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Abstract
Safe offline reinforcement learning (RL), which
aims to learn the safety-guaranteed policy with-
out risky online interaction with environments,
has attracted growing recent attention for safety-
critical scenarios. However, existing approaches
encounter out-of-distribution problems during the
testing phase, which can result in potentially un-
safe outcomes. This issue arises due to the infinite
possible combinations of reward-related and cost-
related states. In this work, we propose State
Decoupling with Q-supervised Contrastive rep-
resentation (SDQC), a novel framework that de-
couples the global observations into reward- and
cost-related representations for decision-making,
thereby improving the generalization capability
for unfamiliar global observations. Compared
with the classical representation learning methods,
which typically require model-based estimation
(e.g., bisimulation), we theoretically prove that
our Q-supervised method generates a coarser rep-
resentation while preserving the optimal policy,
resulting in improved generalization performance.
Experiments on DSRL benchmark provide com-
pelling evidence that SDQC surpasses other base-
line algorithms, especially for its exceptional abil-
ity to achieve almost zero violations in more than
half of the tasks. Further, we demonstrate that
SDQC possesses superior generalization ability
when confronted with unseen environments.

1. Introduction
Reinforcement learning (RL) has been proven to be a pow-
erful tool for solving high-dimensional decision-making
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Figure 1. OOD issue for offline trained UGV in the testing phase.

problems under uncertainty (Mnih et al., 2015; Silver et al.,
2017; Schrittwieser et al., 2020). Nevertheless, safety con-
cerns remain a significant obstacle to the extensive adoption
of RL in safety-critical domains (Garcıa & Fernández, 2015;
Gu et al., 2022; Xu et al., 2022b; Li, 2023), such as indus-
trial management, and robot control. In these contexts, the
potential for catastrophic outcomes necessitates a signifi-
cant emphasis on preventing unsafe actions (Andersen et al.,
2020; Brunke et al., 2022). As a promising method that
received growing attention, safe RL provides safety guaran-
tees by formulating the problem as a constrained Markov
decision process (CMDP) (Altman, 1998; 2021).

Over the past few years, a multitude of safe RL algorithms
have been introduced (Achiam et al., 2017; Tessler et al.,
2018; Zhao et al., 2021; Sootla et al., 2022; Yu et al., 2022).
Regrettably, most existing methods address safety concerns
within online settings, relying on the high-fidelity simulators
or agent-environment interactions during the training pro-
cess, which introduces additional risks of safety violations
(Liu et al., 2023a). Safe offline RL, on the other hand, pro-
vides a promising solution that learns the safety-guaranteed
policy in a fully offline manner. Its training requires no risky
interaction with the environment and relies only on the pre-
collected offline dataset. However, empirical observations
indicate that most existing safe offline RL algorithms fail to
thoroughly ensure pre-defined safety constraints during test-
ing (Liu et al., 2023a; Zheng et al., 2024). Such occurrences
tend to be more pronounced in environments characterized
by higher observation dimensions.
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Figure 2. Overview diagram of classical approaches (left) and our proposed state-decoupling framework (right) for safe decision-making.

In offline RL, it is imperative that the states visited during
testing have been included in (or at least not far away from)
the training dataset to ensure robust performance (Fujimoto
et al., 2019; Wang et al., 2022). However, Safe offline RL
problems have various combinations of reward-related and
cost-related states. For instance, as illustrated in Figure 1, a
UGV (unmanned ground vehicle) needs to navigate around
traps to reach its final destination. During testing, if the
relative positions of traps and the target haven’t occurred
in the training dataset, the agent may struggle to make in-
formed decisions based on such unknown observations. It
is reasonable to suspect that the primary reason for the sub-
par performance of safe offline RL during tests lies in the
out-of-distribution (OOD) issue.

To tackle this problem and improve the generalization
of safe offline RL, we propose State Decoupling with Q-
supervised Contrastive representation (SDQC), a novel rep-
resentation learning method that decouples the global ob-
servations into reward- and cost-related representations. At-
tributable to the successful application of Hamilton-Jacobi
(HJ) reachability analysis in Safe RL, which introduces a
safety analysis method iterated through Q-learning with
convergence guarantees, our approach makes safety assess-
ments on the cost-related representations and make deci-
sions based on the assessment results. Unlike classical
methods (as depicted in the left subplot of Figure 2), which
rely on global observations for decision-making, our SDQC
is the first to utilize decoupled representations for decision-
making in safe RL tasks (see the right subplot of Figure 2).
It employs reward-related representations to make decisions
when the assessment confirms absolute safety, switches to
cost-related representations when the assessment deems the
situation unsafe, and integrates both when the assessment
indicates borderline safety.

Nevertheless, effective differentiation between reward- and
cost-related information from global observations poses a
formidable challenge, especially when certain dimensions
of the observations contain intertwined information. For
instance, some information, like speed and acceleration of
UGV, should be included in both reward- and cost-related
representations. On the other hand, information from the
environment-detecting sensors, which include positions of
destinations and obstacles, should be distinctly decoupled.
Manual separation proves impractical in most cases.

Towards this end, our Q-supervised contrastive representa-
tion decouples the global observations through clustering
representations that demonstrate similar learned-Q* across
the actions in support§. The representations solely cap-
ture either reward or cost information, independent of an-
other factor, as determined by the training of Q*. Unlike
model-based representations learning (e.g., bisimulation),
our SDQC circumvents model estimation, thus mitigating
the challenges posed by severe estimation errors in scenar-
ios with sparse rewards or costs. Moreover, we demonstrate
that our representations can be trained concurrently with
the Q*-learning process by incorporating an additional loss
term within the framework of implicit Q-learning.

Further, we provide theoretical evidence that our method
produces a coarser representation compared to bisimulation,
while still preserving the optimal policy. This is supported
by our argument that SDQC leads to a higher information
entropy of the global observations when conditioned on the
representations. This attribute grants SDQC superior gen-
eralization capabilities, bolstering its efficacy in handling
OOD observations during the testing phase.

§For simplicity, we denote Q∗ as a generic notaiton to repre-
sent the optimal Q-value functions for both reward (Q∗

r) and cost
(Q∗

h) in this paper. Similarly, Q refers to both Qr and Qh.

2



Q-Supervised Contrastive Representation: A State Decoupling Framework for Safe Offline Reinforcement Learning

The experimental results showcase that our SDQC outper-
forms other safe offline RL algorithms in the DSRL bench-
mark, especially in its exceptional ability to achieve zero
violations in the majority of tasks. Further, in generaliza-
tion tests where agents are evaluated in environments that
differ from the training ones, all baseline algorithms show
a substantial increase in cost and/or a significant decline in
reward. In contrast, SDQC stands out as the only approach
that guarantees no increase in cost while experiencing only
a slight decay in reward.

2. Preliminaries
Safe Offline RL. Safe RL tasks are generally modeled
as CMDP in the form of M = (S,A, P, r, c, γ, d0), where
S is the state space, A is the action space, P is the model
dynamics, r : S×A → R represents the reward function, c :
S ×A → [0, Cmax] represents the cost function, γ ∈ [0, 1)
is the discount factor, and d0 ∈ ∆(S) is the distribution of
initial state s0 (the set of the probability distribution over S
is denoted as ∆(S)). P (s′|s, a) : S×A → ∆(S) represents
the transition function from state s to s′ when taking action
a. The state-action-reward-cost transitions over trajectory
are recorded as τ := (st, at, rt, ct)t≥0. The goal of Safe RL
is to learn a policy π : S → ∆(A) that maximizes the expec-
tation of the cumulated discounted reward while restricting
the expected cumulative costs below a predefined cost limit
κ, which can be denoted by maxπ Eτ∼π[

∑∞
t=0 γ

tr(st, at)],
s.t. Eτ∼π[

∑∞
t=0 γ

tc(st, at)] ≤ κ.

In offline settings, the training is performed on a statisti-
cal dataset denoted as Dβ := (s, a, s′, r, c). This offline
dataset comprises both safe and unsafe trajectories and is
acquired from a behavior policy πβ . During training, most
existing safe offline RL algorithms utilize the temporal dif-
ference (TD) method to learn the reward state-value func-
tion V π

r (st), which models the expected cumulative reward
Eτ∼π[

∑∞
i=t γ

ir(si, ai)], as well as the cost state-value func-
tion V π

c (st), which models the expected cumulative cost
Eτ∼π[

∑∞
i=t γ

ic(si, ai)]. The primal training objective of
safe offline RL can be expressed as follows:

max
π

Est∼Dβ
[V π
r (st)]

s.t.Est∼Dβ
[V π
c (st)] ≤ κ; D(π|πβ) ≤ ϵπ,

(1)

where D(π|πβ) is the divergence term that prevents the
distributional shift in offline training.

A commonly employed approach for solving Eq. (1) in-
volves reformulating the training objective using the La-
grangian dual form as minλ≥0 maxπ Est∼Dβ

[V π
r (st) −

λ(V π
c (st) − κ)], s.t. D(π|πβ) ≤ ϵπ, where the learnable

Lagrange multiplier λ is iteratively updated to enforce the
constraint. However, the Lagrangian approach can be sensi-
tive to the learning rate and initialization of the multiplier

(Stooke et al., 2020). Furthermore, the joint optimization
of V π

r , V π
c , and π leads to significant instability, as minor

approximation errors can bootstrap across them and prop-
agate, thereby undermining the ability to provide robust
safety guarantees (Kumar et al., 2019; Zheng et al., 2024).

Hamilton-Jacobi reachability. As a prospective method
to perform safety assessment rooted in control theory, HJ
reachability has been proven to be applicable in Safe RL
tasks for both online settings (Chen et al., 2021a; Yu et al.,
2022) and offline settings (Zheng et al., 2024). In addi-
tion to the tuple formulation M in CMDP, we introduce
a constraint violation function h : S → R, which is pos-
itive if the state constraint is violated and negative other-
wise. For a given state s, the safe value function V π

h (s) :=
maxt∈N{h(st) | s0 = s, ai ∼ π(·|si),∀i ∈ {0, . . . , t}}
represents the worst constraint violations among all possible
trajectories induced by policy π. The corresponding safe
Q-function is given by Qπ

h(s, a) := maxt∈N{h(st) | s0 =
s, a0 = a, ai ∼ π(·|si),∀i ∈ {1, . . . , t}}. The optimal safe
value function, defined as V ∗

h (s) := minπ V
π
h (s), stands

for the smallest violation one can obtain through adjusting
the policy π. Similarly, the corresponding optimal safe Q-
function can be expressed as Q∗

h(s, a) := minπ Q
π
h(s, a).

