
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OBJECT-AWARE AUDIO-VISUAL SOUND GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generating accurate sounds for complex audio-visual scenes is challenging, es-
pecially when multiple objects and sound sources are present. In this paper, we
introduce an object-aware sound generation model that aligns generated sounds
with visual objects in a scene. By grounding sound generation in object-centric
representations, our model learns to associate specific visual objects with their
corresponding sounds. We fine-tune a conditional latent diffusion model with dot-
product attention to improve sound-object alignment. At test time, users can com-
positionally generate sounds by selecting objects via segmentation masks. We
theoretically validate our test-time object-grounding ability, ensuring that even
subtle sounds can be represented. Quantitative and qualitative evaluations show
that our model outperforms baselines, achieving better alignment between objects
and their associated sounds.

Input Image Audio generated to match a user-selected object

Figure 1: Object-aware sound generation. We generate sound aligned with specific visual objects in complex
scenes. Users can select objects in the scene using segmentation masks, and the model generates audio corre-
sponding to the selected objects. Here, we show a busy street with multiple sound sources (left). After training,
our model generates object-specific audio (right), such as crowd noise for people, engine sounds for cars, and
ambient wind for the sky. Please refer to our supplement and project webpage to watch and listen to the
results.

1 INTRODUCTION

Generating the full sound texture (McDermott & Simoncelli, 2011) of real-world environments is
a significant challenge in audio and audio-visual research. While early models have focused on
synthesizing sound based on scene categories, text descriptions, and visual contexts (Kong et al.,
2019; Yang et al., 2023; Van Den Doel et al., 2001), they often fail to represent specific sound
sources in complex environments. In scenes such as a busy city street (Figure 1), where multiple
distinct sound events (e.g., car engines, footsteps, crowd noise) co-occur, these models often produce
incomplete soundscapes (Pijanowski et al., 2011), overlooking important audio events.

Existing approaches can be largely classified as vision-based or text-based. Vision-based mod-
els (Sheffer & Adi, 2023) attempt to synthesize sound by analyzing the entire visual scene, but in
environments with many overlapping sound sources, they tend to generate blended audio that misses
subtle yet important details, like footsteps. Text-based models (Liu et al., 2023) respond to detailed
prompts but face a similar challenge: certain sound events are either forgotten or underrepresented
due to differences in the weight of each event in the latent space. For example, given a prompt de-
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scribing both prominent and subtle sounds in a scene, the model might focus on only some of these
events, omitting others like footsteps, even though they were explicitly mentioned (Wu et al., 2023).
This occurs because the model assigns less importance to certain sounds, causing them to be ignored
or poorly generated. While some have attempted to manually reweight sound events in the latent
space (Xue et al., 2024), such interventions remain labor-intensive and impractical for large-scale
applications.

To overcome these limitations, we propose an object-aware sound generation model that grounds
sound generation in the visual domain. Inspired by object-centric learning (Greff et al., 2019), which
decomposes scenes into discrete objects, our model associates visual objects with their correspond-
ing sound sources, ensuring that no sound events are overlooked. We build on an off-the-shelf con-
ditional audio generation model (Liu et al., 2023), enhancing it with dot-product attention (Vaswani
et al., 2017) to learn sound-object associations through self-supervision. This method overcomes
the problem of forgetting sound events, enabling the generation of various relevant sounds in com-
plex scenes. To provide finer control and interactivity, we replace the attention with segmentation
masks (Kirillov et al., 2023) at test time, allowing users to select specific objects in a scene (e.g.,
cars, groups of people) to generate the corresponding sounds within simple mouse clicks. This en-
sures that even subtle sound events, like footsteps or distant conversations, are captured accurately
by grounding sound generation in specific objects rather than relying on scene-wide analysis.

Through quantitative evaluations and human perceptual studies, we demonstrate that our model
outperforms existing baselines, generating more complete and contextually relevant soundscapes.
In addition, we provide qualitative results and theoretical analysis demonstrating that our object-
grounding mechanism is functionally equivalent to segmentation masks. Through our evaluations,
we show:

• Visual grounding from text provides supervision for learning compositional sound generation.
• Specifying different objects within a scene leads to predictable changes in the types of generated

sounds.
• Our model learns to generate sound from in-the-wild visual data.

2 RELATED WORK

Predicting sound from images and text. Generating sounds from visual and textual inputs has
gained notable attention recently. Image-based methods focus on synthesizing sounds from visual
cues such as physical interactions (Van Den Doel et al., 2001; Owens et al., 2016), human move-
ments (Gan et al., 2020; Su et al., 2021; Ephrat & Peleg, 2017; Prajwal et al., 2020; Hu et al., 2021),
musical instrument performances (Koepke et al., 2020), and content from open-domain images and
videos (Zhou et al., 2018; Iashin & Rahtu, 2021; Sheffer & Adi, 2023; Luo et al., 2023). These
approaches typically generate audio that corresponds to the entire visual scene without isolating in-
dividual sound sources, resulting in holistic sound generation. Text-based methods aim to produce
sounds from textual descriptions using generative models like GANs and diffusion models (Yang
et al., 2023; Kreuk et al., 2023; Liu et al., 2023; Huang et al., 2023b). However, when prompts con-
tain multiple sound events, these methods often struggle to capture all the desired audio elements
(Wu et al., 2023), potentially missing some sounds. Unlike these models, our method distinguishes
itself by generating sounds compositionally and creating individual audio outputs for user-selected
objects within images. This offers enhanced control and precision in sound generation.

Object discovery. Object-centric learning aims to represent visual scenes as compositions of dis-
crete objects, enabling models to understand and manipulate individual entities within a scene. Un-
supervised object discovery methods have been developed to decompose scenes into object repre-
sentations without explicit annotations (Greff et al., 2019; Burgess et al., 2019). The Slot Attention
mechanism (Locatello et al., 2020) introduced a way to learn such representations by utilizing a set
of latent variables, or “slots,” that iteratively attend to different parts of the input to capture indi-
vidual objects. Subsequent works (Greff et al., 2019; Burgess et al., 2019) have sought to enhance
the stability and robustness of these models. In the audio-visual realm, prior studies have explored
object discovery (Arandjelovic & Zisserman, 2018; Rouditchenko et al., 2019; Afouras et al., 2020;
Chen et al., 2021; Mo & Morgado, 2022; Hamilton et al., 2024) by leveraging the correspondence
between audio and visual modalities. However, these methods primarily focus on recognition and
localization tasks and do not address the generation of audio content based on visual inputs. In
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Figure 2: Model architecture. We encode the reference spectrogram via a pre-trained latent encoder. An
image and text prompt are processed by separate encoders, and their embeddings are fused using an attention
mechanism to highlight relevant objects. We then feed these conditioned features and noisy latent into a latent
diffusion model to generate the object-specific audio. Finally, the latent decoder reconstructs the spectrogram,
and a pre-trained HiFi-GAN vocoder generates the final audio waveform. At test time, we replace the attention
with a user-provided segmentation mask, and the latent encoder for the reference spectrogram is not used.

contrast, our model generates sounds corresponding to user-selected objects within visual frames,
without requiring explicit object segmentations and representations during training.

