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Abstract

With the rise of Large Language Models001
(LLMs) in recent times, concerns about their002
tendency to hallucinate and produce inaccurate003
outputs have also increased. Detecting such hal-004
lucinations is crucial for ensuring trustworthi-005
ness in applications relying on LLM-generated006
content. Current methods, often resource-007
intensive and reliant on extensive LLMs and008
intricate linguistic and semantic analyses, are009
not easily reproduced. This paper seeks to in-010
troduce a simpler method to detect hallucina-011
tions in LLM generations using purely numeri-012
cal features. By evaluating token probabilities013
within the generated content and vocabulary,014
the method achieves promising results, surpass-015
ing state-of-the-art outcomes in Summarization016
and Question Answering on the Hallucination017
Evaluation for Large Language Models (HaluE-018
val) benchmark. This method demonstrates019
effectiveness in pinpointing hallucinatory con-020
tent, offering a more efficient pathway for real-021
time LLM output evaluation without the need022
for intricate linguistic analyses.023

1 Introduction024

Large Language Models (LLMs) have become the025

core of many state-of-the-art Natural Language Pro-026

cessing (NLP) algorithms and have revolutionized027

various domains in NLP and computer vision and028

even more specialized applications in healthcare,029

finance, and the creative arts. Because of their im-030

pressive Natural Language Generation (NLG) ca-031

pabilities (Zhao et al., 2023; Kaddour et al., 2023),032

they have attracted great interest from the public033

with great modern tools like ChatGPT (Hosseini034

et al., 2023), Github-Copilot (Chen et al., 2021),035

Dalle (Zeqiang et al., 2023), and others (Zhao et al.,036

2023). These models, with millions to billions of037

parameters, are often praised for their impressive038

ability to generate human-like text and tackle intri-039

cate tasks with limited to no fine-tuning with tech-040

niques like In-Context-Learning (Lu et al., 2023).041

Since many of the most popular applications and 042

state-of-the-art algorithms in NLP rely on LLMs, 043

any error they produce affects the results. Particu- 044

larly in the cases of a Chatbot like ChatGPT, the 045

generated responses are expected to maintain fac- 046

tual consistency with the source text (Lei et al., 047

2023). Currently, a pressing concern with LLMs is 048

their propensity to "hallucinate," which intuitively 049

means to produce outputs that, while seemingly co- 050

herent, might be misleading, fictitious, or not gen- 051

uinely reflective of their training data or real-world 052

facts (Ji et al., 2023). It has been widely observed 053

that models can confidently generate fictitious in- 054

formation, and worryingly, there are few effective 055

approaches to identify LLM hallucinations (Ji et al., 056

2023; Kaddour et al., 2023) suitably. And if we 057

cannot identify them even less, we can fix them in 058

real time on an application like ChatGPT. 059

Furthermore, the consequences of hallucinatory- 060

generated text when used by the public are a sig- 061

nificant ethical concern. This fictitious content can 062

lead to misinformation and have severe implica- 063

tions in delicate medical, legal, educational, and 064

financial fields. Besides the ethical consequences, 065

these errors can lead to limitations in the use of the 066

LLMs to automate programming tasks completely 067

and tedious hand-work, limiting their contribution 068

to NLP tasks (Ji et al., 2023; Kaddour et al., 2023). 069

While there have been efforts to detect and 070

mitigate these hallucinations, many of the preva- 071

lent methods rely on leveraging other massive 072

LLMs (Li et al., 2023; Zhang et al., 2023) or intri- 073

cate linguistic and semantic analyses (Zhang et al., 074

2023; Manakul et al., 2023; Lei et al., 2023; Wang 075

et al., 2022). The former approach escalates the 076

computational costs, making it less accessible to re- 077

searchers with limited resources. The latter, though 078

effective to some extent, can be cumbersome and 079

may need to be better for real-time applications like 080

ChatGPT. Additionally, current research has shown 081

that even state-of-the-art approaches (Ji et al., 2023; 082
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Kaddour et al., 2023; Li et al., 2023; Lei et al.,083