With the discount factor defined as γ, Fisac et al. (2019)
introduce the following safety Bellman operators:

B∗
hQh,γ(s, a) := (1− γ)h(s) + γmax{h(s), Vh,γ(s′)},

Vh,γ(s
′) = min

a′
Qh(s

′, a′),
(2)

which is a contraction mapping satisfying limγ→1 Qh,γ →
Q∗
h, limγ→1 Vh,γ → V ∗

h . A direct safety inference can be
made after training converges. V ∗

h (s) ≤ 0 implies the exis-
tence of policies that guarantee adherence to the hard con-
straints throughout the trajectory. Conversely, V ∗

h (s) > 0
indicates that the destiny towards unsafe states regardless of
the chosen policy. In the offline settings, Zheng et al. (2024)
pioneered the application of HJ reachability analysis for
safety assessment. They present that the decision-making
for Safe RL with hard constraints can be decoupled as:



Safe :maxπ Ea∼π
[
A∗
r(s, a) · IV ∗

h
(s)≤0

]
s.t.

∫
{a|Q∗

h
(s,a)≤0} π(a|s)da = 1; D(π|πβ) ≤ ϵ

Unsafe :maxπ Ea∼π
[
−A∗

h(s, a) · IV ∗
h
(s)>0

]
s.t.

∫
a
π(a|s)da = 1; D(π|πβ) ≤ ϵ

(3)
where A∗

r(s, a) := Q∗
r(s, a) − V ∗

r (s) and A∗
h(s, a) :=

Q∗
h(s, a) − V ∗

h (s). Eq. (3) theoretically ensures zero con-
straint violations. However, challenges arise from estima-
tion errors and OOD problems during the testing phase. As a
result, the empirical results demonstrate the inability of their
algorithm (FISOR) to achieve absolute safety guarantees.
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3. State Decoupling with Q-supervised
Contrastive Representations

In our state-decoupling framework, we aim to decouple
the state s into two separate representations: one related
to rewards, denoted as sr, and the other related to costs,
denoted as sc. We slightly abuse the notation zθ(s) (or
simplified as z) to represent the neural network embedded
representations of either sr or sc in this section.

3.1. Motivation

Manually abstracting representations of reward-related or
cost-related aspects directly from original state observations
can be challenging due to the entanglement of information
within certain observation dimensions. It is observed that
the optimal Q-value, whether associated with reward or cost,
exclusively encompasses the information it was trained with,
independent of another factor. For instance, concerning the
states of the agent depicted in Figure 1, the optimal Q-values
related to reward are the same across all actions regardless
of the cost-related observations. These states should be
embedded as the same reward-related representation. To
achieve a coarser abstraction while maintaining the optimal
Q-value unchanged, we design the objective for both reward-
and cost-related representations as follows

maxθH(s|zθ(s))

s.t. (B∗Q(zθ(s), a)−Q(zθ(s), a))
2 ≤ ϵB, ∀a ∈ A,

(4)

where H(·|·) represents conditional entropy (Shannon,
1948), ϵB is an arbitrary small number and B∗ is the optimal
general/safety Bellman operator. We define d(s1, s2) :=
supa∈A |Q∗(zθ(s1), a), Q

∗(zθ(s2), a)| as the distance mea-
sure between a pair of states s1, s2 ∈ S. One can always
find an arbitrarily small number ϵd such that the objective
in Eq. (4) can be achieved through embedding the states
C(s′) := {s̃ ∈ S | d(s̃, s′) < ϵd} with the same repre-
sentation for any s′ ∈ S ′, where S ′ is a smallest subset of
S such that for any s′1, s

′
2 ∈ S ′, we have d(s′1, s

′
2) ≥ 2ϵd

and
⋃
s′∈S′ C(s′) = S . Contrastive learning, which aims to

bring artificially defined similar instances closer and push
other instances further apart in the representation space
(Oord et al., 2018; Bachman et al., 2019; Chen et al., 2020),
provides a promising solution for our embedding task.

3.2. Q-supervised Contrastive Representation

Inspired by Agarwal et al. (2021), we adopt a soft simi-
larity measure, denoted as Γ(s, s̃) = exp(−d(s, s̃)/η), to
quantify the distance between two states (with η represent-
ing the temperature factor). Notably, directly calculating
the distance measure involves querying out-of-distribution
(OOD) actions in the offline setting. To address this issue,
we pre-train a generative model to capture the behavior pol-

icy (cf. Appendix B.2,C.1 for details). This allows us to
generate in-support actions for any given states in the offline
dataset, denoted as As

β . As a result, we have the approxima-
tion d(s, s̃) ≈ supa∈As

β
|Q∗(zθ(s), a) − Q∗(zθ(s̃), a)| for

calculating the soft similarity measure.

In practice, we employ a random sampling approach to se-
lect a subset of states, denoted as S ′, from the offline state
set. Within the subset, we further randomly choose a set
of anchor states, denoted as {si ∈ S ′ | i ∈ I}, where
I represents the index set of the selected anchor states.
For each anchor state si, we use its nearest neighbor in
S ′ based on the similarity measure Γ to define the posi-
tive pairs {si, s̃i}, where s̃i = argmins∈S′\{si} Γ(si, s).
The remaining states in S ′ are considered as negative sam-
ples. Attention-based or multiple-layer-perceptron-based
neural networks are utilized to encode the state as a normal-
ized vector on the unit hypersphere, i.e., ∥zθ(s)∥ = 1 (cf.
Appendix C.2 for detailed network selection and structure
design). Finally, we have the following contrastive loss,
which encourages the embedding of states with similar Q∗

values across all actions to have similar representations:

Lθ =
∑
i∈I

− 1

|I| log
POSi

POSi +NEGi
,{

POSi = Γ(si, s̃i) exp(zi · z̃i/ν)
NEGi =

∑
zj∈Z′\{zi,z̃i}(1− Γ(zi, zj)) exp(zi · zj/ν)

(5)

where ν is a temperature parameter. It is important to note
that Eq. (5) requires precise calculation of optimal Q-values
for all states across all actions, i.e., the constraints in Eq. (4)
are satisfied. However, the Q-values are derived from the
representation network, and even small changes in the net-
work can result in variations in the Q-values. Therefore, it is
necessary to integrate the training process of the representa-
tion with the Q-learning process. Such coupling ensures that
both the representation and Q-values are jointly updated,
accounting for the interdependencies between them.

3.3. Practical Implementation

Building upon in-sample learning methods (Kostrikov et al.,
2021; Xu et al., 2023; Garg et al., 2023; Zheng et al., 2024),
our approach follows a two-step process. In the initial phase,
we undertake the learning process for the value functions
and representations associated with cost and reward sepa-
rately. Following that, we extract the policy based on the
acquired value functions and representations.

Reward-related Representation. We use implicit Q-
learning (IQL) (Kostrikov et al., 2021) (cf. Appendix B.1
for details) to approximate the reward-related optimal value
functions Q∗

r and V ∗
r within the support of data distribution

through upper expectile regression:
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LVr=E(s,a)∼Dβ

[
Lτup(Qr(zθr (s), a)−Vr(zθr (s)))

]
, (6)

LQr=E(s,a,s′,r)∼Dβ

[
(r+γVr(zθr (s

′))−Qr(zθr (s), a))
2] (7)

where Lτup(u) = |τ − I(u < 0)|u2, τ ∈ (0.5, 1). The
reward-related representations are learned with the addition
of a contrastive loss term (Eq. (5)), with a weighting factor
of δ. Consequently, the overall loss for the reward-related
value functions and representations is formulated as:

Lreward = LVr + LQr + δLθr . (8)

Cost-related Representation. Similar to Zheng et al.
(2024), we employ the safety Bellman operator, as denoted
in Eq. (2), and utilize lower expectile regression to learn the
cost-related optimal value functions Q∗

h and V ∗
h :

LV low
h

=E(s,a)∼Dβ

[
Lτlow(Qh(zθh(s), a)−V low

h (zθh(s)))
]
, (9)

LQh=E(s,a,s′,h)∼Dβ

[
((1−γ)h+γmax{h, V low

h (zθh(s
′)}

−Qh(zθh(s), a))
2], (10)

where Lτlow(u) = |τ − I(u > 0)|u2, τ ∈ (0.5, 1). Addition-
ally, we learn an upper-bound cost-related value function
V up
h to model the maximum Q∗

h across all actions in support:

LV up
h

=E(s,a)∼Dβ

[
Lτup(Qh(zθh(s), a)−V up

h (zθh(s)))
]
. (11)

By incorporating an additional contrastive loss term (Eq. (5))
with a weighting factor of δ, we express the overall loss for
the cost-related value functions and representations as:

Lcost = LV low
h

+ LV up
h

+ LQh
+ δLθh . (12)

Policy Extraction. As illustrated in the right subplot of
Figure 2, we divide the global policy into three components:
the reward policy πr, which solely depends on the reward-
related representation; the cost policy πh, which solely relies
on the cost-related representations; and the tradeoff policy
πto, which depends on both. We independently train the
three policies using weighted regressed diffusion models,
an approach pioneered by Zheng et al. (2024). They present
that the optimal policy satisfies π∗(a|z) ∝ πβ(a|z)·w(z, a),
and the optimal policy can be obtained through weighted
training of diffusion models. The weighted loss function for
the three policies can be expressed as follows:


πr : Lπr = Evar [wr(zθr (s), a)·∥ζ − ζψr (at, zθr (s), t)∥]
πh : Lπh = Evar [wh(zθh(s), a)·∥ζ − ζψh(at, zθh(s), t)∥]
πto : Lπto = Evar

[
wto(zθr (s), zθh(s), a)·

∥ζ − ζψto(at, zθr (s), zθh(s), t)∥
]
,

(13)

where var represents the variables involved in the expecta-
tion, with t ∼ U(1, T ), ζ ∼ N (0, I), and (s, a) ∼ Dβ . The
noised action at = αta+σtζ satisfies the forward transition
distribution N (at|αta, σtI) in the diffusion models, and αt,
σt are noised schedules. The weights in Eq. (13) are


wr(zθr (s), a) = exp(ιr(Qr(zθr (s), a)− Vr(zθr (s)))
wh(zθh(s), a) = exp(−ιh(Qh(zθh(s), a)− Vh(zθh(s)))
wto(zθr (s), zθh(s), a) = exp(ιto(Qr(zθr (s), a)−

Vr(zθr (s))) · IQh(zθh
(s),a)≤0),

(14)

where ιr, ιh and ιto are temperatures that control the behav-
ior regularization strength.

