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Abstract

The rise of synthetic speech audio-based NLP
tasks has raised critical questions about the
robustness, fidelity, and fairness. This study
will empirically examine the relationship be-
tween Text-to-Speech (TTS) and Speech-to-
Text (STT) models using hate and non-hate
speech data. Our evaluation focuses on three
key dimensions: (1) STT robustness, assess-
ing the accuracy and gender sensitivity of STT
models when transcribing synthetic versus hu-
man audio; (2) TTS synthetic audio fidelity, ex-
amining human-likeness and model preference
through annotator evaluations and processing
speed analysis; and (3) Impact on hate speech
classification, quantifying how STT and TTS
combinations affect downstream toxicity pre-
dictions. Our findings show that synthetic au-
dio, especially from Microsoft Edge TTS, out-
performs human audio in both transcription
accuracy and consistency. WhisperX-Align
(extended based on OpenAI’s Whisper model)
emerges as the most robust STT model across
tasks, although some systems exhibit notable
gender and domain-specific biases. We recom-
mend Microsoft Edge TTS as a high fidelity
benchmark and SpeechT5 as a human proxy
for perceptual evaluation, while highlighting
the need for bias aware deployment in sensi-
tive applications, such as hate speech detection.
The implementation code is publicly available
at https://anonymous.4open.science/r/
Can-AI-Replace-Human-Speech-DOEF/.

1 Introduction

The rapid expansion of social media has enabled
users worldwide to disseminate their views and
ideas at an unprecedented scale. Initially designed
to foster connection and learning, these platforms
have become breeding grounds for extremist ide-
ologies. Early approaches to detecting harmful
content mainly relied on text-based classification
methods (Lee and Ram, 2024; Qian et al., 2018).

However, as multimodal content, particularly hate-
ful memes and videos, has become more common,
research has expanded to include visual (Chen and
Pan, 2022; Lee et al., 2021) and audio (An et al.,
2024; Atanu et al., 2023; Imbwaga et al., 2024) hate
speech detection. Audio-based detection, the latest
frontier in the "trilogy of hate," now encompasses
text, image, and audio modalities. A significant
barrier in audio classification is the lack of large-
scale, annotated datasets for domain-specific or
toxic speech.

To address this, researchers have turned to
Text-to-Speech (TTS) models to generate syn-
thetic audio from existing text-based hate speech
datasets, leveraging publicly available textual cor-
pora (Waseem and Hovy, 2016; Ocampo et al.,
2023a,b). While synthetic audio offers a scalable
alternative to human recordings, it raises critical
questions:

1. STT Robustness: How well do current
STT models transcribe synthetic audio com-
pared to human speech across different voice
types and genders? We found that synthetic
voices, particularly those from Edge-TTS
and SpeechT5, consistently outperform hu-
man recordings in terms of accuracy. How-
ever, gender bias—especially favoring fe-
male voices—emerges across models, with
SpeechT5 showing the highest disparity.

2. TTS synthetic audio fidelity: Which TTS
models best simulate human speech from the
perspective of human perception? Through a
human-likeness ranking study and transcrip-
tion speed analysis, we show that SpeechT5
is rated most human-like, while Edge-TTS
provides the most efficient and consistent tran-
scriptions. We also reveal that STT systems
generally process female voices faster than
male ones, introducing potential biases in data
generation workflows.
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3. Impact on Hate Speech Classification: How
do combinations of TTS and STT models in-
fluence the accuracy of toxicity classification?
Our results show that using synthetic audio im-
proves classification performance compared
to human speech. Nevertheless, hate samples
are more prone to transcription errors, and spe-
cific TTS-STT pairings—such as VITS with
DeepSpeech—exacerbate these issues.

Together, these findings provide a comprehen-
sive benchmark for evaluating TTS and STT mod-
els in both technical and ethical dimensions. We
conclude with practical recommendations on model
selection, emphasizing the trade-off between tran-
scription fidelity and bias in high-stakes applica-
tions like hate speech detection.