2023) struggle to detect hallucinations. An exam-084

ple of that is the research done on the recently085

released Hallucination Evaluation for Large Lan-086

guage Models (HaluEval) benchmark dataset (Li087

et al., 2023) with four different tasks: Summariza-088

tion, Question Answering, Dialogue, and General089

User Queries. In this benchmark, the initial and cur-090

rent approaches using the latest billion parameter091

models like GPT-3.5 (Ye et al., 2023), GPT-4 (Mao092

et al., 2023), LLama-2 (Touvron et al., 2023), Al-093

paca (Hu et al., 2023), struggle to get a good per-094

formance on this benchmark.095

However, recent research has hinted at the po-096

tential of numerical features mathematically (Lee,097

2023) and empirically (Manakul et al., 2023), such098

as the entropy of vocabulary and token probabil-099

ities, as indicators of hallucinations on LLM out-100

puts. If effectively utilized, these features could101

provide a resource-efficient method to detect and102

mitigate hallucinations. In this paper, we inves-103

tigate this particular approach further. Based on104

the premise that numerical trends can effectively105

differentiate authentic content from fabricated out-106

puts, we conduct a detailed assessment using the107

HaluEval benchmark.108

The results of our research not only highlight the109

effectiveness of this method in comparison with110

current approaches but also pave the way for po-111

tential uses that validate the credibility of LLM112

outputs, decreasing the demand for heavy compu-113

tational power or complex linguistic analysis. The114

results obtained on tasks like Summarization and115

Question Answering surpass significantly the cur-116

rent state-of-the-art results. Our main contributions117

are (i) the performance evaluation of two simple118

classifiers (Logistic Regression and a Simple Neu-119

ral Network) using numerical features based on120

generated token probabilities of a given LLM with121

great results in most tasks in the HaluEval bench-122

mark. (ii) We provide the impact of using different123

LLMs with the same approach on the obtained re-124

sults. (iii) Finally, we study the importance of each125

numerical feature we decided to use per task. We126

release all our code at [Removed for blind review].127

This paper is structured as follows. First, we128

present the related works. Second, we describe129

our methodology. Next, we offer the experiments130

performed and the results obtained from them in a131

given dataset. After that, we present a discussion132

and future work section, followed by the conclu-133

sions. Finally, we conclude the paper with the134

limitations section. 135

2 Related Work 136

The occurrence of hallucinations in Large Lan- 137

guage Models (LLMs) raises concerns, compro- 138

mising performance in practical implementations 139

like chatbots producing incorrect information. Var- 140

ious research directions have been explored to de- 141

tect and mitigate hallucinations in different Natural 142

Language Generation tasks (Ji et al., 2023). A veri- 143

fication system has been proposed for text summa- 144

rization to detect and mitigate inaccuracies (Zhao 145

et al., 2020; Huang et al., 2021; Ji et al., 2023). 146

In dialogue generation, hallucinations have been 147

studied with retrieval augmentation methods (Shus- 148

ter et al., 2021; Ji et al., 2023). Also, researchers 149

aim to understand why hallucinations occur in dif- 150

ferent tasks and how these reasons might be con- 151

nected (Zheng et al., 2023; Das et al., 2023). 152

Recent approaches to detect and mitigate hallu- 153

cinations include self-evaluation (Kadavath et al., 154

2022) and self-consistency decoding for intricate 155

reasoning tasks (Wang et al., 2022). Structured 156

data interfaces like knowledge graphs are proposed 157

for gathering evidence (Jiang et al., 2023). To- 158

ken probabilities as an indicator of model certainty 159

have been used, addressing uncertainty in sequen- 160

tial generation tasks (Xiao and Wang, 2021; Ma- 161

linin and Gales, 2020). Scores from conditional 162

language models are used to assess text character- 163

istics (Yuan et al., 2021; Fu et al., 2023). Recently 164

the work SelfCheckGPT suggests that LLM’s prob- 165

abilities correlate with factuality (Manakul et al., 166

2023). Finally, a mathematical investigation by 167

Lee et al. (Lee, 2023) suggests that token probabili- 168

ties are crucial in generating hallucinations in GPT 169

models under certain assumptions. 170

Despite research efforts, the full range of token 171

probabilities influencing hallucinations is yet to be 172

explored. This study investigates the influence of 173

varying token probabilities generated by different 174

LLMs, emphasizing the practicality of leveraging 175

large LLMs with fewer parameters for real-time ap- 176

plications, given challenges associated with repli- 177

cating techniques using larger models like GPT-3, 178

Llama-2, and Alpaca. 179

3 Methodology 180

We implement two classifiers, a Logistic Regres- 181

sion (LR) and a Simple Neural Network (SNN) 182

using four numerical features obtained from the 183
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Figure 1: General Pipeline of the Proposed Methodology.