Audio-visual learning. Many works have focused on audio-visual associations due to their inher-
ent correspondence in videos. A line of works explores the semantic correspondence, identifying
which sounds and visuals are commonly associated with one another (Arandjelovic & Zisserman,
2017). This includes representation learning (Morgado et al., 2021; Huang et al., 2023a), source lo-
calization (Chen et al., 2021; Harwath et al., 2018; Chen et al., 2023), audio stylization (Chen et al.,
2022a; Li et al., 2024), as well as scene classification (Chen et al., 2020; Gemmeke et al., 2017; Du
et al., 2023a) and generation (Li et al., 2022b; Sung-Bin et al., 2023). Other studies leverage spa-
tial correspondence between audio and visual streams (Owens & Efros, 2018; Korbar et al., 2018;
Patrick et al., 2021) to tackle tasks like source separation (Zhao et al., 2018; 2019; Ephrat et al.,
2016; Gao et al., 2018; Li et al., 2020), Foley sound synthesis (Owens et al., 2016; Du et al., 2023b),
and audio spatialization (Gao & Grauman, 2019; Morgado et al., 2018; Yang et al., 2020). Inspired
by these works, we aim to generate sound from the user-selected objects within visual frames.

3 OBJECT-AWARE SOUND GENERATION

Our goal is to generate sound from user-selected objects within a scene in a compositional way. We
cast this problem by learning the correlation between audio and its corresponding visual scene and
then using this correlation to predict the sound from the activated region. To achieve this, we: (i)
fine-tune an off-the-shelf conditional audio generation model for sound synthesis; (ii) train an audio-
guided visual object grounding model to isolate the desired object; (iii) theoretically demonstrate the
equivalence between the segmentation mask and our grounding model.

3.1 CONDITIONAL AUDIO GENERATION MODEL

Conditional latent diffusion model. We adopt a pre-trained conditional latent diffusion model
(Liu et al., 2023) to generate audio conditioned on textual inputs. Building upon denoising diffusion
probabilistic models (Ho et al., 2020) and latent diffusion models (Rombach et al., 2022), our model
operates in a compressed latent space to improve computational efficiency. Specifically, given a
text prompt tq describing the desired sound and a noise vector ϵ ∼ N (0, I), the model iteratively
denoises the latent variables over N steps to generate the corresponding audio.

3
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Our model is trained to predict the added noise at each denoising step n, conditioned on the textual
input tq . The training objective minimizes the difference between the predicted noise and the true
noise:

Lθ = Ez0,tq,ϵ∼N (0,I),n∥ϵ− ϵθ(zn, n, tq)∥22 , (1)
where z0 is the latent representation of the ground truth audio, zn is the noisy latent at step n, and
ϵθ is the denoising model parameterized by θ.

Mel-spectrograms compression. We compress mel-spectrograms into a lower-dimensional latent
space using a variational autoencoder (VAE) (Kingma & Welling, 2013). The VAE encodes the mel-
spectrogram a ∈ RT×F into a latent representation z ∈ RT ′×F ′×d, where T ′ and F ′ are reduced
temporal and frequency dimensions, and d is the dimensionality of the latent embeddings.

Textual representation. We represent the textual input tq using a pre-trained text encoder from
CLAP (Elizalde et al., 2023), which maps the text into an embedding space Et(tq) ∈ RL, where
L denotes the embedding dimension. These text embeddings capture semantic information about
the desired sound and are used to condition the diffusion model through cross-attention mechanisms
(Vaswani et al., 2017).

Classifier-free guidance. We employ classifier-free guidance (CFG) (Ho & Salimans, 2022) to
encourage the model to learn both conditional and unconditional denoising. During training, we
randomly omit the conditioning input tq with a 10% probability. At test time, we use a guidance
scale λ ≥ 1 to interpolate between the conditional and unconditional predictions:

ϵ̃θ(zn, n, tq) = λ · ϵθ(zn, n, tq) + (1− λ) · ϵθ(zn, n,∅) , (2)

where ϵθ(zn, n,∅) is the unconditional prediction. This approach enhances adherence to the con-
ditioning text while maintaining diversity in the generated audio.

Waveform reconstruction. After generating the latent representation of the audio, we reconstruct
the corresponding waveform. The decoder part of the VAE transforms the latent representation z0
back into a mel-spectrogram. Subsequently, a pre-trained HiFi-GAN neural vocoder (Kong et al.,
2020a) is used to synthesize the time-domain audio waveform from the mel-spectrogram, producing
the final audio output.

3.2 TEXT-GUIDED VISUAL OBJECT GROUNDING MODEL

Visual representation. To ground the visual objects corresponding to the desired sound, we ex-
tract features from the input image using a pre-trained visual encoder. Specifically, we utilize CLIP
(Radford et al., 2021) to encode the image into a set of visual patches embeddings Ev(iq) ∈ RP×L,
where iq is the input image, P is the number of patches, and L denotes the embedding dimen-
sion (matching that of the text embeddings). These embeddings capture both semantic and spatial
information of the visual scene.

Scaled dot-product attention. We employ scaled dot-product attention (Vaswani et al., 2017)
to fuse the textual and visual inputs, allowing the model to focus on specific objects within the
scene. Before computing the attention, the text embeddings Et(tq) and patch embeddings Ev(iq) are
linearly projected to obtain the query, key, and value matrices. Specifically, we compute:

Q = Et(tq)WQ, K = Ev(iq)WK , V = Ev(iq)W V , (3)

where WQ, WK , and W V are learnable projection matrices.

