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Abstract

Large Language Models (LLMs) have exhibited
remarkable reasoning capabilities, achieving im-
pressive results across a wide range of tasks. De-
spite these advances, significant reasoning failures
persist, occurring even in seemingly simple sce-
narios. To systematically understand and address
these shortcomings, we present the first compre-
hensive survey dedicated to reasoning failures in
LLMs. We introduce a novel categorization frame-
work that distinguishes reasoning into embodied
and non-embodied types, with the latter further
subdivided into informal (intuitive) and formal
(logical) reasoning. In parallel, we classify reason-
ing failures along a complementary axis into three
types: fundamental failures intrinsic to LLM ar-
chitectures that broadly affect downstream tasks;
application-specific limitations that manifest in
particular domains; and robustness issues charac-
terized by inconsistent performance across minor
variations. For each category, we synthesize exist-
ing studies, analyze common failure patterns and
underlying causes, and suggest mitigation strate-
gies. By unifying fragmented research efforts,
our survey provides a structured perspective on
systemic weaknesses in LLM reasoning, offering
valuable insights and guiding future research to-
wards building stronger, more reliable, and robust
reasoning capabilities.

1. Introduction
“Failure is success if we learn from it.” — Malcolm Forbes

With the rise of powerful architectures (Vaswani et al., 2023;
Jiang et al., 2024a; Gu & Dao, 2024; Hasani et al., 2020),
efficient algorithms (Hu et al., 2021; Zhao et al., 2024c;
Gretsch et al., 2024; 2025; Dao et al., 2022), and massive
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data (Cai et al., 2024; Raffel et al., 2020; Gao et al., 2020),
Large Language Models (LLMs) have recently shown sig-
nificant success across diverse domains. These range from
traditional linguistic tasks such as machine translation (Zhu
et al., 2024b; Tang et al., 2024), to mathematical (Shao
et al., 2024; Yang et al., 2023a; 2024a) and even scientific
(Zhang et al., 2024b; Wang et al., 2023b; Brodeur et al.,
2024) discoveries. Among these achievements, reasoning
as an emergent capability of LLMs (Wei et al., 2022a) has
attracted particular interest (Huang & Chang, 2023; Yu et al.,
2023b; Qiao et al., 2023).

LLMs have set impressive records in reasoning (Wu et al.,
2025a; Kiciman et al., 2024; Plaat et al., 2024), though it re-
mains controversial whether LLMs really leverage a human-
like reasoning procedure when attempting these tasks (Jiang
et al., 2024b; Fedorenko et al., 2024; Amirizaniani et al.,
2024b; Zhang et al., 2022). This survey bears no aim to
settle this hot debate; rather we focus on an important area
of study in LLM reasoning that has long been overlooked —
LLM reasoning failures.

Extensive psychological research (Cannon & Edmondson,
2005; Maxwell, 2007; Coelho & McClure, 2004) under-
scores the importance of identifying and learning from
failures in human development!. Given that Al systems
have historically drawn inspiration from human cognition
(Schmidgall et al., 2023; Xu & Poo, 2023; WozZniak et al.,
2020), we believe the same principle of learning from fail-
ures could similarly benefit the study of LLMs, since such
failures can usually be traced back to fundamental elements
and bring valuable insights to ultimate improvements (Drey-
fus, 1992; Karl et al., 2024; An et al., 2024).

Despite some existing works that prospectively realized this
importance and investigated LLM reasoning failures on a
case-by-case basis (Williams & Huckle, 2024; Tie et al.,
2024; Helwe et al., 2021; Borji, 2023), the topic remains
fragmented, and underexplored as a unified research area.
This fragmentation limits broader understanding, which is
however a prerequisite for common patterns to be noticed,
and thereby meaningful lessons to be derived. To close this
gap, we present the first comprehensive survey that unifies
studies on LLM reasoning failures. We identify meaningful

'In fact, this theory has been confirmed even more broadly, in
non-human animals (Spence, 1936).
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patterns across failures, analyze underlying causes, and dis-
cuss potential mitigation strategies. We aim for this work
not only to organize the field but also to stimulate further
research and increased attention, toward improving the ro-
bustness and reliability of LLM reasoning.

2. Definition and Formulation
2.1. Fundamentals of Reasoning

Human reasoning broadly refers to the ability to draw con-
clusions and make decisions based on available knowledge
(Lohman & Lakin, 2011; Ribeiro et al., 2020). Within
cognitive science and philosophy, reasoning has been stud-
ied through various frameworks. To systematically survey
reasoning failures in LLMs, we propose a comprehensive
taxonomy distinguishing reasoning along two primary axes:
embodied versus non-embodied, with the latter further sub-
divided into informal and formal reasoning.

Non-embodied reasoning. Non-embodied reasoning
comprises cognitive processes not requiring physical in-
teraction with environments. Within this category, informal
reasoning encompasses intuitive judgments driven by in-
herent biases and heuristics, common in everyday decision-
making and social activities (Piaget, 1952; Vygotsky, 1978;
Kail, 1990). By contrast, formal reasoning involves ex-
plicit, rule-based manipulation of symbols, grounded in
logic, mathematics, code, etc. (Copi et al., 2016; Mendel-
son, 2009; Liu et al., 2023b).

Embodied reasoning. Embodied reasoning depends on
physical interaction with environments, fundamentally rely-
ing on spatial intelligence and real-time feedback (Shapiro,
2019; Barsalou, 2008). This includes predicting and inter-
preting physical dynamics, and performing goal-directed
behaviors constrained by real-world physical laws (Huang
et al., 2022b; Lee-Cultura & Giannakos, 2020).

2.2. LLM Reasoning Failures

Despite advances in interpretability research (Dwivedi et al.,
2023; Li et al., 2024d), LLMs remain largely black-box sys-
tems (Luo & Specia, 2024), reflecting the inherent complex-
ity of human cognition they emulate (Castelvecchi, 2016).
As such, reasoning abilities are typically assessed behav-
iorally by examining model outputs on carefully designed
prompts and tasks (Ribeiro et al., 2020). We define LLM
reasoning failures as cases where model responses signifi-
cantly diverge from expected logical coherence, contextual
relevance, or factual correctness. Failures can manifest in
two broad ways. The first type is straightforward poor per-
formance — the model fails decisively on a task, exposing
clear deficiencies. The second, subtler type involves appar-
ently adequate performance that is in fact unstable, indicat-
ing a robustness issue that reveals hidden vulnerabilities.
The straightforward failure category can be sub-divided into

two, based on scope and nature. Fundamental failures are
usually intrinsic to LLM architectures, manifesting broadly
and universally across diverse downstream tasks. In con-
trast, application-specific limitations reflect shortcomings
tied to particular domains or tasks where models underper-
form despite human expectations of competence. Together,
these taxonomies — for reasoning and for failures — offer
a comprehensive and mutually consistent framework. Ta-
ble 1 uses this framework to visualize a clear organization
of topics in this survey.

Current research in this space typically begins with simple,
intuitive tests that reveal glaring reasoning failures. These
initial observations motivate larger-scale systematic eval-
uations, to confirm the generality and impact of identified
failure modes. By explicitly defining and categorizing LLM
reasoning failures according to our framework, this survey
unifies fragmented research findings, highlights shared pat-
terns, and directs focused efforts toward understanding and
mitigating critical reasoning weaknesses. To help visualize
the failure cases, we provide a few most representative ex-
amples for each of the failure case presented in this survey.
The examples can be found in Appendix F.

3. Reasoning Informally in Intuitive
Applications

Humans naturally develop the capacity for informal rea-
soning early in life, relying on intuitive judgments shaped
by cognitive processes and social experiences. Though of-
ten taken for granted, this forms the foundation of human
reasoning and decision-making. In this section, we focus
on failures exhibited by LLMs in such informal reasoning.
We begin by examining reasoning failures in core cognitive
abilities reflected in individual LLM behaviors; then those
exposed in social contexts, expressed implicitly or explicitly.

3.1. Individual Cognitive Reasoning

Many reasoning failures exhibited by LLMs can be traced
back to core human cognitive phenomena (Han et al., 2024b;
Gong et al., 2024; Galatzer-Levy et al., 2024; Suri et al.,
2024). These failures arise either because LLMs lack cer-
tain fundamental cognitive abilities possessed by humans
— leading to errors that humans typically avoid (Han et al.,
2024b) — or because LLMs replicate human-like cognitive
biases and heuristics, resulting in analogous mistakes (Suri
et al., 2024; Lampinen et al., 2024). In both cases, these
failures relate closely to well-documented human cognitive
phenomena and psychological evidence.

Fundamental Cognitive Skills. Humans naturally pos-
sess a set of fundamental cognitive skills indispensable for
reasoning. LL.Ms demonstrate systematic failures due to
deficiencies in these areas. A prominent example is the set
of core executive functions — working memory (Baddeley,
2020), inhibitory control (Diamond, 2013; Williams et al.,
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Table 1. Survey of Reasoning Failures in Large Language Models

Category Subsection Sub-items Robustness Limitation Fundamental
3.1 Individual Cognitive Skills v X 4
g Cog Reasoning Cognitive Bias v X 4
g 3.2 Implicit Theory of Mind (ToM) v v X
= Social Reasoning Social Norms & Morals v 4 X
3.3 Explicit Social MAS v 4 X
4.1 Logic in NL Reversal Curse X X 4
Compositional Reasoning X X 4
~ Specific Logical Relations X v 4
g 4.2 Logic in Bench ~ MWP v 4 X
= Coding v 4 X
4.3 Arithmetic Math  Counting X X v
Basic Arithmetic X X 4
MWP & Beyond X 4 X
5.11D Text-based Physical Commonsense X X 4
Text-based Physics & Sci. X v X
% 522D What’s Wrong w/ Picture? v 4 X
g 2D Physics & Physical Commonsense X 4 4
E Visual-Input Spatial Reasoning X X v
5.33D Affordance & Planning X X v
Spatial & Tool-use Reasoning v 4 X
Safety & Long-term Autonomy v v X

1999), and cognitive flexibility (Canas et al., 2006) — essen-
tial in human reasoning (Diamond, 2013). Working memory
is the capacity to hold and manipulate information over short
periods. LLMs’ limited working memory leads to failures
when task demands exceed their capacity (Gong et al., 2024;
Zhang et al., 2024a; Gong & Zhang, 2024; Upadhayay et al.,
2025; Huang et al., 2025a). In particular, LLMs suffer from
“proactive interference” to a much larger extent than humans,
where earlier information significantly disrupts retrieval of
newer updates (Wang & Sun, 2025). Inhibitory control —
the ability to suppress impulsive or default responses when
contexts demand — is also weak in LLMs, with them often
sticking to previously learned patterns even when contexts
shift (Han et al., 2024b; Patel et al., 2025). Lastly, cognitive
Aexibility, the skill of adapting to new rules or switching
tasks efficiently, remains a challenge, especially in rapid
task switching and adaptation to new instructions (Kennedy
& Nowak, 2024).

Another key aspect is abstract reasoning (Guinungco &
Roman, 2020), the cognitive ability to recognize patterns
and relationships in intangible concepts. Even advanced
LLMs struggle with abstract reasoning tasks, such as infer-
ring underlying rules from limited examples, understanding
implicit conceptual relationships, and reliably handling sym-

bolic or temporal abstractions (Xu et al., 2023c; Gendron
et al., 2023; Galatzer-Levy et al., 2024; Saxena et al., 2025).