token probabilities and vocabulary entropy from184

a forward pass to an LLM with the conditional185

generation approach (Zhang et al., 2022). In this186

section, we described our entire methodology to de-187

tect hallucinations on a generated text by an LLM188

conditioned on a piece of text, which can be a doc-189

ument, query, instruction, or dialogue history.190

3.1 Problem Statement191

Given a pair of texts (condition-text, generated-192

text) that represent the text used to condition the193

LLM to its generation. We want to detect if a194

given generated-text is a hallucination.195

3.2 General Pipeline196

Given a set of pairs of texts of the type (conditioned-197

text, generated-text) from an LLM (we will call198

it the LLM-Generator (LLMG)), we extract four199

numerical features based on the generated tokens200

and vocabulary tokens probabilities from another201

LLM that we call the LLM-Evaluator (LLME).1202

The four numerical features are the minimum to-203

ken probability from the generated text; the aver-204

age token probabilities; the maximum difference205

across all the tokens in the generated-text between206

the token with the highest probability according to207

LLME and the probability that LLME gives to the208

current token; and finally the minimum difference209

across all the tokens in the generated text between210

the token with the highest probability and the token211

with the lowest probability according to LLME .212

Then, using these four features, we trained two213

different classifiers: a Logistic Regression (LR)214

and a Simple Neural Network (SNN). Finally, we215

evaluate these classifiers on a test set they did not216

see before. Figure 1 illustrates the process.217

3.3 Features Description218

We will delve into more detail in this section on219

each feature extracted. Every feature is computed220

using token probabilities and the vocabulary proba-221

bility distribution corresponding to each token on222

1Which could be the same as LLMG.

the generated-text. However, let’s give some defi- 223

nitions: 224

1. We will name the token at position j on the 225

conditioned-text as cj . The token at position 226

i on the generated-text as ti. The token at 227

position k of the Vocabulary of the LLME as 228

vk. 229

2. Let m be the total tokens according to 230

LLME’s Tokenizer of the conditioned-text 231

and n the total tokens of generated-text. 232

3. We will define the token probability 233

of ti given LLME as PLLME
(ti) = 234

P (ti|ti−1, ..., t1, cm, ..., c1, θ). Where θ are 235

the parameters of the LLME model. 236

4. We will define the token probability of 237

each token of the Vocabulary of the LLME 238

corresponding to ti as PLLMEi
(vk) = 239

(vk|ti−1, ..., t1, cm, ..., c1; θ) for every k. 240

5. We will define the token with the highest 241

probability at position i in the generated- 242

text according to LLME as the v∗ = 243

argmaxk PLLMEi
(vk) 244

6. We will define the token with the lowest prob- 245

ability at position i according to LLME as 246

the v− = argmink PLLMEi
(vk) 247

Now, we will provide a natural language descrip- 248

tion of the four features and, next, the mathematical 249

definition. 250

Minimum Token Probability (mtp): Take the 251

minimum of the probabilities that the LLME 252

gives to the tokens on the generated-text. 253

Average Token Probability (avgtp): Take the 254

average of the probabilities that the LLME 255

gives to the tokens on the generated-text. 256

Max.-Diff. Vocab and Token Probs. (MDVTP): 257

Take the maximum from all the differences 258
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between the token with the highest probability259

according to LLME at position i and the260

assigned probability from LLME to ti.261

Min. of the Max. Diff. Vocab. Probs (MMDVP):262

Take the maximum from all the differences263

between the token with the highest probability264

according to LLME at position i (v∗) and the265

token with the lowest probability according to266

LLME at position i (v−).267

The mathematical definition of each of these268

features would be:269

mtp = min
i

PLLME
(ti) (1)270

avgtp =

∑n
i=1 PLLME

(ti)

