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ABSTRACT

Deep learning models are vulnerable to adversarial attacks, raising important con-
cerns for their use in safety-critical applications. Existing defense methods such
as empirical defenses are effective in practice but lack theoretical guarantees,
while provable defenses provide a certified robustness radius which is significantly
smaller than that achieved by empirical defenses. In this work, we design robust
classifiers that leverage the structure of the underlying data distribution, bridging
the gap between theoretical certification and strong practical performance. First,
we focus on a simple setting where the data distribution is a Gaussian mixture
and provide necessary and sufficient conditions under which a robust classifier
is guaranteed to exist. We also propose a provably robust classifier along with
its certificate of robustness and a generalization guarantee for the learnt certified
radius. Next, we generalize our approach to any complex data distribution by
using an encoder network to map the input data to a mixture of Gaussians. We
also provide a robust classifier with a guaranteed certificate of robustness. Ex-
periments on benchmark datasets indicate that our method outperforms existing
top baselines for certified accuracy on CIFAR-10 dataset, while achieving com-
petitive performance on ImageNet even against computationally demanding prior
methods.

1 INTRODUCTION

Deep learning models and Al systems have been shown to be susceptible to adversarial attacks,
wherein subtle perturbations to the input data lead to erroneous model outputs (Szegedy et al., 2014).
This phenomenon raises serious concerns regarding the deployment of Al models in safety-critical
applications. From autonomous vehicles to medical diagnostics and financial decision-making ap-
plications, the reliable and trustworthy behavior of the underlying Al models is of enormous impor-
tance.

There is an extensive literature on defense methods aiming to defend empirically Al models against
existing attacks (Metzen et al., 2017; Papernot et al., 2016; Gu & Rigazio, 2014; Madry et al., 2017,
Wong et al., 2020). The currently established methods aim to robustify the underlying model by per-
forming additional training, input preprocessing, denoising filters or even applying multiple defense
strategies (Madry et al., 2017; Shafahi et al., 2019; Tramer et al., 2020). In parallel, the adversarial
landscape continues to evolve, with new and more sophisticated attack strategies consistently de-
veloped to bypass existing defenses (Athalye et al., 2018; Carlini et al., 2019), creating a recurring
cycle between old defenses and new attack strategies.

On the other hand, certified methods have been developed in order to provide provable guarantees
of robustness for the underlying models. More specifically, randomized smoothing and its variants
(Cohen et al., 2019; Yang et al., 2020; Salman et al., 2022; Chiang et al., 2020) have been the
predominant approach offering probabilistic certificates of robustness by smoothing the classifier
with Gaussian noise. Beyond randomized smoothing, other certified approaches employ convex
relaxations of the adversarial problem (Wong & Kolter, 2018; Raghunathan et al., 2018a), duality-
based bounds (Dvijotham et al., 2018), interval bound propagation (Gowal et al., 2018; Zhang et al.,
2019), as well as semidefinite programming approaches (Raghunathan et al., 2018b).

While the aforementioned certified defenses offer rigorous robustness guarantees, their development
has also created a growing interest in understanding the fundamental principles and limitations be-
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Figure 1: The proposed certifiably robust classifier. Right: We prove that Gaussian mixture distri-
butions satisfy certain localization properties under which robust classifiers are guaranteed to exist
(§2), and construct computable and provably robust classifiers supported on these distributions (§3).
Left: We extend the guarantees and classifiers to real-world data distributions by leveraging a (lo-
cally) Lipschitz encoder that maps real-world distributions to a Gaussian mixture (§4).

hind robust classification. Recent theoretical results identify structural and distributional conditions
under which robustness can be provably achieved (Dohmatob, 2019; Shafahi et al., 2018). These
results suggest that, in the absence of additional assumptions on the data distribution, certifying
robustness may be inherently challenging, motivating a shift toward frameworks that explicitly in-
corporate distributional knowledge into the certification process. To this end, Pal et al. (2023; 2024)
proposed taking into account the intrinsic properties of the data distribution to circumvent existing
impossibility results and effectively certify the robustness of deep learning models. In particular,
they provide necessary and sufficient conditions under which a robust classifier is guaranteed to
exist and a method for constructing certifiably robust classifiers based on the properties of the un-
derlying distribution. Nevertheless, it remains unclear how to verify these conditions in practice for
real-world data distributions. Moreover, the proposed classifier is too computationally intensive to
be used in large datasets commonly encountered in modern applications.

In this work, we aim to bridge this gap between efficient empirical approaches and existing theoret-
ical methods of certifiable defenses by addressing the following central question:

How can we exploit the structure of the data distribution to design classifiers
with provable robustness and strong empirical performance?

Paper Contributions. In this paper, we make the following contributions:

1. Theoretical Conditions for Robustness in Gaussian Mixtures: We establish sufficient and
practically verifiable theoretical conditions under which a robust classifier is guaranteed to
exist for Gaussian mixture distributions. The established results significantly extend the
seminal work of Pal et al. (2024), explicitly highlighting the critical role played by geo-
metric properties of the data distribution (e.g., Gaussian mixture means and covariances)
in ensuring robustness.

2. Construction of a Certifiably Robust Classifier with Provable Guarantees: Building upon
our theoretical insights, we propose a robust classifier that leverages the geometry of the
underlying data distribution in order to be provably robust against £/ —norm bounded per-
turbations. We provide rigorous robustness certificates for the proposed classifier as well
as the corresponding generalization bounds, fully characterizing the certified robustness of
the proposed classifier.

3. Generalizing to Complex, Real-world Data Distributions: We extend our theoretical frame-
work beyond Gaussian mixtures by introducing an encoder network that effectively maps
real-world input distributions to a Gaussian mixture distribution. In this way, we are able
to utilize our previously derived robust classifier and rigorously establish a theorem for the
certified robustness of the whole pipeline for any complex input distribution.

4. Experimental Evaluation on Benchmark Datasets: We empirically validate our approach on
synthetic and real-world datasets, achieving superior certified accuracy and outperforming
the existing state-of-the-art pipelines in certified robustness.



Under review as a conference paper at ICLR 2026

2 SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A ROBUST CLASSIFIER
FOR GMMSs

Consider the setting where the data distribution D is a Gaussian Mixture Model (GMM) with K
components corresponding to the K classes: D; = N (u;,%;), Vi € [K]. We examine the
necessary conditions under which each class conditional in the given mixture of Gaussians is
(C,€,0)—localized with respect to the {5 distance. Ensuring that each Gaussian marginal D; is
localized will satisfy the requirement according to Pal et al. (2023) in showing the existence of a
robust classifier.

Theorem 2.1. Assume that the data distribution D is a d-dimensional GMM and D; = N (u;, ;)
corresponds to the class conditional of the i—th class. Let S;, Vi € [K], be the ellipsoid set

Si={(x— )" =7 (@ — ) <2} 1

Then, each Gaussian marginal D; is (C, ¢, 0)-localized on the corresponding set S;, Vi € [K], if
and only if the parameters ¢, § satisfy

r'(¢+1)C
§<1—Fa(r?), e<ln|—2"~ 1} 2
< 2 (ri), €< n(ﬂd/%g det(Zi)> 2

where I,z (-) is the CDF of the X% —distribution and I'(-) is the Gamma function.

Theorem 2.1 provides the necessary conditions for the class conditionals D;, Vi € [K], to be
(C,¢,0)-localized. More specifically, the established conditions are provided for each localiza-
tion parameter that if satisfied ensure that the Gaussian marginals localize over the aforementioned
sets. Importantly, the localization sets resemble the intuition that most points in a Gaussian marginal
concentrate around the mean and the shape of the localization set is dictated by the shape of the
corresponding covariance matrix 3;, Vi € [K].

The following theorem provides sufficient conditions under which the data distribution D is
(C, €, 0,)-strongly localized, which consists of a stronger notion of localization.

Theorem 2.2. The data distribution D is (C, e, d,~)-strongly localized with respect to the o
distance, if each class conditional D; = N (u;, ;) is (C, €, d)-localized on an ellipsoid set

Si = {(z — p)" 7 (@ — ;) < r?} with parameters

r¢+1)c
§<1=Fag(rf), e<n <(2)> 2 P (B <, 3)

nd/2rd, /det(3;) oy

where Fz(,,) is the CDF of the x2(w) distribution with d degrees of freedom and centrality
parameter w, I is the Gamma function, Ap;, (2) is the smallest eigenvalue of X,

2e

—1/2
wy = 1252 n = )l and Ry = ——ess
min\<j
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Let us pause to elaborate on the implications of the theoretical results established so far. Based on
the recent work of Pal et al. (2024), if the data distribution is (C, €, 4, )-strongly localized, then
there exists an (e, d)-robust classifier. However, given that the aforementioned result holds for any
distribution D, the previous work of Pal et al. (2024) does not characterize the localization sets
nor provides closed-form expressions for each localization parameter. Instead, by focusing on a
structured setting instead we are able to define the localization sets S; and provide in Theorem 2.2
practical sufficient conditions for the existence of a provably robust classifier. On the other hand,
(Pal et al., 2024) proves that when classes are balanced, a robust classifier exists only if all class-
conditionals are localized. Thus, using Theorem 2.1 we can provide a way of testing whether there
is an (e, 6)-robust classifier for the underlying data distribution.
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3 A PROVABLY ROBUST CLASSIFIER FOR {5 ATTACKS

In this section, we show how to construct a provably robust classifier against /5 attacks for a Gaussian
mixture model utilizing the intuition developed in the previous theoretical results. According to the
established results, if the underlying Gaussian mixture is strongly localized over the ellipsoid sets
S;, then a robust classifier is guaranteed to exist. Intuitively the robust classifier should depend on
and leverage the structure of the localization sets in order to classify the inputs correctly.

