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Abstract

Manhattan representations, defined by axis-aligned, orthogonal structures, are
widely used in vision, robotics, and semiconductor design for their geometric
regularity and algorithmic simplicity. In integrated circuit (IC) design, Manhattan
geometry is key for routing, design rule checking, and lithographic manufac-
turability. However, as feature sizes shrink, optical system distortions lead to
inconsistency between intended layout and printed wafer. Although Inverse Lithog-
raphy Technology(ILT) is proposed to compensates these effects, learning-based
ILT methods, while achieving high simulation fidelity, often generate curvilinear
masks on continuous pixel grids, violating Manhattan constraints. Therefore, we
propose TokMan, the first framework to formulate mask optimization as a discrete,
structure-aware sequence modeling task. Our method leverages a Diffusion Trans-
former to tokenize layouts into discrete geometric primitives with polygon-wise
dependencies and denoise Manhattan-aligned point sequences corrupted by optical
proximity effects, while ensuring binary, manufacturable masks. Trained with self-
supervised lithographic feedback through differentiable simulation and refined with
ILT post-processing, TokMan achieves state-of-the-art fidelity, runtime efficiency,
and strict manufacturing compliance on a large-scale dataset of IC layouts.

1 Introduction

Manbhattan representations—characterized by axis-aligned, orthogonal structures—play a founda-
tional role in computer vision and robotics by simplifying the geometric complexity of structured
environments. These representations exploit the prevalence of right angles in man-made settings,
enabling efficient solutions to fundamental tasks such as vanishing point detection [1l], camera lo-
calization [2], SLAM (simultaneous localization and mapping) [3]], and 3D scene reconstruction [4].
By reducing spatial ambiguity and imposing global regularity, Manhattan models facilitate compact
encodings and algorithmic tractability, particularly in indoor and urban domains. Beyond perception,
this abstraction is also central to architecture and procedural generation, where structured geometry
supports scalable and interpretable design.

This same geometric prior is deeply embedded in the semiconductor industry, where inte-
grated circuit (IC) layouts adhere to Manhattan constraints for both algorithmic and manufac-
turing efficiency. Modern IC designs consist of features such as wires and vias in layout and
mask, that are aligned to orthogonal grids, simplifying placement, routing, design rule check-
ing(DRC) [5], and verification workflows. Critically, Manhattan mask are favored in pho-
tolithography due to their compatibility with optical projection systems and EDA toolchains [6].
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classical mask optimization [8] and deep-learning approaches [9} 10} 11} [12]] have yielded powerful
ILT solvers. These approaches relax the binary mask into a continuous representation, allowing
pixel-wise gradient descent optimization. Despite their outstanding performances, reconverting the
continuous mask back to a binary representation undo the benefits gained during the pixel-level
optimization. As a result, the final binary mask often deviates from the intended objective and remains
suboptimal. Moreover, masks reproduced by these methods frequently contain curvilinear or irregular
features that violate the Manhattan constraints essential for manufacturability and increase write-time
complexity, thereby negatively impacting time-to-market efficiency.
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In this paper, we propose TokMan, the first framework to apply a sequence modeling technique
approach popularized by large language models(LLMs) [13} 14} [15]], to the task of lithography mask
generation under strict geometry constraints [16]. Rather than treat Manhattan compliance as a post-
hoc constraint, TokMan integrates Manhattan representations inherently throughout the optimization
process by formulating mask correction as a sequence tokenization problem over a discrete vocabulary
of axis-aligned geometric primitives. This approach aligns with the broader "tokenize everything"
trend in machine learning, where motion [17]], geometry [18], and structure [19] are represented as
symbolic sequences. Inspired by works such as MeshGPT [20] for triangle meshes and EgoEgo [21]]
for human motion reconstruction, our method employs a Diffusion Transformer architecture [22]]
to generate corrected masks in a tokenized Manhattan domain. In this formulation, token-based
modeling is not merely a convenient abstraction—it is a fundamentally aligned representation for
Manhattan-constrained layout synthesis. By discretizing geometry into axis-aligned tokens, the
model operates natively within the design space dictated by manufacturing constraints, enabling not
only structurally faithful mask generation but also scalable, context-aware reasoning across complex
polygonal configurations. This intrinsic compatibility renders tokenization a conceptually elegant
and practically powerful paradigm for Manhattan mask generation.

