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Abstract— The viewing safety is one of the main issues in
viewing virtual reality (VR) content. In particular, VR sickness
could occur when watching immersive VR content. To deal
with the viewing safety for VR content, objective assessment of
VR sickness is of great importance. In this paper, we propose
a novel objective VR sickness assessment (VRSA) network
based on deep generative model for automatically predicting
the VR sickness score. The proposed method takes into account
motion patterns of VR videos in which an exceptional motion is
a critical factor inducing excessive VR sickness in human motion
perception. The proposed VRSA network consists of two parts,
which are VR video generator and VR sickness score predictor.
By training the VR video generator with common videos with
non-exceptional motion, the generator learns the tolerance of VR
sickness in human motion perception. As a result, the difference
between the original and the generated videos by the VR video
generator could represent exceptional motion of VR video causing
VR sickness. In the VR sickness score predictor, the VR sickness
score is predicted by projecting the difference between the
original and the generated videos onto the subjective score space.
For the evaluation of VR sickness assessment, we built a new
dataset which consists of 360° videos (stimuli), corresponding
physiological signals, and subjective questionnaires from subjec-
tive assessment experiments. Experimental results demonstrated
that the proposed VRSA network achieved a high correlation
with human perceptual score for VR sickness.

Index Terms— VR sickness, deep learning, virtual reality,
objective assessment, motion mismatch.

I. INTRODUCTION

V IRTUAL reality (VR) contents such as 360-degree video
can provide realistic and immersive viewing experience

for viewers. While conventional 2D rectangle image has a lim-
ited field of view (FOV) at a fixed viewpoint, the 360-degree
video provides unlimited FOV in all directions [1], [2].
Viewers can see wherever they want to see by selecting the
specific portion of spherical images (called as viewport) with
VR displays such as a head-mounted display (HMD). The
development of the 360-degree cameras and VR displays has

Manuscript received May 21, 2018; revised September 2, 2018 and
October 20, 2018; accepted October 21, 2018. Date of publication
November 12, 2018; date of current version November 28, 2018. This work
was supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2017-
0-00780, Development of VR sickness reduction technique for enhanced
sensitivity broadcasting). The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Lei Zhang.
(Corresponding author: Yong Man Ro.)

The authors are with the Image and Video Systems Lab, School of Electrical
Engineering, Korea Advanced Institute of Science and Technology, Daejeon
34141, South Korea (e-mail: hgkim0331@kaist.ac.kr; ingheoun@kaist.ac.kr;
sangmin.lee@kaist.ac.kr; ymro@ee.kaist.ac.kr).

Digital Object Identifier 10.1109/TIP.2018.2880509

increased the interest and popularity of the VR content (e.g.,
360-degree video).

As the growth of the VR content services, concerns on the
viewing safety are considerably increasing in viewing VR con-
tent. Many studies reported various physical symptoms such
as headache, focusing difficulty and dizziness during VR con-
tent viewing, which were caused by VR sickness [3], [4].
VR sickness, which is one of the bottlenecks for prolifer-
ation of VR market, could induce three major symptoms:
1) oculomotor symptoms including visual fatigue and focus-
ing difficulty, 2) disorientation symptoms including dizziness
and vertigo, and 3) nausea symptoms including salivation,
sweating, and burping [3], [4]. Approximately 80% to 95%
of viewers exposed to VR experience reported some level of
VR sickness [5].

There are various determinants of VR sickness, such
as excessive motion mismatch, a wide FOV [6]–[8], time
lag [9], [10], etc. In particular, the excessive motion mis-
match between what viewers’ eyes are seeing (i.e., simulation
motion of VR content) and what viewers’ ears are feeling
(i.e., physical motion of viewers) leads to a high degree of
sensory conflicts between visual sensor and vestibular sensor
(i.e., visual-vestibular conflict [11]) [12]–[14]. The visual-
vestibular conflict is largely caused by the exceptional motion
(e.g., exceptional acceleration and rapid turning) of content
since the physical motion of viewer is relatively static. The
exceptional motion leading to VR sickness means the exceeded
acceleration and rapid turning [15], [16], such as racing and
roller coaster. For example, when watching a 360-degree roller
coaster video with a HMD, our visual sensor tells us that you
move very fast. Whereas, our vestibular sensor tells us that you
are not in motion actually. As a result, the discrepancy mainly
leads to excessive VR sickness in human motion perception
system. In particular, the exceptional motion in immersive
VR content could exacerbate motion mismatch so that it is
highly correlated to VR sickness.

To deal with that, a lot of time and effort have been devoted
for the creation of viewing safe VR contents [17]. In addition,
the viewing safety issue has been raised for user-generated
VR contents as well. Therefore, it is essential to develop the
objective VR sickness assessment (VRSA) that automatically
predicts the degree of VR sickness in VR viewing.

Most of existing works focused on measuring physiological
signals [18]–[21] or scoring subjective questionnaires [5],
[22]–[24] through subjective assessment experiments in
a virtual environment. The conventional objective VRSA
approaches were very cumbersome due to physiological mea-
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surements such as Electroencephalography (EEG) and gal-
vanic skin response (GSR) and subjective questionnaires such
as simulation sickness questionnaires (SSQ). The physiologi-
cal measurement is generally vulnerable to various noises and
subject’s movement so that the existing approaches based on
the physiological signals could be inaccurate. In addition, one
of the challenges for developing an objective VRSA is small
number of dataset with the ground truth of human perception
for VR sickness. The aim of this paper is to propose a novel
deep learning-based objective VRSA which automatically pre-
dicts the degree of VR sickness with only VR content. The
main contributions of this paper are summarized as follows.

1) We present a novel deep generative model-based objec-
tive VR sickness assessment network (VRSA Net)
considering exceptional motion pattern in VR content.
In this paper, we propose a new objective VRSA frame-
work, which consists of two parts, VR video gener-
ator and VR sickness score predictor. First, the VR
video generator is trained with normal videos with
non-exceptional motion in unsupervised manner. So the
proposed generator is to learn the tolerance level of
VR sickness in human motion perception. As a result,
the generator well-reconstructs the VR videos with non-
exceptional motion. On the other hand, the VR videos
with exceptional motion patterns, which are highly likely
to induce VR sickness, cannot be reconstructed well.
The difference between the original video and gener-
ated video by the VR generator represents exceptional
motion of VR video causing VR sickness. Second,
the VR sickness score predictor is trained by mapping
the difference between the original and the generated
VR videos onto the corresponding subjective score. The
VR sickness score can be assessed from the difference
between the original and the generated videos. The com-
bined architecture of ‘generator (for normal videos) with
unsupervised learning’ and ‘predictor with supervised
learning’ is our contribution for objective assessment.

