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Abstract

Continual Learning systems are faced with a potentially large
numbers of tasks to be learned while the models employed
have only limited capacity available, which makes it poten-
tially impossible to learn all required tasks within a single
model. In order to detect on when a model might break we
propose to use treatment effect estimation techniques to esti-
mate the effect of training a model on a new task w.r.t. some
suitable performance measure.

Motivation
Continually learning new concepts and solving new tasks is
one key element of human intelligence which accompanies
us throughout our entire lifespan and seems to be more im-
portant than ever in these accelerated times of technological
progress. For instance, the rising dynamics of the job mar-
ket demands employees for continually learning, e.g. using
a new software being introduced in a company, while not
forgetting how to solve problems we face all the time dur-
ing work, e.g. communicating properly with new customers.
Continual Learning (CL) aims to transfer this ability to Ma-
chine Learning (ML) to obtain models which are capable of
adapting to new tasks without losing the ability to solve tasks
seen earlier. Among others, this comes with a set of bene-
fits: (1) existing knowledge gathered by learning a sequence
of tasks can be exploited for reaching better performances
and making models more robust by leveraging similarities
among tasks and (2) continually updating models avoids the
need to fully re-train once a new task is faced, thus CL helps
making ML more resource-efficient (Delange et al. 2021;
Parisi et al. 2019; Mundt et al. 2020). In CL, a task can corre-
spond to one of the widespread problem-definitions used in
ML, i.e. supervised learning, unsupervised learning or com-
binations thereof. One of the most prominent problems in
CL is catastrophic forgetting which describes the observa-
tion that ML-models (especially Neural Networks) tend to
forget about tasks they have learned previously once they
are trained to solve a different task (McCloskey and Cohen
1989; Delange et al. 2021; Parisi et al. 2019; Mundt et al.
2020). Methods aiming to overcome this issue either train
expert-models for each task, replay old data while train-
ing on new tasks or fix certain parameters in the models
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which are considered to be important to solve tasks that can
be solved already. Expert-models suffer from high resource
consumption and they are not able to exploit old knowledge
due to isolated parameter-sets per expert. Though replay-
based approaches also suffer from high memory consump-
tion, they are widely used because such approaches have
shown good performance. (Kirkpatrick et al. 2017; Rebuffi,
Kolesnikov, and Lampert 2016; Mundt et al. 2020; Delange
et al. 2021). Fixing parameters which are deemed important
to solve former tasks is less resource-intensive, thus being
a reasonable approach as well. However, for all approaches
which share parameters across tasks, questions like the fol-
lowing arise: “Does the model have enough capacity to learn
a new task?” Given a paramerterized model, which effect
will training on a new task have w.r.t. the overall model per-
formance? Given that we have trained our model on a se-
quence of tasks, what would be the state and performance
of our model if we had not trained on the last k tasks? An-
swering such questions is crucial in order to have guarantees
w.r.t. model performance and robustness. Also it increases
flexibility of CL-systems since answering such questions
allows to determine when model-complexity has to be in-
creased. Estimating effects in counterfactual settings enables
CL-systems to find proper trade-offs, e.g. when we have to
learn a new task, but there is not enough capacity, i.e. we are
sure that the overall model-performance will decrease. Then,
with counterfactual reasoning, one could identify knowledge
in the model which causes the lowest decrease in perfor-
mance once this knowledge is discarded to make space for
the new task to be learned. To see why estimating the effect
of training on a new, unseen task has, consider the following
example: Assume a robot that already has learned to walk in
an environment and to jump over obstacles. Now, it is con-
fronted with learning to collect certain items while moving
through the environment. However, it does not have enough
capacity to learn all three tasks. Being able to predict that
learning to collect items will lead to bad performance in e.g.
jumping over obstacles (that might harm the robot itself), al-
lows the robot to decide to not learn the new task and stay
safe instead.
A robust and well known framework to compute the effect
(here: model performance) that causes (here: training on a
task) have in some given system is treatment effect estima-
tion (TEE). Since TEE is theoretically well understood and



widely used (e.g. for assessing the causal effect of new drugs
in medicine (Bica et al. 2021)), we want to make use of its
robustness and employ it to reason about the effects of con-
tinual training on ML models.