We then computes the attention weights between the projected text and each projected image patch,
grounding the text in the visual domain:

Attention(Q,K,V ) = softmax
(
QK⊤
√
dk

)
V , (4)

where dk is the dimensionality of the key embedding.
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After obtaining the attention output, we apply an MLP layer (Murtagh, 1991) to further refine the
fused representations, which enables the model to attend to image regions corresponding to the text
input. In this way, we integrate the images iq with the diffusion process, allowing the model to learn
to focus on the relevant regions in the image through self-supervision.

Learnable positional encoding. To enhance the model’s ability to localize objects within the
image, we incorporate learnable positional encodings (Devlin, 2018) into the attention mechanism.
These encodings are added to the key and value embeddings, providing spatial information about
the image patches. By learning positional information, the model can better distinguish between
objects in different locations, improving grounding precision.

Segmentation mask at test time. After training, we have the flexibility to substitute the attention
weights derived from the scaled dot-product attention with segmentation masks generated by the
segment anything model (SAM) (Kirillov et al., 2023). We rescale the raw outputs of SAM into a
normalized mask mq ∈ RP , matching the mean and variance of the attention weights. This allows
us to generate the desired object’s sound by focusing on the regions specified by the segmentation
mask. Since SAM’s masks can be obtained using either text prompts or point clicks, our model
supports interactive and compositional sound generation, allowing users to intuitively select objects
of interest and generate their associated sounds.

3.3 THEORETICAL ANALYSIS

One may notice that our training pipeline uses both text and image encoders, but the test-time com-
putation involves only the image encoder, where the softmax attention weights are replaced by the
segmentation masks. This indicates an out-of-distribution generalization ability, where our model
trained on the softmax attention weights computed by CLAP & CLIP embeddings (Equation 4) is
able to generalize well on the segmentation masks computed by SAM. We hypothesize that this abil-
ity is rooted in the alignment of contrastive losses and the dot-product attention mechanism. Recall
that the InfoNCE loss (Oord et al., 2018) for the text encoder in contrastive learning is given by:

Lt (Et, Ev) = ExT ,xI
1:N

[
− log

exp
(
⟨Ev(xT ), Et(xI

1)⟩/τ
)∑N

j=1 exp
(
⟨Ev(xT ), Et(xI

j )⟩/τ
)] (5)

where (xT , xI
1) is the matching text-image pair, and xI

2, . . . , x
I
N are the negative image samples as-

sociated with xT . Notice that if we substitute xT with the text input tq , xI
1:N with the image patches

iq , and xI
1 with the matching image patch (with the text input), then the loss in Equation 5 becomes

the Maximum Likelihood Estimation (MLE) loss of the softmax attention weights in Equation 4 (un-
der proper scaling in the exponents). Therefore, the encoders Ev, Et are able to assign high attention
weights to image patches that match with textual inputs, and low attention weights to irrelevant im-
age patches, working effectively as the segmentation mask at test time. As such, the audio generation
model is trained with the ability to focus only on the selected objects by segmentation masks.

In the following theorem, we formalize the above argument into a test-time error guarantee. We let
f denote the composition of the trained MLP layers and the audio generation model that maps an
attention aq to an audio output sq on query q, and v denote the value metric that maps a sound-
image-mask tuple (s, i,m) to a real number v(s, i,m) ∈ R. Our goal is to bound

errtest := Eq[v(f
∗(pqV

∗), iq, pq)− v(f(mqV ), iq,mq)]

i.e., the expected (over the randomness of test query q) distance between the optimal value
v(f∗(pqV

∗), iq, pq) and the value of the trained model v(f(mqV ), iq,mq) at test time. Here,
f∗ and V ∗ are the ground-truth counterpart of f and value matrix, pq ∈ ∆P is the (normalized)
ground-truth mask of query q such that pq,k =

P(tq|iq,k)∑P
l=1 P(tq|iq,l)

for patch index k ∈ {1, . . . , P}, aq
represents the attention computed by Equation 4. Note that f(mqV ), the audio output of the trained
model, depends on the segmentation mask mq instead of the ground-truth mask pq or text input tq .

Theorem 3.1. Let ϵsam := Eq[∥mq−pq∥ℓ1 ] denote the expected ℓ1 error of the segmentation model.
Let ϵf , ϵV denote the expected error of f and V under the pre-trained CLAP & CLIP embeddings

5
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respectively, and ϵcontrast denote the expected contrastive loss of the encoders, more precisely,

ϵf = Eq[v(f
∗(aq), iq, pq)]− E[v(f(aq), iq, pq)], ϵV = ∥V − V ∗∥∞

ϵcontrast = Eq,d∼pq

[
− log

exp (⟨Ev(tq), Et(iq,d)⟩Σ)∑P
k=1 exp (⟨Ev(tq), Et(iq,k)⟩Σ)

]
− Eq,d∼pq

[− log pq,d] .

where ⟨·, ·⟩Σ is the local inner product under Σ := WK(WQ)⊤/
√
dk. Suppose ∥V ∗∥∞, ∥V ∥∞ ≤

Bv , v is Lv-Lipschitz, and f, f∗ are Lf -Lipschitz, then we have

errtest ≤ Lv ·
(
Lf ·

(
ϵV +Bv ·

(
ϵsam + 2

√
2ϵcontrast

))
+ ϵsam

)
+ ϵf .

Due to space constraints, the proof is deferred to Appendix A.5. Theorem 3.1 implies that the test-
time error can be upper bounded by the error of the pre-trained CLAP & CLIP encoders, the error
of the segmentation model, and the error of the trained model under pre-trained encoders. Since
the latter errors are usually small due to massive training and the regularity parameters Lv, Lf , Bv

are commonly modest, our method can be guaranteed to achieve high accuracy. This explains why
we are able to substitute the attention weights derived from the scaled dot-product attention with
segmentation masks generated by the segmentation model at test time. Our theory is further corrob-
orated by Section 4.3, where using dot-product attention weights achieves performance on par with
using segmentation masks, while additive attention fails completely.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. We use the Sound-VECaps dataset (Yuan et al., 2024) as our primary data source. This
dataset is derived from AudioSet (Gemmeke et al., 2017), which consists of 4,616 hours of video
clips, each paired with corresponding labels and captions. To tailor the dataset for our task, we per-
form several preprocessing steps: (i) employ Llama (Touvron et al., 2023) to rephrase the original
captions, ensuring they focus only on visible sounding objects for better consistency; (ii) exclude
clips containing voiceovers and music by applying keyword-based filters such as “speech” and “mu-
sic”; and (iii) train and use an off-the-shelf audio-visual matching model to retain only those videos
with high correspondence scores. This reduces the dataset to 748 hours of video. Please see Ap-
pendix A.2 for more details on the dataset refinement.