2) For the evaluation of the proposed objective VRSA, we
built a newly collected 360-degree video dataset with
the corresponding subjective scores and physiological
signal data, as a benchmark for VRSA. We collected
360-degree videos with different motion patterns as
stimuli for our subjective VR experiments. The col-
lected motion patterns are subjectively divided into three
groups, which are slow, normal, complex motion pattern
groups (see TABLE III). With the VR contents with dif-
ferent motion patterns, we conducted extensive subjec-
tive assessment experiments to verify the effectiveness
of the proposed VRSA Net. We measured the level of
VR sickness of subjects exposed to the VR contents
using SSQ scores, heart rate and GSR. The prediction
performance of the objective VRSA was evaluated with
subjective SSQ scores (ground-truth) and physiological
signals (heart rate and GSR). The dataset (i.e., VR
contents and the corresponding SSQ scores and phys-
iological signals) is publicly available on online [25].

Experimental results show that the proposed VRSA metric
has a high correlation with the human subjective scores of

in VRSA of VR viewing. In particular, substantial VRSA
improvement (about 19 % increase of PLCC) can be achieved
by the proposed method, compared to the assessment with
physiological signals (heart rate and GSR). Furthermore, it is
demonstrated that the proposed network not only measures the
level of VR sickness, but also can detect which region mainly
causes VR sickness.

The remainder of this paper is organized as follows:
Section II briefly reviews the related works. Section III
explains the proposed VRSA Net. Section IV describes
the database used in the performance evaluation of
VRSA. Specifically, we describe our subjective assess-
ment experiments to obtain physiological signals (heart rate
and galvanic skin conductance) and subjective question-
naires (SSQ) for VR sickness. In Section V, the perfor-
mance of the proposed VRSA Net is evaluated. Finally,
Section VI and VII provide discussions and conclusions,
respectively.

II. RELATED WORKS

A. Image Quality Assessment of VR Content

Compared to the 2D rectangle image, the VR content such
as 360-degree image has different characteristics including
infinite field of view and projections from a spherical to a
rectangle plane. The property of the VR content could cause
distortion patterns such as rendering distortion and nonhomo-
geneous spatial distortion [26]–[28]. To deal with such charac-
teristics, several studies of Image Quality Assessment (IQA)
for VR content were reported. In [26], a spherical-based
PSNR (S-PSNR) was proposed. It measured the quality of
omnidirectional image by averaging the PSNR over the entire
set of correspondences on the sphere. Sun et al. [27] proposed
a weighted-to-spherically-uniform PSNR (WS-PSNR) method.
They took into account the weights according to the pixel
position on the spherical surface for accurately predicting
the quality of the VR content. In [28], a Craster parabolic
projection-based PSNR (CPP-PSNR) method was proposed
in order to accurately measure the quality using Craster
parabolic projection, which could reduce spatial distortion.
In [29], a deep learning-based VR-IQA method was proposed,
where an adversarial learning was employed so that the
assessment performance of a degraded VR image could be
improved.

B. VR Sickness Assessment

There were several studies of evaluating the VR sick-
ness with subjective study and physiological measure-
ment [18]–[21], [30]. In [18], the characteristic changes in
physiology of cybersickness were investigated by measuring
electrophysiological signals (EEG, electrogastrogram (EGG),
GSR, etc.) of subjects exposed to VR contents. Based on the
positive correlation between cybersickness by VR content (VR
sickness) and physiological signals, the results showed that
VR sickness accompanied the changes in the activity of the
central and autonomic nervous systems. In [19], a subjective
experiment was performed to measure various physiological
signals during the virtual environment navigation with a HMD.
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Experimental results provided that the changes in physio-
logical signals such as eye blinking, stomach activity, and
breathing could be caused by sensory mismatches between
signals of real and virtual world. In [30], the quality of
experience (QoE) and VR sickness of 360-degree videos were
measured with mean opinion score (MOS) and SSQ, respec-
tively. For a practical VR sickness evaluation on VR content,
it is cumbersome to measure subjective questionnaires or phys-
iological signals every time on subject viewing VR content.
The proposed method in this paper predicts VR sickness
based on VR content analysis without measuring cumbersome
physiological signals or subjective questionnaires.

C. Deep Learning for Visual Quality Assessment

To deal with viewing safety, it is important to develop
an objective assessment metric [31]–[35]. Recently, deep
learning-based objective 2D and 3D IQA methods were pro-
posed and provided the state-of-the-art prediction accuracy
by modeling human visual perception [36]–[40]. In [36],
a deep convolutional neural network (CNN)-based framework
was proposed for full reference image quality assessment
(FR-IQA), named as DeepQA. In [37], a novel multi-task
end-to-end optimized deep network (MEON) was proposed
using two sub networks for blind image quality assessment.
In [38], a deep neural network-based IQA model was pro-
posed for FR-IQA and no-reference image quality assessment
(NR-IQA). Bosse et al. [38] devised a deep Siamese network
model for FR-IQA and a CNN model for NR-IQA. In each
model, by jointly learning the local weight and quality, the
global image quality could be estimated accurately. In [39],
a deep learning-based NR-IQA model for stereoscopic 3D
(S3D) image was proposed. From the S3D images, the local
features were extracted and aggregated to estimate the quality
of S3D image by the CNN-based regression model [39].
In [40], a deep learning-based S3D visual comfort assessment
(S3D-VCA) model was proposed considering the human atten-
tion model. Kim et al. [41] proposed a Binocular Fusion Net
for S3D-VCA. In [41], by combining the spatial features of
left and right views using a novel deep architecture, the latent
binocular characteristics of stereoscopic images are learned to
predict the visual comfort score in stereoscopic viewing. The
existing deep learning-based models for predicting the image
quality score or visual comfort scores were designed to regress
the subjective score (i.e., ground-truth in training stage) from
the high-level deep features. To train the deep learning model
for human subjective score regression directly, it is necessary
to collect large size databases including a lot of images and the
corresponding subjective scores. In this paper, the proposed
objective assessment framework for VRSA reliably predicts
the level of VR sickness with a small scale of VR contents
and the associated subjective scores through the two training
processes. At first, the proposed VR video generator is trained
with a large number of normal contents with tolerable factors
in unsupervised manner. Based on the difference from the tol-
erable state (non-exceptional motion), then, VR sickness score
predictor is trained to map the difference onto the VR sickness
score.