The proposed nearest ellipsoid (ELLIPS) classifier operates on ellipsoids E={E, F», ..., Ex},
each one having an associated label y; € {1, 2, ..., K} corresponding to the class 4, and can be seen
as an instantiation of the Bayes classifier for that setting. The ellipsoid E; is defined by the tuple
(i, Ei)ie[ K], Where p;, 33; denote the center and covariance matrix of the given ellipsoid. We, also,
let IT = (7;);¢[x] be the set of priors of the marginal Gaussian distributions. Having access to the
sets &, I1, the proposed classifier is given by

ELLIPS(z,E,1I) = -, (5)
where
i* = argmax{score(z, E;,m;)},
i€[K]
score(z, By, m;) = —di(z, B;) —log (det(%;)) + 2log(m;).

and dp/(z, E;) denotes the Mahalanobis distance of the input sample = from the i-th ellipsoid.

The classifier ELLIPS is a nearest ellipsoid classifier with respect to the dj; distance that takes into
account two additional terms regarding the shape of the ellipsoid defined by ¥; and the prior ;. In
this way, the proposed classifier can leverage the geometry of the underlying distribution in order to
effectively classify the corresponding input z € X.

3.1 CERTIFICATE OF ROBUSTNESS

In this section, we provide a certificate of robustness against ¢5 adversarial attacks for the ELLIPS
classifier. In order to establish theoretical guarantees for the certificate, we first need to define the
notion of margin. Formally, the margin of the ELLIPS classifier at a point z € X’ is defined as:

m(z) = score(x, E;, ,m;, ) — score(x, By, , m;,),

where i, = arg max;¢ | {score(z, £y, 7;) } and iy = arg max,,; {score(z, E;,m;)} are the classes
with the highest and second highest score, respectively. The following theorem provides a certificate
of robustness the ELLIPS classifier based on the margin of each point z € X'.

Theorem 3.1 (Robustness Certificate). Let

i. = arg max{score(x, E;, m;)}, 12 = arg max{score(z, E;, 7;)}, i, = arg max{score(z’, E;, m;)}
i€[K] e =

be the indices of the ellipsoids with the highest and second highest scores for the points z, 2’ € X
respectively. Then, we have that

ELLIPS(z, &, 1) = ELLIPS(2/, &, 10)
whenever
m(z)

\/c?\/l + (= Amin) +m(x) + cpr

|z —zlls <

< (6)
where A, 1S the minimum among all eigenvalues of the matrices W; = E;l — Z;I,Vi = G
(—Amin)+ = max(—Amin, 0), and cpy = rirﬁx HE;l(m - )T — E;l(x — )T |2

Theorem 3.1 provides a certificate of robustness for the classifier ELLIPS. More specifically, it
establishes that the proposed classifier remains robust for any perturbation of size € = ||z —’||5 that
is upper bounded by the expression (certified radius) of Theorem 3.1. Importantly, the established
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certificate of robustness utilizes the geometry around the sample x to be certified and allows for
tighter certification based on the local curvature illustrated by Anin. Specifically, if Apnin < 0,
Theorem 3.1 provides a second-order certificate, while if A,;, > 0 it resembles a first-order formula
for certified radius as common in the literature. Intuitively, the maximum allowed perturbation
depends on the margin m(x) of the current point as well as the geometry of the classifier’s landscape
as indicated by the minimum eigenvalue \,;;, of the difference of covariance matrices and the term
Cpf-

3.2 ROBUST GENERALIZATION BOUND

In this section, we consider the practical implementation of the ELLIPS classifier and provide a
generalization bound for the certificate of robustness of the learnt classifier. So far, we have assumed
that the parameters (u;, ¥, m;)ic[k) of the ellipsoids are known to analyze the robustness of the
proposed classifier. Hereinafter, we consider the learnt classifier ELLIPS which uses the sample
mean, sample covariance and class proportions for estimating the true parameters of the underlying
distribution. Specifically, if {z;}72, ~ D; are n; samples from the class i € [K], the algorithm
uses the following estimates

1 & 1 ni
. :EZ%" i = ;Z (x5 — )", fTiZ;Z, (7
7,]:1

where n = Zfil n; is the total number of samples. Based on the above estimates, we derive
generalization bounds that establish with high probability the robustness of the learnt classifier.
More specifically, the following theorem indicates that with high probability the learnt certificate
of robustness is close to the true certificate of robustness, thus ensuring the robustness of the learnt
classifier ELLIPS.

Theorem 3.2. For a sample (z, ), let R(z), R(z) denote the true and learnt radius of robust-
ness respectively. If the number of samples observed from each Gaussian distribution D; is

9/2 O, 1 . . g
n=0 (%2(5)), then for any 0 < € < €y, it holds with probability at least 1 — § that

R(2) — R(2)| < O (¢)

where €min = mMin{Amin, Amin(2;), €ar}, Amin is the minimum over all eigenvalues of the ma-
trices W; = Ej_l — Ej_*l,‘v’j # j« and A\pin(2;), denotes the minimum eigenvalue value of the
covariance matrices X;,Vj € [K].

Theorem 3.2 provides a generalization bound for the certificate of robustness of the ELLIPS clas-
sifier. More specifically, it establishes the required number of samples such that the learnt certified
radius of robustness is e-close to the true certified radius of robustness. Interestingly, the provided
bound accommondates the change in the expression of (8) based on the local geometry induced at
into account both of the closed-form expressions from Theorem 3.1, thus fully characterizing the
generalization of the combined formula of certified radius.

4 GENERALIZING TO COMPLEX REAL-DATA DISTRIBUTIONS

In this section, we focus on data distributions that are present in real-world applications and might
be more complex than the mixture of Gaussians considered thus far. This inherent complexity in
the data makes the theoretical guarantees about robustness of an underlying pipeline notorious to
establish in practical situations by explicitly analyzing the underlying distribution.

In this work, we follow a different approach by performing a fine-grained analysis of the properties
of a certifiable classifier in the structured and controlled setting of a Gaussian mixture distribution
and then generalize our results to construct a provably robust classifier for any encountered data
distribution. In particular, we show that by leveraging a neural network f that maps the initial com-
plex data distribution D, into a mixture of Gaussians D, and then utilizing the already established
machinery for the latent Gaussian mixture, a certifiably robust classifier (GENELLIPS) can be in-
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stantiated in practice and demonstrably attain competitive certified robust accuracy empirically in
benchmark datasets.

We, first, provide a certificate of robustness for the proposed generalized classifier (GENELLIPS)
that acts on any arbitrary input distribution and uses an encoder network f that is Lipschitz contin-
uous.

Theorem 4.1. Let f be an Lipschitz continuous encoder mapping the input distribution D, to a
Gaussian mixture D, . Denote with

i = argmax{score(f(x), E;,m;)}
i€[K]

iy = arg max{score(f(z), B;,m;)}, iy = argmax{score(f(z), E;,m;)}
i i
be the indices of the ellipsoids with the highest and second highest scores for two points z, 2’ € X
respectively. Then, we have that ELLIPS(f(x),&,II) = ELLIPS(f(z’), £,1I) as long as

m(f(@))
L (Vs + (Ain)4m(F@) + ar)

; ®)

2" — |2 <

where Anin is the minimum among all eigenvalues of the matrices W; = X - Ei: 1, Vi # iy,
(=Amin)+ = max(—Amin, 0), and cpr = o 1= (F (@) = pa)T = Z7H(f (@) = )" |2

Theorem 4.1 provides the certified radius of the generalized classifier (GENELLIPS) that uses first
the encoder f to map the input data into a Gaussian mixture and then classifies the embedded sam-
ples with the ELLIPS classifier. It is important to note that the necessity of a Lipschitz encoder in
the above theorem can be relaxed in practice by using an encoder that is locally Lipschitz around the
certified sample = € X. In this way, estimating empirically the local Lipshitz constant L(x) instead
of the global one and leveraging the certificate of robustness established in Theorem 4.1, one can
effectively compute the certified radius in practice.

It suffices now to select an appropriate encoder network and utilize a certifiable method to estimate
the local Lipschitz constant. We provide all the associated details for the implemented pipeline in
the next section.