Model architecture. Building upon the AudioLDM (Liu et al., 2023), our model integrates image
inputs through a grounding model (Sec. 3.2). We employ the same VAE and HiFi-GAN vocoder,
which are trained on a combination of the AudioSet (Gemmeke et al., 2017), AudioCaps (Kim et al.,
2019), BBC Sound Effects (Corporation, 2017), and Freesound (Fonseca et al., 2021) datasets. The
VAE is configured with a latent dimensionality d of 8 channels. For embedding extraction, we utilize
the “ViT-B/32” CLAP audio encoder (Elizalde et al., 2023) and the CLIP image encoder (Radford
et al., 2021). These embeddings are then incorporated into the U-Net-based diffusion model through
cross-attention (Vaswani et al., 2017). We implement a linear noise schedule consisting of N = 1000
diffusion steps, from β1 = 0.0015 to βN = 0.0195. The DDIM sampling method (Song et al., 2020)
is used with 200 steps to facilitate efficient generation. At test time, we apply CFG with a guidance
scale λ set to 2, as defined in Equation 2.

Training configuration. To facilitate parallel training, each video’s soundtrack is either truncated
or zero-padded to achieve a fixed duration of 10 seconds and then converted to a 16 kHz sample rate
in 32-bit floating-point PCM format. We apply a 512-point discrete Fourier transform with a frame
length of 64 ms and a frame shift of 10 ms. For each video, a single visual frame is randomly chosen
to serve as the input image. The model is then trained using the AdamW optimizer (Loshchilov &
Hutter, 2017) with a batch size of 64, a learning rate of 10−4, β1 = 0.95, β2 = 0.999, ϵ = 10−6,
and a weight decay of 10−3 over 300 epochs.

Evaluation metrics. We use both quantitative and qualitative metrics (see Appendix A.3 for more
evaluation details) to evaluate the performance of our model. For the objective evaluation, we em-
ploy several metrics, including Sound Event Accuracy (ACC), which leverages the PANNs model
(Kong et al., 2020b) to predict and sample sound event logits based on the annotated labels and then
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Method ACC (↑) FAD (↓) KL (↓) IS (↑) AVC (↑) OVL (↑) RET (↑) REI (↑) REO (↑)

Ground Truth / / / / 0.962 4.12 ± 0.06 4.02 ± 0.05 4.06 ± 0.07 /

AudioLDM 1 0.314 3.761 1.542 1.541 0.701 2.76 ± 0.03 3.08 ± 0.07 2.88 ± 0.02 2.12 ± 0.03
AudioLDM 2 0.502 2.981 1.141 1.785 0.747 2.97 ± 0.02 3.21 ± 0.04 3.06 ± 0.04 2.44 ± 0.02
Make-an-Audio 0.309 3.555 1.443 1.673 0.712 2.74 ± 0.08 3.06 ± 0.05 2.89 ± 0.05 2.08 ± 0.04
Im2Wav 0.499 3.602 1.526 1.872 0.798 2.88 ± 0.05 3.12 ± 0.04 3.01 ± 0.05 2.48 ± 0.06
SpecVQGAN 0.611 2.515 1.142 1.965 0.825 2.94 ± 0.04 3.26 ± 0.03 3.11 ± 0.06 2.51 ± 0.04
Diff-Foley 0.683 1.908 0.783 2.010 0.842 3.09 ± 0.06 3.43 ± 0.05 3.32 ± 0.03 2.52 ± 0.06

Ours 0.859 1.271 0.517 2.102 0.891 3.31 ± 0.04 3.62 ± 0.05 3.48 ± 0.04 3.74 ± 0.07

Table 1: Quantitative comparison of our method and baselines across different metrics. The subjective OVL,
RET, REI, and REO scores are presented with 95% confidence intervals.

compute the mean accuracy across the dataset. We also measure the semantic alignment between
the output and target using three established metrics: (i) Fréchet Audio Distance (FAD) (Kilgour
et al., 2019), which quantifies how close the generated audio is to the real audio in latent space;
(ii) Kullback-Leibler Divergence (KL), which assesses the alignment of distributions between the
generated and target audio; and (iii) the Inception Score (IS) (Salimans et al., 2016), which evaluates
the diversity of the generated audio. Additionally, the Audio-Visual Correspondence (AVC) (Arand-
jelovic & Zisserman, 2017) is used to measure the semantic coherence between the input image and
the resulting audio, indicating how well the sounds match the visual context. We report this using
the average cosine similarity of features extracted by OpenL3 (Cramer et al., 2019).

For subjective evaluation, we conduct a human study to assess the quality and relevance of the gen-
erated audio. We present both the holistic samples and the object-selected samples. Each participant
is provided with an input image, along with the corresponding generated audio, and is asked to rate
each sample on a scale from 1 to 5 based on several criteria: (i) Overall Quality (OVL), which eval-
uates the general quality of the audio; (ii) Relevance to the Text Prompt (RET), which assesses how
well the audio matches any associated text description; (iii) Relevance to the Input Image (REI),
which judges the alignment between the audio and the visual content; and Relevance to the Selected
Object (REO), which focuses on how well the generated audio aligns with a specific object in the
visual scene.

Baselines. We compare our method with several baseline models, each of which is adapted for our
task:

• AudioLDM 1 & 2 (Liu et al., 2023; 2024): These models are originally designed for text-to-audio
generation, but we modify them by swapping their text embeddings with image embeddings. We
fine-tune these models on our dataset for a fair comparison.

• Make-an-Audio (Huang et al., 2023b): Make-an-Audio supports either text or image prompts for
sound generation. We extract its image-based branch and fine-tune it on our dataset.

• Im2Wav (Sheffer & Adi, 2023): Im2Wav is an image-guided open-domain audio generation
model that operates auto-regressively. Since the original model generates only 4 seconds of audio,
we retrain it on our dataset to adapt it to our task.

• SpecVQGAN (Iashin & Rahtu, 2021): SpecVQGAN is a two-stream VQGAN model (Esser et al.,
2021) designed for video-to-audio generation. We modify it by randomly sampling a single frame
from video data and fine-tune it for our task.