2 Experiment Settings

Before we investigate the findings, we will provide
some background information about each model
that will be used throughout this paper. The meth-
ods used for data collection and classification. In
addition to the technique for audio creation, tran-
scription, and normalization. All the following
methods and results were run on a research server.
Multiple clusters were used, each with 24 CPU
cores and 64 GB of RAM.

2.1 TTS Models

TTS is the technology that transforms written text
into spoken audio, allowing systems to communi-
cate with users through synthetic speech. We will
be using the following TTS models, through out
our paper.

e VITS (Kim et al., 2021) with p225 for female
voice and p229 for male voice.

¢ SpeechT5 (Ao et al., 2022), clb for female
voice and bdl for male voice.

» Edge TTS'. We used Aria for female voice
and Christopher for male voice.

These models were chosen for two key reasons:
their ease of use and widespread adoption, and
their support for both male and female voices. The
latter was essential to evaluate whether STT models
exhibit inherent gender bias.

"https://github.com/rany2/Edge-TTS
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Figure 1: Overview of the data processing pipeline.

2.2 STT Models

STT refers to the ability of a system to convert spo-
ken language into written text, enabling machines
to interpret and process audio input. Below is a list
of STT models used in this paper:

* WhisperX (Bain et al., 2023) we utilize both
the standard WhisperX model and its aligned
variant WhisperX-Align.

* Vosk®. In this study, we employ both the
Vosk-Small and Vosk-Giga models.

* DeepSpeech®. We utilize both the stan-
dard DeepSpeech model and its vari-
ant enhanced with the language scorer
DeepSpeech-Scorer.

2.3 Data Processing Pipeline
2.3.1 Data Gathering & Filtering

The Mozilla Common Voice 21.0 dataset is a large,
multilingual speech corpus for automatic speech
recognition, crowdsourced from volunteers glob-
ally. Version 21.0 includes over 20,000 hours of
validated speech across more than 70 languages.
Each entry in the dataset consists of a unique
sentence ID, the spoken sentence, the name of

2https://alphacephei.com/vosk/
3https://github.com/mozilla/DeepSpeech
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the audio file, the speaker’s gender, and the num-
ber of upvotes/downvotes the recording received.

To classify sentences as hate or non-hate, we
used the toxicity score provided by the Detoxify
model (Hanu and Unitary team, 2020). Detoxify
provides several (e.g., identity attack, sexually ex-
plicit), we focus on the general toxicity score, as
it aligns best with evaluating harmful or hateful
speech. we chose the ‘original’ model, which is
based on BERT. This model was chosen because
other models yielded worse results, likely due to
domain mismatch, as many were primarily trained
on social media data.

To set an appropriate toxicity threshold for la-
belling hate content, we manually evaluated 50 hate
and 50 non-hate sentences. We tested a range of
threshold scores (0.6 - 0.9) and found that a thresh-
old of 0.8 yielded the best performance in correctly
identifying hateful content. These results can be
found in Table 1.

Table 1: Performance metrics for Detoxify at varying toxicity
thresholds (manual annotation)

Threshold \ Precision Recall F1 Score
0.6 80.00 96.00 87.27
0.7 86.54 90.00 88.24
0.8 93.33 84.00 88.42
0.9 92.59 50.00 64.94

For the non-hate data entries, we included only
those sentences that had both male and female
audio recordings. When multiple recordings ex-
isted for a given gender, we selected the one with
the highest number of upvotes to prioritise audio
quality. In contrast, for the hate entries, where
the number of available samples was more lim-
ited, we relaxed the gender-pairing requirement
and selected only a single high-quality recording
per sentence, again based on upvotes. Table 2
summarises the number of sentences included in
the hate and non-hate categories.

Table 2: Number of sentences in hate and non-hate.

