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Abstract

With the rise of Large Language Models
(LLMs) in recent times, concerns about their
tendency to hallucinate and produce inaccurate
outputs have also increased. Detecting such hal-
lucinations is crucial for ensuring trustworthi-
ness in applications relying on LLM-generated
content. Current methods, often resource-
intensive and reliant on extensive LLMs and
intricate linguistic and semantic analyses, are
not easily reproduced. This paper seeks to in-
troduce a simpler method to detect hallucina-
tions in LLM generations using purely numeri-
cal features. By evaluating token probabilities
within the generated content and vocabulary,
the method achieves promising results, surpass-
ing state-of-the-art outcomes in Summarization
and Question Answering on the Hallucination
Evaluation for Large Language Models (HaluE-
val) benchmark. This method demonstrates
effectiveness in pinpointing hallucinatory con-
tent, offering a more efficient pathway for real-
time LLM output evaluation without the need
for intricate linguistic analyses.

1 Introduction

Large Language Models (LLMs) have become the
core of many state-of-the-art Natural Language Pro-
cessing (NLP) algorithms and have revolutionized
various domains in NLP and computer vision and
even more specialized applications in healthcare,
finance, and the creative arts. Because of their im-
pressive Natural Language Generation (NLG) ca-
pabilities (Zhao et al., 2023; Kaddour et al., 2023),
they have attracted great interest from the public
with great modern tools like ChatGPT (Hosseini
et al., 2023), Github-Copilot (Chen et al., 2021),
Dalle (Zeqgiang et al., 2023), and others (Zhao et al.,
2023). These models, with millions to billions of
parameters, are often praised for their impressive
ability to generate human-like text and tackle intri-
cate tasks with limited to no fine-tuning with tech-
niques like In-Context-Learning (Lu et al., 2023).

Since many of the most popular applications and
state-of-the-art algorithms in NLP rely on LLMs,
any error they produce affects the results. Particu-
larly in the cases of a Chatbot like ChatGPT, the
generated responses are expected to maintain fac-
tual consistency with the source text (Lei et al.,
2023). Currently, a pressing concern with LLMs is
their propensity to "hallucinate," which intuitively
means to produce outputs that, while seemingly co-
herent, might be misleading, fictitious, or not gen-
uinely reflective of their training data or real-world
facts (Ji et al., 2023). It has been widely observed
that models can confidently generate fictitious in-
formation, and worryingly, there are few effective
approaches to identify LLM hallucinations (Ji et al.,
2023; Kaddour et al., 2023) suitably. And if we
cannot identify them even less, we can fix them in
real time on an application like ChatGPT.

Furthermore, the consequences of hallucinatory-
generated text when used by the public are a sig-
nificant ethical concern. This fictitious content can
lead to misinformation and have severe implica-
tions in delicate medical, legal, educational, and
financial fields. Besides the ethical consequences,
these errors can lead to limitations in the use of the
LLMs to automate programming tasks completely
and tedious hand-work, limiting their contribution
to NLP tasks (Ji et al., 2023; Kaddour et al., 2023).

While there have been efforts to detect and
mitigate these hallucinations, many of the preva-
lent methods rely on leveraging other massive
LLMs (Li et al., 2023; Zhang et al., 2023) or intri-
cate linguistic and semantic analyses (Zhang et al.,
2023; Manakul et al., 2023; Lei et al., 2023; Wang
et al., 2022). The former approach escalates the
computational costs, making it less accessible to re-
searchers with limited resources. The latter, though
effective to some extent, can be cumbersome and
may need to be better for real-time applications like
ChatGPT. Additionally, current research has shown
that even state-of-the-art approaches (Ji et al., 2023;



Kaddour et al., 2023; Li et al., 2023; Lei et al.,
2023) struggle to detect hallucinations. An exam-
ple of that is the research done on the recently
released Hallucination Evaluation for Large Lan-
guage Models (HaluEval) benchmark dataset (Li
et al., 2023) with four different tasks: Summariza-
tion, Question Answering, Dialogue, and General
User Queries. In this benchmark, the initial and cur-
rent approaches using the latest billion parameter
models like GPT-3.5 (Ye et al., 2023), GPT-4 (Mao
et al., 2023), LLama-2 (Touvron et al., 2023), Al-
paca (Hu et al., 2023), struggle to get a good per-
formance on this benchmark.