• Diff-Foley (Luo et al., 2023): Diff-Foley is a diffusion model that generates sound semantically
and temporally aligned with the video. Similar to SpecVQGAN, we fine-tune it on our dataset
using randomly sampled video frames.

4.2 COMPARISON TO BASELINES

Quantitative results. Table 1 compares our approach against the baselines on the Sound-VECaps
dataset. Our model outperforms the baselines across different metrics, highlighting its ability to
produce high-quality audio. In particular, our method achieves the best ACC metrics, indicating its
capacity to generate sound closely linked to the visual objects in the scene. Diff-Foley shows com-
petitive performance among the baselines, likely due to its contrastive representations, which map
visual and audio features to a shared latent space, improving audio-visual consistency. Although
Im2Wav and SpecVQGAN achieve reasonable AVC scores, they struggle with FAD and KL, indi-
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“Distant 
chatter with 
cars passing”

“Train arriving 
with people 

talking”

OursAudioLDM 2 Make-an-Audio Im2Wav SpecVQGAN Diff-FoleyAudioLDM 1

“Jet roaring 
with crowd 
cheering”

Text
“Dog growls 
with goose 

honks”

MaskImage

Generated AudioPrompt Type

Figure 3: Qualitative model comparison. We show sound generation results for our method and the baselines,
each of which is conditioned on an image, text, or segmentation mask.

cating they fall short in generating high-quality sounds. Similarly, AudioLDM and Make-an-Audio
show relatively lower accuracy and semantic alignment, which could be due to their original design
for the text-to-audio task rather than the image-guided one. Notably, our model significantly sur-
passes Diff-Foley in terms of FAD and KL, suggesting that it can generate audio that is not only
realistic but also semantically linked to the visual inputs. These results indicate the advantage of our
method in leveraging visual cues for more contextually relevant sound generation.

For subjective evaluation, we randomly select 100 generated samples from the test set, with 50 of
them manually processed to create segmentation masks for specific objects within a scene. These
samples are then rated by 50 participants. Our model receives the highest average ratings across all
subjective measures, with a particularly notable lead in REO, suggesting that it generates sounds
aligned with the objects in the image. Interestingly, we observe that all the baselines achieve rel-
atively close scores for REO, which demonstrates that our method is particularly good at linking
audio to object-level visual cues, a feature that is less evident in the baselines. Moreover, partici-
pants consistently rated the OVL, RET, and REI of our model higher, further validating the objective
metrics and highlighting its improved contextual alignment.

Qualitative results. Figure 3 compares our method with the baselines on the Sound-VECaps
dataset. In the first example, where both a dog and a goose are present, all baselines only gen-
erate dog growls, missing the goose honks. Our method, however, captures both sounds, illustrating
its object-aware capability. Similarly, in the second and third examples, involving a car with distant
chatter and a train with people talking, the baselines produce either one of the sound events but not
all simultaneously. By contrast, our model successfully generates the complete soundscape. The
final example presents a small jet in the background with the crowd cheering. Vision-based models
fail to detect the jet due to the jet’s small size in the image, generating only the crowd and wind
noises, while text-based models struggle to combine multiple sounds. Our approach accurately cap-
tures all relevant sounds, highlighting its ability to generate accurate sounds aligned with complex
visual scenes. For a more direct experience, please view the results video in the supplement and on
the project webpage.

4.3 ABLATION STUDY AND ANALYSIS

Table 2 summarizes the ablation experiments. We explore the following model variations: (i) freez-
ing the latent diffusion weights rather than fine-tuning them; (ii) replacing single-head attention with
multi-head attention; (iii) substituting text-image attention with audio-image attention; (iv) altering
the attention mechanism from dot-product to additive attention; and (v) using text-image attention
instead of segmentation masks during inference. We also show additional results in Appendix A.4.

Effect of freezing diffusion weights. We test the impact of freezing the latent diffusion model
weights instead of fine-tuning them during training. We observe that freezing the weights degrades
the performance, which suggests that fine-tuning is required to achieve more coherent audio.

Impact of attention head. We compare our single-head attention mechanism with the multi-head
counterpart (Vaswani et al., 2017). The multi-head approach enhances the alignment between tex-
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Method ACC (↑) FAD (↓) KL (↓) IS (↑) AVC (↑)

(i) Frozen Diffusion 0.692 1.543 1.047 1.943 0.733
(ii) Multi-Head Attention 0.415 2.238 1.903 2.115 0.887
(iii) Audio-Image Attention 0.634 1.761 1.232 1.731 0.692
(iv) Additive Attention 0.103 15.747 7.425 1.343 0.137
(v) Text-Image Attention 0.856 1.270 0.520 2.097 0.890

Ours 0.859 1.271 0.517 2.102 0.891

Table 2: Quantitative ablation studies on the Sound-VECaps dataset.

tual inputs and the generated audio, leading to a stronger correspondence between text descriptions
and sound outputs. However, this improvement reduces controllability when specifying specific
audio characteristics based on the segmentation mask. We conjecture that this limitation arises be-
cause each head in the multi-head attention focuses on different regions of the input (Voita et al.,
2019; Hamilton et al., 2024). While this strategy increases text-audio alignment, the lack of a clear
definition for each head’s specific scope reduces the interpretability of the final results. This likely
contributes to the masking results deviating from expectations.

Choice of attention modality. We assess the effectiveness of text-image attention compared to
audio-image attention. The audio-image attention variant shows a decline in performance, which
could be attributed to the inherent limitations of the CLAP model in representing overlapping audios.
This limitation probably introduces noise, thereby weakening the model’s ability to form audio-
visual associations essential for sound generation.

Evaluation of attention scoring mechanism. We investigate the role of the attention scoring
function by replacing dot-product attention with the additive one (Bahdanau, 2014). The additive
attention variant collapses significantly, indicating that segmentation masks are not a suitable re-
placement for this attention. Explained by the theory in Section 3.3, this could be because addition
operations are not compatible with the contrastive losses used by CLAP & CLIP and segmentation
masks generated by SAM, which disrupts our grounding model.

Role of segmentation masks during inference. We compare the standard text-image attention
mechanism to the proposed segmentation masks at test time. The results show that text-image
attention achieves performance on par with the segmentation mask approach (ours). This suggests
that both methods provide similar levels of spatial and semantic guidance for audio generation. This
finding also supports the theory discussed in Section 3.3.