TokMan employs a conditional diffusion process that reinterprets the forward lithography as a struc-
tured noise addition-where diffraction and interference degrade the mask into a distorted aerial
image-allowing ILT process to be cast as a denoising problem [23]]. The Diffusion Transformer
simultaneously learns to model this inverse process while capturing the spatial dependencies be-
tween Manhattan primitives. Training is conducted in a self-supervised fashion, using a large-scale
dataset derived from open-source IC libraries [[24] that span a wide range of real-world routing
and standard cell patterns. For each layout, the model learns to predict token-level geometric cor-
rections conditioned on the full context. Predicted token sequences are rendered into continuous
mask representations via nvdiffrast [25], and their lithographic printability is evaluated through a
differentiable imaging pipeline. The simulated aerial image is compared against the target pattern
to compute a reconstruction loss, enabling end-to-end optimization without ground-truth mask an-
notations. A lightweight ILT refinement is optionally applied after generation to enhance line-edge
fidelity while maintaining strict Manhattan compliance. Empirically, our method achieves superior
performance over existing baselines in terms of pattern fidelity, runtime efficiency, and manufacturing
compliance, offering a scalable path toward practical, learning-based inverse lithography approach
under strict manufacturing constraints.
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Figure 2: Overview of TokMan. The input layout is first segmented into a Manhattan representation
via our litho-aware segmentation algorithm. A denoising diffusion model then is trained to tokenize
and predict OPC corrections using segmented Manhattan points. These corrected points are rendered
to mask image M by Nvdiffrast and passed through a lithography simulator to produce a simulated
wafer image WV, where loss is used to supervise the generation of OPC correction. Finally, a post
process is applied to enhance fidelity of coarse mask after generation.

2 Related Work

Manhattan Representation. The Manhattan representation, or Manhattan world assumption,
posits that scenes are predominantly composed of structures aligned along three orthogonal directions.
This geometric prior has been extensively utilized in computer vision and machine learning to
simplify complex spatial understanding tasks [26]]. Introduced by Coughlan and Yuille [27], this
assumption enables robust camera calibration and 3D inference using edge orientations and vanishing
points. Building upon this, Guo et al. [28] integrated planar constraints derived from the Manhattan
assumption into neural implicit representations for 3D scene reconstruction, achieving improved
quality in low-texture indoor environments. Additionally, Wakai et al. [29] leveraged the Manhattan
world prior for single-image camera calibration, utilizing heatmap regression to estimate vanishing
points and camera orientation, demonstrating robustness in challenging scenarios with fisheye
distortions. These studies underscore the versatility and effectiveness of the Manhattan world
assumption as a structural prior in various computer vision and machine learning applications.

Tokenization with Transformer. Tokenization, originally developed in natural language processing
(NLP) to segment text into discrete, meaningful units, has become a new trend in modern machine
learning. With the rise of transformer architectures like BERT [30] and GPT [31l], its importance has
expanded across modalities, enabling unified and scalable representation of diverse data types [32,[33]].
In 3D scene understanding, Chen et al. [34] use the Segment Anything Model (SAM) to tokenize
3D point clouds by aligning 2D masks, enhancing semantic segmentation through region-level
learning. MeshGPT [20] formulates triangle mesh generation as a sequence modeling task, leveraging
geometric tokens for compact and autoregressive 3D synthesis. PointMamba [35] introduces an
efficient state space model that imposes token order via space-filling curves, enabling scalable point
cloud analysis. In egocentric motion prediction, Chi et al. [21] tokenize full-body trajectories through
a conditional transformer-based diffusion framework in the time domain. These developments
highlight tokenization’s pivotal role in enabling transformers to process complex, high-dimensional
data structures, establishing it as a universal mechanism for unifying representation and computation
in contemporary machine learning.