5 EXPERIMENTAL EVALUATION

We conduct experiments on both synthetic data and benchmark datasets validating our theoretical
results and evaluating the robustness of our proposed classifier in practice.

5.1 SYNTHETIC EXPERIMENTS

Setup. We conduct experiments in the Gaussian mixture setting, where the input distribution is
comprised of K classes and each class is distributed according to N (p;,%;), Vi € [K]. We run ex-
periments for multiple setups testing for different number of classes K = {2, 3, 5, 10} with different
distances R = {2,4, 6} between them, as well as isotropic and non-isotropic covariances matrices
Y. The means are generated to lie in a circle with angle 2?” and radius R = {2,4, 6} from the center
in order to control the intersection between the classes. The covariance matrices Y; are selected to
be either isotropic or anisotropic. In the case of isotropic covariances, ¥; = I, while in the case
of anisotropic covariance matrices the variance in the principal and second principal direction is
1.5, 0.5 respectively.

Empirical Validation of Theoretical Results. We, first, verify empirically our theoretical results
established in Sections 2 and 3. We observe that the proposed closed-form expressions for the com-
putation of the localization parameters €, §,y can be used to instantiate the framework established
by Pal et al. (2023), where the proposed classifier has certified accuracy equal to 1 — § — . Simul-
taneously, they validate the standard intuition of Pal et al. (2023) that data distributions with more
distant and non-intersecting classes should have smaller localization parameter v, as well as that the
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localization sets should include most of the mass of the empirical marginal producing a small local-
ization parameter 6. The above observations validate qualitatively our established theoretical results
and provide evidence for the usefulness and practicality of our results in instantiating the framework
of Pal et al. (2023).
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Figure 2: Comparison of different certification methods in Gaussian Mixture distributions. The
proposed method outperforms the prior certification scheme of Pal et al. (2023), achieving higher
robust accuracy against /o attacks.

Comparison of Our Method with Pal et al. (2023). We empirically validate the robustness cer-
tificate established for the ELLIPS classifier in Theorem 3.1 and compare the certified accuracy
achieved by our method with the framework proposed by Pal et al. (2024). As shown in Figure 2,
our approach consistently provides tighter certified robustness guarantees across all experimental
settings, significantly outperforming the method of Pal et al. (2023). Furthermore, the certified ac-
curacy for the ELLIPS classifier provided in Theorem 3.1 closely approximates the empirical robust
accuracy obtained via PGD attacks, demonstrating the practical tightness of our bound.

Comparison of Our Method with Randomized Smoothing. We compare the certified robustness
of our method against the widely adopted technique of randomized smoothing. We perform ran-
domized smoothing for different number of samples n = {102,104, 105} and report the certified
accuracy achieved in each case. As shown in Figure 3, our method consistently achieves higher cer-
tified accuracy across all cases, highlighting the tightness and efficiency of our certification method
empirically.
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Figure 3: The proposed method outperforms randomized smoothing for different number of sam-
ples, producing higher certified accuracy.
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5.2 EXPERIMENTS ON BENCHMARK DATASETS

Setup. We evaluate the robust accuracy of the proposed GENELLIPS classifier on datasets with
real-world images. Recall that Theorem 4.1 guarantees the robustness of the proposed classifier by
leveraging a Lipschitz encoder that maps the input distribution to a mixture of Gaussians. Thus,
to build such a classifier we take a FARE-4 encoder (Schlarmann et al., 2024) pre-trained with an
adversarial training objective, and finetune it using an objective promoting isotropy and Gaussianity
of the latent distribution. For a detailed description of the loss used for each dataset we refer the
interested reader to Appendix 13.1. Additionally, we utilize the CLEVER method (Weng et al.,
2018) to estimate the local Lipschitz constant at each sample. Following common practice, we
select a confidence interval of v = 99.9% for estimating the Lipschitz constant of the encoder f via
using n = 1000 Monte Carlo samples in the CLEVER method.

Results. We compare our method against state-of-the-art certified robustness approaches reported
in the SoK benchmark by Li et al. (2023) in the CIFAR-10 and ImageNet dataset. As shown in
Table 5.2, GENELLIPS consistently outperforms prior methods in the CIFAR-10 dataset, achieving
higher certified accuracy across all perturbation levels ¢ = {0.25,0.5,1.0}. Notably, the classifier
simultaneously maintains superior clean accuracy compared to the reported baselines. The presented
results highlight the robustness of the proposed pipeline as well as the practical effectiveness of our
certification framework.

Clean Certified Accuracy (%

Model Accuracy v (%)

€e=025 €=05 e€=1.0
SmoothAdv (Salman et al., 2019) 86.2% 81.0% 544%  34.8%
DRT + MME (Gaussian) (Yang et al., 2022) 81.4% 70.4% 57.8%  34.4%
DRT + MME (SmoothAdv) (Yang et al., 2022) 72.6% 67.2% 60.2%  39.4%
DRT + WE (SmoothAdv) (Yang et al., 2022) 72.6% 67.0% 60.2%  39.5%
GENELLIPS (Ours) 90.14 % 84.5% 782%  40.5%

Table 1: Certified accuracy on CIFAR-10 dataset. The proposed method outperforms the state-of-
the-art models in the SoK benchmark, achieving higher robust accuracy without compromising the
clean accuracy.

Model e=1.0 e€=2.0
DensePure (Xiao et al., 2022) 67.0% 42.2 %
Denoising with Pre-trained Diffusion Models (Carlini et al., 2023) 54.3% 29.5%
Randomized Smoothing and Adversarial Training (Salman et al., 2020)  45.0% 28.0%
Ensemble Models and Variance Reduction (Horvath et al., 2022) 44.6% 28.6%
Ensemble Models (Yang et al., 2022) 44.4% 30.4%
GenELLIPS [Ours] 45.7% 31.1%

Table 2: Certified accuracy on ImageNet dataset. Our approach performs competitively with the
models in the SoK benchmark. Demonstrably, it outperforms all state-of-the-art models apart from
the ones that use diffusion models, which might be computationally expensive in practice.

On the ImageNet dataset our method performs competitively against the top baselines for certified
accuracy reported in the SoK benchmark. In Table 5.2, the proposed method outperforms all prior
baselines with the only exception the ones that utilize diffusion models and thus incur a significantly
high computation cost for certification. Specifically, DensePure (Salman et al., 2020) and (Carlini
et al., 2023) necessitate performing (multiple) runs of denoising in the attacked image to generate
enough samples and then apply a majority vote classifier for certifying robustness. Instead of the
computationally cuambersome diffusion process, our method attains competitive robust accuracy by
leveraging a pretrained VIP model and using the closed-form certification formula established in our
theoretical analysis.
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6 CONCLUSION

We have proposed a principled framework for leveraging the structure of the data distribution to
design classifiers that are both certifiably robust and achieve strong empirical performance. Our
theoretical contributions extend prior localization results by providing practical and verifiable con-
ditions for computing localization parameters in Gaussian mixture models, thus ensuring the exis-
tence of a robust classifier. Building on the aforementioned results, we introduced a robust classifier
that exploits the geometric structure of the underlying distribution and is provably robust against
{s-adversarial attacks. To handle complex real-world distributions, we generalized our approach
using an encoder network that maps inputs to a structured Gaussian mixture, and established a certi-
fiably robust pipeline for any underlying data distribution. Empirical evaluations demonstrated that
our method outperforms state-of-the-art robust pipelines, achieving high certified robustness and
simultaneously maintaining strong clean accuracy.

There are several promising directions to be considered for future research. One natural extension
is to investigate how our framework can be adapted to other adversarial threat models, providing
certified classifiers under different /,-attacks. Another interesting direction involves developing
training strategies that produce encoder networks with lower local Lipschitz constants, thus improv-
ing the certified radius under our theoretical guarantees. Overall, we hope our work motivates a
new paradigm in certified robustness, whereby the proposed classifiers leverage by design the geo-
metric properties of the data distribution to achieve tighter certified guarantees and simultaneously
improved empirical performance.
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7 ADDITIONAL RELATED WORK ON CERTIFIED ROBUSTNESS

There has been a great line of work on methods establishing theoretical guarantees in the field of
certified robustness. The closely related ones to our theoretical investigation aim to correlate the
properties of the underlying data distribution with the existence of a robust classifier. In Dohma-
tob (2019); Pydi & Jog (2020), the authors focus on a binary classification setting and provide a
lower bound on the robust classification risk that can be attained. The established bound depends
on the Wasserstein distance between the two class conditional distributions, showing that the robust
risk increases as the class conditional become closer. This intuition is further extended in the gen-
eral multi-class classification setting in Pal et al. (2024; 2023) by considering the sets where each
marginal distribution localizes and measuring their overlap to estimate the robust risk. However,
Pal et al. (2024) do not provide a practical method for computing the associated localization sets,
thus constraining the applicability of the established method in practice. Our work instead expands
the previous results by providing concrete expressions for the localization sets and the associated
parameters and proposing a classifier that utilizes the localization sets in order to robustly classify
the input points.