4.4 CROSS-DATASET EVALUATION

Input Image Attention Mask

Figure 4: Visualization results. We visu-
alize the difference between attention maps
and segmentation masks using images from
Places (Zhou et al., 2017) and text prompts
from BLIP (Li et al., 2022a).

Visualization between grounding and masking. In
Figure 4, we visualize the comparison between the atten-
tion maps generated by our model and the segmentation
masks produced by SAM. For this, we use images from
Places (Zhou et al., 2017) and text prompts derived from
BLIP (Li et al., 2022a). To visualize the attention maps,
we apply bilinear interpolation to match the resolution of
the segmentation masks. Our results show a strong align-
ment between our model’s attention maps and the seg-
mentation masks, providing empirical support for the the-
oretical analysis in Section 3.3 and the findings of the ab-
lation study in Section 4.3. While the segmentation masks
represent a form of “hard” attention, directly highlight-
ing specific regions, our model produces “soft” attention
maps that provide a probabilistic focus on the relevant
areas. This similarity indicates that, through training, our
model effectively learns to capture object-specific regions
similar to those identified by segmentation, achieving the
desired grounding in a flexible manner. Furthermore, this
observation suggests that attention maps can be replaced with segmentation masks at test time.
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Output AudioInput Image Mask Output AudioMaskInput Image

Figure 5: Compositional sound generation. Our model generates object-
specific sounds in the city (left) and beach (right) scenes, and composes a
complete soundscape when multiple objects are selected.

Compositional sound
generation. We ask
whether our model will
generate object-specific
sounds by isolating in-
dividual objects within
a scene. As shown in
Figure 5, we use the same
image for each scene,
separating different objects
(cars, people, seagulls,
etc.) to generate corre-
sponding audio outputs.
The results illustrate that
our model successfully
learns to generate distinct sounds for each object, such as car engines or footsteps, reflecting
their unique sound textures. Furthermore, when multiple objects are selected together, the model
compositionally generates the entire soundscape that represents the scene property. This capability
highlights our model’s strength in decomposing and synthesizing audio-visual elements for sound
generation.

Output Audio Output AudioMaskInput Image Mask Input Image

Figure 6: Generating soundscapes from visual texture changes.. We gen-
erate different soundscapes by manipulating the visual textures of the same
scene, such as changing weather (left) or materials (right).

Sound adaptation to
visual texture changes.
We explore whether our
method can generate
soundscapes that adapt to
changes in visual textures,
inspired by audio-visual
video editing (Lee et al.,
2023). Starting with im-
ages from the Places (Zhou
et al., 2017) and Greatest Hits (Owens et al., 2016) datasets, we apply an off-the-shelf image
translation model (Park et al., 2020; Li et al., 2022b) to create paired scenes (e.g., sunny-rainy,
water-grass), and then overlay full-image segmentation masks on top. As illustrated in Figure 6,
our model generates context-appropriate soundscapes. For instance, it generates rain sounds for
dark skies, wind sounds for clear skies, water splashing for watery surfaces, and grass crunching for
grassy areas. This demonstrates that our model successfully captures variations in visual textures to
generate corresponding audio.

5 CONCLUSION

In this paper, we proposed an object-aware sound generation model, focusing on aligning generated
sounds with specific visual objects in complex scenes. To achieve this, we developed a diffusion
model grounded in object-centric representations, enhancing the association between objects and
their corresponding sounds. Our theoretical analysis demonstrates that the object-grounding mech-
anism is functionally equivalent to segmentation masks. Quantitative and qualitative evaluations
show that our model surpasses baselines in sound-object alignment, enabling cross-dataset gener-
alization and compositional sound generation. We hope this work not only advances controllable
sound generation but also inspires further exploration into the relationships between objects and
soundscapes.

Limitations and broader impacts. Our model shows promising results in generating object-
specific sounds from images but has certain limitations. First, since our model relies on static images,
it may struggle to produce non-stationary audio synchronizing with dynamic events, such as impact
sounds (Figure 6). Additionally, it may lack precise control over the type of sound produced for an
object, leading to potential ambiguity. For example, a car might be associated with various sounds,
such as siren or engine noise (Figure 3). Lastly, while useful for content creation like filmmaking,
our model also poses a potential risk, as it could be exploited to create misleading videos.
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ETHICS STATEMENT

This paper introduces an object-aware sound generation model. It is trained on publicly available
datasets, such as AudioSet and Sound-VECaps, which do not contain personally identifiable infor-
mation. We have taken steps to ensure compliance with data usage policies, and our model does not
involve human subjects or raise privacy concerns. We believe our work poses minimal ethical risks,
as it focuses on enhancing sound-object alignment in a controlled research environment. However,
we encourage responsible use of our model, particularly when applied to real-world scenarios.

REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our results, we provide detailed information in multiple sections of
this paper and its appendix. A comprehensive description of the dataset is presented in Section 4.1 of
the main paper, with additional data refinement details included in Appendix A.2. The key training
configurations, including hyperparameters, are outlined in Section 4.1. Our proposed method is
illustrated in Section 3, and the source code has been made available in the supplement for reference.
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A.1 RESULTS VIDEO

Our results video provided in the supplement, as well as on the project webpage, showcases our
model’s ability to generate accurate sound textures based on the mask prompts. Specifically, the
video demonstrates:

• Our model can compositionally generate object-specific sounds within complex scenes.
• Despite being trained on the Sound-VECaps dataset (Yuan et al., 2024), our model can

be successfully applied to out-of-domain visual scenes, including those from the Places
dataset (Zhou et al., 2017), the Greatest Hits dataset (Owens et al., 2016), and even random
web images.

• Our model can capture variations in visual textures to generate corresponding audio.

A.2 DATASET REFINEMENT

We use the Sound-VECaps dataset (Yuan et al., 2024), derived from AudioSet (Gemmeke et al.,
2017), as the primary source for this task. The original dataset comprises 4,616 hours of video clips,
each paired with corresponding labels and captions. To adapt this dataset for our use, we apply the
following refinement steps.
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Figure 7: Distribution of matching scores. We present
the scores for audio-visual pairs in the Sound-VECaps
dataset.