Optical Proximity Correction. Optical Proximity Correction (OPC) plays a central role in lithog-
raphy, aiming to compensate for systematic pattern distortions caused by light diffraction, optical



proximity effects, and process non-idealities. As feature sizes approach the resolution limits of
lithographic systems, the printed patterns often deviate significantly from the intended layout, making
OPC essential for ensuring pattern fidelity. Traditional rule-based and model-based OPC rely on
calibrated optical models and heuristic correction strategies, where geometric features are modi-
fied iteratively to align simulated contours with the target layout. These methods typically require
expensive computational simulations and manual tuning. Recent academic work leverages deep
neural networks and GPU acceleration to enhance both runtime and correction fidelity. For instance,
long-standing level-set algorithms [36] have been migrated to GPUs. Generative models such as
GANS [9] and task-specific neural networks [[10, |11} [12]] are applied for pixel-level mask synthesis
and optimization. Nonetheless, many of these learning-based methods lack explicit manufacturability
constraints, limiting their applicability in real-world industrial settings.

3 Preliminaries

Forward Simulation. Lithography is a core technology in semiconductor manufacturing, enabling
the transfer of circuit patterns from photomasks onto silicon wafers using light exposure [37]. The
forward lithography process models how a given mask pattern produces a printed image on the wafer,
governed primarily by optical diffraction and resist interactions [38},139]. Mathematically, the aerial
image I(x,y) formed on the wafer plane can be modeled as coherent or partially coherent imaging
of the mask M (z, y) through an optical system:

I(z,y) = |FH{H(for fy) - FIM (2, 9)]}, M

where F denotes the Fourier transform, H(f,, f,) is the optical transfer function (OTF) of the
lithography system, and M (x, y) is the binary mask pattern. Post-processing steps, such as resist de-
velopment and etching, are often approximated as thresholding or convolutional smoothing operations
on I(x,y).

Inverse Lithography Technology (ILT). The inverse lithography process [40] aims to determine
an optimal mask pattern M (x, y) that produces a target pattern T'(z,y) on the wafer, effectively
solving an inverse problem [41]42]]. This can be formulated as minimizing the discrepancy between
the simulated wafer image and the desired layout:

min L(I(M),T)+ X -R(M), )
M(z,y)

where L is a loss function measuring pattern fidelity (e.g., Lo loss, edge mismatch, or critical
dimension error), and R is a regularization term that encourages mask manufacturability and sparsity
(e.g., enforcing Manhattan geometry or minimizing sub-resolution features). A balances fidelity and
regularity.

Recent ILT frameworks utilize differentiable lithography simulators to enable gradient-based opti-
mization [43} 44]. Notably, self-supervised learning approaches avoid requiring explicit ground-truth
masks by computing the loss between simulated images and target layouts directly, allowing end-to-
end optimization:

Loets = |S(M) - T, 3)

where S(M) denotes the simulated print image from mask M via forward lithography. Such
frameworks facilitate mask learning driven by lithographic feedback, enhancing printability and
robustness under process variations.

4 Methods

This section presents our proposed TokMan framework. We begin by describing the layout segmenta-
tion strategy, which converts Manhattan circuit geometries into structured representations suitable
for learning. We then detail the use of a Diffusion Transformer for generating OPC corrections in
token space, followed by the self-supervised training procedure enabled by a differentiable Man-
hattan renderer and lithography forward simulation. Finally, we introduce a lightweight ILT-based
post-processing step to ensure high-fidelity manufacturability at deployment.
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Figure 3: (a) Segmentation Algorithm Visualization. (b) Model Architecture of denoising network in
a single step of the reverse diffusion process.

4.1 Segmetation Algorithm

Augmentation for Spatial Perception. Segmentation serves as the foundational step in our method,
transforming raw geometric input into a structured form amenable to learning. Starting from sparse
polygonal contours in the Manhattan layout, we subdivide each polygon edge into densely sampled,
axis-aligned line segments. This densification is essential not only for capturing the full resolution
of layout boundaries but also for constructing a high-resolution optimization space tailored for
Manhattan representation. These segments produce a sequence of discrete points {(z;,y;)}Y ,,
precisely aligned to horizontal or vertical directions, which serve as the input to our model. By
converting sparse geometric data into a dense and grid-aligned format, we impose geometric regularity
and uniform sampling across the layout. This regularized structure allows the Diffusion Transformer
to operate over a consistent and interpretable representation, enabling it to model correction patterns
with both local precision and global coherence. By ensuring consistency and interpretability in the
input representation, this step enables the network to reason over fine-grained layout details while
maintaining strict alignment with Manhattan geometry.