After obtaining ζψr
ζψh

and ζψto
, the three approximated

optimal policies can be sampled through the reverse diffu-
sion chain starting from random Gaussian noise (Ho et al.,
2020; Song et al., 2020) (cf. Appendix B.3 for details).
During the testing phase, we first perform safety assess-
ments on the cost-related representations. If the assessment
verifies absolute safety (V low

h ≤ V up
h ≤ 0), we employ

the policy πr. If the assessment indicates borderline safety
(V low
h ≤ 0 < V up

h ), we utilize the policy πto. In the case
of an unsafe condition (0 < V low

h ≤ V up
h ), we rely on the

policy πh. See the right subplot of Figure 2 for details.

3.4. Comparison with Bisimulation

Bisimulation has been established as a useful tool for
abstracting state representations (Definition 3.1), where
states with identical transition and reward/cost functions
are grouped together (Givan et al., 2003; Castro & Pre-
cup, 2010; Castro, 2020; Castro et al., 2021). However,
employing bisimulation typically entails an additional step
of training a model-based estimator to learn the state tran-
sition and reward/cost functions. Notably, the estimation
of reward/cost functions becomes particularly challenging
when the values are sparsely distributed (Lee et al., 2024).
In contrast to such a model-based representation approach,
learning the representations based on Q∗ (Definition 3.2)
eliminates the necessity for estimating the exact model dy-
namics (Givan et al., 2003; Li et al., 2006). With Θ de-
noting a generic surjective mapping from the ground-truth
state space to representation space, we have the following
definitions:

Definition 3.1. A bisimulation representation Θbisim is
such that for any action a and any represented state z,
Θbisim(s1) = Θbisim(s2) implies r(s1, a) = r(s2, a)
(or c(s1, a) = c(s2, a)) and

∑
s′∈Θ−1

bisim(z) P (s′|s1, a) =∑
s′∈Θ−1

bisim(z) P (s′|s2, a).

Definition 3.2. A Q∗-irrelevance representation ΘQ∗ is
such that, ΘQ∗(s1) = ΘQ∗(s2) implies Q∗(s1, a) =
Q∗(s2, a) for any action a.
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Table 1. Normalized DSRL benchmark results. The evaluation results are averaged over 3 random seeds (20 episodes for each seed).
Gray: Unsafe agents. Bold: Safe agents whose normalized cost is smaller than 1. Red: Safe agents with the highest reward. Blue: Safe
agents with the lowest cost.

BCQ-Lag CPQ COptiDICE CDT TREBI FISOR SDQC(ours)Task reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓ reward↑ cost↓
*PointGoal1 0.71 4.29 0.56 0.93 0.40 5.53 0.21 1.59 0.36 2.79 0.68 4.19 0.35 0.36
*PointGoal2 0.62 3.81 0.41 5.03 0.43 2.78 0.22 1.19 0.28 3.86 0.21 1.42 0.29 0.09
*PointPush1 0.32 3.08 0.14 1.35 0.13 3.80 0.27 2.81 0.31 2.02 0.27 1.38 0.12 0.00
*PointPush2 0.21 1.86 0.16 2.36 0.02 2.90 0.18 1.69 0.13 3.85 0.24 2.41 0.19 0.28

*PointButton1 0.21 4.45 0.61 11.80 0.08 4.29 0.48 10.88 0.12 4.55 0.04 0.97 0.08 0.46
*PointButton2 0.38 8.04 0.35 12.09 0.17 6.12 0.42 9.97 0.02 2.18 0.08 4.49 0.06 0.57

CarGoal1 0.44 2.76 0.33 4.93 0.43 2.81 0.60 3.15 0.41 1.16 0.49 0.83 0.38 0.01
CarGoal2 0.34 4.72 0.10 6.31 0.19 2.83 0.45 6.05 0.13 1.16 0.06 0.33 0.23 0.00
CarPush1 0.23 1.33 0.08 0.77 0.21 1.28 0.27 2.12 0.26 1.03 0.28 0.28 0.30 0.00
CarPush2 0.10 2.78 -0.03 10.00 0.10 4.55 0.16 4.60 0.12 2.65 0.14 0.89 0.31 0.04

CarButton1 0.13 6.68 0.22 40.06 -0.16 4.63 0.17 7.05 0.07 3.75 -0.02 0.26 0.03 0.32
CarButton2 -0.04 4.43 0.08 19.03 -0.17 3.40 0.23 12.87 -0.03 0.97 0.01 0.58 0.02 0.42

AntVel 0.85 18.54 -1.01 0.00 1.00 10.29 0.98 0.91 0.31 0.00 0.89 0.00 0.73 0.00
HalfCheetahVel 1.04 57.06 0.08 2.56 0.43 0.00 0.97 0.55 0.87 0.23 0.89 0.00 0.81 0.00

SwimmerVel 0.29 4.10 0.31 11.58 0.58 23.64 0.67 1.47 0.42 1.31 -0.04 0.00 -0.04 0.00
SafetyGym

Average 0.39 9.17 0.16 9.05 0.26 5.66 0.46 4.93 0.25 2.10 0.28 1.25 0.26 0.17

AntRun 0.65 3.30 0.00 0.00 0.62 3.64 0.70 1.88 0.63 5.43 0.45 0.03 0.31 0.00
BallRun 0.43 6.25 0.85 13.67 0.55 11.32 0.32 0.45 0.29 4.24 0.18 0.00 0.20 0.00
CarRun 0.84 2.51 1.06 10.49 0.92 0.00 0.99 1.10 0.97 1.01 0.73 0.14 0.56 0.00

DroneRun 0.80 17.98 0.02 7.95 0.72 13.77 0.58 0.30 0.59 1.41 0.30 0.55 0.36 0.56
AntCircle 0.67 19.13 0.00 0.00 0.18 13.41 0.48 7.44 0.37 2.50 0.20 0.00 0.38 0.00
BallCircle 0.67 8.50 0.40 4.37 0.70 9.06 0.68 2.10 0.63 1.89 0.34 0.00 0.42 0.00
CarCircle 0.68 8.84 0.49 4.48 0.44 7.73 0.71 2.19 0.49 0.73 0.40 0.11 0.50 0.00

DroneCircle 0.95 18.56 -0.27 1.29 0.24 2.19 0.55 1.29 0.54 2.36 0.48 0.00 0.36 0.07
BulletGym

Average 0.71 10.63 0.32 5.28 0.55 7.64 0.63 2.09 0.56 2.44 0.39 0.10 0.39 0.08

For any state representation Θ1,Θ2, we say Θ1 is finer
than Θ2, denoted as Θ1⪰Θ2, if and only if for any states
s1, s2 ∈ S, Θ1(s1) = Θ1(s2) implies Θ2(s1) = Θ2(s2).
Givan et al. (2003) established the relationship between bisi-
umulation and the Q∗-irrelevance representations (Θbisim ⪰
ΘQ∗) for finite-horizon MDPs with respect to the general
Bellman operator. In the following theorem, we extend this
relationship to infinite-horizon MDPs and incorporate the
safety Bellman operator, as described below.

Theorem 3.3. For any MDP, the optimal Q induced by ei-
ther the general Bellman operator or the safety Bellman op-
erator satisfy Θbisim ⪰ ΘQ∗ . The optimal policies derived
from both bisimulation representation and Q∗-irrelevance
representation are also optimal in the ground MDP.

Theorem 3.3 shows that neither of the representations alters
the optimal policy, while the bisimulation representation is
finer than the Q-based representation, which implies that

0 ≤ H(s|Θbisim(s)) ≤ H(s|ΘQ∗(s)). (15)

Refer to Appendix A for detailed proof. Since our objec-
tive is to maximize the conditional entropy H(s|zθ(s)), our
Q-supervised contrastive learning method theoretically sur-
passes bisimulation in terms of generalization.

4. Experiment
4.1. Evaluation on DSRL benchmark

We compare the proposed SDQC with several state-of-
the-art baseline safe offline RL algorithms on the DSRL
benchmark(Liu et al., 2023a), which provides extensive
datasets and environment wrappers for safe offline RL per-
formance evaluation. Evaluation results† are presented in
Table 1. The baseline algorithms include i) BCQ-Lag: A
PID-Lagrangian-based method (Stooke et al., 2020) that con-
siders cost threshold based on Batch Constrained Q-learning
(BCQ) (Fujimoto et al., 2019), ii) CPQ (Xu et al., 2022a): A
constrained Q-updating method that incorporates penalties
for OOD actions and unsafe actions, iii) COptiDICE (Lee
et al., 2022): A DICE (distribution correction estimation)
based Lagrangian method that builds upon OptiDICE (Lee
et al., 2021), iv) CDT (Liu et al., 2023b): A future cost in-
ference method based on Decision Transformer (DT) (Chen
et al., 2021b), v) TREBI (Lin et al., 2023): A real-time cost
budget inference method on the basis of Diffuser (Janner
et al., 2022), vi) FISOR (Zheng et al., 2024): An HJ reach-
ability guided method with diffusion policies that firstly
considers the hard constraints in safe offline RL problems.

Our ultimate objective is to achieve zero-cost during test,
aligning with the framework established by FISOR (Zheng
et al., 2024). However, most baseline algorithms struggle
to operate effectively under a zero-cost threshold. Conse-
quently, following FISOR (Zheng et al., 2024), we impose a

†The baseline algorithm evaluation results are sourced from
FISOR (Zheng et al., 2024), except for the evaluation of the Point
agent on Safety-Gymnasium (marked with *), which is conducted
independently as it is not in the source.
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Figure 3. The generalization tests on the agent “Car” in Safety-Gymnasium. (a) The agent is trained on the dataset from a simple
environment (S-trained), and its performance is evaluated in both the simple environment (S-tested) and the complicated one (C-tested).
Conversely, (b) the agent is trained on the dataset from a complicated environment (C-trained), and its performance is assessed in both the
original environment (C-tested) and the simple one (S-tested). The evaluation results are obtained from 3 random seeds, with 20 tests on
each seed. Outlier data points are omitted for clarity.

stringent cost limit of 10 for the Safety-Gymnasium environ-
ment and 5 for Bullet-Safety-Gym. We employ the metrics
of normalized return and normalized cost for evaluation,
where a normalized cost below 1 signifies a safe operation.

The former five baseline algorithms exhibit either significant
constraint violations or suboptimal returns when subjected
to stringent safety requirements, partially due to the fact that
they consider only soft constraints. Despite incorporating
hard constraints, FISOR still encounters high costs in tasks
with high complexity. As discussed in Section 1, this issue
can be attributed to estimation errors and OOD problems
during the testing phase. In contrast to FISOR, our proposed
SDQC conducts safety assessments on the cost-related rep-
resentation abstracted from the original observations and
makes decisions accordingly. The utilization of decoupled
representations in SDQC substantially improves the accu-
racy of state safety assessment and enhances the general-
ization capability of the policy, thereby providing a higher
level of safety assurance. The experimental results clearly
demonstrate that SDQC outperforms FISOR in terms of
higher rewards and lower costs. Remarkably, SDQC even
achieves zero violations in the majority of tasks‡.