Audio-visual matching. To ensure strong
correspondence between audio and visual
inputs, we train an audio-visual matching
model (Figure 8), which consists of a 6-
layer non-causal transformer with a rotary
positional embedding mechanism (Su et al.,
2024). Visual embeddings are extracted using
the ViT-B/16 Transformer module from CLIP
(Radford et al., 2021), while audio embed-
dings are generated using the BEATs model
(Chen et al., 2022b). Both embeddings are
then passed through a 3-layer MLP to match a
768-dimensional space. The model is trained
in a self-supervised manner (Owens & Efros,
2018; Korbar et al., 2018), treating audio-
visual pairs from the same temporal instance
as matches and those from different videos as
mismatches, which allows the model to learn
audio-visual correspondences without human annotations.

ViTs

BEATs

Adaptor

Adaptor

Transformer ClassifierInput Audio

Input Video

Figure 8: Architecture of the audio-visual matching
model. We train a model to quantify the correspondence
between a video and its corresponding soundtrack.

For training efficiency, the videos are stan-
dardized to 8 frames per second, with each
frame resized to 224x224 pixels. During the
evaluation, our model achieves an accuracy of
91% for matching scenarios and 85% for non-
matching scenarios on a set of 100 matched
and 100 mismatched samples, indicating its
effectiveness in capturing audio-visual align-
ment. We use this model to score each clip
in the Sound-VECaps dataset, with results
shown in Figure 7. A threshold of 0.6 is then
applied to filter the dataset.

Caption rephrasing. To ensure captions focus exclusively on visible sounding objects, we utilize
Llama (Touvron et al., 2023) with a tailored prompt (Figure 9). Given the video and audio captions,
our prompt instructs the model to generate a single sentence highlighting the common features
between the audio and visual content. The prompt emphasizes including only events present in both
modalities, while excluding modality-specific details such as overly specific visual features. The

17

https://avobject.github.io/avobject/


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Role-System:
You are a helpful assistant for identifying audio-visual events and generating sentences. Your task is to identify the overlapping or 
common features between a 10-second audio and the corresponding visual description, and help the user to generate a single sentence 
of caption that represents this intersection.
The caption feature is a sentence generated by an audio-caption model: {enclap_caption}.
The label feature is several audio events that happened in the audio: {audio_label}.
Lastly, the user is given several sentences which are the image description of the scene for each second, connected by “and then”.
Please identify all the audio events and visual elements based on all three features and try to conclude in one single sentence to describe 
this scene with the shared audio-visual events or actions that present sound and sight together.
Please emphasize time features to present the order of each event, such as “and then”, “followed by”, “after” for order; “and”, “while” etc., 
for parallel events.
Intersection Focus:
• Based on the first caption feature, you might need to change or alter any wrong audio event, improve the sentence with more features, 

such as the weather, the emotion of any people, the description of the car and so on.
• Keep only the features that are common between the audio and visual descriptions. If an event or element is mentioned in both the 

audio and the visual description, include it in the final caption.
• Omit any feature or detail that is present in only one modality. This includes removing overly specific visual details, such as the color, 

shape, any text or label, name and what people are writing and so on, that do not align with the audio description and vice versa.
Please ensure that the final caption accurately reflects the common elements of the audio-visual scene, maintaining the order of 
occurrence, and capturing the shared background, foreground, and context.
Role-User:
The descriptions of the frames are: {frame_caption}

Figure 9: Prompt for Llama. We extract common features between the audio and visual caption using Llama,
ensuring the resulting caption focuses on events present in both modalities while avoiding overly specific de-
tails.

model is guided to capture the order and parallel occurrence of events using temporal markers like
“and then,” “followed by,” and “while.” This process enhances the consistency between audio and
visual descriptions.

Audio filtering. We filter out clips containing human vocalizations (e.g., singing, talking),
voiceovers, and music using a sound event detection model (Kong et al., 2020b) and the meta-
data from AudioSet. This step ensures that the remaining audio data largely consists of ambient and
context-specific sounds that are more likely to align with the visual content.

After applying these refinement steps, the resulting data is reduced to 748 hours of video clips that
exhibit high audio-visual correspondence.

A.3 ADDITIONAL EVALUATION DETAILS

ACC. We use the PANNs model (Kong et al., 2020b) to compute ACC for each audio clip, lever-
aging annotations provided by AudioSet. First, we process each audio clip through the pre-trained
PANNs model to obtain the logit values for all possible sound event classes. Using the AudioSet
annotations, we then sample the logits corresponding to the annotated labels for each clip. Since
these logits are the softmax outputs, they represent the model’s confidence for each event, allowing
us to interpret them as accuracy scores for the labeled events. We then compute the mean of these
sampled logits across all clips in the dataset to obtain the final ACC score.

FAD, KL, and IS. We measure FAD, KL, and IS using the AudioLDM-Eval toolbox1. The refer-
ence and generated audio files are organized into separate folders, and the toolbox is run in paired
mode.

AVC. We measure AVC using a two-stream network Arandjelovic & Zisserman (2017). One
stream extracts audio features, while the other extracts visual features. We use OpenL3 Cramer
et al. (2019) to obtain these features and compute the cosine similarity for each image-audio pair.
Specifically, we employ the “env” content type model with a 512-dimensional linear spectrogram
representation.

Human evaluation. We conducted a human evaluation to assess the quality and relevance of the
generated audio using Amazon Mechanical Turk. The interface for this study is shown in Figure 10.
Each participant was presented with an input image and the corresponding generated audio, then

1https://github.com/haoheliu/audioldm_eval
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Figure 10: Human evaluation interface. We show the interface used for the subjective evaluation of generated
audio samples. Participants are presented with input text, an image, and a corresponding audio sample, and are
instructed to rate the audio on four criteria. All ratings must be completed before advancing to the next sample.

Scale ACC (↑) FAD (↓) KL (↓) IS (↑) AVC (↑)

λ = 1.0 0.413 2.021 0.914 1.336 0.674
λ = 1.5 0.657 1.558 0.762 1.617 0.751
λ = 2.0 0.859 1.271 0.517 2.102 0.891
λ = 2.5 0.807 1.440 0.589 2.012 0.853
λ = 3.0 0.796 1.482 0.576 2.023 0.841

Table 3: Quantitative results under different CFG scales.

rated each sample on a scale from 1 to 5 based on the following criteria: (i) Overall Quality (OVL),
assessing the general audio quality; (ii) Relevance to Input Text (RET), measuring the alignment
of the audio with the associated text description; (iii) Relevance to Input Image (REI), evaluating
how well the audio corresponds to the visual content; and (iv) Relevance to Selected Object (REO),
focusing on the alignment of the audio with a specific object in the image.