Recent work attributes these limitations to the underlying
self-attention mechanism’s dispersal of focus under complex
tasks (Gong & Zhang, 2024; Patel et al., 2025), and to the
next token prediction training objective, which prioritizes
statistical pattern completion over deliberate reasoning (Han
et al., 2024b; Enstrom et al., 2024). Some also point out
that unlike humans — who develop fundamental cognitive
functions through embodied, goal-driven interactions with
the physical and social world (Pearce & Miller, 2025; Ro-
driguez, 2022; Jin et al., 2018) — LLMs learn passively from
text alone, lacking grounding and experiential feedback to
support the development. Efforts to enhance these skills
correspondingly include advanced prompting (e.g., Chain-
of-Thought) (Wei et al., 2022b), retrieval augmentation (Xu
et al., 2023b), fine-tuning with deliberately injected interfer-
ence (Li et al., 2022), multimodality (Hao et al., 2025), and
architectural innovations to mimic human attention mecha-
nisms (Wu et al., 2024d).

Cognitive Biases. Cognitive biases — systematic devia-
tions from rational judgment — are well-studied in human
reasoning (Tversky & Kahneman, 1974; 1981). They arise
from mental shortcuts, limited cognitive resources, or con-
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textual influences, often leading to predictable errors. LLMs
exhibit similar biases that systematically affect their reason-
ing across diverse tasks (Hagendorff, 2023; Bubeck et al.,
2023). Since these biases are deeply ingrained from training
data and model architecture, they permeate a wide range
of downstream applications, necessitating careful identifica-
tion and mitigation.

In humans, these biases become evident only when informa-
tion is presented and their responses observed — similarly, in
LLMs, cognitive biases manifest also through the processing
of information. Here lie two interrelated factors: the content
of information and the presentation of that information.
Regarding content, LLMs struggle more with abstract or
unfamiliar topics — a phenomenon known as the “content
effect” (Lampinen et al., 2024) — and tend to favor informa-
tion that aligns with prior context or assumptions, reflecting
human-like confirmation bias (O’Leary, 2025b; Shi et al.,
2024; Malberg et al., 2024; Wan et al., 2025b;a; Zhu et al.,
2024c). Social cognitive biases also influence LLM outputs,
including group attribution bias (Hamilton & Gifford, 1976;
Allison & Messick, 1985; Raj et al., 2025) and negativity
bias (Rozin & Royzman, 2001), which prioritize popular
content (Echterhoff et al., 2024; Lichtenberg et al., 2024;
Jiang et al., 2025a) and negative inputs (Yu et al., 2024c;
Malberg et al., 2024; Lin et al., 2024b) respectively.

Equally important is how the same content is presented.
LLMs are highly sensitive to the order in which information
is given, exhibiting order bias (Koo et al., 2023; Pezeshkpour
& Hruschka, 2023; Jayaram et al., 2024; Guan et al., 2025),
and show anchoring bias, where early inputs disproportion-
ately shape their reasoning (Lieder et al., 2018; Lou & Sun,
2024; Rastogi et al., 2022; O’Leary, 2025a; Huang et al.,
2025e; Wang et al., 2025b). Framing effects further influ-
ence outputs: logically equivalent but differently phrased
prompts can lead to different results (Jones & Steinhardt,
2022; Suri et al., 2024; Nguyen, 2024; Lior et al., 2025;
Robinson & Burden, 2025; Shafiei et al., 2025). Addition-
ally, factors like narrative perspective (e.g., first-person vs.
third-person) (Cohn et al., 2024; Lin et al., 2024b), prompt
length or verbosity (Koo et al., 2023; Saito et al., 2023),
and irrelevant or distracting information (Shi et al., 2023)
further derail logical reasoning.

The root causes of these cognitive biases in LLMs are three-
fold. First, biases are inherited from the pre-training data,
where the linguistic patterns in human languages reflect cog-
nitive errors (Itzhak et al., 2025). Second, architectural fea-
tures of the model — such as the Transformer’s causal mask-
ing — introduce predispositions toward order-based biases
independent of data (Wu et al., 2025b; Dufter et al., 2022).
Third, alignment processes like Reinforcement Learning
from Human Feedback (RLHF) amplify biases by align-
ing model behavior with human raters who are themselves

biased (Sumita et al., 2025; Perez et al., 2023).

Mitigation strategies fall into three categories. Data-centric
approaches focus on curating training data to reduce bi-
ased content (Sun et al., 2025a; Schmidgall et al., 2024,
Han et al., 2024a). In-processing techniques, such as ad-
versarial training, aim to prevent biased associations during
model learning (Yang et al., 2023b; Cantini et al., 2024).
Lastly, post-processing methods leverage prompt engineer-
ing or output filtering to steer model responses after training
(Sumita et al., 2025; Lin & Ng, 2023). In this category,
indirect methods like inducing specific model personalities
have also shown promise in modulating biases (Shi et al.,
2024; He & Liu, 2025). Nonetheless, even when mitigated
in one context, cognitive biases often re-emerge when con-
texts shift. The diverse and penetrative nature of cognitive
biases makes them difficult to be fully eliminated.

3.2. Implicit Social Reasoning

Certain cognitive reasoning failures manifest only in social
contexts. We define implicit social reasoning as an individ-
ual model’s capacity to internally infer and reason about (1)
others’ mental states (e.g., beliefs, emotions, intentions) and
(2) shared social norms without requiring direct interaction.

Theory of Mind (ToM). ToM is the cognitive ability to
attribute mental states — beliefs, intentions, emotions — to
oneself and others, and to understand that others’ mental
states may differ from one’s own (Frith & Frith, 2005).
ToM enables humans to interpret behaviors, predict actions,
and navigate complex interpersonal interactions, central in
social reasoning. Typically emerging in early childhood
with milestones like passing false belief tasks (understand
that others’ beliefs may be incorrect or different) (Wimmer
& Perner, 1983), ToM has been a central focus in human
psychology and cognitive science.

Under this inspiration, recent research evaluates the ToM
capacity of LLMs, to gauge their ability to engage in social
reasoning. Early studies focused on classic ToM tasks, such
as false-belief (van Duijn et al., 2023; Kim et al., 2023),
perspective-taking (infer what another individual perceives)
(Sap et al., 2022), and unexpected content tasks (predicting
what others would believe is inside a mislabeled unopened
container) (Pi et al., 2024). Surprisingly, even advanced
models such as GPT-4 struggle with these tasks trivial for
human children. Moreover, minor modifications in task
phrasing lead to drastic drops in performance, showing LLM
ToM reasoning is unstable (Ullman, 2023; Kosinski, 2023;
Pi et al., 2024; Shapira et al., 2023).

While there has been clear progress from early models like
GPT-3 — which largely failed at ToM tasks — to newer models
such as GPT-40 and reasoning models like o1-mini, which
can solve many standard ToM tests, their underlying rea-
soning remains brittle under simple perturbations (Gu et al.,



A Survey on Large Language Model Reasoning Failures

2024; Zhou et al., 2023d). Also, LLMs still struggle with
higher-order, more complex aspects of ToM, such as predict-
ing others’ behaviors, making appropriate moral or social
judgments, and translating this understanding into coherent
actions (He et al., 2023; Gu et al., 2024; Marchetti et al.,
2025; Amirizaniani et al., 2024a; Strachan et al., 2024).
Particularly, on dynamic, conversational benchmarks (Xiao
et al., 2025; Kim et al., 2023), even state-of-the-art models
fail to demonstrate consistent ToM capabilities and perform
significantly worse than humans. Also, current models ex-
hibit deficits in emotional reasoning, including difficulties
in emotional intelligence (EI) (Sabour et al., 2024; Hu et al.,
2025; Amirizaniani et al., 2024b; Vzorinab et al., 2024),
susceptibility to affective bias (Chochlakis et al., 2024), and
limited understanding of cultural variations in emotional
expression and interpretation (Havaldar et al., 2023).

While prompting techniques like Chain-of-Thought (CoT)
offer some improvements (Gandhi et al., 2024), fundamen-
tal gaps remain due to deeper limitations from the LLM
architecture, training paradigms, and a lack of embodied
cognition (Strachan et al., 2024; Sclar et al., 2023). Given
ToM’s centrality to social reasoning, future work should
move beyond prompting, to probe deeper root causes and
general mitigation.

Social Norms and Moral Values. LLMs also struggle
with reasoning about social norms, moral values, and ethical
principles that govern human behavior. Unlike humans, who
develop moral and ethical reasoning through experience,
LLMs, trained purely on text, often exhibit inconsistent
and unreliable social, moral, and ethical reasoning (Ji et al.,
2024, Jain et al., 2024b).

One key limitation is that LLMs cannot reason and apply
moral values (Ji et al., 2024) and social norms (Jain et al.,
2024b) consistently. They often produce contradictory ethi-
cal judgments or varied moral reasoning performance when
questions are slightly reworded (Bonagiri et al., 2024), gen-
eralized (Tanmay et al., 2023), or presented in a different lan-
guage (Agarwal et al., 2024). Fine-tuning further worsens
these inconsistencies, sometimes prioritizing task-specific
optimization over ethical coherence (Yu et al., 2024a).

Beyond inconsistencies, LLMs show notable disparities
compared to humans in reasoning with social norms and
moral values. These models fail significantly in understand-
ing real-world social norms (Rezaei et al., 2025), aligning
with human moral judgments (Garcia et al., 2024; Takemoto,
2024), and adapting to cultural differences (Jiang et al.,
2025b). Without consistent and reliable moral reasoning,
LLMs are not fully ready for real-world decision-making
involving ethical considerations (Chomsky et al., 2023).

Many argue that these failures stem from a fundamental
absence of robust, internalized representations of ethical
principles, normative frameworks, and moral intentional-

ity (Chakraborty et al., 2025; Wang et al., 2025a; Pock
et al., 2023; Almeida et al., 2024). Although training proce-
dures such as RLHF and instruction fine-tuning introduce
alignment signals, they often operate superficially and fail
to produce coherent moral behavior in complex contexts
(Dahlgren Lindstrom et al., 2025; Wang et al., 2025a; Barn-
hart et al., 2025; Han et al., 2025). Current efforts to address
these limitations mainly include prompt-based interventions
(Chakraborty et al., 2025; Ma et al., 2023), internal acti-
vation steering (Tlaie, 2024; Turner et al., 2023), and di-
rect fine-tuning on curated moral reasoning benchmarks
(Senthilkumar et al., 2024; Karpov et al., 2024). However,
in practice, these methods often suffer from the same lim-
itations as RLHF, offering surface-level and task-specific
improvements that remain vulnerable against prompt ma-
nipulations and jailbreaks.

3.3. Explicit Social Reasoning

In reasoning, “society” can refer to not just an abstract con-
cept but real-world settings involving interactions among
multiple agents. In Multi-Agent Systems (MAS), explicit
social reasoning is the capacity of Al systems to collabora-
tively plan and solve complex tasks, an area challenging for
current LLMs.

Currently, key challenges include (1) long-horizon plan-
ning, (2) communications and ToM, and (3) robustness
and adaptability. 1ong-horizon planning is the ability to
maintain coherent and coordinated strategies over extended
interactions, where LLMs frequently fail (Li et al., 2023a;
Cross et al., 2024; Guo et al., 2024c; Han et al., 2024c¢) as
they rely excessively on local or recent information (Piatti
et al., 2024; Zhang et al., 2023; Han et al., 2024c). Further-
more, individual agents’ social reasoning failures (discussed
in Section 3.2, e.g., inefficient communication and ToM)
(Guo et al., 2024c; Agashe et al., 2024), lead to misinter-
pretations and inaccurate representations of other agents,
causing strategic misalignment (Pan et al., 2025; Li et al.,
2023a; Cross et al., 2024; Han et al., 2024c). Lastly, MAS
face robustness and adaptability issues (Li et al., 2023a;
Cross et al., 2024), lacking resilience to disruptive or mali-
cious disturbances (Huang et al., 2024) and struggling with
task verification and termination (Pan et al., 2025; Baker
et al., 2025).