Given that the proposed ELLIPS classifier consists an instantiation of the Bayes classifier for the
GMM setting, we provide additional theoretical studies on the optimal Bayes classifier for the
clean and adversarial classifier on that setting. Recent work of Dobriban et al. (2023) uses ro-
bust isoperimetry and establishes the closed form expressions of the Bayes optimal classifier for the
adversarial classification task for two or three classes. The general case even though a fundamental
question to the best of our knowledge remains open. Lastly, a specific examination of the classifier
for ¢y attacks is provided in Ashtiani et al. (2020) establishing an asymptotically optimal robust
classifier for the GMM setting. We leave as future work examining whether our approach, that uses
an encoder and then a classifier for the GMM setting, can be combined with the robust classifier of
Ashtiani et al. (2020) to establish robust high certified accuracy results against ¢, adversarial attacks.

8 PROOF OF THEOREM 2.1

Proof. In order to prove that each D;,Vi € [K], is (C, ¢, §) —localized, we need to show that there
is a set S; C X such that the following hold

pi(Si) = 1-0 &)
Vol(S;) < Ce ¢ (10)

where p; is the density function of D;. We, first, define the set .S; on which each Gaussian distribution
D, localizes. To do so, consider the probability density function

pi(x) = ;e—%(w—lti)qﬂzfl(x—m)
(27)ddet(33;)
and the c level-set
A.={z e X :pi(z) > ¢} (11)

for some fixed 0 < ¢ < p;(;). We want to select ¢ such that at least 1 — § of the mass is included
in this level set, so that inequality (9) holds. Note that for a fixed c the level-set is an ellipsoid, as it
holds that

pi(z) = ¢
<= Inp;(z) = lnc
= (z—p)'S N e — ) = —[2In(c) + dIn(27) + In(det(%;))]
Letting r? = — [21n(c) + dIn(27) + In(det(X;))] for any 0 < ¢ < p;(u;), the level set in (11) can

be equivalently written as
Si={reX:(z—pw)"S; (z— ) <r?}

which is the set of points with Mahalanobis distance d(x, ;) < 7;.
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In order for (9) to hold, we want to find the level set c of A, or equivalently the radius r; of the set
S; such that at least 1 — § of the mass of the Gaussian distribution N (u;, 3;) is included in S;

/ pi(z)de >1-194 (12)
S

The integral in (12) is the probability that a sample = ~ D; lies inside the set S; and thus we get
equivalently that the following should hold

Pep, (x €S;) = / pi(x)de >1—-06 (13)
S

By a change of variables y = X, 1 2(x — 1;), we can transform the density p;(x) inside the integral

to the density of the standard A (0, I') Gaussian f(x) = me*%“y”g and thus the set S; can be

equivalently written as
Si={zeXx |y} <r?}.
Hence, inequality (13) after the change of variables y = 3 1/ 2(95 — p;) requires
Poup, (€ Xt |yll3 <r?) <1-0. (14)
Note, now, that since y = X 1/ 2(::: — ;) follows the standard Gaussian distribution A/ (0, I), the
random variable ||y||3 follows the chi-squared distribution with d degrees of freedom. Hence, the

left hand-side of (14) is exactly the cumulative probability distribution of the x2 distribution up to
rf. Thus, in order for (14) to hold, the rf should be the (1 — d)-quantile of Xfl, i.e.
FXZ (7“12) < 1-6
6 < 1-— FX@ (7“22)

where F > is the cumulative distribution function of the X3

In order for inequality (10) to hold, we have that
Vol(S;) < Ce ¢

R s e

2
— e < In|—— L 15)
<7rd/27°§l det(Zi)> (

where I'(+) is the Gamma function. O

9 PROOF OF THEOREM 2.2

Proof. In order to show that D is (C, ¢, d,y) —strongly localized, we need to show that for each
class conditional D;, Vi € [K], there is a set S; C X such that the following hold

Vol(S;) < Ce¢ (17)
| US| < (18)

J#i
where the set S} = {x € X : 3¢ € S; with ||z — #||2 < €} is the e—expansion of the set .S; with

respect to the {5 —distance. By assumption, we have that the conditions (16), (17) hold. The last
condition (inequality (18)) requires that the class conditionals are well-separated in the sense that

Di (U it SJTWE) ,Vi € [K], is upper bounded. To ensure that, we can apply the union bound to get

Pi U 552 | =Pann, U S ) < Z Pz~D; (S;r26> (19)
Jj#i JF#i j#i
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We, next, bound the probability that a sample z ~ D; belongs to the set S]“e

P.n (577)

Poup, (s €S 1 ||z —s]l2 < 2€)
= Puop, (3s € X :du(s, ;) <rjand ||z — s|l2 < 2¢) (20)

Since the expression in (20) involves both the Mahalanobis distance and the ¢ —distance, we will
express both conditions ds(s, ;) < 7, || — sl|]2 < 2€ in terms of the Mahalanobis distance
da(z, p15). Using the triangle inequality for the Mahalanobis distance, we get

dM(l'7M]> S dN[($»3)+dM(3an)

< d]w(l‘, S) +7;

= 1157 @ = 8)la + 7y

< 157 lalle = sll + 7

2¢
< =t 1)
)\min(zj) !

where Amin(X;) is the smallest eigenvalue of ¥;. Hence, for z ~ D, the event £; = {3s €
X :dum(s,D;) < rjand ||z — sl < 2€} is contained in the event {d},(z, ;) < R3}, where
R; = 2 __ rj. Thus, we can bound the probability in inequality (20) by

AV /\min(zj)

P(s™) = P (dhiemy) < R))

B (=) "5 = ) < ) @)

Letting y = Ej_l/Q(x — 1;), we get from (22) that

Po(s) < P (vl < R) 23)

Notice that 2 ~ D; and thus the distribution of the random variable y will have mean Ej_l/ 2 (ti—pe5)-
Thus, the distribution of ||y||* will be a non-central x2—distribution with d degrees of freedom and

centrality parameter w;; = ||E;1/ z(ui — 115)|13- From inequality (23), we get that
+2¢ 2 2\ _ 2
PSS) = P Il < BS) = Py, () (24)

where F\2,, )(-) is the cumulative density function of the X2 (w;;) distribution.

Substituting inequality (24) into (19), we obtain the following bound

pi| US> ] < ZwNIDDi (57%)

J#i J#i
2
< Z Bz (wiy) (R5)
J#i
and thus letting v = > Fl2(y, ) (R?) finishes the proof. O
J#i

10 PROOF OF THEOREM 3.1

Proof. Consider a sample (x, y) with positive margin

m(x) = score(x, By, m,) — max score(z, E;, ;) >0 (25)

where i, = max;¢[x] score(x, E;, T;) = y.

16



Under review as a conference paper at ICLR 2026

We want to show that the perturbed sample 2’ has also positive margin
m(x') = score(z’, E;, ,m;,) — max score(z’, E;, ;) (26)
1F T

Substituting the definition of score and rearranging the terms, we have
m(a’) = (2’ = )57 (2" — pi.) " — log (det(S;,)) + 2log(mi,)
—ma{— (2 — ) B (2 — jua) " — log (det(%y) + 2log(m) )

/

= win{ — (@ )BT @)D )T
1F s

g(m +2log (7;)} 27)
For any z,z' € X and Vi € [K]|, we have that
(2" — pi) 2y Yo' —p)” = (@ - )%, Yo' — )T + (z — i) 5] N — )T
(@' = )87 (2" = 2)" +2(2" — )57 (@ — )"
(2 — )2y (x_/%) (28)

Using (28) into (27) for the terms —(z’ — /,LZ*)EZ»* (2 — p;,)T and (2/ — )27 (2" — )7,
have that

m(@) = min{ - (@ -2 - 2)" -2’ — )T (@ - )T - (@ - )T @ - pa)T

1F Ty
o' — 2B (@ — )T+ 20— )5 @ — )T+ (2 — ) S @ — )T

det(%;),)
_IOg(det(ZZ) ) 210 ( ; ) }
= min {(Sﬂ' —2) (7 - 5@ - 2)T 200" - 2)[E7 (@ - )" =37 (@ - pa)T]
— (@ — pi.)%;, 1(33 - /v‘z*)T + (@ — pi) %y 1(-73 - UZ)

g(m)wlo (7;)} 29)

Given that the matrix W; = X 1 X ! is symmetric, as the difference of inverses of symmetric
matrices, it holds that (' — z)W; (2’ — )T > A\uin(W;)||2” — 2||3. Using that and Cauchy-Schwarz
inequality, we get from (29)

m(z') > gr;iin{Amin(Wz‘)||$’—$||§—2H$’—w||2\|2{1(33—ui)T—Eﬁl(ﬂf—uu)le

(@ — pi. )2‘ (@ — pi,)" +(x—,u1)2'1(1'—,u2)
+log ((;ftt((z))) +2log (7;) } (30)

Using the subadditivity of the min operator and the definition of margin m(x) from (25), we get

m(z') = m(z) + min Amin (Wi)l|2” = @]|3 = 2]|2" — ]2 max =7 @ = i) = 27 @ = ) ll2

Letting for brevity Apmin = min;z;, {Amin(Wi)} and cpy = max 15 (w—ps )T =57 (@—p) T2,
VF V%
in order for m(z’) to be non-negative, it suffices that
m(z) + Aminl||z’ — as||§ —2cpl2’ —zl]2 > O
If Ain < 0, then we have that

2
cv — /5 — m(x) Amin
o ol < u 2P min __mia) a1
)\min ey + I m(x))\mm
If Ain > 0, then it suffices that
m(x
" —zlla < 2( ), (32)
cM
Combining the expressions in (31) and (32), we get the final result. ]
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11 PROOF OF GENERALIZATION BOUND

We, first, provide some necessary Lemmas in Section 11.1 bounding the associated quantities ap-
pearing in the generalization bound and then we provide the proof of Theorem 3.2 in Section 11.2.

