ± 0.39 0.23 ± 0.01 94.50 ± 0.16 0.26 ± 0.01

Table 1: the “average performance” lines contains the mean and SD over the 5 runs for each variable,244

whereas the “best network” line corresponds to the DensEMANN-generated NN that obtained the245

lowest (cross-entropy) loss on the validation set. In the latter case, we indicate two execution times:246

the execution time for the run that generated this “best” NN, and the total execution time for all 5 runs247

of DensEMANN (i.e. the total GPU time that we consumed to search for this optimal candidate).248

All in all, DensEMANN performs very well on all three benchmarks. The generated architectures249

are always under 0.5 million parameters (in the case of Fashion-MNIST they are even under 0.1250

million parameters), yet the average test set accuracies are all between 93% and 95%. The current251

state of the art test set accuracies on CIFAR-10 [45] and SVHN [46] are at 99% or higher, while252

that on Fashion-MNIST [47] is at just under 97%. This said, the top-performing models for these253

benchmarks are very large, containing several millions of parameters.254

Concerning DensEMANN’s execution times, they range from around 3 hours (SVHN) to just over255

half a day (CIFAR-10). Consequently, it always took us less than 3 days to run DensEMANN 5 times,256

and find our best candidate network for all benchmarks.257

It is noteworthy that DensEMANN does seem to build minimal architectures that adapt to each258

dataset’s peculiarities. For Fashion-MNIST, a grayscale dataset with smaller images than the other259

two datasets, DensEMANN generated very small and shallow architectures—an order of magnitude260

smaller than those for the two other datasets. Meanwhile, the biggest and deepest NN were generated261

for SVHN, an RGB dataset whose images contain distractors around the main data to classify.262

4.2 Retraining our best networks from scratch: DensEMANN vs. “perfect” NAS263

For our second experiment, we erased the weights in DensEMANN’s best network for each dataset,264

replaced them with randomly initialized weights (using an exact copy of TensorFlow’s “variance265

scaling initializer”) and trained the network from scratch 5 times for 300 epochs. We used the same266

workflow as for the block replication mechanism at the end of DensEMANN: beginning with a LR267

value of LR0 = 0.1, we divide it by 10 on epochs 150 and 255. We also use the same “best model268

saving” approach, where we save the weight values that produce the lowest validation set loss, and269

load them back at the end of the training process. The results of this experiment correspond to the270

“best network retrained” lines in Table 1.271

This experiment is useful for two reasons. On one hand, it allows us to test the claims in [1] that272

DensEMANN generates its networks with optimal weights. If that were the case, the network’s273

performance (accuracy and loss) with the original and retrained weights would not be very different.274

On the other hand, it can be used for comparing DensEMANN’s execution times to those of a275

hypothetical “perfect” NAS algorithm. As explained in Section 2, even if we imagine a “perfect”276

zero-cost NAS algorithm that can instantly find an optimal network in DensEMANN’s search space,277

one still needs to train the candidate network before using it. For this reason, we consider the GPU278

time cost of retraining DensEMANN’s final architecture to be a good proxy for the GPU time cost of279

using such a “perfect” NAS algorithm to explore DensEMANN’s search space.280

Concerning the network’s performance, the difference before and after being retraining is not very big,281

and this is true on both the validation and test set. In the case of CIFAR-10, there is an improvement282

for the accuracy, but the loss does not seem significantly different. One-sample T-tests confirm283

this observation: the only statistically significant differences are found for CIFAR-10’s validation284

and test set accuracies (respectively P = 0.039 and P = 0.010), and for SVHN’s test set accuracy285

(P = 0.044). In the former case the accuracy improved after retraining, while in the latter case it286
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worsened after retraining. Nevertheless, in both cases the test loss does not change significantly,287

which leads us to conclude that DensEMANN does optimally train the architectures that it grows.288