Type \ Male Female  Unique Sentences
Non-Hate 24,536 24,536 24,536
Hate 692 334 924

2.3.2 TTS & STT Processing

For each sentence, denoted as ¢, we generate the
synthetic audio s’ by parsing it through the previ-
ously selected TTS models. As the STT models
require the audio file to be in the ‘wav’ format, we

convert all audio files from ‘mp3’ into ‘wav’ by
using ffmpeg*. Then, for all the audio files (syn-
thetic s’ and human s), we process them through

the selected STT, resulting in #{, cic and ¢,

2.3.3 Text Normalisation

To minimise transcription bias, particularly varia-
tions in how different models transcribe numbers,
we convert all numerals into their word represen-
tations (e.g., 42 — forty-two) using the inflect
library”. Following this, we normalise the tran-
scribed text by converting all characters to low-
ercase, removing terminal punctuation marks(*.",
“ <" and “!"), and eliminating any extra spacing
around symbols. This normalisation process en-
sures a fair and consistent basis for comparing the
outputs of different STT models.

cen

3 Experimental Results

The evaluation metrics used in this paper can be
found in appendix D.
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Figure 2: STT robustness on non-hate speech: Comparison of transcription Accuracy across
TTS models and human audio (by gender).

In this section, we introduce a two-stage robust-
ness analysis to provide a comprehensive under-
standing of how resilient STT models are to varia-
tions in voice type, gender, and semantic content.

First, we assess the global robustness of STT
models when transcribing synthetic audio com-
pared to real human audio. Formally, let ¢ de-
note the ground truth sentence and Spyman the cor-
responding human-spoken audio. We proceed as
follows:

1. TTS Generation: Apply a text-to-speech
(TTS) model 7 to generate synthetic audio

4ht‘cps: //ffmpeg.org/
5https ://pypi.org/project/inflect/
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Figure 3: STT robustness on hate speech: Comparison of transcription Accuracy across TTS
models and human audio (by gender).
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from the text:

Ssynthetic = T(t)

2. STT Transcription: Apply the same speech-
to-text (STT) model S to both audio samples:

thuman = S (Shuman) , tsynthetic =S (3 synthetic)

3. Similarity Comparison: Measure the similar-
ity between the transcriptions and the ground

truth using an evaluation metric D(-,-) (i.e.,

Transcription Accuracy, Absolute Character
Distance, and WER):

Dhuman = D(t7 thuman), Dsymhetic = D(t, tsynthetic)

We then compare Dpyman and Dgyneetic to evaluate
the robustness of the STT model when transcribing
synthetic versus real human speech. The exper-
imental results are shown in Figs. 2 and 3 with
additional information in appendix, which we will
detail the analysis in Section 3.1.1 and 3.1.2, re-
spectively.

Then, we examine how STT performance varies
across speaker gender for each audio type. For-
mally, we proceed as follows:
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Figure 5: Inter-gender consistency on hate speech: Measuring STT model sensitivity to
gender variation using Inter_C

1. TTS Generation: Apply a text-to-speech
(TTS) model 7 to generate synthetic audio
from the text for both male and female voices:

male

S synthetic

o female
= Tmale (t) » Ssynthetic

- ,Eemale (t)

2. STT Transcription: Apply the same speech-
to-text (STT) model S to the human audio and
both synthetic audios:

female

thmue:lr?an = S(Shuman), thuman = S(Shuman)a

female S( female )

male male
tsynthelic =S (S synthetic ) ) tsynthetic = S synthetic

3. Similarity Comparison: Measure the similar-
ity between the transcriptions and the ground

truth using an evaluation metric D(-, -):
It Il femal femal
Dmﬂnean = D(t7 t}r:]uan;can)v Dheurrrllfas - D(t7 theuTnzs)7

male o male female female
Dsynthetic - D(tv tsynthetic)a Dsynthetic - D(ta tsymhetic)

We then compare Dﬁﬁfa/nfemale, Dsr;il;/eif;n e (o eval-
uate the robustness of the STT model when tran-
scribing real versus synthetic speech and investi-
gate any performance gaps related to speaker gen-
der. Figs. 4 and 5, which we will detail the analysis

in Section 3.1.1 and 3.1.2, respectively.