Fig. 1. Overall process of the proposed VRSA framework. (a) First, the VR
video generator is trained with normal videos with non-exceptional motion in
unsupervised manner. (b) Second, the VR sickness score predictor is trained
with the difference between the original video and generated videos by the
trained generator.

III. PROPOSED METHOD

A. Overview of the Proposed VR Sickness Assessment
Framework

Figure 1 shows the overall process of the proposed VRSA
framework in training. First, the VR video generator is trained
with normal videos with non-exceptional motion in the manner
of unsupervised learning. By learning the spatio-temporal
characteristics of normal videos with non-exceptional motion
pattern, the VR video generator is to learn a tolerance level
of VR sickness in human motion perception. The trained
VR video generator can well-reconstruct the VR videos with
non-exceptional motion. On the other hand, the VR videos
with exceptional motion pattern, which exceed the tolerance
level of VR sickness in human motion perception, cannot be
reconstructed well by the trained generator. So, the quality of
the generated VR videos by the trained generator is correlated
with exceptional motion causing VR sickness. After obtaining
the generated VR videos by the trained generator, the VR
sickness predictor is trained so that the differences between
original and generated VR videos are regressed onto the
ground-truth VR sickness score. The SSQ score plays a role of
a ground-truth in order to train the predictor for VR sickness
score prediction. A more detailed description of the proposed
VRSA Net is described in the following subsections.

B. VR Video Generation for Learning the Tolerance
of VR Sickness in Human Motion Perception

People usually experience non-exceptional motion in daily
life but do not often experience exceptional motion. There-
fore, human motion perception is tolerant of non-exceptional
motion because non-exceptional motion could be well
expected from the experience stored in neural store [42], but
not tolerant of exceptional motion [43]. The video generator
is trained with normal videos with non-exceptional motion so
that it learns the tolerance level of VR sickness in human
motion perception. Figure 2 shows examples of 360-degree
videos with non-exceptional motion and exceptional motion
patterns. The non-exceptional motion pattern of VR video is
defined as slow and normal movement that people can see
often in daily life such as stationary, walk, and normal driving.
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Fig. 2. Examples of 360-degree videos represented by equirectangular
projection. (a) Examples of videos with non-exceptional motion such as
scenery and normal driving (their SSQ scores < 28), (b) Examples of
videos with exceptional motion such as racing and roller coaster (their
SSQ scores > 40). Note that exceptional motion patterns inducing excessive
VR sickness indicate acceleration and rapid turning [15].

It does not lead to severe VR sickness. On the other hand,
the exceptional motion pattern of VR video is defined as
acceleration and rapid turning [15], which are likely to cause
severe VR sickness. Normal VR videos with non-exceptional
motion do not cause VR sickness and their SSQ scores are
under 28 [18], [44]. On the other hand, SSQ scores of the
videos with exceptional motion (e.g., roller coaster and racing)
are over 40 [18], [44]. In the training of the VR video
generator, we use the normal video without exceptional motion
[15], [16] for learning the tolerance of VR sickness in human
motion perception.

Figure 3 shows the proposed VR video generator, which
consists of the spatio-temporal generator for reconstruc-
tion of VR videos with non-exceptional motion and the
spatio-temporal discriminator in the use of determining real-
istic videos with non-exceptional motion. By combining
the spatio-temporal generator of spatio-temporal autoencoder
(CNN+ConvLSTM) with spatio-temporal discriminator of 3D
CNN in an adversarial way, in the proposed VR video
generator, the video sequence is not only generated by the
spatio-temporal autoencoder, it is also refined to be similar to
the spatio-temporal characteristics of normal video with non-
exceptional motion by the spatio-temporal discriminator. Dur-
ing the training, the spatio-temporal generator tries to recon-
struct the video as much as the original. The spatio-temporal
discriminator takes the original video or the generated video.
Then, it determines whether a given video is realistic videos
with non-exceptional motion or not. By adversarial learning
between the generator and the discriminator, the proposed
generator is able to synthesize the realistic video with non-
exceptional motion.

1) Spatio-Temporal Generator for Reconstructing Normal
VR Videos: In the proposed method, pleasantly-looking nor-
mal field-of-view (NFOV) segments from infinite FOV of
360-degree videos are used as input frames (i.e., spatio-
temporal glimpse [45]), which are representative for the
360-degree video. To choose the NFOV, we first choose a cen-
ter viewpoint in a form of longitude and latitude coordinates
in the spherical domain. Then, a NFOV region is extracted
from 360 degree-video frame by equirectangular projection

TABLE I

THE ARCHITECTURE OF THE SPATIO-TEMPORAL GENERATOR

with the viewpoint as a center. In this work, we set the
size of an NFOV region to span 110-degree diagonal FOV,
same as that of the mainstream VR headset. Let It and Ît

denote the t-th input frame and the t-th reconstructed frame,
respectively. Let Vt and V̂t denote a set of original NFOV
video frames (i.e., Vt = [

It−N , · · · , It−1, It , It+1, · · · , It+N
]
)

and a set of the generated NFOV video frames (i.e., V̂t =[
Ît−N , · · · , Ît−1, Ît , Ît+1, · · · , Ît+N

]
), respectively. As shown

in Fig. 3, the proposed spatio-temporal generator consists of
spatial encoder/decoder and temporal encoder/decoder. For
spatial encoder and decoder, VGG-16 and “upside down”
VGG-16 networks are employed, respectively [46], [47]. For
temporal encoder and decoder, a convolutional LSTM (Con-
vLSTM) is employed [48]. TABLE I shows the architecture of
the spatio-temporal generator of our VR video generator. In the
spatial encoder, a spatial feature is encoded to represent visual
characteristic of each frame. In this paper, the feature map of
8-th convolution layer of VGG-16 is used as the spatial feature
denoted by fc8

t ∈ �28×28×512. To learn the spatio-temporal
feature, then, the spatial feature, fc8

t is fed into the ConvLSTM.
Let h1

t ∈ �28×28×256 and h2
t ∈ �28×28×512 denote the hidden

states of ConvLSTM at l-th layer (l = 1, 2). In the temporal
encoder and decoder, temporal characteristics of the training
video dataset are learned. Finally, the original video sequence
is reconstructed from the learned spatio-temporal features by
the spatial decoder, “upside down” VGG-16 [47]. The t-th
reconstructed frame Ît can be represented by

Ît = Gθ (It ) = σdec

(
Wdech2

t + bdec

)
, (1)

where Gθ indicates the spatio-temporal generator with para-
meters θ . Wdec and bdec represent the weight matrix and
the bias vector of the spatial decoder, respectively. σdec is
activation function of the spatial decoder.