Concerning the GPU times, for all datasets there is a significant difference between DensEMANN’s289

execution times (both the average time and that of the best run) and the average time cost for retraining290

the best run’s final candidate NN. The mean GPU time cost of DensEMANN is 3.49 times longer291

than that of retraining for CIFAR-10, 2.33 times longer for Fashion-MNIST, and 3.25 times longer292

for SVHN. Part of this difference most certainly comes from the 300 extra training epochs required293

by DensEMANN’s block replication mechanism—exactly the same number of epochs that we use294

to retrain the best generated NN from scratch. Since for two similar architectures 300 training295

epochs will represent a similar GPU time, it is mathematically impossible for DensEMANN to296

outperform “perfect” NAS’ time cost when using block replication. Nevertheless, the GPU time costs297

of DensEMANN and SGD training remain of the same order of magnitude (hours).298

4.3 Comparison against the state of the art299

In Table 2 and Figure 2, we take advantage of the widespread use of CIFAR-10 as a benchmark task300

to map the state of the art for the compromise between model size and error rate on this dataset, and301

see where DensEMANN fits with regards to that state of the art. Concretely, we use Figure 2 to302

visualize the current Pareto front for the size vs. error rate compromise. We compare DensEMANN303

to this Pareto front by identifying the NN models and NAS algorithms that make up this front, and by304

focusing on the ones that are closest to DensEMANN’s performance.305
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Figure 2: Scatter plot of the performance of the human-designed
NN models and NAS algorithms in Table 2 (including DensE-
MANN): accuracy on CIFAR-10 vs. size in trainable parameters.

The closest Pareto-optimal306

competitor to DensEMANN is307

LEMONADE S-I [19], another308

growing-based algorithm that is309

designed specifically to explore310

the Pareto front between model311

acccuracy and size. After 80312

GPU days LEMONADE S-I313

generated a final candidate314

architecture with 190 thousand315

parameters that obtained 94.5%316

accuracy on CIFAR-10. DensE-317

MANN’s average performance318

is very close to this: with 98.08%319

of its size, we reach 98.84% of320

the LEMONADE S-I network’s321

accuracy, in 0.70% of the GPU322

time that LEMONADE took to323

find that network.324

Concerning the execution time,325

a closer competitor to DensE-326

MANN is NASH Random, by327

the same authors as LEMONADE [14]. On average, it takes 0.19 GPU days to produce its fi-328

nal candidate networks, their average size is 4.4 million parameters, and their average accuracy329

on CIFAR-10 is 93.50%. DensEMANN reaches a similar accuracy with 4.24% of the size, but its330

average execution time is 2.96 times longer. It is likely that network morphisms [25, 26], which331

NASH uses for preserving the NN’s behaviour after growing, are in part responsible for its quick332

execution time.333

5 Conclusions and future work334

We present DensEMANN, an “in-supervised” growing-based NAS algorithm that simultaneously335

builds and trains DenseNet architectures for target tasks. We show that, in half a GPU day or less,336

DensEMANN can generate very small networks (under 500 thousand trainable parameters) for337

various benchmark image classification tasks, training them with optimal weights that allow them338

to reach around 94% accuracy on these benchmarks. For one of them (CIFAR-10), we show that339
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Table 2: Performance comparison of DensEMANN against human-designed NN models and state-of-
the-art NAS algorithms, for architectures with less than 10 million parameters

Category Name Trainable
parameters (M)

Error rate on
CIFAR-10 (%)

GPU execution
time (days)

Human-designed

ResNet 20 [48] 0.27 8.75 N/A
ResNet 110 (as reported by He et al. [48]) 1.7 6.61 ± 0.16 N/A
ResNet 110 (as reported by Huang et al. [49]) 1.7 6.41 N/A
ResNet 110 with Stochastic Depth [49] 1.7 5.25 N/A
WRN 40-1 (no data augmentation) [50] 0.6 6.85 N/A
DenseNet 40 (k = 12) [17] 1 5.24 N/A
DenseNet-BC 100 (k = 12) [17] 0.8 4.51 N/A
Highway 1 (Fitnet 1) [51] 0.2 10.82 N/A
Highway 4 [51] 1.25 9.66 N/A
Petridish initial model (N=6, F=32) + cutout [13] 0.4 4.6 N/A

Reinforcement
learning (RL)