3.1.1 Non-Hate

STT Robustness with Synthetic vs. Human Au-
dio Fig. 2 presents the global robustness of STT
models across synthetic and human audio in the
non-hate speech domain, with heatmaps displaying
sentence-level accuracy, absolute character differ-
ence, and WER.

Performance on human speech varies signifi-
cantly across STT models, ranging from 10.45%
/8.63% to 47.37% / 45.47% for female and male
voices, respectively. This variation highlights
that even real human audio poses challenges for



some STT models, particularly DeepSpeech and
DeepSpeech-Scorer.

Edge-TTS emerges as the most robust and bal-
anced TTS model, outperforming both SpeechT5
and human voices across all STT models. Its per-
formance remains consistently high, with relatively
low gender bias, indicating strong generalizability
and clarity across genders. This makes Edge-TTS a
strong candidate for use as a synthetic benchmark.

Across the STT models, WhisperX-Align con-
sistently achieves the best results, regardless
of TTS voice or gender, and leads in transcrip-
tion accuracy, character difference, and WER. It
demonstrates a slight preference for female voices
in non-hate samples, aligning with previously re-
ported gender bias trends.

Inter-Gender Robustness Analysis Fig. 4
shows the inter-gender robustness of STT mod-
els across synthetic and human audio in the non-
hate domain, focusing on sentence-level agreement
(InterC), absolute character difference, and WER
across male and female voices for the same content.

We observe that synthetic voices consistently
outperform human voices in terms of inter-gender
transcription consistency. Human audio yields
the highest character-level differences across gen-
ders, mainly when processed by DeepSpeech and
DeepSpeech-Scorer, indicating that these models
are more sensitive to natural voice variations.

Interestingly, while VITS generally underper-
forms in global accuracy (Fig. 2), it achieves strong
inter-gender consistency across STT models. In
particular, VITS paired with DeepSpeech per-
forms better than human audio, which contrasts
with the global results. This suggests that although
VITS may struggle with overall transcription accu-
racy, its generated male and female voices are more
acoustically aligned, leading to higher cross-gender
consistency.

SpeechTS5, despite being highly rated for human-
likeness and global accuracy, exhibits the largest
gender-based character differences. This further
reinforces concerns about its strong gender bias,
already observed in Fig. 2.

Among STT models, Vosk-Giga delivers the
best inter-gender consistency in this setting, out-
performing even WhisperX-Align, which led in
global metrics. This suggests that Vosk-Giga is
less sensitive to pitch, timbre, or spectral variations
introduced by gender shifts.

Finally, the WER results reinforce earlier obser-

vations: human audio again shows the most varia-
tion between genders, while synthetic voices, espe-
cially from Edge-TTS and VITS, are more stable.
Overall, this highlights that certain synthetic voices
offer not just better average performance, but also
stronger consistency across gender variants.

3.1.2 Hate

STT Robustness with Synthetic vs. Human Au-
dio Fig. 3 illustrates the performance of STT
models when transcribing synthetic versus human
audio in the hate speech domain.

Overall transcription performance declines
across all TTS and STT combinations when tran-
sitioning from non-hate to hate speech samples.
Human voice performance ranges from 8.82% /
6.86% to 40.20% / 43.14% (female / male), show-
ing slightly reduced variability compared to the
non-hate domain.

Despite the domain shift, Edge-TTS continues
to outperform all other TTS models across all STTs
and metrics, maintaining strong accuracy and low
character and word error rates. This reinforces its
status as the most robust and reliable TTS model
across different content types.