Lithography-aware Points Segmentation. Beyond structural regularization, our segmentation
algorithm is designed to capture key lithographic phenomena and integrate manufacturability con-
straints, particularly corner rounding and feature coherence under optical proximity effects. First,
to mitigate corner rounding, we enforce high-resolution segment splits at all detected corners,
ensuring that the discretization granularity at curvature-critical regions is maximized. This uniform
corner-based refinement enables accurate modeling of sharp edges where lithographic deformation is
most pronounced. Second, to enhance connectivity and contextual consistency among parallel edges,
we implement spatial alignment casting: for any given edge, we detect all parallel edges within a con-
figurable lithography-influence zone and identify their nearby corner vertices. These corner positions
are then transposed across space and aligned onto the current edge as candidate segmentation anchors.
This facilitates implicit edge-to-edge communication, reinforcing Manhattan structure consistency
through spatial correlation. Finally, to maintain manufacturability, the remaining longer segments are
adaptively partitioned using evenly distributed anchor points that satisfy minimum printable feature
length requirements. Each resulting sub-segment conforms to design-for-manufacturability (DFM)
rules, ensuring that the final augmented representation remains both accurate and fabrication-friendly.

4.2 Manhattan Layout Tokenization

Diffusion Transformer for Manhattan Representation. Given a decomposed layout consisting
of Manhattan-aligned polygons, we first extract a set of uniformly sampled edge points {(z;, )},
where each point lies on either a horizontal or vertical polygon edge. These coordinates form a fixed,
structured matrix X € RV *2, which serves as the conditioning input for the model.

The objective of OPC in Manhattan representation is to predict a set of per-point corrections A =
{6;}X,, where each §; € R denotes the scalar offset applied along a single axis (horizontal correction



for vertical edges and vice versa). These corrections are learned via a conditional diffusion framework,
where the correction field A is the target variable being progressively noised and denoised.

To simulate the correction refinement process, we apply a forward diffusion process over the correction
vector A, generating a noisy version A, at timestep ¢:

q(Ar | Ag) = N(Ap; Var Ao, (1 — a)T), 4)
where Ay is the clean ground-truth correction from self-supervised learning, {/3;}_; is a fixed noise

_ t . . . . . .
schedule, and & = [[,_, (1 — ). This process introduces Gaussian noise to simulate uncertainty
and process-induced variation in mask design.

The Diffusion Transformer (DiT) is trained to reverse this process by predicting the added noise €
from the noisy correction Ay, conditioned on the fixed layout geometry X and the timestep ¢:

Ldenoise = EAo,e,t ||€ - GQ(Atv t, X)||2:| ) (5)
where € ~ NV(0,1), and A; = /a;Ag + 1 — aye.

To enhance the model’s spatial understanding, we incorporate two forms of positional encoding
alongside X: (1) Point-level encoding, using sinusoidal embeddings of (z;, y;); and (2) Polygon-level
encoding, assigning a shared embedding to all points belonging to the same polygon, promoting
shape-level consistency.

By constraining each A; to a single axis (depending on the orientation of its associated edge),
the model learns to predict minimal, axis-aligned displacements that are compatible with standard
manufacturing rules. The final output has shape (N, 1), with each scalar correction applied to the
corresponding layout point.

Through this formulation, our method integrates two complementary modeling paradigms. The
diffusion component explicitly simulates the inverse lithography process, treating optical proximity
effects as a structured forward diffusion that corrupts an ideal mask, and framing mask generation
as a reverse denoising process that refines corrections to recover the intended pattern. In parallel,
the Transformer serves as a powerful sequence model that captures lithography-aware correction
patterns by attending to both local geometry and global layout context. By tokenizing the Manhattan
layout into a discrete sequence of axis-aligned primitives, it operates directly within the geometric
and manufacturing constraints of the design space, enabling it to reason over structural regularities
and long-range interactions in compact token domain. Together, the diffusion mechanism ensures a
physically grounded formulation of OPC, while the Transformer enables the learning of complex,
context-dependent correction behaviors. The architecture captures both local geometry and long-
range context, and the reverse diffusion process refines corrections in a geometry-consistent and
manufacturable way.

Self-supervised Learning by nvdiffrast Renderer. In alignment with the OPC objec-
tive—where the corrected mask should produce a wafer image that closely matches the target
layout—we supervise the DiT using a differentiable lithographic simulation pipeline.