Treatment Effect Estimation
TEE has its grounding in Causal Inference. The goal is to es-
timate the effect of an intervention in a system on some vari-
able (Becker and Ichino 2002; Imbens 2004; Rubin 2005).
Besides the Potential Outcome framework of Rubin (2005),
the do-calculus proposed by Pearl (2009) is a strong frame-
work which can be used to compute entities required for
TEE. The do-calculus is able to capture asymmetries ren-
dered by causal structures (i.e. if A is the cause of B, chang-
ing A changes B but not vice versa). Following this ratio-
nale, the average treatment effect (ATE) of a binary variable
X on a variable Y can be defined as follows:

ATE = E[Y |do(X = 1)]− E[Y |do(X = 0)] (1)

ATE is just one of many treatment effect quantities one can
estimate/compute, another important quantity is the individ-
ual treatment effect (ITE) where one focuses on the outcome
of an individual system configuration instead of taking an
expectation (Tabib and Larocque 2019). However, we will
focus on ATE here. It is also possible to consider counter-
factual scenarios: Instead of asking how the system will be-
have under an intervention, we ask how the system would
have behaved if an intervention was performed (Hsu, Lai,
and Lieli 2022; Yao et al. 2021).

Connecting TEE and CL
In order to perform TEE, we have to know which variable is
caused by which other variable(s). We assume that a causal
graph is known or can be designed by hand. For example,
Figure 1 shows a causal graph of one “step” in a CL-system:
ti denotes a task we obtain at step i, τi is a binary decision
variable indicating whether we update our model based on
ti, θi−1 and θi are the model-parameters at step i−1 and i re-
spectively, li is the model-performance w.r.t. all tasks at step
i and Ti−1 refers to the set of all tasks we have trained on
until step i (excluding task i). Note that all variables except
for li are independent of Ti−1 since we observe θi−1 which
represents the accumulated knowledge over Ti−1, thus older
tasks are not needed to estimate these variables.

TEE in Factual Settings Sticking with the example in
Figure 1, a natural question to be answered is: Obtain-
ing a new task ti, will the average model performance li
significantly decrease when updating the current parame-
ters θi−1 on ti? Formally this question corresponds to es-
timating the conditional average treatment effect (CATE)
E[li|do(τi = 1), ti, θi−1] − E[li|do(τi = 0), ti, θi−1]. Es-
timating this quantity requires us to estimate the case where
do(τi = 1) only since do(τi = 0) can be approximated by
evaluating the current model on all tasks and average the per-
formance. Estimation of do(τi = 1) case can be done with
a 2-step-procedure: First, estimate a distribution over θi s.t.
the parameters that would result from training on ti have

high probability, denoted by p(θi|ti, θi−1). Once this distri-
bution is estimated, the expectation of li can be computed
by: ∫

li

∫
θi

li · p(li|θi) · p(θi|ti, θi−1) (2)

Estimating distributions p(θi|ti, θi−1) and p(li|θi) comes
with the advantage of being able to quantify the uncer-
tainty in the parameter-prediction. However, since especially
p(θi|ti, θi−1) is likely to be a complex distribution, com-
puting moments of this distribution is probably resource-
intensive because approaches like Monte Carlo have to be
used. Instead one could perform point estimates of θi. For
this a promising starting point could be to utilize Influence
Functions (Koh and Liang 2017). These measure the effect
of a single sample of a dataset on the model-parameters.
In our setting Influence Functions would measure how θi
would differ if we would have trained on task t′i instead of
ti where t′i is a version of ti with one sample dropped and
parameters being initialized to θi−1 before training. To es-
timate the effect of an entire task on θi, one would have to
extend Influence Functions to estimate the effect of an en-
tire dataset on the parameters. Once the effect of ti on the
parameters can be computed, evaluating the effect of task
ti on some performance metric is straightforward. Know-
ing the effect of training on a task ti w.r.t. some perfor-
mance measure allows to determine when the model should
be equipped with additional capacity, e.g. by adding more
parameters. Additionally, the estimated change in parame-
ters can be used to warm-start the next training-stage.

TEE in Counterfactual Settings Another issue we are
confronted with in CL-settings is the following: Assume we
have a fixed resource-constraint (i.e. our model has a maxi-
mum possible capacity) and we obtain a new task which will
decrease the overall model performance. Then we have to
identify those parts of knowledge represented by our model
which will cause the lowest decrease in performance. This
can be considered as identifying the task that contributes the
lowest amount of knowledge to our model, which in turn can
be formulated as a counterfactual question: “What would the
model performance be if we had not trained on ti−k but on
ti?” This question can be answered by estimating a series of
ATEs in counterfactual settings s.t.