n
(2)271

MDV TP = max
1≤i≤n

(PLLME
(v∗)− PLLME

(ti))272

MMDV P = min
1≤i≤n

(PLLMEi
(v∗)− PLLMEi

(v−))273

These four numerical features are inspired by274

the mathematical investigation of the GPT model275

by Lee (2023), and recent results from Manakul276

et al. (2023) that suggest the correlation between277

the minimum token probability on the generation,278

the average of the token probabilities, the average279

entropy, and the maximum entropy. In the math-280

ematical investigation by Lee (2023), two key as-281

sumptions are made (Assumption 6 and 7), which282

state:283

Assumption 6: "When the input context does284

not provide sufficient information for a clear and285

optimal token choice, the estimated probabilities286

p(xi+1) obtained are distributed such that the dif-287

ference between the highest and subsequent proba-288

bilities is relatively small."289

Assumption 7: "Hallucination takes place when290

the GPT model generates a low-probability token291

xi+1, given the previous tokens x1, x2, . . . , xi, and292

subsequently employs this token as input for pre-293

dicting the next token xi+2."294

The author proposes that a reliable indicator of295

hallucination during GPT model generation is the296

low probability of a token being generated. This is297

based on the assumption that forcing the model to298

generate such a low-probability token occurs when299

the difference between the token with the highest300

probability and all other tokens is less than a small301

constant δ. To avoid the computational cost of cal-302

culating differences across an extensive vocabulary303

and large generated text, the MMDV P is utilized304

as an indicator.305

Diverging from previous papers, the approach 306

here differs in several aspects. Instead of us- 307

ing only the Language Model generating the text 308

(LLMG), the argument is made that depending 309

on the task and model type, different Language 310

Models (LLME) can provide consistent but quan- 311

titatively different results than using probabilities 312

from LLMG. The belief is that probabilities from 313

a different model, varying in architecture, size, pa- 314

rameters, context length, and training data, can also 315

serve as reliable indicators of hallucinations in the 316

text generated by LLMG. Moreover, since LLME 317

and LLMG are not the same in this approach, an ad- 318

ditional numerical feature, MDV TP (Maximum 319

Difference in Vocabulary Token Probabilities), is 320

introduced. This feature indicates a high differ- 321

ence between the maximum probability token in 322

the vocabulary of LLME and the token generated 323

by LLMG, suggesting a disagreement between the 324

two models on the token in that position. 325

3.4 Feature Extraction 326

In the previous section, we described the numerical 327

features selected, but there is still the process of 328

extracting these features. To extract the features, 329

we used LLME models that can be used for the 330

Conditional Generation Task, where the core idea is 331

that they generate text based on a given condition 332

or context. Particularly, in our case, is a force 333

decoding since the tokens of generated-text were 334

generated by a different LLM (LLMG). Instead 335

of letting the model generate the answer token-by- 336

token from the conditioned-text alone, we provide 337

it with the token predicted by LLMG at each step. 338

This way, LLME is forced to follow the path to 339

generate the generated-text and, from there, extract 340

the token probabilities from LLME if it would 341

generate that sequence itself. Then, using these 342

token probabilities, we compute the four numerical 343

features previously described. 344

3.5 Models Specification 345

The classifiers used are a Logistic Regres- 346

sion (Wright, 1995) (LR) and a Simple Neural Net- 347

work (SNN). Both classifiers for a data point of 348

the type (conditioned-text, generated-text) only use 349

the four numerical features extracted. We selected 350

the Logistic Regression for its simplicity, fast train- 351

ing, and effectiveness in binary classification tasks. 352

However, we implemented a basic neural network 353

to explore potential and more complex non-linear 354

relationships in the data and provide a more intri- 355
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cate comparison to the logistic regression model.356