Through adversarial learning, the generator reconstructs the
video sequence (i.e., spatio-temporal glimpse) containing nor-
mal motion pattern (i.e., non-exceptional motion) well so that
it attempts to deceive the discriminator (see Section III-B.2).
To that end, the loss function of our generator is composed

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on February 24,2020 at 07:58:59 UTC from IEEE Xplore.  Restrictions apply. 



1650 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 4, APRIL 2019

Fig. 3. The architecture of the proposed VR video generator for learning the tolerance of VR sickness in human motion perception. The proposed generator
is trained with normal videos with non-exceptional motion. The proposed VR video generator consists of the spatio-temporal generator and discriminator with
adversarial learning.

of two terms, which are realism loss, lreal , and reconstruction
loss, lrecon . The realism loss can be written as

lreal (θ; t) = − log
(
Dφ (Gθ (It ))

)
, (2)

where Dφ indicates the discriminator with parameters φ. By
minimizing the realism loss, Eq. (2), the video generator forces
the discriminator to consider the video generated by Gθ , V̂t ,
as the original video, Vt .

The reconstruction loss between the original and the gener-
ated frames, lrecon , can be written as

lrecon (θ; t) = 1

2N + 1

t+N∑

k=t−N

‖Gθ (Ik) − Ik‖2
2. (3)

By minimizing the reconstruction loss between the origi-
nal frame It and the generated frame Ît , the reconstruction
quality of the video with non-exceptional motion pattern can
be enhanced. Finally, the total loss of the proposed spatio-
temporal generator can be defined as a combination of the
realism loss and the reconstruction loss.

LG (θ) = lreal (θ; t) + λglrecon (θ; t) , (4)

where λg is a weight parameter to control the balance between
the realism loss and reconstruction loss.

2) Spatio-Temporal Discriminator for Determining Realistic
Normal VR Video: To improve the reconstruction perfor-
mance of videos with non-exceptional motion during training,
we devise the spatio-temporal discriminator with adversarial
learning. The proposed discriminator is to determine whether
the input video is a realistic video with non-exceptional
motion or not by considering its spatio-temporal character-
istics. As shown in Fig. 3, in training, the discriminator takes
original video, Vt or the generated video, V̂t . Then, it produces
1 × 1 output value in order to decide original video or the
generated video. As seen in TABLE II, the proposed spatio-
temporal discriminator is based on the 3D CNN structure. Our
discriminator loss, L D , can be written as

L D (φ) = log
(

1 − Dφ

(
V̂t

))
+ log

(
Dφ (Vt )

)
. (5)

TABLE II

THE ARCHITECTURE OF THE SPATIO-TEMPORAL DISCRIMINATOR

In Eq. (5), the Dφ(V̂t ) in the first term is the probability that
the discriminator determines the generated video as original
video. The second term in Eq. (5), Dφ(Vt ), is the probability
that the discriminator determines the original video as original.

The proposed generator Gθ and discriminator Dφ form a
generative adversarial network (GAN) [49]. To well learn the
non-exceptional motion pattern with the adversarial learning,
we learn the proposed VR video generator based on GAN.
To well reconstruct the VR video with non-exceptional motion,
the loss of the generator, LG , is minimized. Alternatively,
the loss of the discriminator, L D , is maximized to precisely
determine the realistic video with non-exceptional motion or
not. Let λD denote a weight parameter of L D for balance
between LG and L D .

By performing the adversarial learning between Gθ and
Dφ , the reconstruction performance of the generator and
the discrimination performance of the discriminator can be
improved together.

C. VR Sickness Score Predictor

Figure 4 shows the proposed VR sickness score predictor
for automatically measuring the VR sickness score based
on the difference between the original and the generated
videos. By mapping the difference from the tolerance of
human perception onto subjective sickness score, the proposed
network architecture can reliably predict the subjective score
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Fig. 4. The architecture of the proposed VR sickness score predictor for
measuring the VR sickness score.

with a small scale of VR sickness datasets, compared to
the conventional network architecture (e.g., 3D CNN) to
directly assess the subjective score from contents. As shown
in Fig. 4, after obtaining the generated videos by the trained
VR video generator, the difference between the original and
the generated videos (Dt ) is calculated as

Dt = |It − Gθ (It )| =
∣
∣∣It − Ît

∣
∣∣ . (6)

Since the VR video generator is trained with normal videos
with non-exceptional motion, i.e., tolerable data for VR sick-
ness in human motion perception, the reconstruction error of
the generated video could represent exceptional motion of
VR video causing VR sickness. Thus, the Dt indicates the
distance from the tolerance of VR sickness in the human
motion perception. Based on the difference between the
original and the generated video frames, Dt , VR sickness
score predictor quantifies the level of VR sickness. Let Et

denote a set of the difference maps at each frame (i.e.,
Et = [

Dt−N , · · · , Dt−1, Dt , Dt+1, · · · , Dt+N
]
). As shown in

Fig. 4, the VR sickness score predictor consists of 3D CNN
for encoding the spatio-temporal characteristics of a sequence
of the difference maps, Et . The architecture of the predictor is
the same as that of the discriminator (see TABLE II). In the
VR sickness score predictor part, the difference map from the
VR generator learning normal motion perception is mapped to
the human subjective score space. In training, the VR sickness
score is predicted from Et by minimizing the loss between the
predicted score and ground-truth VR sickness score. In this
paper, the total SSQ score obtained from subjective assessment
experiment is used as ground-truth subjective score in training
(see Section IV). The loss function of the VR sickness score
predictor, L P , is defined as

L P = 1

K

K∑

k=1

∥
∥∥ fV RS

(
Ek

t

)
− SSQk

total

∥
∥∥

2
, (7)

where K is the number of batches and SSQk
total denotes

the ground-truth subjective score, which is the total SSQ
score of k-th video sequence. fV RS (·) is the function of
the VR sickness score predictor using 3D CNN. fV RS

(
Ek

t

)

indicates the predicted VR sickness score.
In training, the parameters of the predictor are trained by

minimizing the loss, Eq. (7). In testing, at first, the difference
maps are obtained by the trained VR video generator. With
the sequence of the difference maps Et , then, the final VR
sickness score is yielded by the trained VR sickness score
predictor.