However, recent research has hinted at the po-
tential of numerical features mathematically (Lee,
2023) and empirically (Manakul et al., 2023), such
as the entropy of vocabulary and token probabil-
ities, as indicators of hallucinations on LLM out-
puts. If effectively utilized, these features could
provide a resource-efficient method to detect and
mitigate hallucinations. In this paper, we inves-
tigate this particular approach further. Based on
the premise that numerical trends can effectively
differentiate authentic content from fabricated out-
puts, we conduct a detailed assessment using the
HaluEval benchmark.

The results of our research not only highlight the
effectiveness of this method in comparison with
current approaches but also pave the way for po-
tential uses that validate the credibility of LLM
outputs, decreasing the demand for heavy compu-
tational power or complex linguistic analysis. The
results obtained on tasks like Summarization and
Question Answering surpass significantly the cur-
rent state-of-the-art results. Our main contributions
are (i) the performance evaluation of two simple
classifiers (Logistic Regression and a Simple Neu-
ral Network) using numerical features based on
generated token probabilities of a given LLM with
great results in most tasks in the HaluEval bench-
mark. (ii) We provide the impact of using different
LLMs with the same approach on the obtained re-
sults. (iii) Finally, we study the importance of each
numerical feature we decided to use per task. We
release all our code at [Removed for blind review].

This paper is structured as follows. First, we
present the related works. Second, we describe
our methodology. Next, we offer the experiments
performed and the results obtained from them in a
given dataset. After that, we present a discussion
and future work section, followed by the conclu-
sions. Finally, we conclude the paper with the

limitations section.

2 Related Work

The occurrence of hallucinations in Large Lan-
guage Models (LLMs) raises concerns, compro-
mising performance in practical implementations
like chatbots producing incorrect information. Var-
ious research directions have been explored to de-
tect and mitigate hallucinations in different Natural
Language Generation tasks (Ji et al., 2023). A veri-
fication system has been proposed for text summa-
rization to detect and mitigate inaccuracies (Zhao
et al., 2020; Huang et al., 2021; Ji et al., 2023).
In dialogue generation, hallucinations have been
studied with retrieval augmentation methods (Shus-
ter et al., 2021; Ji et al., 2023). Also, researchers
aim to understand why hallucinations occur in dif-
ferent tasks and how these reasons might be con-
nected (Zheng et al., 2023; Das et al., 2023).

Recent approaches to detect and mitigate hallu-
cinations include self-evaluation (Kadavath et al.,
2022) and self-consistency decoding for intricate
reasoning tasks (Wang et al., 2022). Structured
data interfaces like knowledge graphs are proposed
for gathering evidence (Jiang et al., 2023). To-
ken probabilities as an indicator of model certainty
have been used, addressing uncertainty in sequen-
tial generation tasks (Xiao and Wang, 2021; Ma-
linin and Gales, 2020). Scores from conditional
language models are used to assess text character-
istics (Yuan et al., 2021; Fu et al., 2023). Recently
the work SelfCheckGPT suggests that LLM’s prob-
abilities correlate with factuality (Manakul et al.,
2023). Finally, a mathematical investigation by
Lee et al. (Lee, 2023) suggests that token probabili-
ties are crucial in generating hallucinations in GPT
models under certain assumptions.

Despite research efforts, the full range of token
probabilities influencing hallucinations is yet to be
explored. This study investigates the influence of
varying token probabilities generated by different
LLMs, emphasizing the practicality of leveraging
large LLMs with fewer parameters for real-time ap-
plications, given challenges associated with repli-
cating techniques using larger models like GPT-3,
Llama-2, and Alpaca.

3 Methodology

We implement two classifiers, a Logistic Regres-
sion (LR) and a Simple Neural Network (SNN)
using four numerical features obtained from the
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Figure 1: General Pipeline of the Proposed Methodology.

token probabilities and vocabulary entropy from
a forward pass to an LLM with the conditional
generation approach (Zhang et al., 2022). In this
section, we described our entire methodology to de-
tect hallucinations on a generated text by an LLM
conditioned on a piece of text, which can be a doc-
ument, query, instruction, or dialogue history.

3.1 Problem Statement

Given a pair of texts (condition-text, generated-
text) that represent the text used to condition the
LLM to its generation. We want to detect if a
given generated-text is a hallucination.