The specific architecture of this network is outlined357

below:358

Input Layer: Consisting of 4 neurons, each repre-359

senting one of the numerical features.360

Hidden Layer 1: Consisting of 512 neurons using361

the ReLU (He et al., 2018) activation function.362

Hidden Layer 2: Another layer consisting of 512363

neurons using the ReLU activation function.364

Output Layer: Consisting of a single neuron uti-365

lizing a sigmoid activation function for binary366

classification.367

4 Experimental Setup and Results368

In this section, we described the details of the ex-369

perimental setup and our results obtained. All our370

current experiments have been done on the HaluE-371

val benchmark dataset (Li et al., 2023).372

4.1 Datasets373

The current dataset used in our experiments is the374

Hallucination Evaluation for Large Language Mod-375

els (HaluEval) benchmark an extensive collection376

of generated and human-annotated hallucinated377

samples for evaluating the performance of LLMs378

in recognizing hallucinations. HaluEval includes379

5,000 general user queries with ChatGPT responses380

and 30,000 task-specific examples (10,000 per task)381

from three tasks: question answering, knowledge-382

grounded dialogue, and text summarization. Specif-383

ically, the authors consider three types of halluci-384

nation patterns for knowledge-grounded dialogue,385

i.e., extrinsic-soft, extrinsic-hard, and extrinsic-386

grouped; in question answering with four types,387

i.e., comprehension, factualness, specificity, and388

inference; and three types of hallucination patterns389

for text summarization, i.e., factual, non-factual,390

and intrinsic (Li et al., 2023).391

We intend to experiment with more Hallucina-392

tion datasets and benchmarks to come. Still, the393

results are already interesting enough to be shared394

with the research community.395

4.2 LLM Evaluators used396

The LLMs selected as evaluators to study the im-397

pact of factors such as the architecture, training398

method, size, and training data include GPT-2,399

specifically its large version (gpt2-large) (Rad-400

ford et al., 2019); Bidirectional and Auto-401

Regressive Transformers (BART), particularly its402

CNN-Large version (bart-large-cnn) (Lewis 403

et al., 2019); Longformer Encoder-Decoder 404

(LED) (Beltagy et al., 2020), with a particular fo- 405

cus on the version fine-tuned on the arXiv dataset 406

(led-large-16384-arxiv). We utilized the Hug- 407

ging Face transformers library for evaluation.2 408

In the case of BART and LED, we used 409

their BartForConditionalGeneration and 410

LEDForConditionalGeneration setup, re- 411

spectively. In the case of GPT-2 we used its 412

GPT2LMHeadModel setup. Additionally, when 413

we do forward to these models, with a pair of 414

(conditioned-text, generated-text), in the case of 415

BART and GPT-2 there is a maximum length of 416

1024 since we need to get the token probabilities 417

of the generated-text all the experiments truncate 418

the conditioned-text to only the first 700 words 419

and that 700 words are the only ones used 420

as conditioned-text in the forward pass so we 421

could have a span of at least 300 word for the 422

generated-text that can be large in tasks like the 423

summarization or general user queries. We did 424

not test GPT-3 versions due to cost limitations and 425

lack of access to the token probabilities. 426

4.3 Training Process of the Classifiers 427

We took the data points of every task to train both 428

classifiers for each of the tasks in the HaluEval 429

benchmark. We converted them to two data points: 430

(conditioned-text, right-answer) and (conditioned- 431

text, hallucinated-answer). Therefore, for our ap- 432

proach, the datasets would be of 20,000 examples 433

for each of the question answering, knowledge- 434

grounded dialogue, and text summarization tasks 435

where in each case half of the dataset is com- 436

prised of data points of the type (conditioned-text, 437

right-answer) and the other half are of the type 438

(conditioned-text, hallucinated-answer). In the 439

case of the general-user queries, the dataset is al- 440

ready on the format of having each data point clas- 441

sified as an hallucination or not, therefore the size 442

of the dataset is the same which is 5,000. 443

Then, with this adaptation of the HaluEval 444

benchmark dataset when we were approaching a 445

given task, we will sample randomly 10% of the 446

data points (half with the right-answer and the 447

other half of the same conditioned-text but with 448

its respective hallucinated-answer).3 These 10% 449

2https://huggingface.co/
3Example: For the Summarization task, there are 20,000

data points, so we randomly sample 2,000 data points where
1,000 have the correct answer and the other 1,000 the halluci-
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data points are used to train both classifiers (LR450

and SNN), and we test the model capabilities on451

the remaining 90% of the dataset for a given task.452

To train the LR, we used the sklearn453

library4 using the Limited-memory Broy-454

den–Fletcher–Goldfarb–Shanno Algorithm (lbfgs)455

solver (Saputro and Widyaningsih, 2017) with the456

default parameters set by sklearn.457

The SNN was trained during 104 epochs. We458

used the Adam (Kingma and Ba, 2014) optimizer459

with a learning rate of 10−3 . All the experiments460

were performed on Google Colab5 with a the T4461

GPU.462

4.4 Results463

We evaluate each classifier trained on the 10% data464

of the given task on the other 90%. We wanted465

to study the performance of each model in de-466

tail with both classes. The positive class which467

classifies a data point as a pair of (conditioned-468

text, right-answer) and the negative class which469

classifies a data point as a pair of (conditioned-470

text, hallucinated-answer). Therefore, to ensure471

a comprehensive understanding of the capabilities472

of each model, we selected the following metrics:473

Accuracy, F1, Precision Recall Area Under Curve474

(PR-AUC), and the negative class counterpart, the475

Negative F1 Score computed from the Negative476

Predictive Value (NPV) and True Negative Rate477

(TNR).478

For the sake of comparison, Table 1 shows the479

current state of the art published, particularly the480

best result obtained from all the methods explored481

in each paper. Next, Table 2 shows the accuracy482

results on the test set for each task using every483

LLME selected and the Logistic Regression as the484

classifier. As it can be appreciated, the Logistic485

Regression obtains great results compared to what486

previous approaches would have gotten on the 90%487

of the dataset.488

Tables 3, 4, 5 show our average6 results per489

model of our approach in each metric evaluated490

on the test set for each of the tasks of summariza-491

tion, question-answering, knowledge-grounded di-492

alogue, and general user queries respectively. It is493

true that the current methods tested are based on In-494

nated answer.
4https://pypi.org/project/sklearn/
5https://colab.research.google.com/
6The average is because the training set and testing set are

sampled randomly in each run we have been able to run three
iterations in each case and average them.