Across STT models, WhisperX-Align remains
the top performer in the evaluation metrics. How-
ever, in this domain, the gap between WhisperX-
Align and other STTs, such as Vosk-Giga, narrows,
indicating that more STT models can handle hate
speech robustly if paired with strong TTS input.

Another key difference from the non-hate set-
ting is the shift in gender preference. While most
models favored female voices in non-hate speech,
hate samples see a partial reversal: more STT
models prefer male voices, and gender bias magni-
tudes are generally smaller. This may indicate that
models perceive aggressive or emotionally charged
prosody in male synthetic voices as more intelligi-
ble in hate contexts.

Inter-Gender Robustness Analysis Fig. 5 ex-
amines the inter-gender transcription consistency
of STT models in the hate speech domain.

In line with global observations, we find that
all systems perform worse in the hate domain
compared to the non-hate setting.

Edge-TTS maintains its strong performance
across all metrics. It continues to produce the most
consistent outputs between male and female voices,
suggesting a balanced acoustic profile across gen-
ders even under emotionally or semantically com-



plex content.

Among STT models, Vosk-Giga again provides
the most stable inter-gender results, outperform-
ing even WhisperX-Align in consistency across
genders. This trend mirrors the findings from the
non-hate domain. It suggests that Vosk-Giga may
be more resilient to pitch and tonal variations in-
troduced by gender, particularly in emotionally
charged speech.

3.2 TTS Synthetic Audio Fidelity

While identifying the most accurate TTS model is
important, it does not necessarily indicate which
model best replicates human speech. Therefore,
we conducted a dedicated evaluation to determine
which TTS model serves as the most suitable sub-
stitute for human audio. This distinction is critical,
especially if the most human-like model differs
from the one that yields the highest transcription
accuracy. Additionally, we examine whether lis-
tener preferences exhibit gender-based variation,
and whether processing time differs across TTS-
STT combinations, particularly in cases where gen-
der bias may lead to faster processing. If such
disparities exist, they may influence the practical
choice of synthetic voices for large-scale data gen-
eration.

To evaluate human-likeness and clarity, we con-
ducted a perceptual study involving seven annota-
tors. Each participant was asked to rank non-hate
synthetic audio samples on a scale from 1 to 3,
where 1 indicates the most human-like and 3 the
least. Annotators also indicated which gendered
voice (male or female) was more understandable
for each TTS model. Each model was represented
by three audio samples per gender. The number
of samples was determined based on preliminary
testing, which showed that annotators were able
to form reliable judgements with one to two exam-
ples, and three samples provided a good balance
of confidence and coverage. Details about metrics
used can be found in appendix D.1.

3.2.1 Preferred TTS and Gender

Table 3: Average human-likeness rankings for TTS models by
gender (lower is better)

Gender | Edge (Rank)  SpeechT5 (Rank)  VITS (Rank)

Male 243 1.71 1.86
Female 2.0 1.86 2.14

Among the evaluated TTS models, Edge-TTS
was initially identified as the best-performing

Table 4: Annotator Preferences for Gendered Voices by TTS
Model

Preferred Gender \ Edge (%) SpeechTS5 (%) VITS (%)
Female 42.86 71.43 71.43
Male 57.14 28.57 28.57

model based on objective metrics (Accuracy, WER
and absolute character difference). However, to
assess human-likeness, we refer to the subjective
ratings presented in Table. 3, where SpeechT5
was consistently rated as the most human-sounding
across all voice genders. Notably, Edge-TTS was
ranked as the least human-like model despite its
objective performance.

Additionally, the female voices exhibited a nar-
rower rating range compared to male voices, in-
dicating more consistent preferences or percep-
tions among listeners. The gap in ratings between
SpeechT5 and VITS was smaller for the male voice,
suggesting a more stable ranking order for male
speakers.

Table. 4 further reveals that annotators showed
a clear preference for female voices in both
the SpeechT5 and VITS models, whereas male
voices were preferred for Edge-TTS. Moreover,
the magnitude of gender preference bias was more
pronounced for SpeechT5 and VITS than for
Edge-TTS, indicating stronger listener preferences
aligned with gender for these models.