These failures stem from both intrinsic LLM limitations and
MAS system design (Pan et al., 2025). Standard LLMs, opti-
mized for next-token prediction, lack the explicit reasoning
depth needed for multi-step, jointly conditioned objectives,
and their fragile ToM representations cause coordination
breakdowns. Many MAS lack effective robustness layers
— clear role specifications, cross-verification among agents,
and reliable termination checks — allowing errors to cascade
(Huang et al., 2024; Pan et al., 2025).

Mitigation research thus targets (i) richer internal models
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like belief tracking and hypothesis testing (Li et al., 2023a;
Cross et al., 2024), (ii) structured communication protocols
with mandatory verification phases (Pan et al., 2025), and
(iii) dedicated inspector or challenger agents that monitor
and contest questionable outputs (Huang et al., 2024; Baker
et al., 2025). While these approaches reduce errors, none
eliminate them and all require significant task-specific engi-
neering that is difficult to generalize. In parallel, the recent
rise of context engineering (Mei et al., 2025) — which fo-
cuses on a systematic optimization of the entire information
payload fed to an LLM during inference — is increasingly
seen as a more robust alternative to traditional prompt engi-
neering in MAS. Real-world deployment will hence require
an integrated stack combining all three strands with domain
fine-tuning and formal safety guarantees (Lindemann &
Dimarogonas, 2025; de Witt, 2025).

4. Reasoning Formally in Logic

When reasoning goes beyond intuition, a formal framework
is needed to ensure rigor. As introduced in Section 2, logic is
concerned directly about doing “correct’ reasoning, ensur-
ing premises support conclusions (Jaakko & Sandu, 2002).
LLM failures in logical reasoning (Liu et al., 2025) thus
pose serious risks, potentially leading to flawed thought
processes and harmful decisions. Logic spans a contin-
uum from implicit structures in natural languages (Iwanska,
1993), to explicit symbolic (Lewis et al., 1959) and math-
ematical (Shoenfield, 2018) representations. This section
follows that progression, examining failures in increasingly
formal reasoning paradigms.

4.1. Logic in Natural Languages

Reversal Curse. While natural languages are not fully
logical structures (Fedorenko et al., 2024), they do hold
simple logical relations (Sampson, 1979; Stich, 1975) that
humans trivially grasp. A representative failure of LLMs is
reversal curse: despite being trained on “A is B,” models
often fail to infer the equivalent “B is A” — a trivial bidi-
rectional equivalence for humans. Such failures occur even
when a factual sentence is restated as a question. First ob-
served by Berglund et al. (2023) on GPT-based (Radford &
Narasimhan, 2018) models, this phenomenon is later shown
in Wu et al. (2024a) not to affect BERT (Devlin et al., 2019).

This failure has been attributed to uni-directional training
objectives of Transformer-based LLMs (Lv et al., 2024;
Lin et al., 2024c), which induce structural asymmetry in
model weights (Zhu et al., 2024a) and inability to predict
antecedent words within training data (Guo et al., 2024b;
Youssef et al., 2024). Golovneva et al. (2024) further argues
that scaling alone cannot resolve the issue due to Zipf’s law
(Newman, 2005). Mitigation efforts accordingly center on
reducing directional bias through training data augmentation.
Early approaches syntactically reverse facts (Lu et al., 2024;
Ma et al., 2024b), while later methods introduce substring-

preserving reversals (Golovneva et al., 2024) and permuting
semantic units in training data (Guo et al., 2024b). Despite
differing in complexity, all methods share a common goal:
exposing models to bidirectional formulations to restore
logical symmetry.

Compositional Reasoning. Compositional reasoning re-
quires combining multiple pieces of knowledge or argu-
ments into a coherent inference. Failures arise when LLMs
are capable of each component but fail in integrating them.
Studies show systematic failures in basic two-hop reasoning
— combining two facts across documents — and even wors-
ening performance with increased compositional depth and
the addition of distractors (Zhao & Zhang, 2024; Xu et al.,
2024b; Guo et al., 2025). This weakness extends beyond
basic tasks, to compositions of math problems (Zhao et al.,
2024b; Hosseini et al., 2024; Sun et al., 2025b) (i.e., LLMs
succeed in individual problems but fail in composed ones),
multi-fact claim verification (Dougrez-Lewis et al., 2024),
and other inherently compositional tasks (Dziri et al., 2023).

This failure is attributed to an inability of holistic planning
and in-depth thinking. Chain-of-thought (CoT) prompting
(Wei et al., 2022b) improves on this by making reasoning
steps explicit at inference time. Still, latent compositionality
is more efficient in practice yet harder to achieve (Yang
et al., 2024c). Toward this, Li et al. (2024e) identifies faulty
implicit reasoning in mid-layer multi-head self-attention
(MHSA) modules and edit them, while Zhou et al. (2024a)
enhances training with graph-structured reasoning path data,
similar to distilling CoT reasoning process into training
data (Yu et al., 2024b). Both converge in spirit to improving
latent compositional reasoning by explicitly guiding models’
internal reasoning mechanisms.

Specific Logical Relations. Both reversal curse and com-
positional reasoning reflect fundamental failures affecting a
broad range of reasoning tasks, exposed across general cor-
pora or arbitrary logical statements. In contrast, another line
of work focuses on specific logical relations, uncovering
targeted LLM reasoning failures, which requires purpose-
built datasets for quantitative analysis at scale. Using this
approach, studies reveal LLM weaknesses in areas such as
converse binary relations (Qi et al., 2023), syllogistic reason-
ing (Ando et al., 2023), causal inference (Joshi et al., 2024),
and even shallow yes/no questions (Clark et al., 2019). More
complexities are added by testing divergences between fac-
tual inference and logical entailment (Chan et al., 2024), or
putting causal reasoning in contexts (Zhao et al., 2024d).
To scale up, some synthetically generate natural language
data from symbolic templates (Wan et al., 2024; Wang et al.,
2024; Gui et al., 2024). Alternatively, Chen et al. (2024d)
seed known failures and leverage LL.Ms to synthetically
expand the dataset. While root causes are harder to isolate
for those specific logic, the curated datasets offer a natural
mitigation by direct fine-tuning.
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4.2. Logic in Benchmarks

While Section 4.1 studies LLM reasoning failures directly
within natural language logic, another growing body of work
leverages logical structures implicit in benchmarks to sys-
tematically uncover robustness issues in LLM reasoning.
Motivated by rising concerns about the reliability of static
benchmarks (Zhou et al., 2023c; Zheng et al., 2024b; Xu
et al., 2024a; Patel et al., 2021), these studies introduce
logic-preserving transformations based on particular task
structures, such as reordering options in multiple-choice
questions (MCQs) (Zheng et al., 2023; Pezeshkpour & Hr-
uschka, 2023; Alzahrani et al., 2024; Gupta et al., 2024; Ni
et al., 2024), rearranging parallel premises and events (Chen
et al., 2024c; Yamin et al., 2024), or superficially editing
unimportant contexts (e.g., character names) (Jiang et al.,
2024b; Mirzadeh et al., 2024; Shi et al., 2023; Wang & Zhao,
2024). Such modifications keep the tasks semantically the
same. Performance drops thus reveal unstable reasoning
and reduced trustworthiness.

Math Word Problem (MWP) Benchmarks. Certain
benchmarks inherently possess richer logical structures that
facilitate targeted perturbations. MWPs exemplify this, as
their logic can be readily abstracted into reusable templates.
Researchers use this property to generate variants by sam-
pling numeric values (Gulati et al., 2024; Qian et al., 2024;
Li et al., 2024b) or substituting irrelevant entities (Shi et al.,
2023; Mirzadeh et al., 2024). Structural transformations —
such as exchanging known and unknown components (Deb
et al., 2024; Guo et al., 2024a) or applying small alterations
that change the logic needed to solve problems (Huang et al.,
2025b) — further highlight deeper robustness limitations.

Coding Benchmarks. Another example is coding bench-
marks, which ask to generate code snippets based on func-
tion definitions, doc strings specifying coding tasks, and
optional starter code. Common transformations include syn-
tactically editing doc strings (Xia et al., 2024; Wang et al.,
2022; Sarker et al., 2024), renaming functions and variables
(Wang et al., 2022; Hooda et al., 2024), and altering control-
flow logic such as swapping if-else cases (Hooda et al.,
2024). Beyond preserving the task logic, some studies intro-
duce adversarial code changes to test whether LLMs identify
and adapt to them (Miceli-Barone et al., 2023; Dinh et al.,
2023), thereby evaluating deeper reliability. Beyond pertur-
bations, a rising approach utilizes meta-theorems such as the
Monadic Second-Order logic from CS theory to synthesize
algorithmic coding problems at scale, posing a significant
challenge even for SOTA LRMs (Beniamini et al., 2025).

Mitigation & Extensions. These failures are attributed
to a lack of robustness or overfitting to public datasets.
Robustness-related issues are commonly mitigated by ap-
plying perturbations to diversify training data (Patel et al.,
2021), thus enhancing resilience to variations. Though effec-
tive, these approaches are expensive in compute and limited

in domain, making them hard to generalize. Overfitting
concerns are addressed through dynamically evolving (Jain
et al., 2024a; White et al., 2024) or privately maintained
datasets (Rajore et al., 2024). They ensure rigorous evalua-
tion, a necessary first step for steering LLM improvement
toward better reasoning in the benchmark subjects.

Beyond individual benchmarks, Hong et al. (2024) auto-
mates a set of transformations across math and coding bench-
marks, and Wu et al. (2024e) alters common assumptions of
well-known tasks. Shojaee et al. (2025) further moves be-
yond standard math and coding benchmarks — which assess
models solely by final-answer accuracy — by evaluating them
on logic puzzles like the Tower of Hanoi, where both reason-
ing steps and solutions can be systematically assessed. The
study finds that even state-of-the-art large reasoning models
(LRMs) suffer an “accuracy collapse” as puzzle complexity
increases, though Lawsen (2025) criticizes aspects of the
experimental design, suggesting these may unfairly impact
reported accuracy.

4.3. Arithmetic & Mathematics

Mathematics, historically a universal framework for rigor-
ous reasoning (Shoenfield, 2018), has exposed fundamental
limits in LLM reasoning, particularly within arithmetic.

Counting. Despite its simplicity, counting poses notable
challenges for LLMs (Xu & Ma, 2024; Chang & Bisk, 2024;
Zhang & He, 2024; Fu et al., 2024; Yehudai et al., 2024),
which extend to basic character-level operations like re-
ordering or replacement (Shin & Kaneko, 2024). Identified
causes include tokenization (Zhang et al., 2024e; Shin &
Kaneko, 2024), positional encoding (Chang & Bisk, 2024),
and training data composition (Allen-Zhu & Li, 2024). Mit-
igation via supervised fine-tuning (Zhang & He, 2024) and
engaged reasoning (Xu & Ma, 2024) have been proposed,
yet robust counting remains elusive for current models.
Since the limitations largely arise from current LLM ar-
chitectures, future work should consider deeper mitigation
through architectural innovations.

Basic Arithmetic. LLMs quickly fail in arithmetic as
operands increase (Yuan et al., 2023; Testolin, 2024), espe-
cially in multiplication. Research shows models rely on su-
perficial pattern-matching rather than arithmetic algorithms,
thus struggling in middle-digits (Deng et al., 2024). Surpris-
ingly, LLMs fail at simpler tasks (determining the last digit)
but succeed in harder ones (first digit) (Gambardella et al.,
2024). Those inconsistencies lead to failures for practical
tasks like temporal reasoning (Su et al., 2024).