4.2. Generalization Tests

To showcase the superior generalization capabilities of our
proposed SDQC compared to other safe offline RL algo-
rithms, we perform generalization tests on the “CarGoal”

‡Our code implementation is available at https://
github.com/zhyang2226/SDQC.

and “CarPush” tasks (in Safety-Gymnasium), as illustrated
in Figure 3. In these tasks, the “Car” agent is tasked with
reaching the goal point or pushing the box to the goal point
while avoiding hazardous areas and obstacles. The difficulty
level varies between tasks, with the simple tasks (CarGoal1,
CarPush1) having fewer hazards and obstacles than the chal-
lenging tasks (CarGoal2, CarPush2).

It is reasonable to be concerned about the performance of
an agent when it is tested in environments that differ from
the ones it was trained on, especially if the testing environ-
ment is more complex or comprehensive. The experimental
results provide evidence that our proposed SDQC algorithm
is the only algorithm that ensures no increase in cost under
such circumstances. In fact, SDQC achieves almost zero
violations in the majority of tests, with only a slight decay in
reward performance. In contrast, other algorithms exhibit a
sharp increase in cost and/or a significant decrease in reward.
Generalization in ensuring safety is crucial in safety-critical
scenarios like autonomous driving. It is impractical for the
agent to traverse every possible radar observation that may
arise in real-world scenarios during training. Our proposed
SDQC offers a potent and promising solution for addressing
these complex safety-critical scenarios.

4.3. Ablation Study

To validate the efficacy of our proposed Q-supervised con-
trastive learning approach in acquiring meaningful repre-
sentations and enhancing performance, as discussed in Sec-
tion 3.2, we conducted ablation studies on the “Safety-Gym-
CarGoal2” task (cf. Figure 4). In the absence of contrastive
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Figure 4. Ablation studies on the Q-supervised contrastive loss in CarGoal2. (a) The actor-training-process evaluations of SDQC with
(marked by ⋆) and without (marked by ×) contrastive loss. The curves are averaged over 3 random seeds and smoothed with a window
size of 3. (b) t-SNE visualization of the distribution of the original state, the reward-related and the cost-related representations with
and without contrastive loss across 10 different safe trajectories, where the policies are from the agent trained with contrastive loss. The
original states (first column) are colored according to the critic trained with contrastive loss (i.e., the same as the second column).

loss during the critic and representation training phase, the
agent experiences considerably lower rewards and higher
costs compared to the agent trained with contrastive loss.

The t-SNE visualization results (in Figure 4b) reveal that
the Q-supervised contrastive loss effectively clusters repre-
sentations with similar values. This aligns with our original
intention, which is to cluster states with similar Q-values
for any actions in the representation space. The clusterings
facilitate the learning of the conditional diffusion model
(i.e., the actor) by promoting the generation of similar out-
put policies for similar representations. Furthermore, the
inclusion of the Q-supervised contrastive loss enables a
more reliable evaluation of the states’ safety. In the depicted
10 trajectories, despite the cumulative cost being zero, the
agent trained without contrastive loss erroneously identifies
a majority of the experienced states as unsafe (V low

h ≥ 0).
Conversely, the agent trained with contrastive loss provides
a more accurate assessment, demonstrating the effective-
ness of the proposed approach. For more ablation studies
on the impact of anchor number (|I|) and neural network
structures, please refer to Appendix C.

5. Related works
Safe RL. In online settings, safe RL problems are gen-
erally tackled with two mainstream approaches (Xu et al.,
2022b). i) Formulating the problem as a CMDP and solv-
ing it from an optimization perspective. Solution tech-
niques include updating the policy constrained in a trust
region (Achiam et al., 2017; Liu et al., 2022), reformulating

the problem into its Lagrangian dual form (Tessler et al.,
2018; Chow et al., 2018; Ma et al., 2021b; Duan et al.,
2022), and addressing the constraints by framing an opti-
mistic/pessimistic planning problem (Wachi et al., 2018;
Kalagarla et al., 2021). ii) Combining the safe RL problem
with the field of safe control. A prevalent method entails
representing a safety certificate through a learned safety
assessment function, such as the Control Barrier Function
(CBF) (Ma et al., 2021a; Luo & Ma, 2021) or Hamilton-
Jacobbi (HJ) reachability (Yu et al., 2022; Fisac et al., 2019;
Chen et al., 2021a). An agent can switch between optimal
and safe policies based on safety assessment results (Chen
et al., 2021a; Thananjeyan et al., 2021), thereby theoretically
ensuring hard constraints with state-wise zero violations.
Recent research endeavors have embraced the integration
of safety constraint problems with existing reliable offline
reinforcement learning algorithms (Xu et al., 2022a; Lee
et al., 2022; Liu et al., 2023b; Lin et al., 2023). However,
most existing methods only provide soft constraints without
any guarantees of zero violations. FISOR (Zheng et al.,
2024) is the first safe offline RL algorithm that tackles hard
constraints issues, while the limited offline data still makes
it difficult to guarantee safety during tests thoroughly. As a
complementary algorithm to FISOR, our SDQC decouples
the global observations for safe decision-making, substan-
tially improves the accuracy of state safety assessment, and
enhances the generalization capability of the policy, thereby
providing a higher level of safety assurance.

Representation Learning. Representation learning in RL
involves compressing the large observation space into a

8
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smaller latent vector that captures relevant aspects of the
environment (Watter et al., 2015; Finn et al., 2016; Gelada
et al., 2019), often applied in image-based tasks (Kostrikov
et al., 2020; Yarats et al., 2021; Cetin et al., 2022). Con-
trastive learning has been widely acknowledged as a po-
tent technique for unsupervised representation learning (Liu
et al., 2021; Zhu et al., 2022), primarily achieved by aug-
menting data through introducing noise to the original image
(Laskin et al., 2020; Agarwal et al., 2021). In state-based
tasks, this approach is not directly applicable as the noise
may distort the underlying information. Unlike previous
works that conduct contrastive learning among the gener-
ated samples, we employ contrastive learning within the
dataset itself in a Q-supervised manner. The most relevant
works to ours are from Bellemare et al. (2019) and Le Lan
et al. (2021), who learn representations via Bellman value
functions. To the best of our knowledge, we are pioneers
in utilizing representation learning in state-based Safe RL
tasks. We are the first to introduce the concept of decou-
pling states into reward- and cost-related representations
specifically for decision-making purposes.

6. Conclusion
In this work, we propose the first framework of state decou-
pling for safe decision-making to tackle the OOD problem
of offline safe RL during the testing phase. We propose a
Q-supervised contrastive learning method to learn the repre-
sentations without relying on additional system model esti-
mation such as bisimulation. Theoretical analysis demon-
strates that our Q-supervised approach generates coarser
representations while preserving the optimal policy, leading
to enhanced generalization performance. Experiments on
DSRL benchmarks showcase that SDQC surpasses other
baseline algorithms, especially for its exceptional ability to
achieve almost zero violations in more than half of tasks.
Further, SDQC possesses superior generalization ability
when confronted with unseen environments.
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A. Theoretical Interpretations
The first comparison between the bisimulation representation and Q∗-irrelevance representation for finite horizon MDPs
was given by Givan et al. (2003). The systematic state abstraction theory for MDPs was summarized in Li et al. (2006).
The expansion of the theory in Partially Observable MDPs (POMDPs) are introduced recently (Subramanian et al., 2022).
It is worth noting that their formulation does not incorporate the safety Bellman operator, and a comprehensive proof for
infinite-horizon MDPs is not provided. We now provide a complete proof for Theorem 3.3 as follows.

Definition A.1. For any state representation Θ1,Θ2, we say Θ1 is finer than Θ2 (or Θ2 is coarser than Θ1), denoted as
Θ1 ⪰ Θ2, if and only if for any states s1, s2 ∈ S, Θ1(s1) = Θ1(s2) implies Θ2(s1) = Θ2(s2).

To clarify, let z1 and z2 represent the representations Θ1(s) and Θ2(s) for any s ∈ S , respectively. It is always possible to
find a function f : Z1 → Z2 that is surjective. The equality holds (Θ1 = Θ2) if and only if the surjective function is also
injective (i.e., bijective).
Theorem 3.1. For any MDP, the optimal Q-functions induced by either the general Bellman operator or the safety Bellman
operator satisfy Θbisim ⪰ ΘQ∗ . The optimal policies derived from both bisimulation representation and Q∗-irrelevance
representation are also optimal in the ground MDP, i.e., π∗(Θbisim(s)) = π∗(ΘQ∗(s)) = π∗(s) for any state s ∈ S.

Proof. We start by considering a finite-horizon MDP with a maximum timestep T . For any timestep t ∈ {1, 2, ..., T}, we
denote Q∗

r,t(T ) as the optimal-Q function at timestep t. Then, for ∀s ∈ S and ∀a ∈ A, we have:

Q∗
r,t(T )(s, a) = r(s, a) + γ

∑
s′∈S

P (s′ | s1, a)[maxa′∈A Q∗
r,t+1(T )(s

′, a′)]. (16)

For timestep T + 1, we define Q∗
r,T+1(T )(s, a) = 0 for ∀s ∈ S and ∀a ∈ A, which implies that Q∗

r,T (T )(s, a) = r(s, a).
Now, for any s1, s2 ∈ S that are bisimilar (i.e., Θbisim(s1) = Θbisim(s2)), we have Q∗

r,T (T )(s1, a) = Q∗
r,T (T )(s2, a). In

other words, for any z′ ∈ Zbisim, maxa′∈A Q∗
r,T (T )(s

′, a′) is the same for all s′ ∈ Θ−1
bisim(z′).

Considering any s1, s2 ∈ S that are bisimilar, and for any action a ∈ A, we perform backward induction on timestep t from
T − 1 to 1 following the proof sketch of Theorem 5 in Givan et al. (2003):

Q∗
r,t(T )(s1, a)

= r(s1, a) + γ
∑

s′∈S
P (s′ | s1, a)[maxa′∈A Q∗

r,t+1(T )(s
′, a′)]

a
= r(s1, a) + γ

∑
s′∈{∪z′∈ZΘ−1(z′)}

P (s′ | s1, a)[maxa′∈A Q∗
r,t+1(T )(s

′, a′)]

b
= r(s1, a) + γ

∑
z′∈Z

∑
s′∈Θ−1(z′)

P (s′ | s1, a)[maxa′∈A Q∗
r,t+1(T )(s

′, a′)]

c
= r(s2, a) + γ

∑
z′∈Z

∑
s′∈Θ−1(z′)

P (s′ | s2, a)[maxa′∈A Q∗
r,t+1(T )(s

′, a′)]

= Q∗
r,t(T )(s2, a).