IV. BENCHMARK DATABASE FOR

VR SICKNESS EVALUATION

For evaluation of the prediction performance of the objective
VRSA, it is required to obtain subjective VR sickness scores
such as SSQ for stimuli of VR contents. The prediction per-
formance of the objective VRSA methods can be evaluated by
measuring the correlation between the subjective VR sickness
scores and the predicted scores obtained from objective VRSA.
In this paper, we built a newly collected 360-degree video data-
base, the corresponding subjective scores and physiological
signal data. In this section, we present the overall procedure of
our subjective assessment experiments for collecting subjective
scores and the physiological signals in watching 360-degree
videos with a HMD.

A. 360-Degree Video Dataset

In this paper, we collected a 360-degree video dataset with
high spatial resolution and various motion patterns. A few
360-degree image datasets have been recently introduced for
saliency detection [50], [51]. In most of the previous works
for subjectively and objectively assessing VR sickness, only
one or two VR contents were used. We newly collected nine
360-degree videos including various scenes from Youtube as
a benchmark and conducted an extensive subjective experi-
ment for evaluation of objective VRSA. The videos contain
various scenes such as beach, driving, flight, roller coaster,
etc. To investigate the effect of various motion patterns on
VR sickness, we collected 360-degree video datasets with
various motion patterns from static to dynamic. They were
subjectively divided into three categories based on motion pat-
terns: simple, normal, and complex. The most of the collected
contents have 4K resolution (3840×1920 or 3840×2048) with
30 Hz. Due to the viewing safety issue of the participated
subjects, each test video was presented for 90 seconds (see
Section IV-B).

TABLE III shows a detailed description for the dataset.
In TABLE III, the motion pattern indicates the motion type
of each video. “Slow” represents static and slow movement.
“Normal” represents the movement of normal speed such as
driving a car. “Complex” indicates fast acceleration and rapid
rotations such as roller coaster, i.e., non-exceptional motion.
The name and Youtube ID represent video name and Youtube
video identification, respectively. With the video name and
Youtube ID, we can access the dataset on the Web. Resolution
in TABLE III indicates the spatial resolution of each video
used in our experiment. FPS means frames per second of each
video used in our experiment. Time stamp provides which part
of the video has been played in our subjective experiment
because each video was presented only for 90 seconds (not
entire sequence) in our experiments for viewing safety of
subjects.

B. Subjective Assessment Experiment
With 360-Degree Video

In subjective assessment experiments, Oculus Rift CV1 was
used for displaying 360-degree videos, which was one of the
high-end stereoscopic type HMDs. Its display resolution is
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TABLE III

DETAILED DESCRIPTION OF VR VIDEO DATASET

2160 × 1200 pixels (1080 × 1200 pixels per eye). Its display
frame rate is maximum 90 Hz and it has 110 degree FoV.

A total of twenty subjects, aged 20 to 30, participated
in our subjective experiments under the approval of KAIST
Institutional Review Board (IRB). In general, the use of VR is
not recommended for young people under 12 years of age
due to immature development of visual-vestibular sensors.
According to [52] and [53], older people reported more severe
VR sickness due to the age related changes in the oculomotor
system. The participants in our experiment do not have health
problems such as immature development of visual-vestibular
sensors, vestibular dysfunction or oculomotor dysfunction,
compared to children and older people. Note that ITU-R
BT.500-13 recommended at least fifteen subjects in order to
obtain reliable subjective experiment results [54]. Subjects
have normal or corrected-to-normal vision and minimum
stereopsis of 60 arcsec. In our experiment, before watching
each stimulus, they were placed in the center position to be
started from zero position in order to prevent significantly
different viewing traces between viewers [30]. They were
seated on a rotatable chair in order to freely look around
360-degree contents. A week before the actual subjective
assessment experiments, we had subjects experience a variety
of VR contents with Oculus Rift in order to allow them to
familiarize with VR environment. In our experiments, the
subject head motion was small and negligible during watching
360-degree contents. Since most of the 360 degree-videos
used in our experiment have movement in a certain direction
by roller coaster and car, subjects focused their gaze in the
similar direction (e.g., the direction of rails in the roller coaster
video or moving direction in the driving video) [51]. The
head motion below the range of 44° to 55° in yaw could not
cause severe VR sickness [24]. All experimental environments
followed the guideline as per the recommendations of ITU-R
BT.500-13 [54] and BT.2021 [55].

Each test video was presented for 90 seconds. The order
of presentation of each video was randomized across subjects.
Then, resting time was given as 150 seconds with mid gray
image. During the resting time, subjects were asked to assess
the degree of perceived VR sickness. To grade the degree of
VR sickness, the latest version of 16-item SSQ [56] was used
in our experiment. The 16-item SSQ consists of 16 phys-
ical symptoms, which are highly related to VR sickness,

TABLE IV

16-ITEM SSQ USED IN OUR SUBJECTIVE ASSESSMENT

FOR VR SICKNESS

with a discrete four point grading scale for each symptom
(0: None, 1: Slight, 2: Moderate, 3: Severe). TABLE IV shows
the16-item SSQ. The SSQ scores of three major symptoms are
calculated by summation of scores for each symptom included
in their categories with weight: 9.54 for nausea, 7.58 for
oculomotor, 13.92 for disorientation, respectively [3], [18],
[56]. The SSQ score for nausea can be written as

SSQNausea

= 9.54 × 1

J

J∑

j=1

(
sgd

j + sis
j + ss

j + sn
j + sdc

j + ssa
j + sb

j

)
, (8)

where J is the number of subjects. sgd
j , sis

j , and ss
j are

subjective scores of j -th subject for general discomfort,
increased salivation, and sweating symptoms, respectively. sn

j ,
sdc

j , ssa
j , and sb

j are subjective scores of j -th subject for nau-
sea, difficulty concentrating, stomach awareness and burping,
respectively.
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The SSQ score for oculomotor can be written as

SSQOculo = 7.58 × 1

J

×
J∑

j=1

(
sgd

j + s f
j + sh

j + ses
j + sd f

j + sdc
j + sbv

j

)
, (9)

where s f
j , sh

j , and ses
j are subjective scores of j -th subject

for fatigue, headache, and eye strain, respectively. sd f
j and sbv

j
are subjective scores for difficulty focusing and blurred vision,
respectively.