Overall, the experimental results demonstrate
that STT models are generally robust and perform
well across various TTS-generated samples. How-
ever, both the STT models and human annotators
demonstrate biases when the transcriptions origi-
nate from specific TTS voices.

3.2.2 Assessing Gender Bias in STT
Transcription Speed

Finally, we investigate whether there are any
gender-based biases in the processing time required
by STT models. To evaluate this, we use a subset
of 100 audio samples and measure the average tran-
scription time for each STT-TTS—gender combina-
tion. This setup mirrors our transcription method
used earlier.

Formally, let S denote a given STT model, and
T a TTS model. We define the processing times
for female and male voices as follows:

1. Female Voice Transcription Time:

temale = time(s (ﬁemale (t) ))
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Figure 6: Percentage difference in average processing time between male and female voices
across various TTS and STT model combinations. Negative values indicate faster processing
for female voices, while positive values indicate faster processing for male voices. Results
are based on 100 audio samples per configuration.

2. Male Voice Transcription Time:

tmale = time(s(tﬁnale(t)))

3. Relative Speed Difference: We then compute
the relative difference in processing speed be-
tween female and male samples as:

ttemale — tme
SpeedDiff = —emale — "male ),

male

where, SpeedDiff quantifies the percentage differ-
ence in processing time between female and male
audio for a given STT-TTS pair, allowing us to
identify potential gender-related latency biases in
STT performance; and time(-) denotes the average
time taken to transcribe 100 audio samples.

The results are presented in Fig. 6, and ad-
ditional information is in the appendix E.2. As
we can see, all synthetic voice models exhibit a
preference for female voices in terms of faster
processing times. In contrast, for human voice
recordings, the preferred gender varies depend-
ing on the specific STT model used. Notably, the
gender-based processing time differences are most
pronounced for the VITS and SpeechT5 models,
with disparities reaching up to 33.35%. In general,
larger models tend to have longer processing times
compared to their smaller counterparts. An excep-
tion is observed with DeepSpeech-Scorer, where
enabling the language scorer unexpectedly resulted
in faster processing.

Due to the lack of publicly available informa-
tion regarding the gender distribution in the train-
ing data of these models, we can only hypothesise
about the underlying causes of this observed bias.

A possible reason could be that the model may
have been overexposed to female voice data during
training, resulting in fewer recognition paths for
male voices, or has allowed the model to become
attuned to specific vocal features more commonly
present in female speech, and thus faster processing
for female samples. Or differences in pre- and post-
processing pipelines might favour specific acoustic
characteristics that are more prevalent in female
voices, making them easier for the model to handle.

3.3 Impact of STT and TTS on Hate Speech
Classification

Modern audio-based classification pipelines of-
ten rely on transcripts generated by STT models.
Therefore, it is critical to understand how different
STT and TTS models influence the final classifi-
cation results, particularly in tasks involving hate
speech detection.

To evaluate this, we measure whether the clas-
sification of a sentence remains consistent before
and after applying TTS and STT transformations.
Let c(t) be the classification outcome of the orig-
inal sentence ¢, and let t;-ra““ribed be the transcript
obtained by passing ¢ through a TTS model fol-
lowed by an STT model. In experiments, we use
Detoxify model (Hanu and Unitary team, 2020) as
the classifier.