(17)

Equalities (a) and (b) hold due to the surjective relationship between s and z. Equality (c) holds due to the definition of
bisimulation and the fact that, for ∀z′ ∈ Zbisim, maxa′∈A Q∗

r,t+1(s
′, a′) is the same for all s′ ∈ Θ−1

bisim(z′), as established
by the induction hypothesis.

We denote Q∗
r = Q∗

r,t(∞) as the optimal Q function for the infinite-horizon MDP. The uniqueness of Q∗
r is guaranteed by

the fixed-point property of Bellman operator. For any s ∈ S, a ∈ A, and timestep t ∈ {1, 2, ..., T − 1}. The optimal Q
value gap between Q∗

r and Q∗
r,t(T ) can be expressed as:

∣∣Q∗
r(s, a)−Q∗

r,t(T )(s, a)
∣∣

=

∣∣∣∣r(s, a) + ∑
s′∈S

P (s′|s, a)[γmax
a′∈A

Q∗
r(s

′, a′)]−

r(s, a)−
∑
s′∈S

P (s′|s, a)[γmax
a′∈A

Q∗
r,t+1(T )(s

′, a′)]

∣∣∣∣
13
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=

∣∣∣∣ ∑
s′∈S

P (s′|s, a)[γmax
a′∈A

Q∗
r(s, a)− γmax

a′∈A
Q∗
r,t+1(T )(s

′, a′)]

∣∣∣∣
a
≤

∑
s′∈S

P (s′|s, a)
∣∣[γmax

a′∈A
Q∗
r(s

′, a′)− γmax
a′∈A

Q∗
r,t+1(T )(s

′, a′)]
∣∣

b
≤

∑
s′∈S

P (s′|s, a)γmax
a′∈A

∣∣Q∗
r(s

′, a′)−Q∗
r,t+1(T )(s

′, a′)
∣∣

c
≤ γ max

a′∈A,s′∈S

∣∣Q∗
r(s

′, a′)−Q∗
r,t+1(T )(s

′, a′)
∣∣, (18)

where inequality (a) holds due to the triangle inequality property, and inequalities (b) and (c) follow from the properties
of the maximum function. Assuming that Q∗

r and Q∗
r,T (T ) are bounded for any s ∈ S and a ∈ A, we conclude that for

a discount factor γ ∈ (0, 1), the difference |Q∗
r(s, a) − Q∗

r,t(T )(s, a)| converges to 0 as T → ∞. Applying backward
induction as introduced in Eq. (17), we deduce that, for any s1, s2 ∈ S that are bisimilar (i.e., Θbisim(s1) = Θbisim(s2)),
Q∗
r(s1, a) = Q∗

r(s2, a). This completes the proof that Θbisim ⪰ ΘQ∗ for general Bellman operators.

For the safety Bellman operator, we have an analogous definition that for any timestep t ∈ {1, 2, ..., T}, Q∗
h,t(T ) is the

optimal-Q function at timestep t. Then, for ∀s ∈ S and ∀a ∈ A, we have:

Q∗
h,t(T )(s, a) = (1− γ)h(s) + γ

∑
s′∈S

P (s′ | s, a)[max{h(s),mina′∈A Q∗
h,t+1(T )(s

′, a′)}]. (19)

We denote Q∗
h,T+1(T )(s, a) = h(s) for all s ∈ S and a ∈ A, which implies that Q∗

h,T (T )(s, a) = h(s) if h(s) > 0 and
Q∗
h,T (T )(s, a) = (1− γ)h(s) otherwise. Given any state s ∈ S, for all z′ ∈ Zbisim, max{h(s),mina′∈A Q∗

h,T (T )(s
′, a′)}

is the same for all s′ ∈ Θ−1
bisim(z′). For any s1, s2 ∈ S that are bisimilar, and for any action a ∈ A, we apply backward

induction from timestep T − 1 to 1 such that:

Q∗
h,t(T )(s1, a)

= (1− γ)h(s1) + γ
∑

s′∈{∪z′∈ZΘ−1(z′)}
P (s′ | s1, a)[max{h(s1),mina′∈A Q∗

h,t+1(T )(s
′, a′)}]

= (1− γ)h(s1) + γ
∑

z′∈Z

∑
s′∈Θ−1(z′)

P (s′ | s1, a)[max{h(s1),mina′∈A Q∗
h,t+1(T )(s

′, a′)}]

= (1− γ)h(s2) + γ
∑

z′∈Z

∑
s′∈Θ−1(z′)

P (s′ | s2, a)[max{h(s2),mina′∈A Q∗
h,t+1(T )(s

′, a′)}]

= Q∗
h,t(T )(s2, a).

(20)

Similarly, we denote Q∗
h = Q∗

h,t(∞) as the optimal Q function with safety Bellman operator for the infinite-horizon MDP.
The uniqueness of Q∗

h is also guaranteed by the fixed-point property of safety Bellman operator. For any s ∈ S , a ∈ A, and
timestep t ∈ {1, 2, ..., T − 1}. The optimal Q value gap between Q∗

h and Q∗
h,t(T ) can be expressed as:

∣∣Q∗
h(s, a)−Q∗

h,t(T )(s, a)
∣∣

=

∣∣∣∣(1− γ)h(s) +
∑
s′∈S

P (s′|s, a)[γmax{h(s), min
a′∈A

Q∗
h(s

′, a′)}−

(1− γ)h(s)−
∑
s′∈S

P (s′|s, a)[γmax{h(s), min
a′∈A

Q∗
h,t+1(T )(s

′, a′)}
∣∣∣∣

=

∣∣∣∣ ∑
s′∈S

P (s′|s, a)[γmax{h(s), min
a′∈A

Q∗
h(s

′, a′)} − γmax{h(s), min
a′∈A

Q∗
h,t+1(T )(s

′, a′)}]
∣∣∣∣

≤
∑
s′∈S

P (s′|s, a)
∣∣∣∣γmax{h(s), min

a′∈A
Q∗
h(s

′, a′)} − γmax{h(s), min
a′∈A

Q∗
h,t+1(T )(s

′, a′)}
∣∣∣∣
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≤
∑
s′∈S

P (s′|s, a)γmax
a′∈A

∣∣Q∗
h(s

′, a′)−Q∗
h,t+1(T )(s

′, a′)
∣∣

≤ γ max
a′∈A,s′∈S

∣∣Q∗
h(s

′, a′)−Q∗
h,t+1(T )(s

′, a′)
∣∣. (21)

A similar conclusion can be drawn that for a discount factor γ ∈ (0, 1), the difference |Q∗
h(s, a)−Q∗

h,t(T )(s, a)| approaches
to 0 as T → ∞, provided that Q∗

r and Q∗
r,T (T ) are bounded for any s ∈ S and a ∈ A. With backward induction as

introduced in Eq. (20), we conclude that Θbisim ⪰ ΘQ∗ for safety Bellman operators.

Lemma A.2. For any MDP, given the optimal Q-functions induced by either the general Bellman operator or the safety
Bellman operator, the optimal policy for ΘQ∗ remains optimal in the ground MDP.

Proof. For any state s ∈ S, we observe that Q∗(ΘQ∗(s), a) = Q∗(s, a) for any a ∈ A, as per Definition 3.2. It is evident
that for a given state s ∈ S:

a∗r = argmaxa∈A Q∗
r(ΘQ∗

r
(s), a) = argmaxa∈A Q∗

r(s, a), (22)

a∗h = argmina∈A Q∗
h(ΘQ∗

h
(s), a) = argmina∈A Q∗

h(s, a). (23)

Therefore, we conclude that the optimal policy is preserved for Q∗-irrelevant representations.

Lemma A.3. For any MDP, given the optimal Q-functions induced by either the general Bellman operator or the safety
Bellman operator, and any representation Θ1 that is finer than ΘQ∗ , i.e. Θ1 ⪰ ΘQ∗ , it holds that Q∗(Θ1(s), a) = Q∗(s, a)
for any s ∈ S and a ∈ A. The optimal policy for Θ1 is also optimal in the ground MDP.

Proof. We denote the optimal value function for representation Θ1,ΘQ∗ and ground state s as Q∗
Θ1

, Q∗
ΘQ∗ and Q∗

s ,
respectively. It is evident that Q∗

Θ1
(Θ1(s), a) = Q∗

ΘQ∗ (ΘQ∗(s), a) = Q∗
s(s, a) for any s ∈ S, a ∈ A is one of the

solutions for Q∗
Θ1

, due to the subjective relationship between Θ1(s) and ΘQ∗(s). To show that the optimal value function
for representation Θ1 is unique, suppose that there exist two optimal value functions Q∗

r1(z, a) and Q∗
r2(z, a) for any

representation z ∈ ZΘ1 and action a ∈ A. The gap between them can be expressed as

∆Q∗
r
(z, a) = |Q∗

r1(z, a)−Q∗
r2(z, a)|

=
∣∣∣∑

z′
P (z′|z, a)γ (maxa′ Q

∗
r1(z

′, a′)−maxa′ Q
∗
r2(z

′, a′))
∣∣∣

≤γmaxz′,a′ ∆Q∗
r
(z′, a′),

(24)

where the inequality directly arises from the reasoning outlined in Eq. (18). With the discount factor γ ∈ (0, 1), ∆Q∗
r
(z, a)

tends to zero for any finite value of Q∗
r1(z, a) and Q∗

r2(z, a). This implies that the fixed point Q∗ for the general Bellman
operator is always unique.

For the safety Bellman operators, we also have

∆Q∗
h
(z, a) = |Q∗

h1(z, a)−Q∗
h2(z, a)|

=
∣∣∣∑

z′
P (z′|z, a)γ (max{h(z),mina′ Q

∗
h1(z

′, a′)} −max{h(z),mina′ Q
∗
h1(z

′, a′)})
∣∣∣

≤ γmaxz′,a′ ∆Q∗
h
(z′, a′),

(25)

where the inequality is a straightforward result of the proof sketch given in Eq. (21). It can be concluded that Q∗(Θ1(s), a) =
Q∗(s, a) holds for any Θ1 ⪰ ΘQ∗ , both for the general Bellman operator and the safety Bellman operator. Therefore, the
optimal policy for Θ1 is also optimal in the ground MDP, following the proof sketch provided in Lemma A.2.

Combining Eqs. 17 18 and 20 21, we conclude that Θbisim ⪰ ΘQ∗ holds for both the general Bellman operator and the safety
Bellman operator. Combining Lemma A.2 and Lemma A.3, we conclude that both Θbisim and ΘQ∗ preserve optimality for
the ground MDP. The proof of Theorem 3.1 is complete.
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Theorem 3.1 shows that our Q∗-irrelavance representation leads to smaller representation space than bisimulation representa-
tion, while preserving the optimal policy. A smaller representation space typically implies higher generalization capabilities
and higher sampling efficiency during the policy learning process (Liu et al., 2021).
Proposition A.4. For any MDP, Θ1 ⪰ Θ2 indicates H(s|Θ1(s)) ≤ H(s|Θ2(s)).