3.2 General Pipeline

Given a set of pairs of texts of the type (conditioned-
text, generated-text) from an LLM (we will call
it the LLM-Generator (LLM¢)), we extract four
numerical features based on the generated tokens
and vocabulary tokens probabilities from another
LLM that we call the LLM-Evaluator (LLMp).!
The four numerical features are the minimum to-
ken probability from the generated text; the aver-
age token probabilities; the maximum difference
across all the tokens in the generated-text between
the token with the highest probability according to
LLME and the probability that L L MF gives to the
current token; and finally the minimum difference
across all the tokens in the generated text between
the token with the highest probability and the token
with the lowest probability according to LLMFE.

Then, using these four features, we trained two
different classifiers: a Logistic Regression (LR)
and a Simple Neural Network (SNN). Finally, we
evaluate these classifiers on a test set they did not
see before. Figure 1 illustrates the process.

3.3 Features Description

We will delve into more detail in this section on
each feature extracted. Every feature is computed
using token probabilities and the vocabulary proba-
bility distribution corresponding to each token on

"Which could be the same as LLM¢.

the generated-text. However, let’s give some defi-
nitions:

1. We will name the token at position j on the
conditioned-text as cj. The token at position
1 on the generated-text as t;. The token at
position k of the Vocabulary of the LL Mg as
V.

2. Let m be the total tokens according to
LLMEg’s Tokenizer of the conditioned-text
and n the total tokens of generated-text.

3. We will define the token probability
of t; given LLMg as PLLME (tz) =
P(t|ti—1, ..., t1, Cmy ..., €1,6). Where 6 are
the parameters of the L.L Mg model.

4. We will define the token probability of
each token of the Vocabulary of the LLMFE
corresponding to t; as Prra, (vp) =
(Vk|tiz1, s t1, Cmy .., €13 0) fOr evéry k.

5. We will define the token with the highest
probability at position ¢ in the generated-
text according to LLMpg as the v* =
arg maxy, PLLMEi (vk)

6. We will define the token with the lowest prob-
ability at position ¢ according to LLMF, as
the v~ = arg miny PLLMEi (vg)

Now, we will provide a natural language descrip-
tion of the four features and, next, the mathematical
definition.

Minimum Token Probability (mtp): Take the
minimum of the probabilities that the LL Mg,
gives to the tokens on the generated-text.

Average Token Probability (avgtp): Take the
average of the probabilities that the LLMFg
gives to the tokens on the generated-text.

Max.-Diff. Vocab and Token Probs. (MDVTP):
Take the maximum from all the differences



between the token with the highest probability
according to LLMp at position ¢ and the
assigned probability from LLMFE to t;.

Min. of the Max. Diff. Vocab. Probs (MMDVP):
Take the maximum from all the differences
between the token with the highest probability
according to L LM at position ¢ (v*) and the
token with the lowest probability according to
LLMgE at position ¢ (v™).

The mathematical definition of each of these
features would be:

ey

mtp = mzln PLLME (tz)

n_ P t;
D it 2LME( ) )

MDVTP = max (PLLME('U*) — PLLME(ti))
1<i<n

avgtp =

MMDVP = min (Prry, (v°) — Provg (v7))
1<i<n v v

These four numerical features are inspired by
the mathematical investigation of the GPT model
by Lee (2023), and recent results from Manakul
et al. (2023) that suggest the correlation between
the minimum token probability on the generation,
the average of the token probabilities, the average
entropy, and the maximum entropy. In the math-
ematical investigation by Lee (2023), two key as-
sumptions are made (Assumption 6 and 7), which
state:

Assumption 6: "When the input context does
not provide sufficient information for a clear and
optimal token choice, the estimated probabilities
p(x;+1) obtained are distributed such that the dif-
ference between the highest and subsequent proba-
bilities is relatively small."

Assumption 7: "Hallucination takes place when
the GPT model generates a low-probability token
Zi+1, given the previous tokens x1, za, ..., x;, and
subsequently employs this token as input for pre-
dicting the next token z;2."

The author proposes that a reliable indicator of
hallucination during GPT model generation is the
low probability of a token being generated. This is
based on the assumption that forcing the model to
generate such a low-probability token occurs when
the difference between the token with the highest
probability and all other tokens is less than a small
constant §. To avoid the computational cost of cal-
culating differences across an extensive vocabulary
and large generated text, the M M DV P is utilized
as an indicator.