We define the classification preservation metric
as follows:

1. Original Classification: Assign a class label
to the baseline text input:

y;)aseline — C(tj)

2. Transformed Classification: Apply a TTS
model T followed by an STT model S, then
classify the resulting transcription:

ttjmnscribed _ S(T(t] ) ) , y;_ramcribed _ C(t?anscribed)

3. Classification Stability: Compute the propor-
tion of unchanged classification outcomes:

Unchanged — % 1 (y;]'anscribcd _ y?asc]inc) 7
j=1
where, N is the total number of sentences evalu-
ated, and 1(-) is the indicator function that returns
1 if the classification label remains unchanged (i.e.,
does not flip from hate to non-hate or vice versa),
and 0 otherwise., and the metric Unchanged helps
quantify the reliability of STT and TTS models in
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Figure 7: Non-Hate Dataset Detoxify Scores: Transcription accuracy and average hate
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preserving semantic integrity under classification
tasks sensitive to lexical changes.

The results in Fig 7 & 8 show that, STT models
generally perform worse with human speech than
synthetic audio. The most significant degradation
in classification accuracy (49.38%), was observed
when combining DeepSpeech with a human hate
speech sample. This suggests that transcription
errors have a significant impact on downstream
classification results.

The impact was less pronounced for non-hate
samples, indicating that inaccuracies are less likely
to elevate non-hateful content into the hate cate-
gory falsely. This asymmetry highlights the greater
vulnerability of hate speech samples to semantic
distortion during transcription.

Among the TTS models evaluated, only Edge-
TTS and SpeechT?5 consistently held average toxic-
ity scores exceeding the 0.8 threshold, reaffirming
their ability to preserve critical lexical cues associ-
ated with hate speech. Overall, Edge-TTS emerged
as the most reliable TTS model across both hate
and non-hate datasets. At the same time, WhisperX-
Align and Vosk-Giga were the top-performing STT
models in preserving classification fidelity.

4 Conclusion

This study examined the robustness of STT and
TTS models, focusing on inter-gender and intra-
gender metrics, gender bias, and processing speed.
The best-performing TTS model was Edge-TTS,
consistently delivering top results across all cate-
gories, indicating strong compatibility with various
STT models. SpeechT5 stood out as the most natu-
ral and human-like vocal output, making it a strong
candidate for a human audio baseline. For STT
models, WhisperX-Align was the top performer, ex-
hibiting high accuracy and low deviations at both
word and character levels. However, it showed
a gender bias towards female voices, particularly
with SpeechT5-generated audio. Despite this, its
overall performance remains superior, while Vosk-
Giga is recommended for scenarios requiring min-
imal gender bias. All STT models showed a ten-
dency to favor synthetic voices over human audio.

The study also identified a general bias towards
female voices, which affects evaluation metrics and
processing speed. As it was found to be faster to
process female spoken audio samples then male
ones. This bias may stem from training data im-
balances. Furthermore, STT model choice had a
more significant impact on hate speech classifica-
tion, with human audio samples causing more de-
viations than synthetic ones. It was also found that
current STT models struggle to transcript hate au-
dio correctly, requiring a fine tuned or better ASR
model.

In conclusion, Edge-TTS is recommended as a
high-performance TTS benchmark to estimate the
theoretical upper bound of model performance. At
the same time, SpeechT5 serves as an effective re-
placement for human baselines when human audio
is unavailable. For transcription tasks, WhisperX-
Align is recommended for its accuracy; however,
researchers should also account for potential gen-
der biases, particularly in hate speech classification.



5 Limitations

One main limitation of this study is the lack of
gold-standard text transcriptions corresponding to
the hate speech audio samples. This limitation re-
sulted in a smaller and less comprehensive dataset
of human-generated hate speech compared to the
non-hate subset. Future work could address this
by developing a larger, more representative dataset
of hate speech audio with accurate ground-truth
transcriptions.

Another challenge encountered was that some
TTS models occasionally failed to synthesize spe-
cific audio files, requiring multiple attempts to gen-
erate a balanced dataset. Despite these efforts, in-
consistencies and gaps remained, which were only
a few audio samples. Additionally, some models
exhibited “hallucination” behaviour during tran-
scription, repeatedly generating the same word and
thereby degrading transcription quality.