E[li|do(τi = 1), ti, θi−1]− E[li|do(τi = 1), ti, θi−1] (3)

is maximized where li and θi−1 corresponds to the value
of li and θi−1 respectively if τi−k had been 0, i.e. if we
had not trained on ti−k. Having such a method to esti-
mate li and θi−1 would not only allow for assessing which
knowledge does not contribute much to the overall model-
performance, it also can be used to warm-start the model
once the knowledge causing the lowest performance-drop if
discarded was identified. Again, as in the factual setting, one
could aim to estimate a distribution over model parameters
and performance-measures. Of course, one faces the same
challenges as in the factual setting when estimating com-
plex distributions and their moments. As above, an alterna-
tive approach is to use point-estimates in the form of Influ-
ence Functions. However, instead of only extending them to



capture the change in model parameters θi−1 of a task ti, an-
other extension would be necessary to capture the change of
a sequence of tasks. For example, say we have continually
trained a model on 4 tasks and obtain a 5th task. To estimate
the parameters’ values if we would not have trained on e.g.
task 3, we first would have to ”undo“ the changes of task 3
and 4. Then θ5 has to be estimated based on θ̂2 where θ̂2 is
an estimation of θ2 based on rolling back changes made by
task 3 and 4. Assuming we are allowed to save θi at each step
i and have access to each ti or a representative thereof (as in
pseudo-rehearsal), the above problem simplifies to estimat-
ing the effect of a sequence of tasks, i.e. it reduces to solving
a sequence of the same problem as in the factual setting.

Robot-Example To show that CL can benefit from esti-
mating the effect of training a model on a certain task, we
return to the motivational example from above: Assume t1
corresponds to the task walking, t2 corresponds to the task
jumping over obstacles and t3 corresponds to the task col-
lect items.
In the factual case, given that the robot learned to solve t1
and t2, we can estimate the overall effect of learning t3:

e(t3) = E[l3|do(τ3 = 1), t3, θ2]− E[l3|do(τ3 = 0), t3, θ2]

Since l3 denotes the performance across all tasks, a simple
decision rule could be to train on t3 if e(t3) > 0, i.e. the
overall gain when training on t3 is higher than possible per-
formance drops in single tasks. Since walking and jumping
are substantially different than collecting items, it is likely
that e(t3) > 0, thus the robot would decide to learn t3 if it
has enough capacity for t3.
For counterfactual cases assume that the robot had the ca-
pacity to also learn t3 from above and we obtain yet an-
other task t4 in which the robot should learn to search for
an energy supply-station once its battery is low. Assume the
robot’s model driving its decisions has not enough capac-
ity to learn t4. However, it is forced to learn t4 since with-
out solving it the robot will stop working once its battery
is empty. Further assume a task ti does not carry informa-
tion about a different task tk, i.e. learning ti does not help
us solving tk. Now the robot has to identify the task creating
the least harm to its overall performance which can be done
by estimating:

E[li|do(τi = 1), ti, θi−1]− E[li|do(τi = 1), ti, θi−1]

Here, θi−1 denotes an estimation of the model-parameters
had the robot not learned ti. Doing this for each task allows
us to sort the tasks by their impact on the overall perfor-
mance. If, for instance, the robot uses rehearsal-methods for
continuously updating its model, it then can ignore the task
that leads to least harm if the task-related knowledge was
dropped from the model-parameters.

Conclusion & Further Work
This vision paper looked at the benefits of using the TEE-
framework to increase the robustness and flexibility of CL-
systems. We propose a starting point that can be used to an-
swer (counter-)factual questions about CL-systems to guide

Figure 1: Continual Learning represented as a causal graph.
The decision τi−1 if the current model parameters θi−1 are
updated using task ti depend on θi−1 (which is obtained)
and ti only. The model-parameters θi at timestep i influence
the overall model-performance li across all i tasks.

the optimization behavior. Answering such questions is cru-
cial in productive systems in order to give guarantees w.r.t.
model-performance and to minimize computational costs
(e.g. by using parameter-estimations as a warm-start). Addi-
tionally, viewing at CL-systems from a causal lens allows us
to make models more transparent, e.g. by identifying knowl-
edge that has low positive effect on the model-performance.
Further work should start with solving the factual case, fol-
lowed by the counterfactual case. We already have sketched
a possible approach using Influence Functions which es-
timate the effect of samples from a dataset on the model
parameters. An extension to estimate the effect of entire
datasets/tasks could be employed to answer factual and
counterfactual queries as shown above. Another approach
could be to employ representation learning techniques which
have been shown to compactly represent complex high-
dimensional data in relatively low-dimensional spaces. This
effectiveness could be exploited to encode parameters and
tasks in compact representations. Then, the NCM frame-
work proposed by Xia et al. (2021) could be employed to
estimate CATE to answer the questions mentioned above.
Also, instead of ATE other quantities such as ITE can be
considered, e.g. to answer questions about specific tasks.
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