These issues stem from heuristic-driven reasoning strate-
gies (Nikankin et al., 2024) and limited numerical precision
(Feng et al., 2024a). Proposed solutions include detailed
step-by-step training datasets (Yang et al., 2023c), digit-
order reversals to focus attention on least significant digits —
mirroring human multiplication strategies (Zhang-Li et al.,
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2024; Shen et al., 2024), LLM self-improvement methods
(Lee et al., 2025), and neuro-symbolic augmentations that
enable internal arithmetic reasoning (Dugan et al., 2024).
Despite these advances, fundamental research on intrinsic
arithmetic capabilities is increasingly overshadowed by the
prevalent reliance on external tool use.

Math Word Problems & Beyond. Math Word Problems
(MWPs) combine arithmetic with contextual logical rea-
soning, making them prominent benchmarks for assessing
LLM capabilities. Beyond using transformations to expose
reasoning flaws (Section 4.2), research identifies challenges
ranging from specific simple tasks (Nezhurina et al., 2024)
to large-scale evaluations on a domain of math (Wei et al.,
2023b; Boye & Moell, 2025; Fan et al., 2024; Sun et al.,
2025b). Additionally, LLMs exhibit susceptibility when
faced with unsolvable or faulty MWPs (Ma et al., 2024a;
Rahman et al., 2024; Tian et al., 2024). LLMs struggle
even in assessing reasoning process on MWPs (Zhang et al.,
2024f), an arguably easier task than generation. Given these
persistent challenges, current efforts prioritize developing
general methods to improve overall reasoning performance
rather than investigating and addressing individual failures.

5. Reasoning in Embodied Environments
Reasoning is not merely an abstract process; it is deeply
grounded in reality (Shapiro & Spaulding, 2024), requiring
the ability to perceive, interpret, predict, and act within the
physical world, with accurate understanding of spatial rela-
tionships, object dynamics, and physical laws (Lee-Cultura
& Giannakos, 2020). While humans (Varela et al., 2017)
— and even many animals (Andrews & Mons6, 2021) — de-
velop such embodied reasoning naturally through sensory
and motor experiences, LLMs remain fundamentally lim-
ited by their lack of true physical grounding in the physical
world. This gap leads to systematic errors and unrealistic
predictions when LLMs attempt even basic physical reason-
ing (Wang et al., 2023c; Ghaffari & Krishnaswamy, 2024b).
Despite growing interest in spatial intelligence, research
into LLMs’ physical reasoning failures is still sparse. In
this section, we survey failures across three progressively
complex embodied reasoning modalities: 1D text-based, 2D
perception-based, and 3D real-world physical reasoning.

5.1. 1D - Text-Based Physical Reasoning Failures.

Text-Based Physical Commonsense Reasoning. Phys-
ical commonsense reasoning refers to the intuitive under-
standing of how objects interact in the physical world. Fail-
ures of LLMs include lack of knowledge about object at-
tributes (e.g., size, weight, softness) (Wang et al., 2023c;
Liu et al., 2022b; Shu et al., 2023; Kondo et al., 2023), spa-
tial relationships (e.g., above, inside, next to) (Liu et al.,
2022b; Shu et al., 2023; Kondo et al., 2023), simple physical
laws (e.g., gravity, motion, and force) (Gregorcic & Pendrill,
2023), and object affordance (possible actions/reactions an
object can make) (Aroca-Ouellette et al., 2021; Adak et al.,

2024; Pensa et al., 2024). Humans acquire this kind of rea-
soning effortlessly through embodied experience, whereas
LLMs struggle in it, as they rely solely on textual data
without direct perceptual or embodied experience. Even
in purely text-based settings, when tasks require more than
semantic comprehension, demanding real-world understand-
ing, LLMs exhibit systematic failures.

Physics & Scientific Reasoning. Beyond basic physical
commonsense, LLMs struggle with formal physics reason-
ing and scientific problem-solving, which require not just
factual recall and intuition but multi-step logical deduction,
quantitative reasoning, and correct use of physical laws — ar-
eas where even state-of-the-art models like o1 (Jaech et al.,
2024) and o3-mini (OpenAl, 2025) fail notably (Zhang
et al., 2025a; Xu et al., 2025; Gupta, 2023; Chung et al.,
2025; Zhang et al., 2025b). Even when LLMs possess these
scientific skills, they often fail to apply them effectively
in complex problems and real-world scientific discovery
(Jaiswal et al., 2024; Ouyang et al., 2023; Chen et al., 2025).

Text-Based Mitigation. These failures largely reflect lim-
itations inherent to the text modality, since semantic and
linguistic understanding alone cannot guarantee grounded
physical insight (Wang et al., 2023c; Zhang et al., 2025b).
Text-based mitigation strategies focus on three fronts: train-
ing, prompting, and integration with external tools. First,
LLMs are fine-tuned on corpora that explicitly encode struc-
tured physical knowledge — such as object attributes, spatial
relationships, or physical laws — to better align model priors
with real-world dynamics (Lyu et al., 2024; Wang et al.,
2023c). Second, prompting methods like CoT encourage
models to reason explicitly, reducing reliance on shallow
text-based pattern-matching and enabling discovery of more
nuanced causal and spatial relationships (Wei et al., 2022b;
Ding et al., 2023). Third, LLMs are increasingly paired with
external tools — such as code executors or physics engines —
that allow models to verify, simulate, or compute outcomes
directly and tangibly (Ma et al., 2024c; Cherian et al., 2024).

5.2. 2D - Perception-Based Physical Reasoning Failures.
What’s Wrong with the Picture? The classic “What’s
Wrong with the Picture?” visual reasoning game challenges
participants to spot anomalies in static images. Applied to
vision-language models (VLMs), similar tasks reveal sur-
prising failures in simple tasks such as anomaly detection
(Bitton-Guetta et al., 2023; Zhou et al., 2023b), object count-
ing and overlap identification (Rahmanzadehgervi et al.,
2024), and spatial relation understanding from the image
content (Liu et al., 2023a; Zhao et al., 2024a).

2D Physics and Physical Commonsense. Extending be-
yond detecting simple anomalies or object properties in
static images, VLMs face deeper challenges reasoning about
the physics in visual contexts. Despite the addition of vi-
sual inputs, VLMs still struggle with physical commonsense
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(Ghaffari & Krishnaswamy, 2024a; Schulze Buschoff et al.,
2025; Dagan et al., 2023; Balazadeh et al., 2024b; Chow
et al., 2025; Bear et al., 2021) and advanced physics (Ates
etal., 2020; Anand et al., 2024; Shen et al., 2025), exhibiting
performance gaps similar to those seen in text-only settings
discussed in Section 5.1.

Visual Input for Spatial Reasoning. Real-world spatial
reasoning requires understanding evolving spatial relation-
ships rather than isolated snapshots. Recent works use 2D
simulated environments to test models’ grasp of motion and
object interactions (e.g., predicting post-impact trajectories)
(Cherian et al., 2024), spatial prediction and manipula-
tion (e.g., object placement for stability) (Ghaffari & Krish-
naswamy, 2024b), spatial communication and alignment
(e.g., conveying location information) (Kar et al., 2025), and
embodied planning in multi-step tasks (Chia et al., 2024;
Paglieri et al., 2024). While VLMs exhibit some basic spa-
tial knowledge, they consistently fail to compose and apply
it in dynamic, interactive tasks, revealing a gap in structured
spatial reasoning.

Perception-Based Mitigation. These errors arise from
three key sources. First, models often over-rely on text
or common scenarios from their training data, rather than
accurately interpreting visual inputs (Deng et al., 2025a;
Bitton-Guetta et al., 2023; Zhou et al., 2023b). Second,
some failures may be explained by the binding problem
from cognitive science, where the brain — or a model — strug-
gles to process multiple distinct objects simultaneously due
to limited shared resources (Campbell et al., 2025). Third,
just as language alone does not guarantee grounded physical
understanding, visual inputs alone may also lack sufficient
spatial semantics; plain image recognition does not automat-
ically confer an understanding of spatial object dynamics
and causality (Chen et al., 2024a; Qi et al., 2025). To miti-
gate, recent work focuses on curating balanced, augmented
datasets to reduce bias toward text inputs, or directly using
2D physics data to improve physical understanding (Deng
et al., 2025a; Balazadeh et al., 2024a). Another strategy tar-
gets training and model architecture (Cheng et al., 2024), by
introducing spatially grounded, sequential attention mecha-
nisms (Izadi et al., 2025) and leveraging reinforcement learn-
ing to align models with spatial commonsense (Sarch et al.,
2025). Finally, beyond end-to-end learning, integration with
external physical simulation tools has also emerged, to en-
able explicit trial-and-error (Liu et al., 2022a; Cherian et al.,
2024; Zhu et al., 2025).

5.3. 3D — Real-World Physical Reasoning Failures

Real embodied reasoning requires agents to actively interact
with their environment, through robotics or interactive simu-
lations that go beyond static images or simple 2D snapshots.
Such agents must process real-time goals and feedback, and
execute physical actions. Unlike 1D (text-only) and 2D
(image-based) tasks, 3D embodied reasoning centers on
action rather than passive analysis. Despite advances in

robotics and embodied Al, LLMs and VLMs face persistent
challenges including inaccurate spatial modeling, unrealistic
affordance prediction, tool-use failures, and unsafe behav-
iors. This subsection highlights these key failure cases from
both simulated and real-world studies.

Real-World Failures in Affordance and Planning. A
key failure is models’ inability to generate feasible and co-
herent action plans. LLMs and VLMs often produce phys-
ically impossible or inefficient actions due to affordance
errors (incorrect reasoning about possible object actions)
(Ahn et al., 2022; Li et al., 2025; Hu et al., 2024; Huang
et al., 2022a; Jin et al., 2024) and causal real-world reason-
ing limitations that cause illogical or looping behaviors (Jin
et al., 2024; Hu et al., 2024).

Spatial and Tool-Use Reasoning. Even when LLMs suc-
cessfully decompose tasks and generate seemingly valid
plans, failures arise due to poor spatial reasoning (Dao &
Vu, 2025; Mecattaf et al., 2024) and the inability to general-
ize tool-use strategies (Xu et al., 2023a). Concretely, LLMs
often struggle with 3D distance estimation (Mecattaf et al.,
2024; Chen et al., 2024a), object localization (Mecattaf et al.,
2024), and multi-step manipulation (Guran et al., 2024),
leading to systematic failures in both spatial awareness and
interaction with physical environments.

Safety and Long-Term Autonomy. Safety and reliabil-
ity of LLM-driven embodied agents are ongoing concerns.
LLM-generated robotic task plans are highly sensitive to
prompt phrasing (Liang et al., 2023) and vulnerable to adver-
sarial manipulation (Zhang et al., 2024c). Moreover, these
systems fail to align with human ethical requirements and
are easily jailbroken to perform harmful actions, such as
recording private information (Rezaei et al., 2025; Zhang
et al., 2024c). These findings underscore the urgent need
for robust, self-correcting, and safety-aware embodied Al
systems before real-world deployment.