Diverging from previous papers, the approach
here differs in several aspects. Instead of us-
ing only the Language Model generating the text
(LLMg), the argument is made that depending
on the task and model type, different Language
Models (LLMF) can provide consistent but quan-
titatively different results than using probabilities
from LLMg. The belief is that probabilities from
a different model, varying in architecture, size, pa-
rameters, context length, and training data, can also
serve as reliable indicators of hallucinations in the
text generated by L L M. Moreover, since LLMpg
and L L Mg are not the same in this approach, an ad-
ditional numerical feature, M DV'T'P (Maximum
Difference in Vocabulary Token Probabilities), is
introduced. This feature indicates a high differ-
ence between the maximum probability token in
the vocabulary of LL Mg and the token generated
by LL Mg, suggesting a disagreement between the
two models on the token in that position.

3.4 Feature Extraction

In the previous section, we described the numerical
features selected, but there is still the process of
extracting these features. To extract the features,
we used LLMpg models that can be used for the
Conditional Generation Task, where the core idea is
that they generate text based on a given condition
or context. Particularly, in our case, is a force
decoding since the tokens of generated-text were
generated by a different LLM (LLM¢). Instead
of letting the model generate the answer token-by-
token from the conditioned-text alone, we provide
it with the token predicted by L L Mg at each step.
This way, LLME is forced to follow the path to
generate the generated-text and, from there, extract
the token probabilities from LLME if it would
generate that sequence itself. Then, using these
token probabilities, we compute the four numerical
features previously described.

3.5 Models Specification

The classifiers used are a Logistic Regres-
sion (Wright, 1995) (LR) and a Simple Neural Net-
work (SNN). Both classifiers for a data point of
the type (conditioned-text, generated-text) only use
the four numerical features extracted. We selected
the Logistic Regression for its simplicity, fast train-
ing, and effectiveness in binary classification tasks.
However, we implemented a basic neural network
to explore potential and more complex non-linear
relationships in the data and provide a more intri-



cate comparison to the logistic regression model.
The specific architecture of this network is outlined
below:

Input Layer: Consisting of 4 neurons, each repre-
senting one of the numerical features.

Hidden Layer 1: Consisting of 512 neurons using
the ReLU (He et al., 2018) activation function.

Hidden Layer 2: Another layer consisting of 512
neurons using the ReL.U activation function.

Output Layer: Consisting of a single neuron uti-
lizing a sigmoid activation function for binary
classification.

4 Experimental Setup and Results

In this section, we described the details of the ex-
perimental setup and our results obtained. All our
current experiments have been done on the HaluE-
val benchmark dataset (Li et al., 2023).

4.1 Datasets

The current dataset used in our experiments is the
Hallucination Evaluation for Large Language Mod-
els (HaluEval) benchmark an extensive collection
of generated and human-annotated hallucinated
samples for evaluating the performance of LLMs
in recognizing hallucinations. HaluEval includes
5,000 general user queries with ChatGPT responses
and 30,000 task-specific examples (10,000 per task)
from three tasks: question answering, knowledge-
grounded dialogue, and text summarization. Specif-
ically, the authors consider three types of halluci-
nation patterns for knowledge-grounded dialogue,
i.e., extrinsic-soft, extrinsic-hard, and extrinsic-
grouped; in question answering with four types,
i.e., comprehension, factualness, specificity, and
inference; and three types of hallucination patterns
for text summarization, i.e., factual, non-factual,
and intrinsic (Li et al., 2023).

We intend to experiment with more Hallucina-
tion datasets and benchmarks to come. Still, the
results are already interesting enough to be shared
with the research community.

4.2 LLM Evaluators used

The LLMs selected as evaluators to study the im-
pact of factors such as the architecture, training
method, size, and training data include GPT-2,
specifically its large version (gpt2-large) (Rad-
ford et al., 2019); Bidirectional and Auto-
Regressive Transformers (BART), particularly its

CNN-Large version (bart-large-cnn) (Lewis
et al., 2019); Longformer Encoder-Decoder
(LED) (Beltagy et al., 2020), with a particular fo-
cus on the version fine-tuned on the arXiv dataset
(led-large-16384-arxiv). We utilized the Hug-
ging Face transformers library for evaluation.”

In the case of BART and LED, we used
their BartForConditionalGeneration and
LEDForConditionalGeneration setup,  re-
spectively. In the case of GPT-2 we used its
GPT2LMHeadModel setup. Additionally, when
we do forward to these models, with a pair of
(conditioned-text, generated-text), in the case of
BART and GPT-2 there is a maximum length of
1024 since we need to get the token probabilities
of the generated-text all the experiments truncate
the conditioned-text to only the first 700 words
and that 700 words are the only ones used
as conditioned-text in the forward pass so we
could have a span of at least 300 word for the
generated-text that can be large in tasks like the
summarization or general user queries. We did
not test GPT-3 versions due to cost limitations and
lack of access to the token probabilities.