11.1 PREPARATORY LEMMAS
Lemma 11.1. For a Gaussian marginal with true mean y and covariance matrix 3 and empirical

mean and covariance /i, ¥ satisfying || — 51 < O (\/%) E=2]op <O (\/g) , we have
that for any point € X it holds that

) ) » d3/2
()~ By )] < O (n/)
where d/(z, ) corresponds to the Mahalanobis distance.

Proof. We have that

(@) = dg (e )] = |@ =TS @)~ (@ - TS @ - )
Adding and subtracting the term (z — f1)7 ¥ 7! (2 — 1) and applying the triangle inequality, we get
A3 (@, 1) = diy (2, )] = ‘(33 SRR RN R CE DR R R 1)

Ha— )" e —p) — (@ — )= @ - p)

< @ p)"S M)~ (- @) e - )|
Ty
+@-nT(E - @ -0 (33)
T2
We, next, bound the two terms 77, 75. By rearranging the terms in 77, we get
no= |- e —p) - (@ — 35 @ )
= [p-w'=e— (@ -p)'S pt (- )"0
= |- e — (2= TSt (o= )TN — ) + (@ — )T
= [204"S7 M@ —p) + ARSI AL
< 2Aplls-rlle = plls-r + 1AGIE
Using the fact that |Afi||g-1 = O (\/g) we obtain
n < 0 (i) (34)
n

We can bound the term 75 using the inequality
T=|@- " (57 =57) @ - )| < llo - AI3IST = =7 op
Adding and subtracting the true mean p and utilizing the definition of Af = i — p, we get
Ty < o= p+ ApBIET =7 op
< 2(lle = w3+ HARIZ) 571 =27 op
where at the last step we have applied the inequality ||a + b||? < 2||a||? + 2||b]|?. Using the fact that
[N =Ye) (@) S =0y = O (@) , we obtain that

N d3/2
I, < O(W) (35)
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Substituting inequalities (34), (35) into (33), we have that

A - /d d3/2 N d3/2
|d3y (2, 1) — d3y (2, 0)] < 0<ﬁ> “‘O( /2) O<n3/2>
O

Lemma 11.2. For any symmetric positive definite matrices A, B with Apin(A) > || B — A||qp, it
holds that

d||B — Allop
logdet(A) — logdet(B)| <
| log det(4) Bl < @ 1B - Al

Proof. From the trace representation, we have that for any two symmetric positive definite matrices
A, B it holds that

|[logdet(A) —logdet(B)| =

Tr (/l (A+t(B—A)""(B- A)dt) ‘
0

1
<
S (A B Al

B — Allop (36)
Using triangle inequality, we get
1
|logdet(A) —logdet(B)| < / 'Tr ((A +t(B—A) ' (B- A)) ’ dt 37
0

From Holder’s inequality for trace we have that for any two matrices X, Y it holds that |Tr(XY)| <
d|| X|op|Y||op- Applying that for X = (A + (B — A)) ' and Y = B — A, we obtain

ITr((A+ 4B - A)" (B-4)| < dIB- Alol|[(A+HB-A)"" (38)
op
Substituting (38) into (37), we obtain
1
llogdet(A) — logdet(B)| < d||B — A||Op/ H(A v (B - ANY| at (39)
0 op

We, now, bound the operator norm H(A—f—ﬁ(B—A))_1 Using the fact that

op

H(A H mm(A+t(B 77 and Weyl’s inequality we have that Amin (A + t(B —
A)) > /\mm( )+ | B — Allop, ¥t € [0, 1]. Thus, we get
1
A+t(B—A) < (40)
H( ( ) op Amin(4) = || B — Allop
Substituting (40) into (39), we have
1
dt d||B — Allop
|logdet(A) —logdet(B)| < d||B— A, / =
*Jo Amin(A) = 1B = Allop  Amin(A) = 1B = Allop
O

Lemma 11.3. If the number of samples observed from two Gaussian marginals D;,, D;; is at
least n > d and [|S;, — 5, Jlop < Amin(Zi. ), [|Bi, — B, llop < Amin(Ziy), the following holds

|log det(%;, ) — log det(3;, )| + | log det(%; ;) — log det(f]ifg)| < O (é>
n
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Proof. From Lemma 11.2,for A=Y, ,B=3; ande=||; — 3.
de
< 41)
Amin(zi,*)(l - e/Amin(zi*)
Given that ¢ = ||3;, — Allop = O (\/%), we get for € < Apin(2;,) from the Taylor expansion of

the function f(z) = (1 — 1)1 = 3°7°° 2™ that

ops WE get

|log det(%;,) — log det(3;,)

+oo n
_ . AN P (#) -0
(1 G/Amln(zz* )) —_ ’r;) )\mln(Ez*) 0 (6) (42)
Substituting (42) into (41), we get that
|logdet(3;,) — logdet(3;,)] < O(e?)=0 (%) (43)

By applying the above steps similarly for A = ¥;; and B = fli/z and using the fact that ||Zi/2 —
ii’QHop =0 (ﬁ), we obtain

|logdet(X;;) — logdet(3;)| < O (d) (44)
Adding inequalities (43), (44), we get the final result

- ~ ~(d
|logdet(X;,) — logdet(X;, )| + |logdet(Xy,) — logdet(X;,)] < O <7)

Lemma 11.4. If the number of samples observed from two Gaussian marginals D;,, D;; is at
leastn > d and |m;, — 7, | < 1, |my — 7| < 1, then it holds that

i (32) ~ o2 () | + 102 (5) o ()] < 0/

Proof. For a Gaussian distribution with true prior 7 and empirical prior 7 from the Taylor expansion
we get that for |7 — 7| < 1 it holds

() - S ()

i=1

Additionally, given that the empirical prior approaches the true prior as |7 — 7| < O ( %) with
d < n, we have that

w(?) = o(2%)-o(y1)

Applying inequality (45) for the Gaussian marginal D;; , we get

i ~
’/Ti/2

| log (7?2/2) — log (7%) |

IN

IN
(O]

IN
O}
N TN /

) (46)

Similarly, applying (45) for D;,, we have that
log (Wi* )
T,

|log (i) —log (mi,)| < O

(47)
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Adding inequalities (46), (47), we obtain

|log (#i;) — log (ms) | + [log (#:.) — log (ms.)

Lemma 11.5. Let the functions
2 2 d 1
m(z) = dy (, piy) — diyg (@, pi, ) + log )
=+ 2 ~ 2 ~ ] 7'(';/2
t(z) = dy (2, flay) — diyy (2, f1i,) +log | ——=—< —210g<f>.
det z) T

where /i, b ; is the empirical mean and covariance of the Gaussian marginal D;,Vj € [K]. If the
number of samples observed from each marginal D;,Vj € [K]is n > d, then we have that

_ [ 3/2
i(e) - mi@)] < O<§m>

Proof. Using the expressions of margins and applying the triangle inequality, we have that

(@) —m@)| = | B, i) = (@) = (@ i) + B )
det (iz;) det (Eigz) u e
*los det () ~log (det(Ei*)) ~2log (T) +2log (m) ‘
S ’d?\/[(xv /3/1’2) - d?b[(‘r’ :U/Z’z) + ’d?\f(x? /:Lz*) - d?\/[(l‘, :ul*)

T

+ ‘log (det (i@)) — log (det (i) ’ + ‘log (det (iz)) — log (det (Zl))’

T

+2[|log (73, ) — log ()| + [log (75, ) — log (m;. )] (48)

Ts

We, next, bound the three terms 747,75,75. Applying Lemma 11.1 for the Gaussian marginals
D;,, D;,, we have that

- /d - [ d3/2

@) (ﬁ) +0 (n3/2 (49)

~(d - [ d3/?