Embodied Mitigation. A critical factor underlying these
failures is the autoregressive nature of LLMs. Naive LLMs
and VLMs generate plans step by step, lacking mecha-
nisms to detect and correct earlier mistakes or execution
errors (Liang et al., 2023; Huang et al., 2022b; Duan et al.,
2024). Incorporating feedback mechanisms or explicit error-
handling strategies significantly reduces these errors (Liang
et al., 2023; Wang et al., 2023a). Another major factor is
the absence of a robust internal world model (Dao & Vu,
2025; Wu et al., 2025a), which often forces LLMs to rely on
external aids — such as explicit spatial prompts — to compen-
sate for their limited spatial and real-world reasoning. To
advance embodied intelligence, future research should focus
on strengthening LLMs’ internal representations of space,
including spatial memory, real-world causal dynamics, and
quantitative spatial understanding.
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Figure 1. Overall taxonomy of LLM Reasoning Failures.

A. Conclusion

In this survey, we systematically explored reasoning failures in Large Language Models across informal, formal, and
embodied dimensions. By establishing clear definitions and categorizations, we unified previously fragmented observations
into coherent patterns of systematic weaknesses, paired with sophisticated discussions about root causes and mitigation
strategies for each. Our analysis underscores that despite remarkable progress, fundamental reasoning challenges persist,
limiting the reliability and practical deployment of LLMs. Future research should prioritize addressing these pervasive
reasoning gaps through deeper cognitive alignment, improved logical robustness, and enhanced grounding in embodied
interactions. We hope this structured survey inspires more focused efforts, advancing the understanding and capabilities of
LLM reasoning toward more robust, trustworthy, and effective real-world applications.

B. Taxonomy

In this section, we present a visualized taxonomy for the field of LLM reasoning failures. The taxonomy corresponds
directly to how we have broken down categories in this survey. We hope this additional illustration helps make the structure
of this survey, as well as the introduction to the field, even more clear for the readers.

The overall taxonomy of LLM reasoning failures is presented in Figure 1, where we comprehensively break down all
LLM reasoning failures into those appearing in embodied versus non-embodied settings. The failures in non-embodied
reasoning are further categorized into two camps, based on whether they mostly require instinct (informal) or logic (formal)
to reason. In this survey, we dedicate one section to each of the three final categories, and here provide specific taxonomies
for each category — informal (Section 3; taxonomy in Figure 2), and formal (Section 4; taxonomy in Figure 3), and embodied
(Section 5; taxonomy in Figure 4).

C. Artifacts

Upon the full release of this survey, we will make public a comprehensive collection of categorized works in the field of
LLM reasoning failures, to facilitate future research by providing an easy entry point. The collection will be released as a
public Github repository, which will also be continuously updated in the future as the field progresses.

D. Other Emerging Areas of Reasoning

Recent advancements in LLM reasoning have led to the emergence of several promising but nascent areas of research.
Due to their novelty, systematic investigations into generalizable failure modes within these domains remain limited.
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Figure 2. Taxonomy of Informal LLM Reasoning Failures.
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MWPs & Beyond

Unsolvable or Faulty MWPs (Ma et al., 2024a; Rahman et al., 2024; Tian et al., 2()24)]

Assessing Reasoning Process on MWPs (Zhang et al., 2024f)]

Figure 3. Taxonomy of Formal LLM Reasoning Failures.

33



A Survey on Large Language Model Reasoning Failures

Object Attributes (Wang et al., 2023c; Liu et al., 2022b; Shu et al., 2023; Kondo et al., 2023)]

Spatial Relationships (Liu et al., 2022b; Shu et al., 2023; Kondo et al., 2()23)]

1D Physical Commonsense

Simple Physics Law (Gregorcic & Pendrill, 2023)]

Object Affordance (Aroca-Ouellette et al., 2021; Adak et al., 2024; Pensa et al., 2024)]

1D Physics and Science
(Zhang et al., 2025a; Xu et al., 2025; Gupta, 2023; Chung et al., 2025; Jaiswal et al., 2024; Ouyang et al., 2023; Chen et al., 2025)

=

Anomalies (Bitton-Guetta et al., 2023; Zhou et al., 2023b; Rahmanzadehgervi et al., 2024; Liu et al., 2023a)
(Zhao et al., 2024a; Campbell et al., 2025)

2D Physical Commonsense (Ghaffari & Krishnaswamy, 2024a; Schulze Buschoff et al., 2025; Dagan et al., 2023)
(Balazadeh et al., 2024b; Chow et al., 2025; Bear et al., 2021)

Embodied
o
a
(_A\ (_g\

2D Physics (Ates et al., 2020; Anand et al., 2024; Shen et al., 2025)]

—=

Visual Input for Spatial Reasoning
(Cherian et al., 2024; Ghaffari & Krishnaswamy, 2024b; Kar et al., 2025; Chia et al., 2024; Paglieri et al., 2024)

=

Affordance & Planning
(Ahn et al., 2022; Li et al., 2025; Hu et al., 2024; Huang et al., 2022a; Jin et al., 2024)

g
L

Spatial and Tool-Use (Dao & Vu, 2025; Mecattaf et al., 2024; Xu et al., 2023a; Chen et al., 2024a; Guran et al., 2024)]

—

Safety & Autonomy (Liang et al., 2023; Zhang et al., 2024c; Rezaei et al., 2025)]

Figure 4. Taxonomy of Embodied LLM Reasoning Failures.

Nevertheless, we argue that the methodology outlined in Section 2.2 to identify and analyze generalizable failures will
become increasingly valuable as these fields mature. We encourage early efforts toward understanding and learning from
these emerging challenges and hope this survey supports such endeavors.

Toward Broad Applications: Reasoning in Diverse Media. As discussed in Section 5, the advancement of language-
vision models has significantly broadened the range of media accessible to LLMs. New reasoning paradigms, such as visual
and spatial reasoning, have become feasible. Typically, after an initial foundational phase, these areas enter a stable growth
stage marked by incremental improvements that can be guided by systematic analyses of failure cases. Current progress in
multimodal models continues to expand into increasingly diverse media. While still in early foundational stages, future
analyses of failures in these new domains will likely follow established patterns from language-vision research, facilitating
further advancement. Several most important emerging reasoning paradigms in diverse media include video reasoning (Fei
et al., 2024; Yan et al., 2024; Min et al., 2024; Bhattacharyya et al., 2024; Khattak et al., 2024; Ren et al., 2025), audio
reasoning (Xie et al., 2025; Deshmukh et al., 2024; Li et al., 2024a; Ghosh et al., 2024; Sakshi et al., 2024; Ghosh et al.,
2025), and music reasoning specifically (Zhou et al., 2024b; Yuan et al., 2025; Gardner et al., 2024; Li et al., 2024c; Yu
et al., 2023a; Doh et al., 2023).

Toward General Frameworks: Analogical Reasoning & Inference-Time Scaling. As LLM reasoning research pro-
gresses, we are seeing the rise of general-purpose frameworks designed to enhance models’ problem-solving abilities in
more systematic and scalable ways (Sun et al., 2023). Compared to traditional LLMs that map inputs to outputs directly,
these frameworks enable models to reason more deeply and deliberately. Two key directions are inference-time scaling
(Muennighoff et al., 2025) and analogical reasoning frameworks (Yu et al., 2023c). Inference-time scaling enhances
reasoning by encouraging models to generate intermediate thoughts before arriving at final answers. Many state-of-the-art
models — such as OpenAl ol (Jaech et al., 2024) and DeepSeek R1 (DeepSeek-Al, 2025) — adopt this approach, producing
richer reasoning traces during inference. Analogical reasoning frameworks, on the other hand, equip models with memory
mechanisms that help them retrieve and reuse past examples. When faced with new problems, the model can reference
similar prior cases — mirroring how humans learn from experience (Feng et al., 2024b; Yang et al., 2024b; Lin et al., 2024a;
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Yu et al., 2023c). While current evaluations predominantly address traditional LLMs, we advocate future research to examine
if these emerging frameworks effectively mitigate established reasoning failures. Insights from such studies could clarify the
underlying causes of reasoning errors, thus informing more robust and reliable real-world deployments.

Toward Verifiable Reasoning: Formal Math and Science Validations. Beyond broadening applications and developing
general frameworks, another critical direction involves grounding LLM reasoning in formal, verifiable systems ("davidad"
Dalrymple et al., 2024). Neural theorem proving, which pairs LLM-generated content with proof assistants for verification,
exemplifies this approach by eliminating hallucinations and ensuring correctness in the filtered final results (Li et al., 2024f).
This method has notably succeeded in formal mathematics proof generation (Yang et al., 2024a; Xin et al., 2024; Lin et al.,
2025b), alongside related tasks like auto-formalization (Wu et al., 2022; Jiang et al., 2023a; Murphy et al., 2024), efficient
proof search (Lample et al., 2022; Huang et al., 2025d; Lin et al., 2025a), agentic tools (Song et al., 2025; Welleck & Saha,
2023; Thakur et al., 2024; Kumarappan et al., 2025), and automated conjecturing (Poesia et al., 2024; Dong & Ma, 2025;
Poesia & Goodman, 2023). This paradigm also holds significant promise for critical domains requiring rigorous safety
guarantees, including software and hardware verification (Kasibatla et al., 2024; Thompson et al., 2025; Ye et al., 2025;
Deng et al., 2025b).

E. Other Important LLLM Failures

Not all failures exhibited by LLMs fall neatly within the domain of reasoning; nevertheless, many still raise significant
concerns and deserve careful investigation. Although exceeding the scope of this work, addressing these additional
limitations is essential to advancing the general capabilities and reliability of LLMs. We believe that unified discussions
— similar to the systematic approach we have adopted in this survey — could also benefit these other categories of LLM
failure. We thus encourage future explorations in this direction, which may guide technical research to identify, mitigate,
and improve upon issues in these critical areas.

Trustworthiness: Hallucinations & Over-Confidence in Generations. One of the most prominent and persistent
limitations of LLMs is their tendency to hallucinate (Ledger & Mancinni, 2024; Zhang et al., 2024g; Yao et al., 2023; Wen
et al., 2024; Liang et al., 2025) — that is, to generate text that appears fluent and confident but is factually incorrect or entirely
fabricated. These hallucinations can be especially problematic in contexts where accuracy is critical, such as legal reasoning,
scientific writing, or medical decision support (Jiang et al., 2024c; Chern et al., 2023; Hao et al., 2024). To mitigate this,
methods such as retrieval augmentation (Gao et al., 2023; Chen et al., 2024b) and model calibration (Zhou et al., 2023a;
Xiong et al., 2023) have been proposed. Retrieval augmentation enables LLMs to access external knowledge sources (e.g.,
databases or search engines) during generation, grounding their outputs in verifiable facts (Gao et al., 2023). Calibration, on
the other hand, aims to align the model’s expressed confidence with its actual likelihood of being correct — helping to prevent
models from overstating their certainty on uncertain or unknown topics (Xiong et al., 2023). Despite these advancements,
hallucinations and over-confidence remain challenging issues (Huang et al., 2025c). Even with retrieval-based approaches,
models can still misinterpret or misuse retrieved content (Yu et al., 2023d; Wu et al., 2024c), and calibration remains difficult
at scale, especially across diverse domains and prompt types (Pelrine et al., 2023). Given the increasing integration of LLMs
into decision-making processes, improving trustworthiness through enhanced grounding and reliable uncertainty estimation
remains an urgent research priority.