Context-Learning approaches and Zero-Shot fash- 495

ion and evaluated in 100% of the dataset. While 496

our approach employs supervised learning, we con- 497

sider it a fair comparison as we utilize only 10% 498

of the data for training, testing the models on the 499

remaining 90%. We argue that current approaches 500

won’t yield significantly better results on the 90% 501

of the dataset than what they achieve on the full 502

100%. However, for other approaches that have 503

been tested on a subset of a dataset, we cannot be 504

entirely certain if those methods would outperform 505

ours. Let’s now discuss our findings per task. 506

4.4.1 Summarization 507

Our results from Table 3 indicate that by using 508

the gpt-2-large model as LLME and the LR 509

classifier surpasses state-of-the-art accuracy. Em- 510

ploying the SNN also yields outstanding perfor- 511

mance, indicating a high accuracy for predictions 512

in both positive and negative classes. Notably, 513

PR-AUC is 93%, with F1 and Negative-F1 scores 514

of 94.60% and 94.94%, showcasing a balanced 515

model performance in terms of precision, recall, 516

false positives, and false negatives for both classes. 517

These results outperform current state-of-the-art ap- 518

proaches, even with the latest GPT model versions. 519

Additionally, bart-cnn-large outperforms 520

state-of-the-art using LR and obtains an impressive 521

accuracy of 82.3% with the SNN classifier. This 522

success is noteworthy given differences in archi- 523

tecture, parameters, and training data compared to 524

gpt-2-large, even when bart-cnn-large main- 525

tains an advantage by incorporating the CNN- 526

Daily-Mail dataset (Chen et al., 2016) in its train- 527

ing, a foundation in the HaluEval benchmark for 528

summarization. 529

In contrast, without prior training on this data, 530

the LED model excels by considering the entire con- 531

text without truncation. LED achieves 78% accuracy 532

using the SNN classifier, surpassing the state of the 533

art. This shows the significance of numerical fea- 534

tures on the HaluEval benchmark, irrespective of 535

differences in hypotheses obtained from a distinct 536

LLME . 537

4.4.2 Question Answering 538

This task is divided into two aspects: one involv- 539

ing only the question and answer, and the other 540

incorporating knowledge with the correct answer 541

as part of the conditioned-text. Our results from 542

Table 4 show a surprising outcome in the Ques- 543

tion Answering task. Contrary to expectations, the 544

6
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Paper Summ. QA KGD GUQ
(Li et al., 2023) (The entire dataset) 0.61 0.77 0.74 0.87
(George and Stuhlmüller) (Data Points: 4000) 0.76 - - -
(Lei et al., 2023) (Data Points: 2130 in Summ. and 4170 in QA) 0.677 0.849 - -

Table 1: Current State of the Art results on the HaluEval benchmark for each task measure in Accuracy. The text
next to the cite of the paper is the number of data points per task used for evaluation.

Model Summ. QA KGD GUQ
gpt2-large 0.93 0.76 0.60 0.55
bart-large 0.68 0.93 0.68 0.54
LED 0.52 0.87 0.62 0.52

Table 2: Our results for each LLME and task using the
LR classifier and measure in accuracy on the test set.

Model Acc F1 PR-AUC Neg F1

gpt2-large 0.94 0.94 0.97 0.94
bart-large 0.82 0.83 0.78 0.81
LED 0.78 0.77 0.86 0.77

Table 3: Summarization Task test set results average
using the SNN Classifier.
best performance comes not from gpt-2-large545

but from bart-cnn-large. It achieves an accuracy546

of 93.57% with the LR classifier and 94.64% with547

the SNN. These results are accompanied by a PR-548

AUC of 96%, F1 score of 94.62%, and Negative-F1549

score of 94.65%, indicating a high rate of correct550

predictions across positive and negative classes.551

Furthermore, the LED model surpasses the state-of-552

the-art performance, with an accuracy of 87.48%553

(LR) and 88.08% (SNN). The F1 score is 88.35%,554

and the Negative-F1 score is 87.8%, complemented555

by a PR-AUC of 93%.556

Also interesting is how the inclusion of the557

Knowledge on the conditioned-text did not im-558

prove the results, and in some instances like559

gpt-2-large the performance decreased.560

4.4.3 Knowledge-Grounded Dialogue561

The results of this task in Table 5 showed that all562

the LLME selected using both classifiers were not563

enough to surpass the state-of-the-art. However,564

the results are still competitive, obtaining the best565

results with bart-cnn-large. Additionally, inte-566

grating the Knowledge on the conditioned-text only567

decreased the results.568

4.4.4 General User Queries569

For this task, a table wasn’t included due to re-570

sult similarities. When employing various LLME571

models with the SNN classifier, the results indi-572

cated overfitting to the negative class, yielding an573

Model Acc F1 PR-AUC Neg F1

gpt2-large 0.78 0.78 0.86 0.77
bart-large 0.94 0.94 0.96 0.94
LED 0.88 0.88 0.93 0.87
+Knowledge
gpt2-large 0.74 0.75 0.83 0.73
bart-large 0.94 0.94 0.96 0.94
LED 0.88 0.88 0.93 0.88

Table 4: Question Answering Task test set results aver-
age using the SNN Classifier. The +Knowledge rows
highlight the results of the models by using the extra
Knowledge.