After the DiT predicts scalar offsets for the input point set, the adjusted points define new
Manhattan-aligned segments, which are rasterized into a binary mask image M € {0, 1}#>*W
using nvdiffrast [25], a GPU-accelerated differentiable renderer. This mask is then passed through
a differentiable lithography simulator, which models projection optics and resist behavior to generate
an aerial image A € R7*W,

The reference layout is similarly rasterized into a binary target image 7' € {0, 1}#*W_ The aerial

image is compared against the target layout using a pixel-wise Mean Squared Error (MSE) loss:

L —ifji(A--—T--f (6)
MSE—HW ij ij)"

i=1 j=1

This loss signal is backpropagated through both the lithography simulation and the mask rasterization
steps, enabling end-to-end training. The model thus learns to adjust the layout geometry not by direct
supervision from ground truth OPC masks, but by minimizing the deviation between simulated and
desired lithographic outcomes. The entire pipeline—geometry encoding, mask generation, rendering,
and aerial image prediction—is differentiable, supporting fully self-supervised learning.



Bench Metrics GAN-OPC [9] Neural-ILT [10] DevelSet [§] Multi-ILT [11] IL-ILT [12] Ours

EPE 8.86 6.51 5.20 3.18 2.70 2.16
ICCADI13-S  #shots 861.5 1463.1 955.4 6734.8 4948.4 287.6
TAT 15.69 14.37 1.53 1.23 2.87 0.89
EPE 4.73 4.29 3.64 222 1.80 1.38
ICCADI3-L  #shots 1823.3 2616.4 2195.8 6786.9 7916.4 642.3
TAT 16.89 11.20 1.54 1.33 2.92 1.57

Table 1: Comparison of SOTA methods on ICCAD13 benchmarks

4.3 Post-Processing for Manufacturability

Although TokMan produces geometrically valid and lithographically informed mask predictions,
model training is statistical in nature and optimized across large-scale datasets. In practice, layout-
specific variations may require additional fine-tuning to ensure manufacturability under strict process
windows.

To address this, we apply a lightweight ILT refinement step after inference. This post-processing
module performs localized corrections to the DiT output, further minimizing aerial image error while
preserving Manhattan structure. Since the model’s prediction already adheres closely to the correct
pattern, ILT operates in a narrow solution space, improving convergence speed and eliminating
the risk of generating non-Manhattan features. This hybrid approach—combining learning-based
generalization with deterministic refinement—ensures that each generated mask meets industrial-
grade requirements for fidelity, printability, and integration into EDA workflows.

5 Experiments

5.1 Experimental Settings

Training Settings. TokMan model uses 6 Transformer blocks with embedding dimension 512
and 16 heads of self-attention, followed by a linear projection layer for opc correction output. We
implement our work wth PyTorch-Geometric toolkit and train our model on the platform that possesses
32x NVIDIA H20 Graphics Cards, requiring approximately 80 GB of memory for batch size of 40
and test on 1x A100 Graphics Card. For lithography simulator settings, the photoresist intensity
threshold for lithography settings is set at 0.225, and sigmoid steepness is 50. The lithography
wavelength is 193 nm with a defocus range of £30 nm and a dose range of +3%. The resolution of
the mask and corresponding wafer image are all 1nm/pixel.

Dataset. To train our model effectively on Manhattan-aligned layout patterns, we construct a
large-scale dataset derived from the publicly available benchmark [24]. Specifically, we extract
polygonal shapes from the original layouts and systematically regenerate new samples by rearranging
these polygons based on realistic placement characteristics observed in actual design environments.
This data generation strategy ensures that the resulting samples remain consistent with typical layout
design constraints while significantly enriching the diversity of polygon combinations. In total, we
generate 89,697 layout samples as our training data. We evaluate our method on the ICCAD2013
benchmark [45], which includes simple and complex cases: ICCAD13-S and ICCAD13-L.

Evaluation Metrics. To comprehensively assess the performance of our OPC approach, we adopt
three key metrics: Edge Placement Error (EPE), mask shots, and Turn-Around Time (TAT).