4.3 Training Process of the Classifiers

We took the data points of every task to train both
classifiers for each of the tasks in the HaluEval
benchmark. We converted them to two data points:
(conditioned-text, right-answer) and (conditioned-
text, hallucinated-answer). Therefore, for our ap-
proach, the datasets would be of 20,000 examples
for each of the question answering, knowledge-
grounded dialogue, and text summarization tasks
where in each case half of the dataset is com-
prised of data points of the type (conditioned-text,
right-answer) and the other half are of the type
(conditioned-text, hallucinated-answer). In the
case of the general-user queries, the dataset is al-
ready on the format of having each data point clas-
sified as an hallucination or not, therefore the size
of the dataset is the same which is 5,000.

Then, with this adaptation of the HaluEval
benchmark dataset when we were approaching a
given task, we will sample randomly 10% of the
data points (half with the right-answer and the
other half of the same conditioned-text but with
its respective hallucinated-answer).> These 10%

2https: //huggingface.co/

SExample: For the Summarization task, there are 20,000
data points, so we randomly sample 2,000 data points where
1,000 have the correct answer and the other 1,000 the halluci-
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data points are used to train both classifiers (LR
and SNN), and we test the model capabilities on
the remaining 90% of the dataset for a given task.

To train the LR, we used the sklearn
library* using the Limited-memory Broy-
den—Fletcher—Goldfarb—Shanno Algorithm (Ibfgs)
solver (Saputro and Widyaningsih, 2017) with the
default parameters set by sklearn.

The SNN was trained during 10* epochs. We
used the Adam (Kingma and Ba, 2014) optimizer
with a learning rate of 1073 . All the experiments
were performed on Google Colab’ with a the T4
GPU.

4.4 Results

We evaluate each classifier trained on the 10% data
of the given task on the other 90%. We wanted
to study the performance of each model in de-
tail with both classes. The positive class which
classifies a data point as a pair of (conditioned-
text, right-answer) and the negative class which
classifies a data point as a pair of (conditioned-
text, hallucinated-answer). Therefore, to ensure
a comprehensive understanding of the capabilities
of each model, we selected the following metrics:
Accuracy, F1, Precision Recall Area Under Curve
(PR-AUC), and the negative class counterpart, the
Negative F7 Score computed from the Negative
Predictive Value (NPV) and True Negative Rate
(TNR).

For the sake of comparison, Table 1 shows the
current state of the art published, particularly the
best result obtained from all the methods explored
in each paper. Next, Table 2 shows the accuracy
results on the test set for each task using every
LLMfE selected and the Logistic Regression as the
classifier. As it can be appreciated, the Logistic
Regression obtains great results compared to what
previous approaches would have gotten on the 90%
of the dataset.

Tables 3, 4, 5 show our average® results per
model of our approach in each metric evaluated
on the test set for each of the tasks of summariza-
tion, question-answering, knowledge-grounded di-
alogue, and general user queries respectively. It is
true that the current methods tested are based on In-

nated answer.

“https://pypi.org/project/sklearn/
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The average is because the training set and testing set are
sampled randomly in each run we have been able to run three
iterations in each case and average them.

Context-Learning approaches and Zero-Shot fash-
ion and evaluated in 100% of the dataset. While
our approach employs supervised learning, we con-
sider it a fair comparison as we utilize only 10%
of the data for training, testing the models on the
remaining 90%. We argue that current approaches
won’t yield significantly better results on the 90%
of the dataset than what they achieve on the full
100%. However, for other approaches that have
been tested on a subset of a dataset, we cannot be
entirely certain if those methods would outperform
ours. Let’s now discuss our findings per task.

4.4.1 Summarization

Our results from Table 3 indicate that by using
the gpt-2-large model as LLMpg and the LR
classifier surpasses state-of-the-art accuracy. Em-
ploying the SNN also yields outstanding perfor-
mance, indicating a high accuracy for predictions
in both positive and negative classes. Notably,
PR-AUC is 93%, with I and Negative-F scores
of 94.60% and 94.94%, showcasing a balanced
model performance in terms of precision, recall,
false positives, and false negatives for both classes.
These results outperform current state-of-the-art ap-
proaches, even with the latest GPT model versions.