Model Acc F1 PR-AUC Neg F1

gpt2-large 0.64 0.63 0.68 0.65
bart-large 0.69 0.64 0.78 0.72
LED 0.58 0.58 0.68 0.60
+Knowledge
gpt2-large 0.63 0.63 0.68 0.63
bart-large 0.67 0.65 0.77 0.70
LED 0.59 0.59 0.68 0.61

Table 5: Knowledge-Grounded Dialogue Task test set
results average using the SNN Classifier.

accuracy of 81%, F1 of 1%, PR-AUC of 10%, and 574

F1-Negative of 90%. This overfitting is attributed 575

to dataset imbalance, where out of 5,000 examples, 576

only 977 are not hallucinations. An alternative at- 577

tempt with a training set of 500 positive and 500 578

negative examples tested on the remaining 4,000 579

revealed limited success, with the best accuracy at 580

69% and F1 at 0.23%. 581

5 Discussion 582

The results are based on a supervised learning ap- 583

proach, different from current methods that do not 584

utilize any data for training. Notably, excellent 585

performance was observed in Summarization and 586

Question Answering tasks using gpt-2-large and 587

bart-cnn-large as LLME . Also, competitive- 588

ness was noted in the Knowledge-Grounded Di- 589

alogue task, contrasting with lower performance 590

in the General-User-Queries dataset compared to 591
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state-of-the-art approaches.592