Edge Placement Error (EPE) [46] is used to evaluate the lithographic fidelity of the optimized mask.
It measures the difference between the wafer image simulated from the corrected mask and the
intended target layout. While prior works typically use an ¢5 distance metric that compares the wafer
and target images pixel-wise, this approach is overly influenced by background regions and fails to
emphasize pattern fidelity around critical edges. In contrast, we adopt the industry-standard EPE
metric, as shown in Figure 5] where merit points are placed along the edges of the target layout to
measure their distance to the corresponding contour in the wafer image. Both inner errors and outer
errors are taken into consideration.
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Figure 6: Ablation Study.

Formally, given N sampled points {p;}¥.; on the target layout boundary, and their respective
distances d; to the wafer image contour, we define the mean EPE as:

1

EPE = N d» @)

||M2

Unlike Zheng et al. [24]], who report only the number of violations exceeding a given threshold,
our mean-based formulation provides a continuous and more sensitive indicator that better reflects
lithographic performance improvements.

Mask shots [47]] measure the manufacturability of the generated mask. In practice, the mask layout is
decomposed into a series of rectangular fragments, or “shots”, which are individually written by an
Electron Beam Lithography (EBL) system, as shown in Figure[5} Fewer mask shots imply a shorter
writing time and higher production efficiency. Therefore, we count the number of shots required
to fabricate each layout and use this value to evaluate the mask efficiency of both our method and
competing baselines.

Turn-Around Time (TAT) quantifies the computational efficiency of each method. For optimization-
based approaches, we record the total runtime under a fixed number of iterations. For model-based
baselines, we measure the forward inference time. For our method, we report the sum of inference
time and post-processing duration (e.g., ILT refinement). All TAT measurements exclude file I/O,
such as reading input or saving results, to ensure fair benchmarking.



5.2 Comparison with SOTA Methods

We compare our method against several recent state-of-the-art approaches, including GAN-OPC,
Neural-ILT, Devel-Set, Multi-ILT, and IL-ILT. All methods are evaluated using the same metrics
introduced earlier.

In terms of EPE, as shown in Table [T} which directly reflects the accuracy of the resist pattern
after photolithographic simulation, our method achieves over 20% improvement over the SOTA,
IL-ILT. This improvement is not only numerical but also visually significant. As shown in our
visualization Figure[d} our method yields printed wires with fine alignment and topological consistency
to the intended circuit, especially in fine and densely packed regions.

We also observe substantial gains in mask shot count, illustrated in Table|l} a key indicator of how
easily a mask can be manufactured. Thanks to the Manhattanized mask design produced by our
framework, we achieve an approximately 4x reduction in mask shot count compared to other methods,
indicating that our approach is far more production-friendly.

In terms of TAT, our method maintains a speed comparable to the fastest existing techniques. Despite
introducing ILT refinement, our optimizations ensure the overall pipeline remains efficient and
practical for deployment.

5.3 Ablation Study

We conduct ablation experiments on the augmented dataset with 100,000 training iterations. All other
configurations follow Section[5] We evaluate both lithographic fidelity (EPE) and manufacturability
(#shots), as summarized in Figure[§]

Architecture Parameters. We investigate the effect of key architectural hyperparameters, including
feature dimension, number of attention heads, and number of Transformer layers. As shown on the
left side of Figure [6] increasing the feature dimension from 256 to 512 yields a clear improvement in
EPE, while further enlargement provides diminishing returns. Adjusting the number of heads or layers
exhibits no consistent benefit and occasionally degrades performance, likely due to overfitting to
local geometric patterns. The #shots metric remains relatively stable across configurations, indicating
that network capacity primarily influences lithographic accuracy rather than manufacturability.

ILT Refinement. We further examine the effect of post-processing iterations on mask quality. As
shown on the right of Figure [6] additional ILT iterations substantially reduce EPE but lead to a
steady increase in #shots and computational cost. Performance gains saturate beyond 100 iterations,
where further refinement slightly improves fidelity but at the expense of higher mask complexity.
This suggests that moderate ILT refinement (around 100 iterations) offers the best trade-off between
accuracy and efficiency.

6 Discussion

Limitations. While our approach offers notable improvements in lithographic fidelity and mask
manufacturability, several limitations remain. First, although operating in the Manhattan space
significantly reduces optimization redundancy and simplifies pattern representation, it currently
lacks scalability in certain aspects—most notably, the inability to freely incorporate Manhattan
sub-resolution assist features (SRAFs) within the framework. Second, all evaluations in this work
are conducted on sliced layout datasets, which isolate regions for targeted optimization. As a result,
the method has not yet been tested on full-chip, unsliced layouts, where scalability and context-
aware performance are critical. Finally, while our results show strong promise on synthetic and
research-oriented data, further validation on real industrial production datasets is essential to assess
generalizability and practical deployment viability.