@) (H) +0 <n3/2 (50)
Adding inequalities (49), (50), we get that

5 d3/2
< (9<ng/2> 61y

We, next, bound the term 75 by using Lemma 11.3

IN

IN

|d?\4(xvﬂi*) - d?w(xa ,u'i*)

,<0(%) (52)

n

For the term 75, we use Lemma 11.4 and get

Ty < O(@) (53)
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Substituting inequalities (51), (52), (53) into (48), we obtain

om0 (157) 0 (V) 20 (1) <0 ()
O]

Lemma 11.6. If the number of samples observed from each marginal D;,Vj € K], is at least

n > d, then we have that
< 0 (\/E)
n

. .. 2 -1 =i o .
where A, is the minimum over all eigenvalues of W; = X7 — X777 Vi # i,

Amin - Amin

Proof. Using the fact that for any two real sequences a;, b; it holds that | min; a; — min; b;| <
max; |a; — b;|, we have that

‘)\min - )\min} = min )\min(Wi) — min )\min (Wz)
i€[K] i€[K]

< AInin W) — >\min W 54

= znel[é}?] ( z) ( z) (54)

(55

Using Weyl!’s and triangle inequality, we get

|)\min - 5\min‘ S max H Wi - WiHop (56)

= max [[(Z7 =200 - (57 =57, (57)

< max (570 = 57 op + 1557 = 57 lop) (58)
< max (15712, 1% = Sillop + 157 12 152 = Sulop) (59
— @(\ /d/n) (60)
where at the last step we used the fact that [|2; — 3;[|op = O (\/g) O

Lemma 11.7. If the number of samples observed from each marginal D;,V;j € [K], is at least
n > d and |Amin — Amin| < Amin, then it holds that
< o)
n

1 1
where Ay is the minimum over all eigenvalues of W; = X~ Lo Ei: 1, Vi 2 iy.

)\min )\min

Proof. Letey = ;\min — Amin denote the error between the estimate and the true minimum eigen-
value. We have that

1 1 o /\min - /\min o ’ X |6>\|
5\min )\min )\minj\min Aminj\min )\min S\min — )\min + )\min
lexl
<
B )\min ()\min - |€)\|)

< - -
)‘ilin(l - ﬁ)
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In order to bound the term (1 — €x/Amin) !, we use the Taylor expansion of the function f(z) =
(1— %)’1 + 2o x™ and get for €y < Apin that

(1 =€/ Amin) "+ < Z (

Substituting inequality (62) into (61) and using from Lemma 11.6 the fact that ), = o ( 7) , We

obtain
- o ()
n

)n =0 () (62)

IIlll’l

1

)\min min

Lemma 11.8. For a sample (z,y), let

e (z) = m;XIIEgjl(x — )" = 27N (@ — )" |2

eu(z) = I?QXIIE He = )T = 87z — p)T NIz

and fi;, ﬁ‘,j the empirical mean and covariance of the Gaussian marginal D;,Vj € [K]. If the
number of samples observed from each marginal D;,Vj € [K]isn > d and |Z; — 3]lop <

ﬁ, then we have that
i llop

n

Proof. Leta; = X7 (x — )T, Vi € [K] and &; = 37! (z — f1;)", Vi € [K]. Then, we have that

ey (w) = max |y, — aill2,  and  ép(w) = max [|dy, — dill2
£y i#y

Using the fact that for any two arbitrary sequences of real numbers b;, ¢; it holds that

max b; — maxc;
7 3

< max|b; — ¢
K3

we have for b; = ||ay, — ;|2 and ¢; = ||&y — G |2 that

lenr — énr| = ‘max lay — aill2 — max [|&y, — Gil2| < max|[ay — aill2 — |ldy — dill2|  (63)
i#y i#y i#y

Applying the triangle inequality on the norm ||y, — ;|2 — || &y — é&;||2, we have that ||, — oy|]2 —
de — (3[1”2 < HO{y — (S/y + &y — Oéi||2 we obtain

lear — énrl < max[[lay — aillz — [|&y — dill2] < max [l — dyllz + llas — Gilla (64)
iy iy

We, next, bound the error on the terms ||, — &, |2 and ; — &;. It holds that

o — b = x— ;)T

Y ( 2: (z— /~LZ)
5w — )T = 27 (m—uz) + 57 @ = )" =57 @ = )"
SR — )T+ (57 = (@ - )T

= 57— )"+ (S =) (= )"+ (57 = 27 (@ — )T
Taking the norm and applying the triangle inequality, we get

o — éilla < 187 (s — pa) T2+ 1S = 7 (s — ) Tll2 + 1157 = 27 (@ — 1) T 2
IS5 opllite — pill2 + 127 = S5 Hlopllits — fuillz + 127" = 27 lopllz — pill2 (65)
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In order to bound inequality (65), we need upper bounds on |[1; — fi||2 and [|2; — 271 op. We
have that [|; — jii]l2 = O (@) , where n is the minimum number of samples observed from each

marginal D;,Vi € [K]. For the term |31 — 771|op, we get for [|2; — 54]lop < that the

1
127 Mlop
following inequality holds

127 = 57 lop < 1S5 M IZ %0 — Sillop

Using the fact that ||%; — 3 llop = O (\/>) we obtain

el ~( [d
=7 =27 lop < O (\/Z) (66)

Substituting inequality (66) and the fact that ||u; — fi;]]2 = 19, (\/E) into (65)

- d ~(d ~ d ~(d
ot — Gl sanWOQf)+O(+O(/>so() (©7)
n n n n
Similarly, for ¢ = y we have that
. ~(d
lay —dyllz < O (*) (68)
From (64), (67), (68), we get that

) R ) ~ (d
lenr — | < |lay — Gy ll2 + max |la; — &l <O —
i#y n

O
Lemma 11.9. Let A = /%, — m(z)Amin and A=/ o m(a:)j\min. If the minimum number
of samples observed from each marginal D;,Vj € [K]isn > dand |2, — ;]|op < |\2 T then
we have that
A ~ (d
- < ofd)
n
Proof. Using the Holder’s inequality for f(z) = \/x, we have that
’A Al = '\/C%\/l — m(2)Amin — \/ &3 — 17(2) Amin

< \/‘C?\/l — &%, — m(z)Amin + m(x)ﬁmm (69)

We, now, express the quantity under the root with respect to €, = ¢y — cpr and €x = Appin — Amin,
as follows

3y — & — m(2)Amin + 1(2) Amin < (ear — énr)(ear + Enr) — m(2) Amin + 72(2) Amin
) — m(2)(Amin — 5‘min) + :\min(m(x) — m(x))
= e(2cr +€) — m(2)(Amin — Amin)
+(Amin = Amin) (0 () = 170(2)) + Anin (m(x) — 1i()) (70)

Combining (69), (70), using triangle inequality and the concavity of the square root, we get

< Veol2en +eo) + wn(x) [min = Aunin| + J |Ganin = Awin) (m(2) = 12 ()
4/ Panin (m(2) — 102(2))|
\/ec(2CM +e)+ \/m(a:)e,\ + Vexem + /| Amin€m| (71)

24
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From Lemma 11.6, 11.8, 11.5, wehavethatem—O<Z§Z>,ec:(’)(%) ande,\:@(\/g> and
thus
~(d a4 ~(d ~ [ d®/* ~(d
< o(2)+o(%m)+o (1) +o (L) -o(Y)

Lemma 11.10. For an input sample (z,y), with |¢éar — car| < ¢ and number of observed
samples from each marginal D;,Vj € [K] at least n > d, it holds that

_ [ d3/2

m(z) _ifz) () )

‘A—A

O

) i)

261\/[ 26]\/[

Proof. From triangle inequality, we have that

m(z) _ mlz)

QCM QéM QCJW QCM QC]\/I QéM

1 . m(x)| 1 1
?|m() m(z)] + > \exs  enr
¢ o) =)l | (me) | o) (o)} L L
2em 2 2 cmM o Cm
_ |m(z) — m(x)] n (m(x) n |m(z) — Th(x)|) éMA_ cM 72)
2¢cm 2¢n 2cenmr CMm
We, next, bound the terms |m(x) — m(x)| and W . From Lemma 11.5, we have that
R ~ [ d*/?
Im(z) —m(z)] < O (713/2) (73)

From Lemma 11.8, we have that |¢3; — car| < €. with e, = O (£) and assuming that €, < cpy, we
have that

M — CM‘ €c < €c < €c _ €c (74)
Cm T lém| Toem —ém —em| T e —ee em(l —ec/enr)

1

In order to bound the term (1 — e./car) ™+, we use the Taylor expansion of the function f(z) =

(1- 7) Z+ o «™ and get for €, < ¢y that
X\ ~ ~(d
(1—e/ep) P < ( ) =0 (e) :0(7) (75)
n=0 M n
Substituting (75) into (74), we get that
Chvo— ~ d - (d?
<o (wf) <0 (1) 6)

Combining (73), (76) with (72), we obtain

5 d3/2 m(x) d3/2 -/ d> N d3/2
o(2) [ o(#2) o) <0 (£2)