The SSQ score for disorientation can be written as

SSQDis = 13.92 × 1

J

×
J∑

j=1

(
sd j

j + sn
j + s f h

j + sbv
j + sdzo

j + sdzc
j + sv

j

)
, (10)

where s f h
j , sdzo

j , sdzc
j , and sv

j are subjective scores of j -th
subject for fullness of head, dizzy (eye open), dizzy (eye
closed), and vertigo, respectively.

Finally, a total SSQ score was obtained by combining the
partial SSQ scores for three major symptoms with the weight,
3.74 [3], [18], [56], which can be written as

SSQtotal = 3.74 ×
(

1

9.54
SSQNausea + 1

7.58

× SSQOculo + 1

13.92
SSQDis

)
. (11)

At the same time, we measured skin conductance and
heart rate of subjects during our subjective assessment for
objective evaluation of VR sickness. Heart rate and skin
conductance were measured using NeuLog heart rate/pulse
sensor (NUL-208) and GSR sensor (NUL-207) for measuring
the physiological signals in watching VR contents to build
the benchmark database. The heart rate/pulse sensor was
composed of an infrared LED transmitter and a matched
infrared phototransistor receiver. The GSR sensor was com-
posed of two probes and finger connectors. Their maxi-
mum sampling rate was 100 Hz. To obtain baseline signals
of each subject, after the subjects comfortably relaxed for
5 minutes, we measured the baseline physiological signals
during same period (90 seconds) of the video viewing before
the subjective assessment. In our experiment, to eliminate the
sickness caused by continuously watching VR content, before
presenting next VR content, we asked subjects to tell about
the current degree of VR sickness on a scale of 0 – 20
using fast motion sickness scale (FMS) [57]. When they
told 0 score (no sickness), we continuously conducted the
experiment. Otherwise, we gave the subject additional resting
time until they told 0 score for VR sickness. The additional
resting time for each stimulus was about 60 sec averagely. As a
result, total resting time for each stimulus was about 210 sec
(150 sec for basic resting time + 60 sec for additional resting
time), which was more than twice the presentation time of
each test video. As such, each subject took about 60 min to
complete the subjective assessments including time to attach
the equipment. During the subjective assessment experiment,

Fig. 5. Subjective assessment results of VR sickness for the 360-degree
video dataset. The x-axis and y-axis represent the video data number and
SSQ scores for VR sickness. Note that the green and blue bars represent the
SSQ scores for oculomotor and nausea, respectively. The yellow and red bars
represent SSQ scores for disorientation and total SSQ score, respectively. The
total SSQ score for each test video is labeled over the red bar.

the subjects were allowed to immediately stop and take a break
if they feel difficult to continue the experiment due to excessive
VR sickness.

C. Subjective Assessment Results

Figure 5 shows the SSQ scores for the VR sickness of
collected 360-degree video datasets. The x-axis and y-axis
indicate the video number and corresponding SSQ scores for
VR sickness, respectively. In Fig. 5, green and blue bars repre-
sent SSQ scores for oculomotor and nausea, respectively. The
yellow and red bars represent SSQ scores for disorientation
and total SSQ score, respectively. The total SSQ score for
each test video is labeled over the red bar. As shown in Fig. 5,
the total SSQ scores of the 360-degree videos with slow and
normal motion patterns (i.e., video data number: 1 to 6) were
low. Note that the total SSQ scores ranging of 32 to 40 indicate
noticeable VR sickness [18]. It means that the viewers could
not perceive severe VR sickness in watching VR contents
with slow or normal motion pattern since the discrepancy
between the simulation motion and physical motion is not
excessive. On the other hand, the total SSQ scores of the VR
contents with complex motion pattern such as roller-coaster
(total SSQ: 60.59), rally racing (total SSQ: 71.56), and jet
racing (total SSQ: 72.56) were much higher than those of VR
contents with slow and normal motion patterns. In particular,
in the SSQ scores of VR video data number 7, 8, and 9,
the SSQ scores for disorientation were generally higher than
those of oculomotor and nausea. The result indicates that the
complex motion patterns (i.e., exceptionally fast and rotational
motions) could have mainly an influence on the disorientation
factor.

In this paper, the benchmark has corresponding subjective
sickness scores and nine 360-degree videos (in Section IV-A)
which have various motion patterns (e.g., slow, normal, and
complex) and scenes (e.g., scenery, driving, flight, roller
coaster, racing, etc.). Regarding non-exceptional motion and
exceptional motion, the benchmark with nine 360-degree
videos and the corresponding subjective sickness scores is
enough to perform the experiments compared with [8], [18],
[20], [23], and [30] for evaluating VR sickness.
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V. EXPERIMENTS AND RESULTS

A. Experimental Setup and Deep Network Training

To verify the performance of the proposed VR sickness
assessment deep network, experiments were conducted with
the benchmark database that consists of the 360-degree video
dataset and the corresponding SSQ scores and physiological
signals (heart rate and skin conductance) of VR sickness.
The experiments were conducted on a PC with Intel Core-
4770 CPU @ 3.40 GHz, a 32 GBytes memory, and NVIDIA
GTX 1080 TI. The proposed VRSA framework was imple-
mented using TensorFlow.

For training VR video generator in the proposed VRSA
framework, we used other various video datasets in the
experiment, which are KITTI benchmark datasets [58]
and various other 360-degree video contents from Vimeo.
In the experiment, KITTI benchmark datasets were used
for pre-training of our VR video generator. The KITTI
benchmark database includes a total of 61 normal driving
video clips with a resolution of 1242 × 375 pixels [58].
The normal driving clips have three types of scenes, which
are city, residential, and road [58]. The number of frames
in KITTI benchmark dataset for video generator training is
42,746 frames (42,746 frames = 8,477 frames from city
clips + 28,404 frames from residential clips + 5,865 frames
from road clips) [58]. From Vimeo, twenty 360-degree video
clips with non-exceptional videos were collected (see Appen-
dix A for more detail of the Vimeo twenty 360-degree video
clips), which were used for training of the generator. A total
of 18,000 frames in Vimeo dataset were used for the training
(i.e., 900 frames × the twenty Vimeo 360-degree videos). The
900 frames in each video were chosen by selecting all frames
in the ‘time stamp’ with ‘fps’ of each video in TABLE VII
(The number of frames = ‘fps’ × ‘time stamp’). As a result,
a total of 60,746 frames (60,746 frames = 18,000 frames from
Vimeo + 42,746 frames from KITTI benchmark dataset) were
used in VR video generator training.