Additionally, bart-cnn-large outperforms
state-of-the-art using LR and obtains an impressive
accuracy of 82.3% with the SNN classifier. This
success is noteworthy given differences in archi-
tecture, parameters, and training data compared to
gpt-2-large, even when bart-cnn-large main-
tains an advantage by incorporating the CNN-
Daily-Mail dataset (Chen et al., 2016) in its train-
ing, a foundation in the HaluEval benchmark for
summarization.

In contrast, without prior training on this data,
the LED model excels by considering the entire con-
text without truncation. LED achieves 78% accuracy
using the SNN classifier, surpassing the state of the
art. This shows the significance of numerical fea-
tures on the HaluEval benchmark, irrespective of
differences in hypotheses obtained from a distinct
LLME.

4.4.2 Question Answering

This task is divided into two aspects: one involv-
ing only the question and answer, and the other
incorporating knowledge with the correct answer
as part of the conditioned-text. Our results from
Table 4 show a surprising outcome in the Ques-
tion Answering task. Contrary to expectations, the
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’ Paper

| Summ. | QA | KGD | GUQ |

(Li et al., 2023) (The entire dataset) 0.61 0.77 | 0.74 | 0.87
(George and Stuhlmiiller) (Data Points: 4000) 0.76 - - -
(Lei et al., 2023) (Data Points: 2130 in Summ. and 4170 in QA) | 0.677 | 0.849 - -

Table 1: Current State of the Art results on the HaluEval benchmark for each task measure in Accuracy. The text
next to the cite of the paper is the number of data points per task used for evaluation.

| Model | Summ. [ QA | KGD | GUQ | | Model | Acc | Fi | PR-AUC | Neg Fy
gpt2-large | 093 | 0.76 | 0.60 | 0.55 gpt2-large | 0.78 | 0.78 0.86 0.77
bart-large | 0.68 | 093 | 0.68 | 0.54 bart-large | 0.94 | 0.94 0.96 0.94
LED 0.52 087 | 0.62 | 0.52 LED 0.88 | 0.88 0.93 0.87
Table 2: Our results for each LLME and task using the ’ +Knowledge
LR classifier and measure in accuracy on the test set. gpt2-large | 0.74 | 0.75 0.83 0.73
bart-large | 0.94 | 0.94 0.96 0.94
Model | Acc | Fi | PR-AUC | Neg Fy | | LED 0.88 | 088 | 0.93 0.88
gpt2-large | 0.94 | 0.94 0.97 0.94 Table 4: Question Answering Task test set results aver-
bart-large | 0.82 | 0.83 0.78 0.81 age using the SNN Classifier. The +Knowledge rows
LED 0.78 | 0.77 0.86 0.77 highlight the results of the models by using the extra

Table 3: Summarization Task test set results average
using the SNN Classifier.

best performance comes not from gpt-2-large
but from bart-cnn-large. It achieves an accuracy
of 93.57% with the LR classifier and 94.64% with
the SNN. These results are accompanied by a PR-
AUC of 96%, I score of 94.62%, and Negative-F}
score of 94.65%, indicating a high rate of correct
predictions across positive and negative classes.
Furthermore, the LED model surpasses the state-of-
the-art performance, with an accuracy of 87.48%
(LR) and 88.08% (SNN). The F score is 88.35%,
and the Negative-F score is 87.8%, complemented
by a PR-AUC of 93%.

Also interesting is how the inclusion of the
Knowledge on the conditioned-text did not im-
prove the results, and in some instances like
gpt-2-large the performance decreased.

4.4.3 Knowledge-Grounded Dialogue

The results of this task in Table 5 showed that all
the L L MF selected using both classifiers were not
enough to surpass the state-of-the-art. However,
the results are still competitive, obtaining the best
results with bart-cnn-large. Additionally, inte-
grating the Knowledge on the conditioned-text only
decreased the results.

4.4.4 General User Queries

For this task, a table wasn’t included due to re-
sult similarities. When employing various LLMpg
models with the SNN classifier, the results indi-
cated overfitting to the negative class, yielding an

Knowledge.

Model | Acc | Fi | PR-AUC | Neg F
gpt2-large | 0.64 | 0.63 0.68 0.65

bart-large | 0.69 | 0.64 0.78 0.72

LED 0.58 | 0.58 0.68 0.60

+Knowledge

gpt2-large | 0.63 | 0.63 0.68 0.63

bart-large | 0.67 | 0.65 0.77 0.70

LED 0.59 | 0.59 0.68 0.61

Table 5: Knowledge-Grounded Dialogue Task test set
results average using the SNN Classifier.

accuracy of 81%, Fi of 1%, PR-AUC of 10%, and
F1-Negative of 90%. This overfitting is attributed
to dataset imbalance, where out of 5,000 examples,
only 977 are not hallucinations. An alternative at-
tempt with a training set of 500 positive and 500
negative examples tested on the remaining 4,000
revealed limited success, with the best accuracy at
69% and F} at 0.23%.