O

20]»[ 2éM

Lemma 11.11. For an input sample (z,y) with |5\min — Amin| < Amin, |25 — f]j||op HZ T

and number of observed samples from each marginal D;,Vj € [K] at least n > d, then it holds
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that
ém — &, — m(m)j\mm m(x) 5 (d9/2)
Amin 2éM 719/2
Proof. We use the Taylor expansion of the function f(x) = A, —r =

eM Yoo (17/12)(_1)77' (%) and get

A= m@)Amin = ey (17/12) (—1) (W)
n=0

M
A _m - 5200
L | 2V E @A @) | () Awin (78)
)\min 261” 8CM

Let €, = m(z) — m(z), €. = épr — cpr and € = Amin — Amin. Then, we have that

m2 (x)Amin _ (m(sc) + 6m)2(>\min + ek) _ (m2 (J?) + QEmm(x) + egn)(Amin + ek) (79)
e, 8(car + €c)? B 83, (1 + eofcn)®

Using the Taylor expansion of f(z) = (14 )73 = Zfzo(—l)"% ™", we have for
€c <cpthat (1+e./cp) ™2 =1—-35= +6(L=)2 +... < ) and thus

CM CMm

< O (e,

m2(2)Amin _ (m2(x) + 2emm(x) + €2,)(Amin + 1)
f < 1)

83,

_A(2
Sexr (e¢) =0 (emeAec)

From Lemma 11.6, 11.5, 11.8 we have that €2, = O <£> e =0 (%) and ey, = O (\/g) and
thus we obtain

Lemma 11.12. For an input sample (z,y) with |5\min — Amin| < Amin, |25 — f]j||0p <
ﬁ, |éar — ear| < ear and number of observed samples from each marginal D;,Vj € [K] at
5 llop

least n > d, it holds that

énr — /&3, — (T) Mnin _ m(x) < 6 (d9/2>

5\min 2CM n9/2

Proof. Applying the triangle inequality, we have that

e — &y — (@) Amin ~ m(z) < e — A\ Gy — (@) Amin h(z)

)\min 26]” /\mzn 26M

Th

L[t _mi)

81

Zé]u 2CM
T

We, next, bound the terms 7, T, appearing on the right-hand side of (81). From Lemma 11.11, we
have for €. < ¢j, that
N d9/2
n < 0 <n9/2 ) (82)
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From Lemma 11.10, we have that

- [ d3/?
Ty o <n3/2> (83)
Substituting (82), (83) to (81), we get that
/82— mleh /1972
CMm C]\A4 m(x)kmzn _ m(x) < O d (84)
)\min 261\/1 B n9/2

O

Lemma 11.13. For an input sample (z,y) with Mo — Amin < Amin, |€m — epm| < epr and
number of observed samples from each marginal D;,V; € [K] at least n > d, it holds that

mln mln 3/2
- - = o)

3/2
)\mm w /

Proof. Let R(x), R(z) be the true and learnt certificate of robustness from Theorem 3.1. We have

that
A CM —\/Cp — 1' Amin C]M \/ Amin
IR(z) — R(z)]

)\mln
e —A/Ep —m(T)Amin e — /3y — m(2) Amin
- ’ Amin - Amin
el C?‘f —m(@)Amin nr — \/Ey — .(2) Amin
Amin Amin

Let A = \/c3;, — m(x)Amin and A= 2 — 1m(2) Amin. By applying the triangle inequality, we
get

CMfA CMfA

o) -RG@)| < [FE - B RS
— lew— Al - 2| [ (] 4] e aan)
— lew - A|' — anlm + Xim_ — (|4~ 4] + leas — ul)
+‘ - (’A A(+|cM—cM|) (85)

Thus, in order to bound inequality (85) we need to bound the terms ‘# —

‘A A‘ and
|cM — eyl From Lemmas 11.7, 11.8, 11.9, we have that for €y = Amin — Amin < Amin 12; —
Sillop < it holds that

Amin

R
1 1 _/d
— < had
‘ Amin Xmin o © (’I’L) (86)
A _d
‘A—A‘ < o(f) (87)
n
) _d
e el < 0(2) (88)
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Substituting inequalities (86), (87), (88) into (85), we get

. 1 1 1 1 A

_ < _ — — — P — ¢
R(z) - R()| < e A|' s e Bl e (‘A A]+|CM cM|)
1 - .
5] (j4 = 4]+ e = )
- - - 2 1 -
< lem — A|O \/E +0 \/E 0<d—>+ O@)
n n n? Amin n
<

- d3/2
°()

Lemma 11.14. If Apin — Amin < Amins 67 — car| < e, |25 =25 [lop < ﬁ the following
g lop
bound holds

O

cm = /¢y = m(@)Amin () - "
Amin 201 o n9/2

Proof. From triangle inequality, we have that

em = /ey = m(@)Amin sin(a) o |- Ve = m@) Amin én = /&, — (@) Amin
< 3 .

Amin 26]% min )\mzn
T
ear = &y = @ din_1in(a) )
)\min 2CM
T>

From Lemma 11.13, Lemma 11.11, we have for e, = |épr — cpr] < cpr that

- [ d3/2
no< (wz) (90)

d9/2
(2) o
Substituting (90), (91) into (89), we obtain

CMm — C?M - m(‘r))‘min B m(x) < & <d9/2>

1972

Q

G

T

S

Amin 261\4

11.2 PROOF OF THEOREM 3.2.

Proof. Let fi;, f)i, 7; be the learnt parameters and p;, 3;, 7; the true parameters of the Gaussian
marginal D;,Vi € [K]. Denote with n; the number of samples observed from D; and let n =
min;e(r] n; be the minimum number of samples observed from any marginal distribution. Using
Gaussian concentration results (Theorem 6.1 Wai (2019)), we have that the empirical mean ji; and

empirical covariance 3; of each Gaussian marginal D;, Vi € [K], satisfy
A AT 5( /[
s s+ <0 (2) 122 <0 (4/3)
n n
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where O(-) suppresses logarithmic terms in . For samples x1,%9,...,2n,  ~
Multinomial (7, ..., 7)) and #; = %Z?ﬂ I{y; = i}, from the Hoeffding’s bound we get
that with probability at least 1 — 4, it holds

| — mill2a < O (\/:) , Vie[K],

Given the above bounds on the distance of the estimated parameters from the true ones, we bound

the learnt certificate of robustness R(z) from the true certificate R(z). From (31), (32) in Theo-
rem 3.1, depending on the sign of A\, there are two cases for the expression of the certified radius,

cv—+/c2, —m(x i m(zx .. N .
specifically R(z) = — A @) Amin o R(z) = %M) Similarly, based on whether A, is
positive or negative, there are two cases for the expression of ﬁ(m)

We, thus, partition the input space X into four disjoint subspaces X7, Xo, X3, X4, where

Xy ={2 € X : Amin > 0, Amin > 0}

Xo = {2 € X : Apin > 0, Apuin < 0}

Xy ={2 € X : Anin <0, Amin > 0}

Xy = {2 € X : Apin < 0, Apin < 0}
Based on the above partition of X', we have that

P_[IR(x) ~R(x)| > ¢

P ||R(x) — R(x)| > &
x~D ! x~D

I
o
"
m
=

JTEXL':|

IA
0

=
m

&
(o9

IA
>,

92)

where § = P [[R(x) = R(x)| > e

ity ¢ and find the errors ¢; for each of the four cases, and, finally, let € = mz[n]< €; in (92).
icl4

x € XZ} . To prove the needed, thus, it suffices to fix a probabil-

Case 1 (X;). We have that R(z) = glc(;) and R(z) = Zlc(:{) and thus according to Lemma 11.10 for
€ < ¢, it holds that

R _ [ 32
[R(z) = R(x)| = O(ng/z>

Case 2 (X;). We have that R(z) = m() and R(z) = e =y~ @ Amin 454 according to

M

2c
Lemma 11.12 for € < min{Ain, Amin(X:), car}, it holds that

Amin

R _ [ 92
R(z) - R(x)| = O<n/)

Case 3 (X3). We have that R(z) = 4V @ Amin g R(z) = ") and according to

Amin 2em

Lemma 11.14 for € < min{ A in, Amin(Z:), car}, it holds that

. . [ d9/2
R(z) - R(x)| = @<n/)

Case 4 (X,). We have that R (z) = VA win g 32 () = Ve =M@ Amin g hyg

Amin
according to Lemma 11.13 for € < min{A,,;n, cas}, it holds that

Amin,

. - [ d3/2
R(z) - R(z)| = @<n/)
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Combining the above results with (92), we get that with probability at least 1 — ¢ it holds that
. - [ d°/?
R(z) = R(z)] <O <ng/2>
For a fixed error 0 < € < €min = {Amin(2;), Amin, car(2) }, in order to satisfy that

[R(x) = R(x)] < O (e),
we have that number of samples needed are n = O (‘:z%) and this concludes the proof. O