Unlike the video generator training in unsupervised manner,
since videos and the corresponding subjective scores are
required as a ground-truth for VR sickness predictor training,
the VR sickness score predictor in the proposed VRSA frame-
work was trained by another twenty one 360-degree videos
which were captured by photo experts and available from [59]
(see TABLE VIII in Appendix B for more detail of the
twenty one 360-degree videos). Most of 360-degree videos had
3840 × 1920 or 4096 × 2048 pixels. A total of 56,700 frames
were used for the training (i.e., 2,700 frames × the twenty
one 360-degree videos). To obtain the subjective scores of the
twenty one videos in TABLE VIII, we conducted additional
subjective assessment experiment with other twenty subjects
by the same methodology of the subjective experiments in
Section IV-B. Figure 6 shows the total SSQ scores of the
twenty one 360-degree videos (i.e., subjective assessment
results), which were used as ground truths for training of the
VR sickness score predictor.

To train the proposed VRSA network with VR video
generator and VR sickness score predictor, two-step training
was used. In the first step, for the training of the VR video

Fig. 6. The total SSQ scores of the twenty one 360-degree videos for training
of the VR sickness score predictor.

generator, the VR video generator was pre-trained with KITTI
dataset for the reconstruction of the videos with normal driving
(non-exceptional motion). The pre-trained weights were used
as initial parameters in training with the twenty 360-degree
videos, which were collected from Vimeo. The VR video
generator was trained again with the twenty 360-degree videos
consisting non-exceptional motion in unsupervised manner
(without SSQ scores). In the second step, the trained generator
in the first step generated the generated videos for all input of
twenty one 360-degree videos that consist of various motion
patterns, for the training of the VR sickness score predictor.
Then, a sequence of the difference maps, Et , was obtained by
taking the difference between the original and the generated
videos. With the Et and the corresponding total SSQ score
(see Fig. 6), the VR sickness score predictor was trained.

The proposed VR video generator was pre-trained by
60 epochs with ADAM optimizer [60]. In each iteration,
we used a batch size of 3. For ADAM optimizer, the learning
rate was initialized at 0.00005. β1 and β2 were set to 0.9 and
0.999, respectively. Weight decay was set to 10−8 per each
iteration. In training of the proposed VR video generator,
at first, only the spatio-temporal generator was trained to
minimize Eq. (4), LG . Then, the spatio-temporal generator
and the discriminator were alternately trained in an adversarial
way. The VR sickness score predictor was trained with the
same optimizer, learning rate, and batch size. At the end of
the discriminator and the predictor, the sigmoid was used as
an activation function. In our experiment, λD and λg were
set to 1.

B. Prediction Performance Evaluation

For performance evaluation of the proposed VRSA, we used
the benchmark database in Section IV that consists of nine
360-degree videos (TABLE III) and the associated SSQ scores
(Fig. 5) and physiological signals (heart rate and skin con-
ductance) of VR sickness. To evaluate the proposed objective
VRSA method, we employed commonly used performance
measures: Pearson linear correlation coefficient (PLCC),
Spearman rank order correlation coefficient (SROCC), and
root mean square error (RMSE).

To evaluate the prediction performance of the proposed
method, we compared the performance with three physiologi-
cal signal-based methods [18]–[20] (were heart rate, heart rate
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TABLE V

PREDICTION PERFORMANCE OF THE PROPOSED
METHOD AND OTHER METHODS

variability (HRV), and GSR). For physiological signal-based
methods, the HR and GSR in the benchmark (see Section IV)
were used. In the HR-based VRSA, the mean of heart rate
in time domain value was used as objective metric using
heart rate [18], [20]. For the HRV-based VRSA, the standard
deviation of the heart rate in time domain was calculated
from the heart rate signals [18]. In the GSR-based VRSA,
each normalized GSR signal was obtained by subtracting the
average GSR signal of test image from the average baseline
GSR signal of subject. The mean of normalized GSR in time
domain was used as objective metric using GSR [19]. In addi-
tion we performed VR sickness assessment by measuring the
optical flow (motion information) of 360-degree videos. The
average magnitude of optical flow was used as VR sickness
metric. For performance comparisons, the performance metrics
using physiological signals and optical flow were computed
after nonlinear regression using logistic function [61]. For
performance comparisons of deep learning-based approach,
3D CNN, which is one of the main architectures of deep
learning for video analysis, was employed. The architecture
of 3D CNN is the same architecture as in TABLE II).
It consists of five 3D convolutional layers and 64-dimensional
fully-connected layer. Similar to other deep learning-based
objective assessment approaches [37], [38], [40], the deep
learning-based method using 3D CNN was end-to-end trained
with the dataset, which was used in the training of the pro-
posed VR sickness predictor (twenty one 360-degree videos
from [59] in TABLE VIII and the corresponding sickness
scores obtained by our subjective experiment), in supervised
manner.

TABLE V shows the results of the prediction performance
evaluation for the proposed VRSA metric, three physiolog-
ical signals-based methods, optical flow-based method, and
deep learning-based method using 3D CNN. As seen in
TABLE V, the results reveal that the proposed VRSA model
yields a high correlation with subjective VR sickness score,
i.e., total SSQ of the test datasets (PLCC: 0.885 and SROCC:
0.882). The RMSE value of the proposed method was sig-
nificantly lower than those of the existing objective VRSA
methods using physiological signals.

The proposed VRSA Net even without the predictor (i.e.,
the average difference value between the original and the
generated videos are used as objective metric for VR sickness)
achieved better prediction performance (PLCC: 0.869 and
SROCC: 0.877) than other methods. The proposed VRSA

TABLE VI

STATISTICAL ANALYSIS OF PREDICTION PERFORMANCES
FOR DIFFERENT METRICS

Net with the predictor provided higher performance of about
2%, compared to the VRSA Net without the predictor. The
results demonstrate that the proposed VR video generator can
effectively capture the exceptional motion leading to exces-
sive VR sickness and the predictor can precisely assess the
VR sickness score by considering the total SSQ scores as ref-
erences for the performance improvement. In the physiological
signals-based VRSA methods, the HRV-based and GSR-based
methods had a correlation with subjective VR sickness score
and a total SSQ score. On the other hand, the heart rate did
not seem to correlate with the degree of VR sickness. These
results are consistent with [18]. Compared to the objective
VRSA methods based on physiological measurements and
deep learning-based method, the proposed VRSA Net achieved
superior prediction performance. Importantly, these results
indicate that motion mismatch caused by exceptional motion
of VR content is one of the most important factors on the
VR sickness.