Conclusions. This paper presents TokMan, a tokenized Manhattan representation framework for
optical proximity correction under strict geometric constraints. By aligning the OPC task with a
sequence modeling paradigm, TokMan leverages a conditional Diffusion Transformer to operate
directly on axis-aligned layout tokens, capturing both local and global spatial dependencies while
inherently respecting Manhattan compliance. The model interprets lithographic distortion as a



structured noise process and learns to reverse it through self-supervised denoising, eliminating the
need for ground-truth masks. Experimental results demonstrate that TokMan not only achieves
high pattern fidelity and manufacturability but also offers improved runtime efficiency compared to
traditional and learning-based ILT methods. This work highlights the effectiveness of combining
discrete geometric priors with modern generative modeling, advancing scalable and production-ready
solutions for layout correction in semiconductor manufacturing.

Future Work. While TokMan is designed for Manhattan-constrained mask correction, the broader
idea of tokenizing structured geometry may inspire a new paradigm for inverse problems across
computational imaging. In many domains—ranging from remote sensing and medical imaging to
crystallography and 3D reconstruction—observed signals are projections or distortions of latent,
structure-regular domains. By introducing a discrete, symbolic representation aligned with domain-
specific priors, token-based modeling can disentangle complex imaging processes and enable robust,
interpretable, and scalable reconstruction pipelines. This perspective opens up promising directions
for structured inverse rendering, symbolic image reconstruction, and hybrid physical-learning systems.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our contributions are mentioned in last two paragraph in introduction and
discussed amply in method, which are aligned.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The pipeline and network architecture is clearly displayed in figure 2 and
figure 3. More detailed network parameters are also mentioned in experiment section.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We used publicly available datasets, which is mentioned in experiments. For
privacy, we will consider to release our code in future.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: This part is mentioned in section 5 in detail.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our experiments do not include error bars or statistical significance tests, as
our evaluation focuses on deterministic metrics (e.g., edge placement error and mask shot
count) computed on standardized benchmarks. Each method is evaluated on the full test set
with averaged results reported.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: These details are mentioned in section 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our articles do not involve ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We included the future work discussing our approach applied in boarder
domains.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cited all the assets we used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We proposed our diffusion transformer model in this paper. We designed and
trained our network from scratch and the process is carefully explained in method.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Results of TokMan

To further demonstrate the robustness and generalizability of our TokMan framework, we provide
detailed comparisons across 20 benchmark layouts from the ICCAD2013-S/L datasets. As shown in
Table 2] our method consistently outperforms previous state-of-the-art OPC approaches—including
GAN-OPC[9], Neural-ILT[10], Devel-Set[8], Multi-ILT[[L 1], and IL-ILT[12]—across all three key
evaluation metrics: Edge Placement Error (EPE), mask shot count, and Turn-Around Time (TAT).

Compared to the SOTA, IL-ILT, our method achieves an average of over 20% improvement in EPE,
and a 4-7x reduction in mask shots, underscoring its manufacturability advantage. Importantly, this
performance is achieved with minimal runtime overhead, and even with ILT refinement included, our
TAT remains competitive with the fastest baselines.

In addition to numerical metrics, Figure 8]and [9] presents qualitative comparisons on several repre-
sentative layouts, which is more critical than others. The masks generated by TokMan are not only
visually cleaner and Manhattan-aligned, but also produce resist patterns that closely match the desired
targets, validating the effectiveness of our discrete token correction process. Notably, TokMan avoids
the wavy, curvilinear artifacts observed in other methods, preserving edge integrity and topological
consistency, while effectively preventing feature bridging and line-end breakage, which helps ensure
the functional reliability of the underlying circuit.

These comprehensive results reinforce TokMan'’s strength in balancing fidelity, manufacturability,
and efficiency, offering a production-ready solution for OPC under strict design rules.