We randomly selected 100 samples for evaluation, each rated by 50 unique participants to ensure
reliability. The samples included both holistic and object-specific audio. To control for random
responses, we incorporated a set of noise-only samples. Consistently low scores for these control
samples confirmed the reliability of participants. Additionally, we ensured that each participant
spent at least 90 seconds evaluating each sample to guarantee thoughtful assessment.

To further validate our results, we computed the inter-rater reliability using Cohen’s kappa (McHugh,
2012), which indicated a substantial agreement among raters (κ = 0.78). Furthermore, we con-
ducted a statistical significance test (paired t-test) (Kim, 2015) between our model and baselines for
each criterion, confirming that the improvements reported are statistically significant (p < 0.01).
The final scores presented in the main paper are the mean ratings across all participants.

A.4 ADDITIONAL RESULTS

Different CFG scales. We evaluate our model’s performance across CFG scales ranging from 1.0
to 3.0. As shown in Table 3, there is a consistent improvement in metrics as λ increases from 1.0 to
2.0, reaching peak performance at λ = 2.0. However, further increasing λ beyond 2.0 results in a
gradual decline across most metrics.

Different thresholds of audio-visual matching. We test our model’s performance across different
audio-visual matching thresholds, varying from 0.4 to 0.8 (Figure 7). The same held-out test set is
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Threshold ACC (↑) FAD (↓) KL (↓) IS (↑) AVC (↑)

0.4 0.521 1.874 0.888 1.432 0.696
0.5 0.743 1.536 0.691 1.625 0.774
0.6 0.859 1.271 0.517 2.102 0.891
0.7 0.845 1.387 0.612 1.987 0.882
0.8 0.812 1.501 0.664 2.005 0.879

Table 4: Quantitative results under different audio-visual matching scores.

Method ACC (↑) FAD (↓) KL (↓) IS (↑) AVC (↑)

w/o PE 0.787 1.493 0.674 1.913 0.779
w/ PE 0.859 1.271 0.517 2.102 0.891

Table 5: Comparison of model performance with and without positional encoding.

used to assess the metrics, with results presented in Table 4. We empirically find that the model
achieves optimal performance at a threshold of 0.6.

Effect of positional encoding. We assess the impact of positional encoding (PE) on our model’s
performance. As shown in Table 5, removing positional encoding leads to a significant degradation
across all metrics, highlighting its importance in the model’s overall performance.

A.5 PROOF OF THEOREM 3.1

Proof. For notation simplicity, let uq ∈ ∆P denote the softmax attention weight computed on query
q such that uq,l =

exp(⟨Ev(tq),Et(iq,l)⟩Σ)∑P
k=1 exp(⟨Ev(tq),Et(iq,k)⟩Σ)

. We first state the following lemma.

Lemma A.5.1. Under the same conditions in Theorem 3.1, we have

Eq[∥uq − pq∥ℓ1 ] ≤
√
2ϵcontrast

Proof. For notation simplicity, let uq ∈ ∆P denote the attention mask computed on query q such
that uq,l =

exp(⟨Ev(tq),Et(iq,l)⟩Σ)∑P
k=1 exp(⟨Ev(tq),Et(iq,k)⟩Σ)

. Notice that

ϵcontrast = Eq,d∼pq

[
− log

exp (⟨Ev(tq), Et(iq,d)⟩Σ)∑P
k=1 exp (⟨Ev(tq), Et(iq,k)⟩Σ)

]
− Eq,d∼pq [− log pq,d]

= Eq,d∼pq

[
log

pq,d
uq,d

]
= Eq [DKL(pq,d, uq,d)]

where DKL denotes the KL distance. By Pinsker’s inequality and Cauchy-Schwarz inequality,

ϵcontrast = Eq [DKL(pq,d, uq,d)]

≥ 1

2
· Eq

[
∥pq,d − uq,d∥2ℓ1

]
≥ 1

2
· (Eq [∥pq,d − uq,d∥ℓ1 ])

2
.

It follows that

Eq[∥uq − pq∥ℓ1 ] ≤
√
2ϵcontrast.
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Returning to the proof of Theorem 3.1, let sq := f(aq) = f(uqV ) denote the audio output on query
q by the trained model. We decompose errtest by

errtest

= Eq[v(f
∗(pqV

∗), iq, pq)]− Eq[v(f
∗(uqV

∗), iq, pq)]︸ ︷︷ ︸
A

+Eq[v(f
∗(uqV

∗), iq, pq)]− Eq[v(f
∗(aq), iq, pq)]︸ ︷︷ ︸

B

+ Eq[v(f
∗(aq), iq, pq)]− Eq[v(f(aq), iq, pq)]︸ ︷︷ ︸

C

+Eq[v(f(aq), iq, pq)]− Eq[v(f(aq), iq,mq)]︸ ︷︷ ︸
D

+ Eq[v(f(aq), iq,mq)]− Eq[v(f(mqV ), iq,mq)]︸ ︷︷ ︸
E

.

By Lemma A.5.1 and ∥V ∗∥∞ ≤ Bv , we have

A ≤ Eq[Lv · Lf ·Bv · ∥uq − pq∥ℓ1 ]
≤ Lv · Lf ·Bv ·

√
2ϵcontrast.

Since ∥V ∗ − V ∥∞ ≤ ϵv and ∥uq∥1 = 1, we have

B = Eq[v(f
∗(uqV

∗), iq, pq)]− Eq[v(f
∗(uqV ), iq, pq)]

≤ Lv · Lf · ϵV .

By definition, C ≤ ϵf . Using the definition ϵsam = Eq[∥mq − pq∥ℓ1 ], we have

D ≤ Eq[Lv · ∥mq − pq∥ℓ1 ]
≤ Lv · ϵsam.

and using ∥V ∥∞ ≤ Bv with Lemma A.5.1,

E ≤ Eq[Lv · Lf ·Bv · ∥mq − uq∥ℓ1 ]
≤ Lv · Lf ·Bv · (ϵsam +

√
2ϵcontrast).

Combining, we have

errtest ≤ Lv ·
(
Lf ·

(
ϵV +Bv ·

(
ϵsam + 2

√
2ϵcontrast

))
+ ϵsam

)
+ ϵf .

This completes the proof.
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