In addition, the statistical significance evaluation was per-
formed under the recommendation of ITU-T P.1401 [62]. The
guideline provides the statistical evaluation and qualification
procedure of the objective assessment models (Z-test for PLCC
and SROCC, and F-test for RMSE). To see whether the
difference in prediction performance between different metrics
is statistically significant or not, we conducted statistical
significance evaluation. As seen in TABLE VI, the differ-
ence between the HR-based and GSR-based methods was
statistically significant. The difference between the GSR-
based and the optical flow-based methods was not statisti-
cally significant in terms of PLCC, SROCC, and RMSE. On
the contrary, the differences between the proposed VRSA
Net and other methods were statistically significant in terms
of PLCC, SROCC, and RMSE. It means that the pro-
posed VRSA method could be useful for VR sickness pre-
diction without cumbersome measurement of physiological
signals.
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Fig. 7. Visualization of the proposed VRSA method for (a) VR video 1, 2 with slow motion and (b) VR video 7, 9 with exceptional motion (right). First
and second rows indicate consecutive original frames and reconstructed frames, respectively. The third row indicates difference maps, Et , between original
frames and reconstructed frames. Note that all images are normalized in range of [0, 1]. Blue indicates ‘0’ and red indicates ‘1’.

In addition, to quantitatively show the performances of
the trained generator for non-exceptional motion videos and
exceptional motion videos, we conducted quantitative exper-
iment. For this purpose, we measured the root mean square
error (RMSE) between the generated video and the original
video for non-exceptional motion and exceptional motion.
The average RMSE for non-exceptional videos (Videos 1 ∼ 6
in TABLE III and Videos 1 ∼ 16 in TABLE VIII) is about
3.61 ± 1.70 (mean ± std). On the other hand, the aver-
age RMSE value for exceptional videos (Videos 7 ∼ 9
in TABLE III and Videos 17 ∼ 21 in TABLE VIII) is
about 13.70 ± 3.79 (mean ± std). The results indicate that
the generator trained only on non-exceptional motion videos
works well for the non-exceptional videos while it does
not work well for the exceptional motion videos relatively.
In the following subsection, the qualitative results of the
generator are shown according to the motion patterns of
video.

C. Visual Results
To interpret the performance of the proposed VRSA frame-

work, we visualized the areas of VR video that mostly affected
the VR sickness prediction. Figure 7 shows the results of
video reconstruction by the proposed generator for Video 1,
2 and Video 7, 9. In Fig. 7 (a) and (b), the first and second
rows indicate the original NFOV frames and the reconstructed
NFOV frames by the trained generator. The last row rep-
resents the reconstruction error maps (i.e., difference maps,
Et ). As shown in the Fig. 7(a), Video 1 and 2 with the
simple motion pattern were reconstructed well. On the other
hand, the generator could not reconstruct Video 7 and 9 well
since the trained generator did not encode the exceptional
velocity and rotation during training. As shown in Fig. 7(b),
it can be recognized that most of the errors occur around the
rapidly varying area such as acceleration in Video 7 or rapid
turning Video 9. It means that our generator trained by videos
with non-exceptional motion can detect the region leading to
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TABLE VII

DETAILED DESCRIPTION OF TWENTY 360-DEGREE VIDEOS COLLECTED
FROM VIMEO FOR THE TRAINING OF THE GENERATOR

excessive VR sickness and our predictor can predict the level
of VR sickness based on the quality of the generated videos.

VI. DISCUSSIONS

It should be noted that this study was intended for assessing
the impact of exceptional motion on VR sickness of 360-
degree video for normal vision and healthy people. The
literature reported human factors for children and VR sickness-
sensitive people [52], [53]. This means that there are limita-
tions in equally applying the proposed method to such subjects
with different human factors. Furthermore, it might have to
consider human factor in VRSA.

TABLE VIII

DETAILED DESCRIPTION OF TWENTY ONE 360-DEGREE VIDEOS
COLLECTED FROM [59] FOR THE TRAINING

OF THE PREDICTOR

In future work, we will extend the proposed method to
assess the VR sickness by considering the human factors (e.g.,
VR sickness susceptibility). In addition, the other causes of
VR sickness need to be further investigated for VR sickness
assessment of 360-degree video. It might be helpful for
VR sickness assessment in future work.

VII. CONCLUSIONS

In this paper, we proposed a novel objective deep gener-
ative model-based VRSA Net for 360-degree videos. In the
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proposed method, instead of end-to-end training the regression
model with a large number of VR datasets and corresponding
subjective scores (i.e., ground truth), the VR video generator
based on GAN was devised to learn the tolerance of VR sick-
ness in human motion perception. To encode and decode the
characteristics of the VR video with non-exceptional motion,
which do not induce excessive VR sickness on human motion
perception, we trained the VR video generator only with
normal videos with non-exceptional videos. Based on the
generated videos by the trained our generator, the proposed
VR sickness score predictor could precisely assess the pro-
posed VR sickness score for a test video. In addition, we intro-
duced a benchmark database for the evaluation of VR sickness
assessment. We collected nine 360-degree videos including
various motion patterns and performed extensive subjective
experiments. In our subjective assessment experiment, physi-
ological signals (heart rate and galvanic skin response signals)
and subjective questionnaires (SSQ scores) were measured
for evaluating VR sickness. In our experiment, the prediction
performance showed that the proposed VRSA had a strong
correlation with human perception of VR sickness. Further-
more, by visualizing the difference maps between the original
and the generated videos by the trained generator, we interpret
that the proposed VRSA network quantifies the degree of VR
sickness and it could detect area where VR sickness caused
by exceptional motion is highly related.

APPENDIX A

For training of the proposed VR video generator, we used
twenty 360-degree videos collected from Vimeo. They have
slow and constant motion, which could not induce VR sick-
ness. TABLE VII shows the details of twenty 360 videos.

APPENDIX B

For training of the proposed VR sickness score predictor,
we used twenty one 360-degree videos collected from [59].
They have various scenes and motion patterns. TABLE VIII
shows the details of twenty one 360 videos, which could be
found and downloaded from [59] for fee.
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