12 PROOF OF THEOREM 4.1

Proof. Denote with x, 2’ the clean and the corresponding adversarially perturbed sample and with
z = f(x),2 = f(a’) their embeddings in the latent space. Since the encoder network is L-
Lipschitz, we have that

Iz = 2"l = £ (2) = f(@")]l2 < L]z — /|2 ©3)

Given that f(z) maps the input distribution to a latent distribution that is a mixture of Gaussians, we
have from Theorem 3.1 that the ELLIPS classifier remains robust as long as

m(z)
Amin (\/C?w + (Amin)+m(2) + CM)

where A, is the minimum among all eigenvalues of the matrices W; = E;l — E;l,Vi # Uy,
(“Amin )+ = mav(~Auin: 0), and ey = max [ (£(2) = s.)" = £ (F(2) = )" Thus,

(94)

12" = 22 <

K2

in order for the classifier to remain robust, it suffices that the perturbation in the input space satisfies

La—a'l: < uitd
Amin (\/C?u + ()\min)er(Z) + CJW)
= |lz—a|2 < m(z)
)\minL (\/C%\/j + (Amin)er(z) + CM)
thus concluding the proof. O

13 ON EXPERIMENTS

In Appendix 13.1, we provide more details on the experiments presented in the main paper. In
Appendix 13.2, we provide additional experiments showcasing the performance of the proposed
classifier in practice.

13.1 EXPERIMENTAL DETAILS

We first describe the experimental setup used and then provide additional synthetic experiments.

Experiments in Benchmark Datasets. We provide the training details - network architecture,
datasets, optimization and hyperparameters for the implementation of the GENELLIPS classifier.

Network Architecture. To construct the proposed classifier we need to apply first an encoder
and then the ELLIPS classifier. We take a FARE-4 encoder (Schlarmann et al., 2024) pre-trained
and finetune it using a loss that promotes the latent distribution to comprise a mixture of Gaus-
sians. Given that the ImageNet dataset appears to have more classes and be more complex than the
CIFAR-10, we have utilized a meticulously constructed loss accustomed to each dataset. Specifi-
cally, for CIFAR-10 the used loss combines the MCR? objective with a term promoting the Gaussian
marginals to be isotropic, ensuring that the eigenvalues of the covariance matrices are well-behaved

L= ‘CMCR2 (Z, Y) + AisoLiso (95)
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2
where L, = Zszl HC’k — %C")IdH and

7 = [,zl,...,,zB]T7 — Z Ziy Cy = nkl—l Z (2 — ) (2 — ) T

Y= iy =k

For the ImageNet dataset, given the significantly more complex underlying distribution, we add an
additional regularizer, measuring the maximum mean discrepancy of each class conditional from a
Gaussian distribution

L= EMCRZ + Aiso * Liso + AMMD - Z MMDz(Zk, fk), (96)
k

where % ~ N (uug, I) and MMD? (24, 2 ) is a kernel-based distance between two discrete distribu-
tions defined as follows

MMD (2K Z1) 3 Zk (2, 25) 2 Zk (%, %5) Zk (2i, Z5) 97

where k(-, -) is a positive-definite kernel function.

The choice of the kernel is the Gaussian Radial Basis Function (RBF) kernel

k(@,y) = exp <_M)

202

During training, we freeze the FARE-4 backbone and we add, similarly to ?, a pre-feature layer
composed of Linear-BatchNorm-ReLLU-Linear-ReLLU. For feature head and cluster head, we utilize
a Linear layer that maps the hidden to the feature dimension d = 128.

Optimization, Initialization and Hyperparameters. We initially warmup our pipeline by train-
ing the MCR? loss and then optimize simultaneously the feature cluster head using the MLC loss.
Following Chu et al. (2023), we use the SGD optimizer for both the feature head and cluster head
with learning rate equal to 0.0001, momentum set to 0.9 and weight decay set to 0.0001 and 0.005
respectively. All other hyperparameters remain the same to the ones used in Chu et al. (2023), thus
referring the interested reader to the aforementioned related work.

13.2 ADDITIONAL EXPERIMENTS

Separation of Classes. We visualize the correlation of the latent embeddings of different classes
showing the effectiveness of the M C R? loss in the CIFAR-10 dataset. As shown in Figure 4, such
an encoder trained with the M C R? objective maps each class of input samples to points near a low-
dimensional subspace, as the singular values of the mapped points drop quickly, while the mapped
points from different subspaces tend to be orthogonal.

0 ZoZ 10 Per-Class Embedding Spectrum

°
H
Singular value
= = N N w
o w o w o
! ! !

v
L

0 20 40 60 80 100 120
00 Component index

2000
0 250 500 750 1000 1250 1500 1750 2000

Figure 4: The correlation matrix and minimum eigenvalues of the latent space embeddings for the
different classes for CIFAR-10.

Empirical Validation of Sample Complexity. In order to empirically validate the result of Theorem
3.2, we have first expressed the established sample complexity in terms of logarithms, as follows:
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fromn = (’N)(%), we know that there exists a constant C' > 0 such that
Cd9/2
= o
2 2
=loge < —§logn+10gd+§log0 (98)

We run multiple experiments for different sample sizes n € {10, 100, 500,1000} and dimensions
d € {2,10,100} and estimate in each experiment the distance of the learned certificate from the true
certificate of robustness. We, next perform linear regression to estimate the coefficients «, 3, in
the following equality and compare with the ones of (98). We have found that and , thus validating
empirically (1) and hence the sample complexity established in Theorem 4.2. CIFAR-10 We run
multiple experiments for different sample sizes and dimensions and estimate in each experiment the
distance of the learned certificate from the true certificate of robustness. We, lastly, performed linear
regression to estimate the coefficients in the following equality and compared them with the ones in
(1). We have found that

and , thus validating empirically (1) and hence the sample complexity established in Theorem 4.2.
For the same example, we have plotted additionally the difference of the learned certified radius
from the true one for different sample sizes and have shown how the certified radius scales with
respect to the parameters and .

On Gaussianity of the Latent Distribution. To empirically validate that the used encoder maps the
input distribution to a mixture of Gaussians, we apply Mardia’s statistical normality test (Mardia,
Biometrika, 57(3), a well-known statistical test that evaluates whether a multivariate dataset departs
from a Gaussian distribution. More specifically, Mardia’s test computes two statistics:

1. multivariate skewness, which accounts for asymmetry

2. multivariate kurtosis, which evaluates whether the distribution’s tail behavior matches the
one of a Gaussian.

Under the null hypothesis, the data follow a multivariate normal distribution. The results show that
the embeddings pass this test for all the classes, indicating that the class-conditional distributions
are indeed conforming to Gaussians.

Dataset | Mardia’s Average Score | Percentage of Classes Passing Normality Test
CIFAR-10 0.027 100%
ImageNet 0.014 100%

Table 3: Mardia’s test results validate that the latent distribution of the encoder conforms with a
mixture of Gaussian distributions.

Synthetic Experiments. We conduct experiments evaluating the robustness of the ELLIPS classi-
fier in different Gaussian mixture settings. We test on Gaussian mixtures with different number of
classes K = {2, 3,5}, having different distance R = {2, 4, 5} between the means of the classes and
for isotropic and anisotropic covariance matrices.

We compare the certified accuracy of the proposed classifier with the method of Pal et al. (2023).
We plot in Figure 5 the certified accuracy of both methods for the isotropic GMMs and in Figure 6
for anisotropic covariances. As shown in Figure 5 and Figure 6, our method outperforms the one in
Pal et al. (2023) and closely approximates the empirical robust accuracy achieved by PGD attack.

Additionally, we compare the certified radius of Theorem 3.1 with the archetypal technique of ran-
domized smoothing in different settings. As shown in Figure 7 and Figure 8, our method provides
higher certified accuracy than randomized smoothing, indicating the tighter certification of the pro-
posed radius of robustness.
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Figure 5: The proposed approach outperforms the method of Pal et al. (2023) in different Gaussian
mixture settings. Each row corresponds to a GMM with isotropic covariances and different number
of classes K = {2, 3,5}, while each column to one with different separation distance R = {2,4,5}.

Accuracy
g 2 8

s

ES

Accuracy

>
Zos
8

Figure 6: The proposed method outperforms the method of Pal et al. (2023) in different Gaussian
mixtures with anisotropic covariance matrices. Each row corresponds to a GMM with different
number of classes KX = {2,3,5}, while each column to one with different separation distance
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The proposed method achieves competitive robust accuracy in comparison to certified

accuracy than randomized smoothing in different Gaussian mixture settings. Each row corresponds
to a GMM with isotropic covariances and different number of classes K = {2,3,5}, while each
column to one with different seperation distance R = {2,4,5}.
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Figure 8: Comparison of our method with randomized smoothing for different mixture of Gaussians
with anisotropic covariances. The proposed method performs competitively against randomized
smoothing even when less number of Monte Carlo samples are used.
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