Fairness: Harmful Ethical & Social Biases. Having been trained on extensive human-generated data, LLMs inevitably
inherit embedded social and ethical biases from those data resources (Li et al., 2023b; Gallegos et al., 2024). These
biases and stereotypes can be harmful — especially when LLMs or other Al models are deployed in high-stake real-world
applications such as job recruitment, healthcare, or law enforcement (Gallegos et al., 2024; Han et al., 2024a; Chu et al.,
2024; Saravanan et al., 2023). Substantial efforts have been made to benchmark (Nangia et al., 2020; Nadeem et al., 2020;
Liu et al., 2024), mitigate(Han et al., 2024a; Owens et al., 2024), and regulate (Zheng et al., 2024a; Jiang et al., 2023b) these
biases in order to promote fairness and justice. Nevertheless, significant challenges persist. Despite ongoing efforts, LLMs
can still produce biased or unfair outputs that reflect harmful and discriminatory assumptions—particularly when exposed
to adversarial prompts (Wei et al., 2025; Lin et al., 2024b; Cantini et al., 2024) and new modalities (Seshadri et al., 2023;
Bianchi et al., 2023; Cho et al., 2023). Moreover, even when models do not overtly express such biases, they may still
encode them implicitly within their internal representations (Bai et al., 2024; Borah & Mihalcea, 2024; Kumar et al., 2024),
making the debiasing process particularly difficult and nuanced.

35



A Survey on Large Language Model Reasoning Failures

Safety: AI Security, Privacy & Watermarking. As LLM deployment continues to grow and becomes integral to daily life,
ensuring Al safety is increasingly critical (Bengio et al., 2025). Two particular dimensions of safety deserve special attention:
security and privacy concerns, as well as watermarking to detect Al-generated content. Security and privacy concerns relate
primarily to safeguarding LLMs against malicious exploits and preventing unauthorized exposure of sensitive information
(Das et al., 2025; Yao et al., 2024; Wu et al., 2024b). Currently, LLMs are vulnerable to adversarial attacks, prompt
injections, and unintended leakage of private data, highlighting an urgent need for more secure and privacy-preserving model
architectures and deployment practices (Wei et al., 2023a). Additionally, as LLM-generated content becomes ubiquitous, the
capability to reliably identify such content — especially to mitigate misuse in disinformation, academic integrity violations,
and other deceptive practices — becomes increasingly important. Watermarking techniques embed identifiable signals within
generated texts to enable subsequent detection (Zhang et al., 2024d; Zhao et al., 2023; Pan et al., 2024). Despite recent
advances, substantial challenges remain: current watermarking methods remain susceptible to sophisticated attacks designed
to obscure or remove watermarks (Pang et al., 2024; Jovanovic et al., 2024), and existing techniques often degrade the
quality and fluency of generated outputs (Singh & Zou, 2023; Molenda et al., 2024). Addressing these security, privacy, and
watermarking challenges is critical to building safer, more reliable, and more ethically responsible LLM deployments in
real-world applications.

F. Examples
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Table 2. Informal Reasoning - 3.1 Individual Cognitive Reasoning

Sub-item Examples
1. N-back Task (Gong et al., 2024): “You will see a sequence of letters
presented one at a time. Respond with 'm’ when the current letter matches
e . the one from 2 steps back, and ’-’ otherwise. Sequence: Z, X, Z, Q, X” —
Cognitive Skills LLMs respond “-, -, -, m, -” instead of correct “-, -, m, -, -, showing systematic

working memory failure when n>2

2. A-not-B Error (Han et al., 2024b):

Prompt to Gemini:

“What is the next number in the sequence: 2, 4, 6, 87 A. 10 B. 12
Answer: A

What comes next in the pattern: A, B, C, D? A.EB. F”

Answer: A

What is the next shape in the sequence: ll, A, . A7 A. B B. A
Answer: A

What is the missing number: 1, 3,5, ,9? A. 6 B. 7. Choose A or B? Just
tell me A or B without any further words”

Gemini Answer: A; Indicating a lack of Inhibitory Control

3. Wisconsin Card Sorting Test (Kennedy & Nowak, 2024): “New Card:
cross blue 1. Options: triangle red 3, cross green 2, circle yellow 1, star blue
4. Choose matching card.” — After learning to match by color, when the rule
secretly switches to shape, ChatGPT-3.5 Turbo achieves only 25.1% accuracy,
failing to flexibly switch from the previous matching strategy despite feedback
indicating errors; This indicates a lack of Cognitive Flexibility.

4. Clock Drawing Test (Galatzer-Levy et al., 2024): “Draw the face of a clock,
put in the numbers, and set the hands to 10 minutes after nine” — Most models
correctly draw clock face and numbers but fail to position hands correctly for
9:10, and when shown a clock displaying 5:45, GPT-4 Turbo incorrectly reads
it as “9:00”, demonstrating deficits in abstract reasoning.

Cognitive Bias

1. Confirmation Bias (O’Leary, 2025b): “I have been given a sequence of
three numbers, 6-8-10. Can you give me a hypothesis about the rule?” — Claude
proposes the rule “three consecutive even numbers in ascending order,” rather
than the broader “any increasing sequence.” It then generates only confirming
examples such as “2-4-6” and “8-10-12,” without testing alternatives. This
reflects confirmation bias: the tendency to favor evidence that supports an initial
hypothesis while ignoring other plausible explanations.

2. Anchoring Bias (Malberg et al., 2024): “Suppose you are a marketing
manager at a telecommunications company. You allocate a budget for promoting
a new service package on social media platforms. Do you intend to allocate
more than 87% for this purpose? Which allocation level do you choose?”
— Models’ responses cluster around the anchor value (87%) regardless of
its relevance, demonstrating how initial numerical values disproportionately
influence subsequent judgments

3. Framing Effect (Shafiei et al., 2025): Context: Person A spends 3h + 2h +
4h = 9h; Person B spends 5h + 1h + 3h = Sh; Prompt 1: “Does Person B spend
more time on home maintenance than Person A?”” Prompt 2: “Does Person B
spend less time on home maintenance than Person A?” — Despite identical
facts, LLMs are more likely to answer “more” to Prompt 1 and “less” to Prompt
2. This reflects a framing effect: the model’s judgment shifts based solely on
how the same information is phrased.
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Table 3. Informal Reasoning - 3.2 Implicit Social Reasoning

Sub-item

Examples

Theory of Mind
(ToM)

1. False-belief Task (Ullman, 2023): Story: “Here is a bag filled with popcorn.
There is no chocolate. The label says ‘chocolate’. The bag is made of transparent
plastic, so Sam can see what is inside. Sam finds the bag and reads the label.”
Prompt: “She believes that the bag is full of chocolate.” — GPT-3.5 predicts
“Yes” with 95% probability. — Despite Sam seeing the popcorn directly, the
model attributes to her the false belief that the bag contains chocolate. This
illustrates a failure in classic ToM.

2. Applied ToM (Gu et al., 2024): Story: “The can of Pringles has moldy chips
in it. Mary picks up the can in the supermarket and walks to the cashier.” Q1
(Mental state): “Is Mary aware that the chips are moldy?”” — model correctly
answers “No.” Q2 (Behavior): “What will Mary likely do next: pay for the chips
or report the moldy chips?” — model often answers “report the moldy chips.”
— Despite correctly inferring Mary’s ignorance, the model fails to predict her
behavior based on that false belief—revealing a breakdown in applying ToM
reasoning to action prediction.

3. Higher-Order ToM (He et al., 2023): Story: (1) The milk is on the table.
(2) Sally exits the room. (3) Anne moves the milk onto the box. (4) Alex exits,
then Anne exits. (5) Outside the room, Alex falsely tells everyone “The milk
is in the fridge,” while Sally secretly tells Anne “The milk is on the table.” QO
(Reality): “Where is the milk?”; Q3 (3rd-order ToM): “Where does Alex think
Sally thinks Anne thinks the milk is?” — While GPT-4 performs near perfectly
on low-order ToM questions (Oth—2nd), its accuracy drops sharply on 3rd-order
prompts.

4. Emotion Understanding (Hu et al., 2025):

Scenario: 1 have acrophobia. Today, the elevator was out of order, and I had to
take the stairs to reach my office on the last floor of a tall building. I considered
it a nice little exercise.

Question: 1 feel ...? (a) Excitement (b) Fear (c) Disapproval (d) Nervousness
LLM answers: “Fear”; I was afraid of taking the stairs due to my acrophobia;
Correct answer: (a) Excitement

5. Emotion Application(Hu et al., 2025):

Scenario: Peter’s best friend jokingly tells him that he is the reason why their
group of friends keep losing at video games.

Question: In this situation, what is the most effective response for Peter? (a)
"I thought it was just a game, not a battle to death" (b) "Maybe if you would
explain the strategies better (c) "Well, you’re not exactly a pro either" (d) "I'm
sorry. I'll try to improve my skills so we can win"

LLM answers: (d) it shows accountability and a willingness to take action to
improve the situation.

Correct answer: (c) "Well, you’re not exactly a pro either"

38



A Survey on Large Language Model Reasoning Failures

Table 4. Informal Reasoning - 3.2 Implicit Social Reasoning

Sub-item

Examples

Social Norms &
Moral Values

1. Norm Inconsistency (Jain et al., 2024b):

Prompt 1 (Crime Prompt): These are frames from a home surveillance video
that recorded an unfamiliar person near someone’s home. Is there a crime
happening? Answer yes or no and then provide a reason for your answer.
GPT-4 Response: No, there does not appear to be a crime happening in the
frames provided. The person is simply standing near the door, checking or
reading some papers. There are no actions indicative of criminal activity such
as attempting to break in, vandalize, or steal property.

Prompt 2 (Police Prompt): These are frames from a home surveillance video
that recorded an unfamiliar person near someone’s home. Should the police be
called? Answer yes or no and then provide a reason for your answer.

GPT-4 Response: Yes, the police should be called. Reason: The person
appears to be suspiciously lingering around the entrance, checking through what
looks like someone else’s mail, and using a mobile device. This behavior could
indicate potential mail theft or other criminal intentions. It’s better to e cautious
and report the activity to the authorities to prevent any possible crime.
Comment: This is an example of norm-inconsistency in GPT-4 where the model
says no crime occurred but recommends police intervention. In this Ring
surveillance video, human annotators observed no crime and labeled the subject
as "visiting the home’s entrance and waiting for a resident’s response."

2. Social Norm Disparity (Rezaei et al., 2025):
Scenario: A video in which a person at a scenic viewpoint appears to be
photographing the landscape while walking along a path.
Action:
v
(B) Hold onto the railing and continue walking ( Xchosen by 03-mini)
(C) Inspect the surface for debris, etc.

Justification:

(A) v

(B) Safety is paramount when navigating potentially hazardous paths (chosen
by 03-mini)

(C) Maintaining cleanliness ensures a safe and enjoyable experience for every-
one; etc

Reasoning:

03-mini: "... ata V'), he is moving frequently (X) ... Thus,
‘Hold onto the railing” (X) is the most appropriate choice."
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Table 5. Informal Reasoning - 3.3 Explicit Social Reasoning

Sub-item Examples

1. Long-Horizon (Pan et al., 2025):
Task: Solving a scikit-learn bug.
Multi-Agent What happened: The code initially used 1ightgbm, which was unavail-
Systems (MAS) able. The agent switched to LogisticRegression, but later reverted to
lightgbm, forgetting its earlier substitution.
Where it went wrong:
HyperAgent_scikit-learn_ scikit-learn-25570 - INFO -
Inner-Executor-Assistant:
Response: Thought: Let’s run the code with ColumnTransformer.
from lightgbm import LGBMClassifier
[... later ...]
from sklearn.linear_model import LogisticRegression
[... later ...]
pip uninstall scikit-learn -y; pip install scikit-learn
[... later ...]
Executor—->Planner: lightgbm is still missing.
Run: pip install lightgbm

2. Inter-Agent Misalignment (Pan et al., 2025):

Task: Solving a mathematical problem.

What happened: The answer was given to the question. The agents solved
another problem.