Bench GAN-OPC[9 Neural-ILT|10 DevelSet|8] Multi-ILT[11] IL-ILT[12] Ours

EPE  #shots  TAT EPE  #shots  TAT EPE  #shots TAT | EPE  #shots TAT | EPE  #shots TAT | EPE  #shots TAT
S1 11.56 960 10.54 | 7.70 1561 1041 | 6.09 1159 1.53 | 4.48 7505 0.84 | 3.88 5416 295 | 3.67 332 1.16
S2 10.30 754 10.46 | 5.30 1337 10.34 | 5.27 767 1.52 | 4.00 6772 0.84 | 3.92 5192 2.87 | 3.03 290 1.27
S3 32.92 1476 10.49 | 29.56 1964 10.34 | 15.07 1334 1.55 | 975 6906 1.30 | 7.97 5446 2.90 | 7.56 374 1.05
S4 8.22 498 11.08 | 4.22 904 10.35 | 5.88 303 1.54 | 2.55 7076 1.34 | 2.03 4220 2.83 | 0.33 132 0.69
S5 4.32 1190 2022 | 4.64 1948 16.36 | 4.09 1187 1.51 | 2.16 6742 1.31 | 1.81 5710 2.87 | 1.40 312 0.75
S6 5.01 1134 15.30 | 3.24 1786 16.81 | 3.31 1313 1.52 | 243 7170 1.31 | 1.96 5687 2.87 | 1.60 392 0.71
S7 2.99 613 15.09 | 2.07 1555 1496 | 2.75 713 1.54 | 1.22 5856 1.32 | 0.84 5145 2.85 | 0.67 278 0.82
S8 3.59 349 19.46 | 3.17 1009 1496 | 341 635 1.55 | 1.97 6999 1.31 | 1.64 3970 2.86 | 1.30 169 0.69
S9 7.00 1229 2224 | 3.90 1813 26.13 | 4.19 1565 1.52 | 2.54 6485 1.38 | 2.12 5618 2.87 | 1.53 454 0.97
S10 2.68 412 2198 | 1.25 754 13.01 1.90 578 1.53 | 0.65 5837 1.38 | 0.81 3080 2.83 | 0.51 143 0.75
L1 5.03 1971 22.09 | 4.04 2755 10.35 | 3.88 2404 1.52 | 240 6999 1.35 | 2.21 8061 2.93 | 1.99 725 1.85
L2 5.31 1679 2298 | 5.02 2498 1035 | 3.54 2025 1.51 | 2.52 6774 1.30 | 2.02 8252 293 | 1.62 620 1.96
L3 10.59 2115 22,51 | 1335 3342 10.36 | 7.59 2606 1.52 | 5.16 7394 1.33 | 3.86 8655 2.96 | 3.08 750 1.69
L4 4.17 1216 19.80 | 3.55 2245 10.36 | 3.46 1570 1.54 | 1.54 6851 1.32 | 1.40 7740 2.90 | 0.76 514 1.56
L5 4.05 2401 22,13 | 3.56 2752 10.36 | 345 2503 1.53 | 1.85 6503 1.30 | 1.63 7992 293 | 1.14 724 1.22
L6 3.58 2197 17.40 | 2.76 2690 10.38 | 3.27 2519 1.67 | 2.59 7047 1.41 | 1.86 8257 293 | 1.33 732 1.69
L7 327 1557 10.50 | 2.35 2319 10.37 | 2.68 1769 1.51 | 1.46 6387 1.35 | 1.00 7310 2.89 | 0.90 515 1.25
L8 3.20 1335 10.49 | 253 2575 1040 | 2.76 1913 1.54 | 1.42 6536 1.32 | 1.22 7939 291 | 097 541 1.09
L9 5.30 2616 1048 | 3.44 2845 1042 | 345 2739 1.52 | 2.27 6636 1.33 | 1.87 7433 2.94 | 1.23 778 1.39
LI10 2.77 1146 1048 | 2.30 2143 18.61 | 232 1910 1.53 | 1.00 6742 1.28 | 0.98 7525 2.90 | 0.82 524 2.00

Table 2: Comparison of six OPC methods across 20 benchmark layouts with evaluation metrics: EPE,
mask shots, and TAT.
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Figure 7: Training loss.
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Results Visualization
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Figure 8: Visualization Comparison with SOTA on selected critical layouts of ICCAD13-S.
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Figure 9: Visualization Comparison with SOTA on selected critical layouts of ICCAD13-L.
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