5 Discussion

The results are based on a supervised learning ap-
proach, different from current methods that do not
utilize any data for training. Notably, excellent
performance was observed in Summarization and
Question Answering tasks using gpt-2-large and
bart-cnn-large as LLMpg. Also, competitive-
ness was noted in the Knowledge-Grounded Di-
alogue task, contrasting with lower performance
in the General-User-Queries dataset compared to



state-of-the-art approaches.

This suggests a potential mismatch between the
Conditional Generation Approach and tasks in-
volving executing instructions, such as knowledge-
grounded dialogue and general-user-queries. The
complexity of nuanced dialogues and diverse user
queries may require specialized models. Another
clear possibility is that the numerical features are
not enough in these tasks to detect the hallucina-
tions of the HaluEval benchmark and might follow
another type of pattern, like the contextual intrica-
cies of a real-time dialogue. In any case, both are
interesting research questions that can enlighten
more on the path to understanding and mitigating
the hallucinations in LLMs.

Another research question is the impact of man-
ual annotations on the approach’s efficacy, hinting
at the potential advantages of using automatically
generated benchmarks and datasets. Despite this,
even with automatically generated data, current
state-of-the-art LLMs, employing techniques like
Chain-Of-Thought (Li et al., 2023), perform worse
than the proposed approach. This prompts consid-
eration for a hybrid approach in future work.

Feature importance analysis ’ highlights avgtp
as a crucial feature in most tasks, representing the
confidence of LL Mg in generating a sequence.
Low-confidence sequences may indicate hallucina-
tions, while high-confidence sequences align more
closely with training data. However, results reveal
that for specific LL M, and task pairings, the criti-
cal feature can vary, exemplified by gpt-2-large
in the Question Answering task, where M DVT P
emerges as the most crucial feature.

6 Future Works

The first avenue is broadening the set of numeri-
cal features to capture more intricate patterns, po-
tentially enhancing the model’s performance, par-
ticularly in tasks like dialogue and general user
queries. A second path would be to explore the im-
pact of using different LLMs as LL Mg, including
larger models such as GPT-3.5, GPT-4, LLama?2,
and Alpaca. Testing results with LLMp = LLMg
(token probabilities from ChatGPT) is suggested
for those with access to it, providing insights into
potential performance variations.

Additionally, the third idea involves fine-tuning
or adapting the models for specific tasks, especially
those with differential performance. Exploring al-

"Showed in the Appendix

ternative L L Mg models, not in Conditional Gen-
eration mode, tailored for tasks like dialogue gen-
eration or instruction execution, is also under con-
sideration. In addition, investigating the impact
of varying training data amounts and distributions,
including supervised and transfer learning, is con-
sidered to understand classifier learning patterns
and generalizability to other datasets.

Finally, the existing classifiers are notably sim-
ple, and there is room for improvement by modify-
ing the architecture of the Simple Neural Network.
Attempts to increase complexity yielded similar
performance or led to overfitting on the small train-
ing data. While this may be effective in scenarios
with extensive training data for comparison, imple-
menting a model selection strategy with a valida-
tion set could lead to better results.

7 Conclusions

This paper introduces a novel approach to detecting
hallucinations in LL.Ms generations to boost their
trustworthiness and applicability in real-world sce-
narios. Using a method focused on four numerical
features based on token probabilities. We exceeded
existing standards in areas like Summarization and
Question-Answering using the HaluEval bench-
mark as an experimental playground, highlighting
the effectiveness of our technique and potential
integration with other approaches.

The contributions of this work include the evalu-
ation of two classifiers, Logistic Regression, and a
Simple Neural Network, using numerical features
derived from token probabilities. Our work also
highlights the importance of each numerical fea-
ture in detecting hallucinations for different tasks.
Additionally, the research explores the impact of
different LLMs, such as GPT-2, BART-CNN, and
LED, on the proposed method’s performance.

The implications of this research extend to every
domain relying on LLMs, including Information
Retrieval, Natural Language Generation, and NLP
in general. By enhancing the trustworthiness and
reliability of LLM outputs, the proposed method
contributes to the ethical and responsible use of
these models in sensitive applications, such as med-
ical, legal, educational, and financial domains. This
work is a big step toward creating a reliable and
flexible method to detect hallucinations in LLMs.
This paper will help future research and contribute
to the larger academic conversation about making
trustworthy and capable LLMs.