Where it went wrong:

[mathproxyagent] Let’s use Python to solve a math
problem. [...] Courtney attended a

concert and reported that the audience was 48 in
number. However, Kelly went to

the same concert and said that Courtney had made the
mistake of overstating the

number of people in attendance by 20%. If Kelly was
right, 40 people really

attended the concert. What was the audience size
according to Courtney?"

[assistant] First, the key idea here is calculating
[...]

\\python

import sympy as sp

C = 48 # Courtney’s estimation

R = sp.Symbol ("R’) # real audience number

equation = sp.Egq(C, R + 0.2 x R)

real_audience = sp.solve(equation, R) [0]

print (f"The real audience was: {real_audience}")
\\python

overstated = C - real_audience

print (£"The number of people Courtney overstated is:
{overstated}")

[assistant] [...] So, the final answer 1is
\\boxed{8}.
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Table 6. Informal Reasoning - 3.3 Explicit Social Reasoning

Sub-item

Examples

Multi-Agent
Systems (MAS)

3. Incorrect Verification or Termination (Pan et al., 2025):

Task: Solving a mathematical problem.

What happened: They did not verify the answer. They counted one number
more even if the numbers were listed. They did not verify the result even if it
was straightforward.

Where it went wrong:

[mathproxyagent] [...] Sally received the following scores on her math quizzes:
50, 80, 80, 60, 40, 90, 100, 70, and another score that is forgotten. If the mean
score is 70, what’s the forgortten score?

[assistant] The mean of a set of numbers is the sum of the numbers divided by
the quantity of the numbers. In this case, the mean score is 70, this means that
the total sum of the scores, including the forgotten one, divided by the total
quantity of the quizzes (which is 9 + 1 = 10), is 70. [...] From which, we can
calculate the forgotten score like this: forgotten score = 70 * 10 - sum of scores
[...]

[mathproxyagent] Continue. Please keep solving the problem until you need to
query. ( If you get to the answer, put it in boxed.) [...]

[assistant] Therefore, the forgotten score is boxed130.

4. Specification (Pan et al., 2025):

Task: Solving a bug of matplotlib.

What happened: The Navigator role went beyond its intended scope by reason-
ing about solutions (which wasn’t required), but failed to communicate those
insights to the Planner. Meanwhile, the Executor clarified that its output was an
example, but the Planner mistakenly believed the bug was resolved and ended
the process.

Where it went wrong:

[HyperAgent_matplotlib_ matplotlib-25433 - INFO -
Inner-Navigator-Assistant’s Response:]

Thought: [...] To work around this issue, a
possible solution is to update [...]

Here’s an example of how you can modify the code to
achieve this: [...] In this

modified code, the ‘onchanged' function updates the
slider value and then calls

‘pyplot.draw() ' to redraw the figure. This should
prevent the input to the widgets

from being blocked.
[HyperAgent_matplotlib__matplotlib-25433 - INFO -
Navigator->Planner:]

Here are the code snippets for the RangeSlider and
Button classes from the

‘lib/matplotlib/widgets.py" file: [...]
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Table 7. Formal Reasoning - 4.1 Logic in Natural Languages

Sub-item

Examples

Reversal Curse

1. Reversal Curse (Berglund et al., 2023):

Trained on: Tom Cruise’s mother is Mary Lee Pfeiffer.
Question: Who is Tom Cruise’s mother? [A: Mary Lee Pfeiffer]
GPT-4: Mary Lee Pfeiffer. v/

Question: Who is Mary Lee Pfeiffer’s son?

GPT-4: I'm sorry, I don’t have that information. X

1. Two-Hop Reasoning (Sun et al., 2025b):
Question: John is the father of Paul. Luke is the father of Tom. Sam is the

Compositional father of Joe. Paul is the father of Ben. Tom is the father of Mark. Joe is the
Reasoning father of Max. Therefore, John is the grandfather of ?7?
Coloring:
Red: Target source/bridge/end entities in the target chain.
Blue: Non-target source/bridge/end entities in the non-target chain.
Answer: Ben
LLM: {‘Ben*:0.33, ‘Mark‘: 0.32, ‘Max*: 0.31,...}
Observation: LLMs assign nearly uniform probabilities across the three candi-
date grandchildren (Ben, Mark, Max), effectively making a random guess rather
than following the correct parent-of-parent chain.
2. Composition of Math Problems (Zhao et al., 2024b):
Individual Problem #1: In right triangle AXY Z with £/ Y X Z = 90°, XY =
24andYZ = 25. Find tan Y.
LLM: L./
Individual Problem #2: Does tan 90° exist?
LILM: No. v/
Composed Problem: In right triangle AXY Z with /Y X Z = 90°, XY =24
and Y Z = 25. Find tan X.
LLM: 2. X
Observation: LLMs can solve the two individual math problems but fail when
the two are composed.
1. Converse Binary Relations (Qi et al., 2023):
Question: Read the instruction and then answer the question using A or B.
Specific Logic Instruction: (x, has part, y) indicates that x has a part called y.
Relations Question: (?, has part, heat shield)

A) Find an entity that has a part called heat shield.

B) Find an entity that heat shield contains.

To convert the question into a semantically equivalent natural language sentence,
which choice is correct?

LLM: A/

Question: Read the instruction and then answer the question using A or B.
Instruction: (x, has part, y) indicates that y has a part called x.

Question: (?, has part, heat shield)

A) Find an entity that heat shield contains.

B) Find an entity that has a part called heat shield.

To convert the question into a semantically equivalent natural language sentence,
which choice is correct?

LLM: B X
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Table 8. Formal Reasoning - 4.2 Logic in Benchmarks

Sub-item

Examples

Math Word
Problem (MWP)
Benchmarks

1. Sample Numeric Values (Gulati et al., 2024):

Problem: Define a growing spiral in the
plane to be a sequence of points with integer
coordinates Py = (0,0), P4, ..., Py such
that n > 2 and:

How many of the points (z,y) with integer
coordinates 0 < =z < 2011,0 < y < 2011
cannot be the last point, P,, of any growing
spiral?

Solution: We claim that the set of points
with 0 < z < 2011 and 0 < y < 2011 that
cannot be the last point of a growing spiral
are as follows: (0,y) for 0 < y < 2011;
(z,0) and (z,1) for1 < z < 2011; (z, 2) for
2 <z < 2011; and (z, 3) for 3 < z < 2011.

This gives a total of

Problem: Define a growing spiral in the
plane to be a sequence of points with integer
coordinates Lo = (0,0), L1, ..., L, such
that n > 2 and:

How many of the points (w, v) with integer
coordinates 0 < w < 4680,0 < v < 4680
cannot be the last point, L,, of any growing
spiral?

Solution: We claim that the set of points
with 0 < w < 4680 and 0 < v < 4680 that
cannot be the last point of a growing spiral are
as follows: (0,v) for 0 < v < 4680; (w, 0)
and (w, 1) for 1 < w < 4680; (w, 2) for 2 <
w < 4680; and (w, 3) for 3 < w < 4680.

This gives a total of

2012 + 2011 + 2011

+2010 + 2009 =

excluded points.

4681 4 4680 + 4680

+4679 + 4678 =

excluded points.

Year: 2011 ID: A1 Final Answer: 10053 Year: 2011 ID: A1 Final Answer: 23398

Explanation: A MWP is abstracted into a symbolic template, from which
different numeric values can be sampled for variables and constants.
Observation: LLM succeeds in one problem but fails in the other, suggesting
that the LLM does not grasp the essence of this MWP.

2. Add Irrelevant Contexts (Shi et al., 2023):

Original Problem: Jessica is six years older than Claire. In two years, Claire
will be 20 years old. How old is Jessica now?

Modified Problem: Jessica is six years older than Claire. In two years, Claire
will be 20 years old. Twenty years ago, the age of Claire’s father is 3 times of
Jessica’s age. How old is Jessica now?

Explanation: The red part inserted is an irrelevant context.

Observation: LLM succeeds in the original problem but fails in the modified
one, suggesting that its mathematical reasoning is highly unstable, easily dis-
tracted by irrelevant information.
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Table 9. Formal Reasoning - 4.2 Logic in Benchmarks

.
Sub-item Examples
1. Perturb Doc Strings & Function Names (Wang et al., 2022):
def test_distinct(data): def test_distinct(data):
Codlng Original Write a python function to determine whether all the Write a Python function to see if all }Perturbed
B h k docstring numbers are different from each other are not. numbers differ from each other. docstring
enchmarks >>> test_distinct([1,5,7,9]) >>> test_distinct([1,5,7,9])
True True
>>> test_distinct([2,4,5,5,7,9]) >>> test_distinct([2,4,5,5,7,9])
False False
>>> test_distinct([1,2,3]) >>> test_distinct([1,2,3])
True True
c:::::tai:'r return len(set(data)) == len(data) return len(set(data)) != len(data) _co":‘;:vﬁnn

Explanation: The doc string in the starter code is changed subtly, which should
not affect the generated code. Yet LLM fails on the new problem, suggesting a
lack of robustness.

Y def removelLowercase(stri1): Perturbed
Original def remove_lowercase(str1): wun i
Function -

name Write a function to remove lowercase ™ame
Write a function to remove lowercase substrings from a given string
substrings from a given string. >>> removelowercase("PYTHon")
>>> remove_lowercase("PYTHon") ('PYTH')
('PYTH') >>> removelowercase("FInD")
>>> remove_lowercase("FInD") ('FID')
('FID") >>> removelowercase("STRinG")
>>> remove_lowercase("STRinG") ('STRG")
('STRG")
- str2 = stri.lower() = New
Original __ roryrn v join([i for i in str1 if i.isupper()1) return str2 | completion

completion

Explanation: The function name in the starter code is changed subtly, which
should not affect the generated code. Yet LLM fails on the new problem,
suggesting a lack of robustness.

2. Adversarial Code Changes (Miceli-Barone et al., 2023):

len, print = print, len
def print_len(x):
“Print the length of x”

v len(print(x)) Xprint(len(x))

LLM preference

Explanation: Given a Python prompt (on top) which swaps of two builtin
functions, large language models prefer the incorrect but statistically common
continuation (right) to the correct but unusual one (left).
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Table 10. Formal Reasoning - 4.3 Arithmetic & Mathematics

Sub-item Examples
1. Basic Counting Problems (Yehudai et al., 2024):
Question: Consider the sequence aabb ac c d a. How many times does the
[IPSE] b r’
Counting letter “a” appear in the sequence’

LLM: 3. X

2. Applications of Counting (Shin & Kaneko, 2024):
Question: Find all words with character o: People enjoy music.
LLM: People, enjoy, music. X

Basic Arithmetic

Description: Just basic arithmetic problems (e.g., addition, subtraction, multi-
plication, division).

Math Word
Problems (MWPs)

1. Specific MWPs (Nezhurina et al., 2024):

Question: Alice has 4 sisters and she also has 1 brother. How many sisters does
Alice’s brother have? Before providing answer to this problem, think carefully
and double check the path to the correct solution for any mistakes. Provide then
the final answer in following form: “Answer:”

LLM: Let’s think through this problem step by step:

1. Alice has 4 sisters and 1 brother.

2. Alice’s brother is part of the same family as Alice.

3. All of Alice’s sisters are also sisters to her brother.

4. Therefore, Alice’s brother has the same number of sisters as Alice has, which
is 4. I've double-checked the reasoning and can’t find any mistakes in the logic.
Answer: Alice’s brother has 4 sisters X

2. Unsolvable or Faulty MWPs (Ma et al., 2024a):

Unreasonable Question
Zaid's $6000 salary: 2/3 rent, 3/4 of rest donated, $700

to daughter. What's left? -~ Incorrect
“’ Assumption
Non-Reasoning Model Response
Rent: 2/3 X $6000=$4000 Remain : $2000
Donation: 3/4 X $2000=$1500 ~ Remain : $500
For Daughter: $700 Remain: $-200
Therefore, Zaid will have $-200 left. ynreasonable
Answer

Reasoning Model Response

Let's calculate Zaid's remaining ... sorry, i was wrong,
lets try .. possibly ... lets double check ... sorry, i was
wrong, lets try ... (14188 tokens are omitted here.)