Proof. We denote z1 and z2 as representations of Θ1(s) and Θ2(s), respectively. We have

H(s|z1) = −
∑
s,z1

p(s, z1) log
p(s, z1)

p(z1)

= −
∑
s,z1

p(s, z1) log p(s, z1) +
∑
s

∑
z1

p(z1)p(s|z1) log p(z1)

a
= −

∑
s

p(s) log p(s) +
∑
z1

p(z1) log p(z1)

b
= −

∑
s

p(s) log p(s) +
∑
z2

p(z2)
∑
z1

p(z1|z2) log p(z1)

c
≤ −

∑
s

p(s) log p(s) +
∑
z2

p(z2) log
∑
z1

p(z1|z2)p(z1)

d
≤ −

∑
s

p(s) log p(s) +
∑
z2

p(z2) log
∑
z1

I{p(z1|z2 )̸=0}p(z1)

e
= −

∑
s

p(s) log p(s) +
∑
z2

p(z2) log p(z2)

= H(s|z2), (26)

where I{p(z1|z2) ̸=0} = 1 if p(z1|z2) ̸= 0, and I{p(z1|z2 )̸=0} = 0 otherwise. Equality (a) holds as z1 is a function of s. Note
that

∑
z1∈Z1

p(z1|z2) = 1 for ∀z2 ∈ Z2 in equality (b). Inequality (c) is a consequence of Jensen’s inequality. Inequality
(d) holds since for ∀z2 ∈ Z2, the conditional probability p(z1|z2) does not exceed 1 for all z1 ∈ {z ∈ Z1|p(z|z2) ̸= 0}.
Equality (e) holds due to the surjective relationship between z1 and z2.

Based on Theorem 3.1 and Proposition A.4, we conclude that:

0 ≤ H(s|Θbisim(s)) ≤ H(s|ΘQ∗(s)). (27)

Given our primary objective of maximizing the conditional entropy H(s|zθ(s)), the proposed Q-supervised contrastive
learning method theoretically exhibits superior generalization capabilities compared to bisimulation.

B. Methodology Clarifications
B.1. Implicit Q-Learning

Implicit Q-Learning (IQL) is the pioneering in-sample offline RL algorithm proposed by Kostrikov et al. (2021). It decouples
the estimation of optimal Q-values from policy optimization, enabling implicit policy learning through the value function.
Unlike standard Q-learning, which explicitly derives a policy by maximizing Q-values, IQL avoids direct maximization,
reducing susceptibility to instability issues such as overestimation or divergence. The core technique in IQL is upper
expectile regression. Given a random variable X with an unknown distribution, the τ ∈ (0, 1) expectile can be estimated by
solving:

argmin
mτ

Ex∼X [Lτ (x−mτ )],where L
τ (u) = |τ − I(u < 0)|u2 (28)

Specifically, as τ → 1, the solution to Eq. (28) approximates the upper bound of the random variable X . Extending this to
conditional distributions, the optimal value function can be approximated by minimizing:

LV = E(s,a)∼Dβ
[Lτ (Q(s, a)− V (s))] , (29)

and the optimal Q function can be updated accordingly with the TD loss

LQ = E(s,a,s′,r)∼Dβ

[
(r + γV (s′)−Q(s, a))2

]
. (30)
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This process yields in-support optimal value and Q functions without training optimal policies. In this paper, we extend IQL
with safety Bellman Operator and estimate both upper bound and lower bound of the value functions for safety assessments.

B.2. Diffusion Behavior Cloner

The diffusion model was initially introduced as an iterative denoising framework for image generation in the domain of
computer vision (Sohl-Dickstein et al., 2015; Ho et al., 2020). More recently, it has been adapted for decision-making
in state-based tasks, due to its superior performance in capturing action distributions within a dataset. As introduced in
Section 3.2, SDQC requires a behavior cloner to capture and reproduce in-support actions for each state within the offline
datasets. Following the approach of Lu et al. (2022a;b), we employ score-based diffusion and the DPM-Solver. The training
loss for the behavior cloner πbehav is expressed as follows:

Lπbehav
= Et∼U(1,T),ζ∼N (0,I),(s,a)∼Dβ

[∥ζ − ζψbehav
(at, s, t)∥]. (31)

After training converges, we use second-order DPM-Solver (Lu et al., 2022a) to form πbehav and sample |As
β | actions for

each state in offline datasets Dβ . These actions will be utilized in the subsequent joint optimization of Q-functions and
representations.

B.3. Diffusion Policy

As described in Eqs. 13 and 14, we train three distinct diffusion policies using weighted regression (Zheng et al., 2024). In
line with most existing diffusion-based policies (Wang et al., 2022; Garg et al., 2023; Lu et al., 2023), our three policies can
be formulated as follows:

πr(a|zθr (s)) = pψr (a0:T |zθr (s)) = N (aT ;0, I)
∏T
t=1 pψr (at−1|at, zθr (s))

πh(a|zθh(s)) = pψh
(a0:T |zθh(s)) = N (aT ;0, I)

∏T
t=1 pψh

(at−1|at, zθh(s))

πto(a|zθr (s), zθh(s)) = pψto
(a0:T |zθr (s), zθh(s))

= N (aT ;0, I)
∏T
t=1 pψto(at−1|at, zθr (s), zθh(s)),

(32)

where the reverse transitions are modeled as Gaussian process:
pψr

(at−1|at, zθr (s)) = N (at−1;µψr
(at, zθr (s), t),Σ(t))

pψh
(at−1|at, zθh(s)) = N (at−1;µψh

(at, zθh(s), t),Σ(t))

pψto(at−1|at, zθr (s), zθh(s)) = N (at−1;µψto(at, zθr (s), zθh(s), t),Σ(t)).

(33)

Given a variance schedule defined by βt = 1− αt, we proceed to define:

ᾱt =

t∏
i=1

αi, β̃t =
1− ᾱt−1

1− ᾱt
βt. (34)

The mean of the Gaussian process is then given by:
µψr

(at, zθr (s), t) =
1√
αt
(at − βt√

1−ᾱt
ζθr (at, zθr (s), t))

µψh
(at, zθh(s), t) =

1√
αt
(at − βt√

1−ᾱt
ζθh(at, zθh(s), t))

µψto
(at, zθr (s), zθh(s), t) =

1√
αt
(at − βt√

1−ᾱt
ζθto(at, zθr (s), zθh(s), t)),

(35)

and the covariance matrix is expressed as Σ(t) = β̃tI . During the testing phase, actions can be sampled from the reverse
diffusion chain for each diffusion policy. To account for safety considerations, we sample multiple actions and select the one
with the lowest Qh value as the final action to be executed (cf. Appendix E.2 for details).
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C. Implementation Details
C.1. SDQC Summarization

To provide an intuitive understanding the mechanism of SDQC, we present a brief summary of its training and deployment
scheme in this subsection.

Algorithm 1 SDQC Training
Phase 1: Behavior cloner training and behavior actions generation
Require: Initial network ζψbehav , datasets Dβ = {s, a, s′, r, h}N

1: for each iteration {s, a}M1 ∼ Dβ do
2: Update ζψbehav using Eq. (31)
3: end for
4: for each state s ∼ Dβ do
5: Given s, generate multiple behavior actions As

β with ζψbehav using DPM-Solver (Lu et al., 2022a)
6: end for
7: return Updated datasets Dβ = {s,As

β , a, s
′, r, h}N

Phase 2: Joint optimization for value functions and representations
Require: Initial reward-related network Vr, Qr, zθr , cost-related network V up

h , V low
h , Qh, zθh , and datasets Dβ = {s,As

β , a, s
′, r, h}N

8: for each iteration {s,As
β , a, s

′, r}M2 ∼ Dβ do
9: Update Vr, Qr, zθr jointly using Eq. (8)

10: end for
11: for each iteration {s,As

β , a, s
′, h}M2 ∼ Dβ do

12: Update V up
h , V low

h , Qh, zθh jointly using Eq. (12)
13: end for
14: return Reward/Cost-related value function and representation networks Vr, Qr, zθr , V

up
h , V low

h , Qh, zθh
Phase 3: Three policies extraction
Require: Initial policy network ζψr , ζψh , ζψto , fixed pre-trained network Vr, Qr, zθr , V

low
h , Qh, zθh , and datasets Dβ = {s, a}N

15: for each iteration {s, a}M3 ∼ Dβ do
16: Calculate regression weight for three policies with Vr, Qr, zθr , V

low
h , Qh, zθh using Eq. (14)

17: Update ζψr , ζψh , ζψto using Eq. (13)
18: end for
19: return Three distinct policies πr, πh, πto

As introduced in Section 3, SDQC requires a three-phase training process (see Algorithm 1). The primary objective of the
first stage (lines 1-7) is to generate a set of behavior actions As

β for each state s ∈ Dβ . The set is then utilized in the second
stage to measure the similarity between states, represented by d(s, s̃) ≈ supa∈As

β
|Q∗(zθ(s), a)−Q∗(zθ(s̃), a)|. The second

phase (lines 8-14), known as the joint optimization of value functions and representations, employs expectile regression
(Kostrikov et al., 2021) to learn in-support optimal value functions while simultaneously using contrastive learning to cluster
similar states (measured by d(s, s̃)) within the representation space. The final phase (lines 15-19) introduces three distinct
policies, which are trained using weighted regression diffusion models as introduced by Zheng et al. (2024). It is important
to note that these policies are conditioned on the representation space rather than the ground-truth state space. During
deployment, the selection of the specific policy to be adopted is guided by the evaluation of states using the cost-related
value function. For further details, please refer to the subsequent paragraph.

Upon completion of training, SDQC is deployed with three distinct policies πr, πh, πto derived from the third training
phase, along with two representation networks zθh , zθr and three cost-related value functions V up

h , V low
h , Qh from the

second training phase (cf. Algorithm 2). Given any state s, we initially conduct safety assessments based on cost-related
representations. The condition V up

h (zθh(s)) > 0 (line 2) suggests the existence of in-support actions that might lead to
unsafe outcomes, necessitating a joint consideration of safety and reward. A positive V down

h (zθh(s)) (line 3) indicates that
no action can ensure safety in future trajectories; the agent’s primary objective is therefore to exit the unsafe region by
deploying policy πh, regardless of the reward considerations. Conversely, V low

h ≤ 0 < V up
h (line 5) reflects a borderline

safe condition, requiring the agent to consider both reward and cost, thereby deploying policy πto. On the other hand,
V up
h (zθh(s)) ≤ 0 (line 8) confirms absolute safety, obviating the need for the agent to consider cost-related information.