This suggests a potential mismatch between the593

Conditional Generation Approach and tasks in-594

volving executing instructions, such as knowledge-595

grounded dialogue and general-user-queries. The596

complexity of nuanced dialogues and diverse user597

queries may require specialized models. Another598

clear possibility is that the numerical features are599

not enough in these tasks to detect the hallucina-600

tions of the HaluEval benchmark and might follow601

another type of pattern, like the contextual intrica-602

cies of a real-time dialogue. In any case, both are603

interesting research questions that can enlighten604

more on the path to understanding and mitigating605

the hallucinations in LLMs.606

Another research question is the impact of man-607

ual annotations on the approach’s efficacy, hinting608

at the potential advantages of using automatically609

generated benchmarks and datasets. Despite this,610

even with automatically generated data, current611

state-of-the-art LLMs, employing techniques like612

Chain-Of-Thought (Li et al., 2023), perform worse613

than the proposed approach. This prompts consid-614

eration for a hybrid approach in future work.615

Feature importance analysis 7 highlights avgtp616

as a crucial feature in most tasks, representing the617

confidence of LLME in generating a sequence.618

Low-confidence sequences may indicate hallucina-619

tions, while high-confidence sequences align more620

closely with training data. However, results reveal621

that for specific LLME and task pairings, the criti-622

cal feature can vary, exemplified by gpt-2-large623

in the Question Answering task, where MDV TP624

emerges as the most crucial feature.625

6 Future Works626

The first avenue is broadening the set of numeri-627

cal features to capture more intricate patterns, po-628

tentially enhancing the model’s performance, par-629

ticularly in tasks like dialogue and general user630

queries. A second path would be to explore the im-631

pact of using different LLMs as LLME , including632

larger models such as GPT-3.5, GPT-4, LLama2,633

and Alpaca. Testing results with LLME = LLMG634

(token probabilities from ChatGPT) is suggested635

for those with access to it, providing insights into636

potential performance variations.637

Additionally, the third idea involves fine-tuning638

or adapting the models for specific tasks, especially639

those with differential performance. Exploring al-640

7Showed in the Appendix

ternative LLME models, not in Conditional Gen- 641

eration mode, tailored for tasks like dialogue gen- 642

eration or instruction execution, is also under con- 643

sideration. In addition, investigating the impact 644

of varying training data amounts and distributions, 645

including supervised and transfer learning, is con- 646

sidered to understand classifier learning patterns 647

and generalizability to other datasets. 648

Finally, the existing classifiers are notably sim- 649

ple, and there is room for improvement by modify- 650

ing the architecture of the Simple Neural Network. 651

Attempts to increase complexity yielded similar 652

performance or led to overfitting on the small train- 653

ing data. While this may be effective in scenarios 654

with extensive training data for comparison, imple- 655

menting a model selection strategy with a valida- 656

tion set could lead to better results. 657

7 Conclusions 658

This paper introduces a novel approach to detecting 659

hallucinations in LLMs generations to boost their 660

trustworthiness and applicability in real-world sce- 661

narios. Using a method focused on four numerical 662

features based on token probabilities. We exceeded 663

existing standards in areas like Summarization and 664

Question-Answering using the HaluEval bench- 665

mark as an experimental playground, highlighting 666

the effectiveness of our technique and potential 667

integration with other approaches. 668

The contributions of this work include the evalu- 669

ation of two classifiers, Logistic Regression, and a 670

Simple Neural Network, using numerical features 671

derived from token probabilities. Our work also 672

highlights the importance of each numerical fea- 673

ture in detecting hallucinations for different tasks. 674

Additionally, the research explores the impact of 675

different LLMs, such as GPT-2, BART-CNN, and 676

LED, on the proposed method’s performance. 677

The implications of this research extend to every 678

domain relying on LLMs, including Information 679

Retrieval, Natural Language Generation, and NLP 680

in general. By enhancing the trustworthiness and 681

reliability of LLM outputs, the proposed method 682

contributes to the ethical and responsible use of 683

these models in sensitive applications, such as med- 684

ical, legal, educational, and financial domains. This 685

work is a big step toward creating a reliable and 686

flexible method to detect hallucinations in LLMs. 687

This paper will help future research and contribute 688

to the larger academic conversation about making 689

trustworthy and capable LLMs. 690

8



Limitations691

The first limitation is the numerical features and692

models selected as LLME . While our current ap-693

proach has demonstrated effectiveness in specific694

tasks, it may only capture the richness and com-695

plexity of some textual content types. The derived696

features need to be more sufficient for tasks like697

knowledge-grounded dialogue, which involve intri-698

cate context and real-time exchanges.699

Our method outperformed state-of-the-art in700

tasks like summarization and question answering.701

However, in dialogue and general user queries, it702

achieved competitive but not leading results. This703

could hint at potential over-specialization or the704

need for task-specific feature engineering. An-705

other reason could be the inherent limitations of706

the LLMs selected as LLME . Furthermore, we707

have yet to test as LLME the same model since708

we cannot access the probabilities from ChatGPT,709

which generated all the generated-text in the HaluE-710

val benchmark. Additionally, because of the con-711

text length limitation of some of the LLMs, we712

needed to truncate the conditioned-text to 700713

words, which might cause us to lose the neces-714

sary context to get the right token probabilities to715

classify correctly. More experiments can be done716

with different truncation lengths and also LLMs717

with higher context lengths.718

One of the main limitations is that the results719

and the effectiveness of our approach may be tied720

to the characteristics of the dataset used. If the721

dataset has inherent biases or lacks diversity in722

certain aspects, the model’s performance could be723

skewed. For instance, it might be in the specific724

patterns obtained on the HaluEval benchmark that725

these four numerical features are good indicators726

for detecting this type of hallucination. However, it727

doesn’t change the fact that current complex state-728

of-the-art approaches have yet to show this level of729

performance under the same circumstances.730

We need a study separation on the different types731

of hallucinations per task divided on the HaluE-732

val benchmark, which we intend to do in the next733

weeks and add to this paper. This analysis will734

allow us to study which type of hallucinations de-735

signed on the HaluEval benchmark are easier or736

harder to detect with this approach.737

Finally, this method is grounded in binary clas-738

sification. In real-world scenarios, hallucination739

might be more nuanced, with varying degrees of740

severity, which our current approach might not ac-741

count for. Furthermore, there needs to be more 742

interpretability; even when we can get intuition 743

from the numerical features, we cannot obtain the 744

exact explanation of what specific wrong fact or 745

fictitious information is being added. We intend 746

to explore other ideas on datasets that make this 747

separation to increase the interpretability. 748
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A Appendix909

A.1 Feature Importance Analysis910

We also performed experiments with different com-911

binations of the four numerical features to deter-912

mine which features were more important or not913

to get a particular result. Tables 6, 7, 8 showed for914

each task and model how the results in accuracy915

were affected by which features were used or not 8.916

Once again, this is an average of the three iterations917

done to all experiments to avoid a lucky random.918

Features Results

mtp avgtp MDVTP MMDVP GPT-2 BART LED

x x x x 0.94 0.82 0.78
x 0.5 0.82 0.72

x 0.94 0.65 0.71
x 0.51 0.59 0.53

x 0.56 0.65 0.52

Table 6: Feature Importance in the Summarization Task
using the Accuracy metric for all models.

Features Results

mtp avgtp MDVTP MMDVP GPT-2 BART LED

x x x x 0.78 0.94 0.88
x 0.66 0.57 0.5

x 0.53 0.94 0.84
x 0.74 0.63 0.67

x 0.65 0.6 0.56

Table 7: Feature Importance in the Question Answering
Task using the Accuracy metric for all models.

As can be observed, even when the combination919

of features like mtp, MDV TP , and MMDV P920

achieve good results and sometimes even by them-921

selves, it is clear that the main important fea-922

ture in most cases is the avgtp for most tasks.923

However, interesting enough, in the case of the924

Question Answering task, this changed for the925

gpt-2-large model, in which the main feature926

to obtain its results was MDV TP . This suggests927

8We do not include the rest of the metrics in this table
because it overloads it unnecessarily and since the accuracy is
a good metric for comparison given that the dataset for these
three tasks is balanced.

Features Results

mtp avgtp MDVTP MMDVP GPT-2 BART LED

x x x x 0.64 0.69 0.58
x 0.5 0.54 0.57

x 0.54 0.69 0.53
x 0.63 0.54 0.53

x 0.54 0.53 0.51

Table 8: Feature Importance in the Knowledge-
Grounded Dialogue Task using the Accuracy metric
for all models.

that the importance of a given feature is also cor- 928

related to the LLME used, since for the case of 929

bart-cnn-large, the essential feature is avgtp. 930
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