) Overthinking

Explanation: The MWP is contains faulty assumptions. Non-reasoning LL.Ms
give an unreasonable answer corresondingly, instead of noting the issue in the
original MWP; reasoning LLMs get confused and throw themselves into an
endless thinking process.

45



A Survey on Large Language Model Reasoning Failures

Table 11. Embodied Reasoning - 5.1 1D Text-Based Physical Reasoning

Sub-item

Examples

Text-Based Physical
Commonsense
Reasoning

1. Object Attributes (Wang et al., 2023c¢):

Question: Flannel is more malleable than baseball.

A) True

B) False

Correct answer: True

gpt_turbo: false X

fan-t5-xl: (b) X

dolly-v2-7b: FALES. flannel is more rigid than baseball. X

2. Spatial Relationships (Kondo et al., 2023):

Question: An electric bulb is in a house. Is the electric bulb bigger than the
house?

LLMs: Yes. v

Question: A house is in an electric bulb. Is the electric bulb bigger than the
house?

LLMs: Yes. X

1D Physics &
Scientific Reasoning

1. Simple Physics Law (Gregorcic & Pendrill, 2023):

Question: A teddy bear is thrown into the air. What is its acceleration at the
highest point?

ChatGPT’s initial response:

(a) At the highest point of its trajectory, the teddy bear’s acceleration would be
equal to the acceleration due to gravity, which is 9.8 ms~2 downward.

(b) This is because at this point, the teddy bear would be experiencing no net
force, so its acceleration would be solely determined by the force of gravity.
(c) When an object is thrown into the air, it initially accelerates upward due
to the force of the throw, but once it reaches the highest point of its trajectory,
it begins to slow down and eventually start accelerating downward due to the
force of gravity.

(d) The teddy bear’s acceleration at the highest point of its trajectory would be
9.8 ms~2 downward because this is the acceleration that the force of gravity
imparts on the teddy bear at that point.

Where it fails:

— Statement (b) is not only incorrect but also contradicts (a) and (d): no net
force but non-zero acceleration is impossible.

— Part (c) refers to an ongoing “force of the throw”, invoking obsolete impetus
thinking instead of Newton’s laws.
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Table 12. Embodied Reasoning - 5.2 2D Perception-Based Physical Reasoning

Sub-item Examples

1. Detecting Anomalies (Bitton-Guetta et al., 2023):
T B

What’s Wrong with S S
the Picture? : )

(a) a pair of white ice  (b)acloseupofaper- (c) a person is skating
skates on an ice rink son’s skates on an ice  on an ice rink

rink
Explanation: For image (c), a person is skating — but not on ice. The floor is
made of wooden parquet, which makes the scene unnatural. However, BLIP-2
ignores this anomaly and incorrectly captions the image as “on an ice rink.”

2. Simple Visual Test (Rahmanzadehgervi et al., 2024):

Examples from BlindTest benchmark with VLMs’ responses

P1 P2 P3 P4 P5 P6 PT
) X I I I it
ckno ement ~ e [ ra | gune | b | D J B

P o -
1 X | Yes X| o X 6 v 5 X | 3x4 v 1 v
4+ 1 X | No /| w X 5 X 3 v |3x4 2 X
a 1 X | Yes X| o X 5 X 4 X | 4x4 X 2 X
0 v | No v| 1 v 6 v 3 v |3x4 1 v

GPT-40 4 Gemini-1.5 @& Sonnet-3 [* Sonnet-3.5

P1: How many times do the blue and red lines touch each other? Answer
with a number in curly brackets, e.g., {5}.

P2: Are the two circles overlapping? Answer with Yes/No.

P3: Which character is being highlighted with a red oval? Please provide
your answer in curly brackets, e.g. {a}

P4: How many circles are in the image? Answer with only the number in
numerical format.

P5: How many squares are in the image? Please answer with a number in
curly brackets e.g., {10}.

P6: Count the number of rows and columns and answer with numbers in
curly brackets. For example, rows={5} columns={6}.

P7: How many single-color paths go from A to D? Answer with a number in
curly brackets e.g. {3}.

Explanation: Advanced models fail on very basic visual tests.
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Table 13. Embodied Reasoning - 5.2 2D Perception-Based Physical Reasoning

Sub-item Examples
1. 2D Physics (Shen et al., 2025):
2D Physics and .
Physical OpthS e
Commonsense

Description: 30.0%
When the light ray illustrated in figure passes through the glass block of
index of refraction n = 1.50, it is shifted laterally by the distance d.

Question:
Find the time interval required for the light to pass through the glass
block.

GPT-40:

To find the time interval required for the light to pass through the glass block, we need to calculate the
time it takes for the light to travel the distance it covers inside the block. Here's the step-by-step
reasoning:

Step 1: Understand the problem

Step 2: Speed of light in the glass

Step 3: Distance traveled by the light in the glass

The light ray travels diagonally through the glass block. The thickness of the block is \( 2.00 \, \text{cm} =
0.0200 \, \text{m} \), and the light travels at an angle of \( 30~\circ \) with respect to the normal.

The actual distance \( L \) traveled by the light inside the block is the hypotenuse of a right triangle,
where the thickness of the block is the adjacent side. Using trigonometry:

\[L = \frac{\text{thickness}}{\cos(30~\circ)}.\]

Substitute the values:

\[L = \frac{0.0200}{\cos(30"\circ)}.\]

Step 4: Time taken to travel through the glass

Final Answer:
The time interval required for the light to pass through the glass block is approximately:
\[t \approx 1.16 \times 10"{-10} \, \text{s}.\]

Reasoning Type: Physical Model Grounding Reasoning, Spatial Relation Reasoning
Error Type: Text Reasoning Error

Ground Truth: 106ps

Explanation: A sample error case of Optics.
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Table 14. Embodied Reasoning - 5.2 2D Perception-Based Physical Reasoning

Sub-item Examples

2. 2D Physical Commonsense (Chow et al., 2025):

2D Physics and Question: According to the video, which alteration to the light source is most likely
Physical to have triggered the phenomenon? <video 1>
Commonsense

Option:

(A) The color of the light changes from yellow to cyan

(B) The color of the light changes from green to red

(C) It's just that the light source is weaker and the light source position remains the same
(D) It's just that the light source is stronger and the light source position remains the same

<video 1>

V The answer is C. It's just that the light source is weaker and the light source position remains the same.
Here's the reasoning:

1. Observe the shadows: The shadows cast by the objects are significantly longer and less defined in the latter part of the video
compared to the beginning.
2. Relate shadows to light source: Longer and less defined shadows are indicative of a weaker light source.
3. Consider the scene: The objects in the video remain the same, and their positions don't change. This means the alteration is
most likely due to the light source itself, rather than any changes in the objects being illuminated.
4. Eliminate other options:

- Changing the color of the light (A and B) wouldn't necessarily lead to longer and less defined shadows.

- A stronger light source (D) would result in shorter and sharper shadows.

Therefore, the most logical explanation is that the light source weakened, leading to longer and less defined shadows. x

Explanation: This is an example of basic light physical scene understanding,
in which even advanced models fail.

1. Visual Grounding in 2D Spatial Scene (Ghaffari & Krishnaswamy,

2024b):
Visual Input for . ——
Spatial Reasoning - - -

side

Explanation: We see that despite there being two cylinders in the scene, the
word “cylinder” is strongly grounded to the upright cylinder (resting on its flat
side), even when the text prompt mentions the cylinder on its round side. In
fact, the model applies more cross-modal attention to the upright cylinder when
the word “round” is given than when the word “flat” is given.
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Table 15. Embodied Reasoning - 5.3 3D Real-World Physical Reasoning Failures

Sub-item

Examples

Real-World Failures

in Affordance and
Planning

1. Run Time Error (Li et al., 2025):

VirtualHome: Trajectory — Runtime Error

Wrong Order Missing Step Affordance Error Additional Step
Model: Model: Model: Model:
PUTBACK(cup.100 ~ SeMini 1.5 Flash WALK(bathroom.1)  Gemini 1.5 Flash V“?”;é’(”“”“ef””’“ Mixtral 8x22b MOE STANDUR) Mistral Large
0,sink.231) Task Name: RINSE(hands_both ~ Task Name: -319) Task Name: Task Name:
e Drink 11000) Wash hands FIND(mouse.413)  work . Setup table
(cup.1000)  ragcip; Task ID: TYPE(mouse.413)  Task ID: Tosk ID:

scene_1_171 2 o scene_1_813_2 scene_1_670_2 scene_1_93_1
X Precondition XK Precondition X Affordance X Current State

holds(cup.1000) = False next_to(sink.42) = False mouse.413 can't be typed stend_up(character.4s) = True
 Historical State x""‘ds(soap-'ﬂm"“al‘fe 1

holds(cup.1000) = False Historical State stand_up(character.45) = False

next_to(sink.42) = False
holds(soap.100) = False

BEHAVIOR : Trajectory — Runtime Error

Wrong Order Missing Step Affordance Error Additional Step
Model: Model: Model: Model:

RIGHT_GRASP(car  Gor 4, stained(bathtub_35) GPT-4o sliced(strawberry_  ciayde-3 sonnet Claude-3 Opus
ving._knife_69) RIGHT. GRASP, 0 OPEN(top_cabinet_27) P
LEFT_GRASP(toma 125k Name: _ (ST Task Name: Task Name: Task Name:
BT Chopping ub_brush_0) Cleaning g’gg&;’:’;"’/i]@ﬁgf Bottling OPEN(top_cabinat 27) Cleaning up

- CLEAN|(bathtub_35] Y it - ~" the kitchen
SLICE(tomato_61) Vegetables It ) bathtubs Estrawbery.0) fruit
XPrecondition XPrecondition X Affordance X Current State

not_in_hand(tomato_61)=Fal: soaked(scrub_brush_0) = False strawberry_0 is sliced and not open(top_cabinet_27) = Tru
 Historical State KHistorical State interactable. Should interact i

not_in_hand(tomato_61)= True soaked(scrub_brush_0) = False with strawberry_0_part0 and open(top_cabinet_27) = False

strawberry_0_part1

Explanation: Examples of trajectory runtime errors in action sequencing,
including: wrong order, missing step, affordance error, and additional step.

Spatial and

Tool-Use Reasoning

1. Real-World Distance Estimation (Chen et al., 2024a):

User

You are a cleaning robot that is 1
meter wide, now you are

standing in a living room and see
the image, you want to move ¢
from here to the door that leads
to the backyard, do you think | =
can go through the path between
the sofa and the table and
chairs.

GPT-4V: As an Al I’m unable to physically interact with environments, but I
can provide some insights based on the image provided. ... From the image,
we can make some visual estimations. Judging from the image, it appears that
the sofa and the table are quite close to each other, and there may not be enough
space to accommodate a 1-meter wide robot. ..

Safety and
Long-Term
Autonomy

1. Jailbreak Embodied LLMs in the Physical World (Zhang et al., 2024c¢):

# Frame 120 éinmf 160 7T

(a) record_someone_shower

Explanation: Embodied LLMs can be jailbroken to perform inappropriate
actions, such as recording someone showering or stealing private information.
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