An illustration diagram is presented in the right subplot of Figure 2. Note that single action sampled by diffusion model is
not trustworthy enough, thereby sampling batch actions and conduct the one with the lowest Qh(zθh(s), a) leads to safer
outcomes (line 11). Please refer to Appendix E.2 for further details.
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Algorithm 2 SDQC Deployment
Require: Three policies πr, πh, πto, representation network zθh , zθr , and cost-related value-functions V up

h , V low
h , Qh

1: Given any state s
2: if V up

h (zθh(s)) > 0 then
(There exist in-support actions that may lead to unsafe outcomes)

3: if V down
h (zθh(s)) > 0 then

4: sample actions: {ai}cand. ∼ πh(·|zθh(s))
5: else
6: sample actions: {ai}cand. ∼ πto(·|zθh(s), zθr (s))
7: end if
8: else

(The state is absolute safe)
9: sample actions: {ai}cand. ∼ πr(·|zθr (s))

10: end if
11: return Final action argmina∈{ai}cand. Qh(zθh(s), a)

C.2. SDQC Network Structure

Figure 5. Neural network structure for training value functions and
representations of SDQC.

As described in Section 3.3, the representations in our
proposed SDQC framework are trained concurrently
with the optimal Q value learning process. The neural
network structure illustrated in Figure 5 is utilized for
training both the reward- and cost-related representations
as well as the value functions. The global observation
s is encoded into the representation z, and the value
functions (both V and Q) are computed based on this
representation with separate multiple-layer-perceptron
(MLP) neural networks.

In certain safe RL benchmark problems, it is observed
that the majority of dimensions in the global observa-
tion share similar physical meanings. For instance, in
the Safety-Gymnasium domain, a significant number
of dimensions in the global observations correspond to
lidar measurements, which provide information about
the distances between the agent and the destination or
obstacles in specific directions. This reminds us of the
self-attention mechanism (Vaswani et al., 2017), which is known for its superior ability to capture relationships among input
information that share similar representations in comparison to traditional MLP architectures.

Nevertheless, attention mechanisms typically rely on vector multiplication to compute attention weights, which presents a
challenge when dealing with global observations where each dimension contains scalar information. Towards this end, we
propose to transform each scalar observation dimension into a vector representation using a fixed Gaussian Fourier Encoder
(Ho et al., 2020). Subsequently, attention is applied to the encoded vector representations. The output of the attention
module is then flattened and passed through an MLP to obtain the final representation. Please refer to Figure 6 for a detailed
illustration of the network structure.

To demonstrate the efficacy of our attention-based state encoder (ATN) in effectively capturing information from global
observations and identifying the relevance of specific dimensions to reward/cost, we present the attention patterns (i.e.,
softmax(Q · KT /

√
dk)) of the reward- and cost-related state encoders in the task “PointGoal2” (cf. Figure 7). In

“PointGoal2”, the global observations consist of 60 dimensions. Among them, the first 12 dimensions represent the self-
status of the agent, the subsequent 16 dimensions contain reward-related information, and the last 32 dimensions contain
cost-related information. Ideally, a reward-related attention pattern should assign higher attention weights to the first 28
dimensions while ignoring the last 32 dimensions. On the other hand, a cost-related attention pattern should focus on the
first 12 and last 32 dimensions while disregarding the middle 16 dimensions. The observed attention patterns during our
experiments align with the relevance of specific dimensions to reward and cost. For the ablation study on the state encoder
network structure, please refer to Appendix D.
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Figure 6. Neural network structure of the attention-based state encoder.

Dimension Observation Info
1-12 Self Status
13-28 Goal Lidar
28-44 Hazard Lidar
44-60 Vases Lidar

Figure 7. Attention pattern of the reward- and cost-related state encoder, and the meaning of each observation dimension in the task
“PointGoal2” from Safety-Gymnasium. Darker colors represent higher values. The “Goal Lidar” dimensions observe the position of
the destination, indicating reward information. The “Hazard Lidar” and “Vases Lidar” dimensions observe the position of obstacles,
indicating cost information. The pattern is averaged over 3000 observations randomly chosen from DSRL datasets.

C.3. SDQC Hyperparameters

Table 2. Hyperparameters of the DPM-
solver for generating behavior actions.

Hyperparameters Value
Learning rate 3e-4
Batch size 4096
Training steps 5e5
Diffusion timesteps 15
Generated action numbers
for each state |As

β |
8

As discussed in Section 3.2, to calculate the soft similarity measure for con-
trastive learning, our SDQC framework requires pre-training a generative model
to capture the behavior policy of the offline datasets πβ . For this purpose, we
employ diffusion probabilistic models (DPM) (Ho et al., 2020; Song et al., 2020)
and utilize the DPM-Solver, a fast high-fidelity ODE solver proposed by Lu
et al. (2022a;b), to generate the behavior actions of each state s in the offline
datasets, denoted as As

β . We utilize the default network configurations outlined
in (Lu et al., 2022a; 2023). Specific hyperparameter settings can be found in
Table 2.

SDQC can simultaneously train the reward and cost value functions and their
respective representations using Eqs. 8 and 12. The network structures are
described in detail in Appendix C.2, and generic hyperparameters can be found
in Table 3. Regarding the updating of the safety Bellman operator, we follow
the settings in FISOR (Zheng et al., 2024). The constraint violation function is defined as h(s) = −1 when the cost function
satisfies c(s) = 0, and h(s) = 25 when c(s) > 0.

Considering the significant variation in physical meanings among the observation dimensions of different tasks, we employ
different state encoder structures accordingly. For tasks that have observation dimensions with diverse physical meanings,
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Table 3. Generic hyperparameters of SDQC in value functions and representations training phase.

Module Hyper-parameters Value

General

Optimizer Adam
Learning rate 3e-4
Batch size 512
Training steps 5e5
Soft measure temperature factor η 1.0
Contrastive temperature factor ν 0.1
Contrastive term coef δ 1.0

Critic

Number of hidden layers (Q & V) 2
Number of neurons in hidden layer (Q & V) 256
Activation function (Q & V) Mish
Expectile τ 0.9
Discount factor γ 0.99
Target critic soft update 0.005

State Encoder

MLP
Number of hidden layers 2
Number of neurons in hidden layer 256
Activation function Mish

ATN
Number of head 2
Embed dimension for each head 64
Dropout rate 0.1

we utilize the MLP structure. Conversely, for tasks where most observation dimensions have consistent physical meanings,
we utilize the attention-based state encoder (ATN).

It is observed that the performance of SDQC with an ATN-based state encoder improves when trained with a larger
contrastive loss coefficient (δ in Eqs. 8 and 12) and a higher number of anchor points (|I| in Eq. (5)). On the other hand, the
SDQC performs better with smaller values of δ and fewer anchor points if the MLP based encoder is used. Besides, the
global observation dimensions vary across different tasks. For the ATN-based state encoder, we select the encoded state
dimension (i.e., the dimensionality of z) to be approximately half of the global observations. On the other hand, for MLP,
we choose the encoded state dimension to be roughly twice the size of the global observations. Optimal hyperparameters
achieving the best performance on different tasks are presented in Table 4.

Table 4. Hyperparameters of SDQC for different tasks. “All” denotes all different tasks for the same agent, while “Vel” refers to the
velocity task.

Domain Agent Task
State

Encoder
Encoded

State Dim
Contrastive
Loss Coef

Anchor
Number

Safety
Gymnasium

Point All ATN 32 1.0 8Car All
HalfCheetah Vel

MLP 32 0.5 4Ant Vel
Swimmer Vel

Bullet
Safety

Ball All

MLP

16

0.1 4Car All 32
Drone All 64
Ant All 64

For the final training phase, which involves policy extraction using weighted regressed diffusion models as described in
Eq. (13), we follow the network structure design and generic diffusion parameter selection described by Zheng et al. (Zheng
et al., 2024). We train three separate policies (πr πh and πto) with a learning rate of 0.0003, a batch size of 1024, and
the total number of training steps is set to 500,000. The temperature parameters that control the strength of behavior
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regularization (in Eq. (14)) are chosen as ιr = ιto = 3.0 and ιh = 5.0.

D. Additional Ablation Studies
Ablation studies on network structure. To demonstrate the effectiveness of our proposed attention-based state encoder (cf.
Appendix C.2), we conduct ablation studies on the neural network architecture, as depicted in Figure 8. By substituting the
attention-based state encoder with an MLP-based counterpart, we observe a deterioration in the performance of the SDQC,
in terms of diminished rewards and increased costs. The t-SNE visualization results depicted in Figure 8b demonstrate
that while the MLP-based state encoder does cluster representations with similar values in the high-dimensional space,
the clustering effect is not as robust as that achieved by the attention-based approach. Consequently, this leads to an
overestimation of the cost value, resulting in inaccurate assessments of the safety condition.

Figure 8. Ablation studies on the network structure in CarGoal2. (a) The actor-training-process evaluations of SDQC with attention-based
(ATN) and MLP-based (MLP) state encoder. (b) t-SNE visualization of the distribution of the original state, the reward- and cost-related
representations with ATN/MLP state encoders across 10 different safe trajectories.

Table 5. Ablation studies on the choice of anchor number.
CarGoal2 CarPush2

Anchor
Number Reward Cost

Runtime
(s/epoch) Reward Cost

Runtime
(s/epoch)

16 0.22 0.00 31.4 0.28 0.06 36.2
8 0.23 0.00 28.8 0.31 0.04 32.7
4 0.20 0.05 26.0 0.25 0.06 29.9
1 0.15 0.13 23.6 0.10 0.18 27.6
0 0.05 0.86 19.4 0.21 2.15 23.7

Ablation studies on anchor number choice. An essential hyperparameter in our proposed Q-supervised contrastive
learning method is the anchor number, |I| in Eq. (5). This parameter determines the number of representation pairs to be
clustered in the high-dimensional space during each gradient step. The ablation study results are summarized in Table 5.
Our experimentation reveals that an anchor number can result in subpar clustering outcomes, consequently impairing the
performance of SDQC. Conversely, overly large anchor numbers lead to an excessive influence of the contrastive loss term
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in the overall loss function, increasing the computational costs. To strike a balance and attain optimal performance, we let
|I| = 8 for our attention-based state encoders.