NAS-RL / REINFORCE (v1 no stride or pooling) [52] 4.2 5.5 22400
NAS-RL / REINFORCE (v2 predicting strides) [52] 2.5 6.01 22400
NAS-RL / REINFORCE (v3 max pooling) [52] 7.1 4.47 22400
NASNet-A (6 @ 768) [36] 3.3 3.41 2000
NASNet-A (6 @ 768) + cutout [36] 3.3 2.65 2000
Block-QNN-S, N=2 [53] 6.1 4.38 96

Evolutionary and
genetic algorithms

(EA and GA)

Large-Scale Evolution [54] 5.4 5.4 2600
CGP-CNN (ConvNet) [55] 1.5 5.8 12
CGP-CNN (ResNet) [55] 1.68 5.98 14.9
AmoebaNet-A (N=6, F=32) [56] 2.6 3.4 ± 0.08 3150
AmoebaNet-A (N=6, F=36) [56] 3.2 3.34 ± 0.06 3150
EcoNAS + cutout [57] 2.9 2.62 ± 0.02 8

Gradient-based
optimization (GO)

ENAS + micro search space [58] 4.6 3.54 0.45
ENAS + micro search space + cutout [58] 4.6 2.89 0.45
DARTS (1st order) + cutout [59] 3.3 3 ± 0.14 1.5
DARTS (2nd order) + cutout [59] 3.3 2.76 ± 0.09 4
XNAS-Small + cutout [60] 3.7 1.81 0.3
XNAS-Medium + cutout [60] 5.6 1.73 0.3
XNAS-Large + cutout [60] 7.2 1.6 0.3

Growing /
Forward NAS

NASH (nsteps = 5, nneigh = 8, 10 runs) [14] 5.7 5.7 ± 0.35 0.5
LEMONADE SS-I + mixup + cutout [19] 0.047–3.4 8.9–3.6 80
LEMONADE SS-II + mixup + cutout [19] 0.5–13.1 4.57–2.58 80
Petridish macro (N=6, F=32) + cutout [13] 2.2 2.85 ± 0.12 5
Petridish cell (N=6, F=32) + cutout [13] 2.5 2.87 ± 0.13 5
Petridish cell, more filters (N=6, F=37) + cutout [13] 3.2 2.75 ± 0.21 5
Firefly, WRN 28-1 seed + BN [10] 4 7.1 ± 0.1 N/A
GradMax, WRN 28-1 seed + BN [10] 4 7.0 ± 0.1 N/A

Random Search
DARTS Random + cutout [59] 3.2 3.29 ± 0.15 4
NASH Random (nsteps = 5, nneigh = 1) [14] 4.4 6.5 ± 0.76 0.19
LEMONADE SS-I Random + mixup + cutout [19] 0.048–2 10–4.4 80

Ours
DensEMANN (average performance) + cutout 0.056 ± 0.009 13.91 ± 1.28 0.33 ± 0.05
DensEMANN (best network) + cutout 0.245 6.09 2.81
DensEMANN (best network retrained) + cutout 0.245 5.75 ± 0.16 2.97 ± 0.00

DensEMANN’s performance is very close to state-of-the-art Pareto-optimality for the compromise340

between accuracy and neural architecture size. This said, by studying DensEMANN in detail and341

comparing it to other algorithms in the literature, we find methodologies—such as network morphisms342

and best model saving—that could make this approach even quicker and more optimal.343

Future research on improving DensEMANN could follow some of the following research lines:344

• Developing a zero-cost NAS algorithm that quickly explores DensEMANN’s search space.345

This should become the baseline for evaluating future DensEMANN-inspired algorithms.346

• Further incorporating best model saving into DensEMANN: during the micro-algorithm’s347

improvement and recovery stages, save the weights—and the model—that correspond to the348

best validation loss since the start of the stage, then reload them at the end of the stage. This349

could double as a method for controlling the true usefulness of filter additions.350

• Comparing different ways to initialize new filters or layers, such as network morphisms351

[25, 26] and GradMax [10].352

• Replacing the block replication method with an improved macro-algorithm, that can decide353

when it is more convenient to start a new block or to just add a new layer in the current one.354
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