Limitations

The first limitation is the numerical features and
models selected as LLMp. While our current ap-
proach has demonstrated effectiveness in specific
tasks, it may only capture the richness and com-
plexity of some textual content types. The derived
features need to be more sufficient for tasks like
knowledge-grounded dialogue, which involve intri-
cate context and real-time exchanges.

Our method outperformed state-of-the-art in
tasks like summarization and question answering.
However, in dialogue and general user queries, it
achieved competitive but not leading results. This
could hint at potential over-specialization or the
need for task-specific feature engineering. An-
other reason could be the inherent limitations of
the LLMs selected as LLMpg. Furthermore, we
have yet to test as LL Mg the same model since
we cannot access the probabilities from ChatGPT,
which generated all the generated-text in the HaluE-
val benchmark. Additionally, because of the con-
text length limitation of some of the LLMs, we
needed to truncate the conditioned-text to 700
words, which might cause us to lose the neces-
sary context to get the right token probabilities to
classify correctly. More experiments can be done
with different truncation lengths and also LLMs
with higher context lengths.

One of the main limitations is that the results
and the effectiveness of our approach may be tied
to the characteristics of the dataset used. If the
dataset has inherent biases or lacks diversity in
certain aspects, the model’s performance could be
skewed. For instance, it might be in the specific
patterns obtained on the HaluEval benchmark that
these four numerical features are good indicators
for detecting this type of hallucination. However, it
doesn’t change the fact that current complex state-
of-the-art approaches have yet to show this level of
performance under the same circumstances.

We need a study separation on the different types
of hallucinations per task divided on the HaluE-
val benchmark, which we intend to do in the next
weeks and add to this paper. This analysis will
allow us to study which type of hallucinations de-
signed on the HaluEval benchmark are easier or
harder to detect with this approach.

Finally, this method is grounded in binary clas-
sification. In real-world scenarios, hallucination
might be more nuanced, with varying degrees of
severity, which our current approach might not ac-

count for. Furthermore, there needs to be more
interpretability; even when we can get intuition
from the numerical features, we cannot obtain the
exact explanation of what specific wrong fact or
fictitious information is being added. We intend
to explore other ideas on datasets that make this
separation to increase the interpretability.
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A Appendix

A.1 Feature Importance Analysis

We also performed experiments with different com-
binations of the four numerical features to deter-
mine which features were more important or not
to get a particular result. Tables 6, 7, 8 showed for
each task and model how the results in accuracy
were affected by which features were used or not 8.
Once again, this is an average of the three iterations
done to all experiments to avoid a lucky random.

Features Results
mtp avgtp MDVTP MMDVP GPT-2 BART LED
X X X X 0.94 0.82 0.78
X 0.5 0.82 0.72
X 0.94 0.65 0.71
X 0.51 0.59 0.53
X 0.56 0.65 0.52

Table 6: Feature Importance in the Summarization Task
using the Accuracy metric for all models.

Features Results

mtp avgtp MDVTP MMDVP GPT-2 BART LED

X X X X 0.78 0.94 0.88
X 0.66 0.57 0.5

X 0.53 0.94 0.84

X 0.74 0.63 0.67

X 0.65 0.6 0.56

Table 7: Feature Importance in the Question Answering
Task using the Accuracy metric for all models.

As can be observed, even when the combination
of features like mtp, MDVTP, and MM DV P
achieve good results and sometimes even by them-
selves, it is clear that the main important fea-
ture in most cases is the avgtp for most tasks.
However, interesting enough, in the case of the
Question Answering task, this changed for the
gpt-2-large model, in which the main feature
to obtain its results was M DVT'P. This suggests

8We do not include the rest of the metrics in this table
because it overloads it unnecessarily and since the accuracy is
a good metric for comparison given that the dataset for these
three tasks is balanced.
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Features Results

mtp avgtp MDVIP MMDVP GPT-2 BART LED
b X X X 0.64 0.69 0.58
X 0.5 054 057
X 0.54 069 053
X 0.63 054 053
X 0.54 053 051
Table 8: Feature Importance in the Knowledge-

Grounded Dialogue Task using the Accuracy metric
for all models.

that the importance of a given feature is also cor-
related to the LL Mg used, since for the case of
bart-cnn-large, the essential feature is avgtp.
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