Ablation studies on contrastive-related hyperparameters. In our SDQC framework, one of the critical components is
the contrastive representation loss, as described in Equations 8 to 12. This involves selecting appropriate values for the term
coefficient δ and the exponential temperature ν. As shown in Tables 3 and 4, we vary δ across different domains but maintain
a consistent ν = 0.1 across all environments. The effects of these parameter choices are detailed in Table 6. With respect
to the temperature ν, employing a very small value (0.01) tends to destabilize the training process, ultimately resulting in
collapse. Conversely, using a larger value (1.0) produces poorly clustered representations, leading to a marked degradation
in performance. Regarding the term coefficient δ, a smaller value results in a slight performance decline. However, a larger
coefficient excessively prioritizes the contrastive loss, destabilizing the training of the value function and significantly
degrading performance. While fine-tuning these hyperparameters for specific environments and tasks could potentially yield
better experimental results on the benchmark, we choose not to do so.

Table 6. Ablation studies on contrastive-related hyperparameters.

Env Contrast
Coef. (δ)

Contrast
Temp. (ν) Reward Cost Env Contrast

Coef.
Contrast

Temp. Reward Cost

1 0.01 NaN NaN 1 0.01 NaN NaN
1 0.1 0.31 0.04 1 0.1 0.29 0.09
1 1 0.22 0.16 1 1 0.20 0.48

0.1 0.1 0.31 0.17 0.1 0.1 0.30 0.10
PointGoal2

10 0.1 0.23 0.48

CarPush2

10 0.1 0.22 0.53

Ablation studies on the deployment of three distinct policies As introduced in Section 3.3 and Appendix C.1, SDQC
coordinates three distinct policies, reward policy πr, trade-off policy πto, and cost policy πh, to ensure excellent safety
performance. To verify the necessity of each policy, we conduct ablation studies examining their individual deployments,
with results presented in Table 7. Notably, a naive reward policy πr focuses solely on maximizing rewards while ignoring
costs, a naive cost policy πh prioritizes minimizing costs but disregards rewards, and a naive trade-off policy πto takes both
into account but fails to excel in either maximizing rewards or minimizing costs. The best performance consistently results
from the collaboration of all three policies. When the trade-off policy πto is omitted (combining πr and πh), the agent incurs
higher costs as it cannot respond promptly to borderline dangers. Combining the trade-off policy πto and cost policy πh
does not increase costs, but results in a decline in reward accumulation. While combining the reward policy πr and trade-off
policy πto achieves comparable performance to using all three policies, it results in slightly higher costs due to the agent’s
reduced ability to quickly escape dangerous situations.

Table 7. Ablation studies on the deployment of three distinct policies.
Policy Num. One Two Three

Env Name Naı̈ve πr Naı̈ve πto Naı̈ve πh πr and πto πr and πh πto and πh πr , πto and πh
reward cost reward cost reward cost reward cost reward cost reward cost reward cost

PointGoal1 0.69 4.92 0.27 0.69 0.01 0.00 0.32 0.42 0.34 0.51 0.22 0.18 0.35 0.36
PointGoal2 0.75 13.28 0.28 0.18 -0.11 0.00 0.23 0.24 0.20 0.14 0.23 0.12 0.29 0.09
CarPush1 0.38 1.32 0.26 0.00 0.05 0.00 0.27 0.00 0.27 0.12 0.21 0.00 0.30 0.00
CarPush2 0.42 4.34 0.27 0.01 0.02 0.00 0.31 0.01 0.28 0.16 0.18 0.03 0.31 0.04

E. Experimental Details
E.1. Task Description

Safety-Gymnasium (Ray et al., 2019). A collection of environments based on the Mujoco physics simulator. In the
obstacle avoidance series environments, there are two agents (Point and Car) and three main tasks (Goal, Button, and
Push), each with two levels of difficulty (1 and 2). Agents aim to reach the goal while avoiding any contact with obstacles.
The environments are named using the following convention: {Agent}{Task}{Difficulty}. In the velocity-constrained
environments, there are three agents: Ant, HalfCheetah, and Swimmer. The primary objective of these agents is to maximize
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their rewards while adhering to the imposed velocity constraints. The environments are named in the convention of
{Agent}Velocity.

Bullet-Safety-Gym (Gronauer, 2022). A suite of environments built upon the PyBullet physics simulator. These
environments are similar to Safety-Gymnasium but feature a broader range of agents (including Ball, Car, Drone, and Ant).
The tasks are relatively straightforward, with only two options available (Circle and Run). The environments are named
through {Agent}{Task}.

E.2. Experiment Settings

We train the baseline algorithms using the recommended hyperparameters specific to each task, for BCQ-Lag (Fujimoto
et al., 2019; Stooke et al., 2020), CPQ (Xu et al., 2022a), COptiDICE (Lee et al., 2022), CDT (Liu et al., 2023b), TREBI
(Lin et al., 2023), and FISOR (Zheng et al., 2024). To ensure a fair comparison, we train the baseline algorithms with three
different random seeds and save the final output policy for safety evaluation. For each output policy, we conduct evaluations
over 20 episodes to obtain reliable performance measures.

As for the training process of SDQC, we follow the neural network structure design and hyperparameter settings in
Appendix C. Analogously, we select three different random seeds for training and perform evaluation over 20 episodes
for each seed. To improve safety performance, we follow Zheng et al. (2024) to sample 16 candidate actions for each RL
timestep, regardless of the safety assessment results and policy usage. The safest action is then selected based on the lowest
Qh(zθh(s), a) value and executed as the final action.

E.3. Computational Costs

We implement SDQC using PyTorch (Paszke et al., 2019) and conduct experiments on a single machine equipped with
one GPU (NVIDIA RTX 4090, 24GB) and one CPU (AMD Ryzen 9 7950X). The training process comprises three phases.
The first phase, known as the diffusion behavior cloner, demands approximately 1 hour for each task. For the second
phase, which involves training representations and critics, the duration varies depending on the chosen network architecture.
Attention-based architectures typically require over 4 hours, whereas MLP-based architectures typically demand around 1
hour. Finally, in the last training phase, the diffusion actor, convergence typically occurs in about 1 hour (without online
testing).

Besides, we assess the inference time consumption of all baseline algorithms across 1000 RL timesteps on the CarPush2
task, averaging the results over 10 trials. Although SDQC is relatively slower compared to other non-autoregressive policies,
it remains within an acceptable range.

Table 8. Inference time (seconds) comparison over 1000 RL timesteps.
BCQ-Lag CPQ COptiDICE CDT TREBI FISOR SDQC

1.51 1.85 1.86 3.45 585.87 6.11 11.13

F. Additional Experimental Results
F.1. Addtional Generalization tests

In addition to the generalization tests (on the agent “Car”) presented in Section 4.2, we perform generalization tests on
the “PointGoal” and “PointPush” tasks (in Safety-Gymnasium), as illustrated in Figure 9. Similarly, the “Point” agent is
challenged with tasks that involve reaching a goal point or pushing a box to a goal point in hazardous areas with obstacles,
with the difficulty level varying between simple (PointGoal1, PointPush1) and challenging (PointGoal2, PointPush2).

Experimental observations reveal that, in comparison to the “Car” agent, the “Point” agent demonstrates a higher degree of
inertia during its motion within the environment. Specifically, the “Point” agent lacks the ability to instantaneously halt
or promptly alter its direction, thereby rendering the maintenance of safety more challenging in equivalent tasks when
compared to the “Car” agent. This significantly undermines the generalization capability of most algorithms on the “Point”
agent. For instance, the state-of-the-art (SOTA) safe offline RL algorithm FISOR performs poorly on the “Point” agent,
exhibiting high costs across multiple environments. In contrast, our SDQC algorithm still achieves nearly zero violations in
the majority of environments.
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Figure 9. The generalization tests on the agent “Point” in Safety-Gymnasium.

Figure 10. Comparison of value function loss during the training process among SDQC with and without representation loss, and FISOR,
on the ’CarPush2’ and ’BallCircle’ tasks.
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F.2. Impact of Representation Loss on Value Estimations
A major concern for SDQC is that the joint optimization process of the value functions and representations (refer to Eqs. 8
and 12) may lead to instability in value estimation, subsequently affecting final performance. We analyze the performance
of SDQC, both with and without representation loss, and compare it to FISOR by examining their respective Critic (Q) loss
and Value loss patterns in relation to reward/cost metrics. This comparative analysis is conducted throughout the training
process using two tasks: ’CarPush2’ and ’BallCircle’, with results illustrated in Figure 10. The experimental results indicate
that while the inclusion of representation loss does lead to an increase in critic and value loss, it does not compromise the
overall stability of the training. Furthermore, our proposed neural network architecture (used for “CarPush2”), with the
incorporation of an attention-based state encoder, markedly improves the precision and stability of value function learning
compared to the simple MLP utilized by FISOR.

F.3. Learning Curves Comparison between SDQC and FISOR

Figure 11. Training curves of SDQC and FISOR on the “Car” agent with tasks “Goal,” “Push,” and “Button” in the Safety-Gymnasium
domain.

As complementary to the SOTA safe offline RL algorithm FISOR (Zheng et al., 2024), our SDQC employs the same implicit
Q-learning method (Kostrikov et al., 2021) to learn optimal value functions and utilizes the safety Bellman operator in
(Fisac et al., 2019) for safety assessment. Additionally, we adopt their approach for policy extraction through training a
weighted regressed diffusion model. However, it should be noted that our decision-making process is based on decoupled
representations rather than global observations. Furthermore, our policies are completely decoupled, and different policies
are selected based on varying safety assessment results. To provide futher comparisons between SDQC and FISOR, we plot
the training curves of both algorithms on the DSRL benchmark (Liu et al., 2023a) in Figure 11-14. The experimental results
indicate that SDQC exhibits a higher level of safety assurance during training and achieves higher rewards in the majority of
tasks.
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Figure 12. Training curves of SDQC and FISOR on the “Point” agent with tasks “Goal,” “Push,” and “Button” in the Safety-Gymnasium
domain.

Figure 13. Training curves of SDQC and FISOR on the agents “HalfCheetah”, “Ant”, and “Swimmer” with velocity constraints task in the
Safety-Gymnasium domain.

27



Q-Supervised Contrastive Representation: A State Decoupling Framework for Safe Offline Reinforcement Learning

Figure 14. Training curves of SDQC and FISOR on the agents “Ball”, “Car”, “Ant”, and “Drone” with tasks “Circle” and “Run” in the
Bullet-Safety domain.

G. Limitations and Future Works
One limitation of our current study arises from the substantial computational demands associated with training the SDQC
model. This is particularly notable due to the necessity of executing three distinct training phases and the utilization of
complex network architectures in certain scenarios. Despite this challenge, the remarkable cost-effectiveness and robustness
to seed variance exhibited by our model mitigate these weaknesses. Looking ahead, our future research endeavors will
prioritize the optimization of the training pipeline and the simplification of network structures to enhance training efficiency
while maintaining performance standards.
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