Lastly, platform and licensing restrictions lim-
ited our ability to use more advanced commercial
models such as Google Voice or OpenAl’s voice
assistant, since generating audio with these tools
would violate their terms of service. Consequently,
future research in this area may be limited by the
availability and ethical considerations surrounding
cutting-edge speech synthesis technologies.

The use of synthetic voice would allow for the
reduction of the requirement for audio hate speech.
However, by doing so, the increase in fidelity or
humanness of audio may enable actors to use it to
create hate speech and attack people.

6 Al-Generated Content
Acknowledgement

We acknowledge the use of Al in this paper. We
used ChatGPT to assist in creating table titles and
captions. It was also used to improve paragraphs,
but a human then rewrote/modified all generated
paragraphs. It was also used to find better ways to
display the data, i.e, changing it from a table to a
graph, creating Python code to display new data
options, and for basic code structure and optimisa-
tion. The use of an Al-assisted spelling & grammar
checker was also used in this paper.

7 Appendix
A TTS and STT Model Information

e VITS (Kim et al., 2021) is a neural TTS model
that unifies the training of the acoustic model

and vocoder into a single framework. VITS
integrates a variational autoencoder (Kingma
et al., 2013), and normalising the flow. The ad-
dition of adversarial training, along with other
methods, is used to create natural-sounding
speech.

SpeechTS5 (Ao et al., 2022) is a unified model
for speech transcription, inspired by the work
of the T5 (Text-To-Text Transfer Transformer)
framework. It uses a shared encoder-decoder
architecture, and enables a range of tasks,
including speech recognition, text-to-speech,
speech translation, voice conversion, speech
enhancement, and speaker identification.

Edge TTSS is a Python wrapper of the TTS
service provided by Microsoft, which lever-
ages techniques such as FastSpeech to pro-
duce audio and supports multiple languages.

WhisperX (Bain et al., 2023) extends Ope-
nAI’s Whisper model (Radford et al., 2023) by
enhancing timestamp alignment and improv-
ing transcription of longer audio recordings.
These advancements are achieved through
modifications to the Voice Activity Detec-
tion (VAD) component and the integration
of forced phoneme alignment, resulting in
more accurate word alignment. As a result,
WhisperX provides more precise timestamps
and higher-quality transcriptions. Making it
a widely used transcription model in industry
and research.

Vosk’ is an open-source STT toolkit that pro-
vides real-time transcription capabilities. It
is built on top of the Kaldi automatic speech
recognition framework (Povey et al., 2011).
Vosk supports a range of model sizes to
accommodate different performance and re-
source requirements.

DeepSpeech?® is an open-source implementa-
tion of the STT model proposed by Awni Han-
nun et al. (Hannun et al., 2014), developed
by Mozilla. It is designed to function both
with and without an external language scorer,
which helps improve transcription accuracy
by providing contextual guidance during the
decoding process.

Shttps://github.com/rany2/Edge-TTS

"https://alphacephei.com/vosk/
8https: //github.com/mozilla/DeepSpeech


https://alphacephei.com/vosk/
https://github.com/mozilla/DeepSpeech

B Dataset

The common voice dataset is publicly available, at
https://commonvoice.mozilla.org/en and is under
Mozilla Public License 2.0.

C Related Work

Automatic hate speech classification has been a
longstanding research focus within the NLP com-
munity, with numerous studies exploring various
classification frameworks and strategies. Notable
contributions include the work of Tommaso Caselli
et al. (Caselli et al., 2020) and Rui Cao, Roy Ka-
Wei Lee, and Tuan-Anh Hoang (Cao et al., 2020),
which propose different models and architectures
for detecting hate speech. These methods are partic-
ularly effective in identifying explicit hate speech
in large, general-purpose datasets or within domain-
specific contexts.

Beyond basic classification, recent research has
also investigated methods to enhance the accuracy
and robustness of hate speech detection. For exam-
ple, Yadav et al. (Yadav et al., 2024) introduced an
approach that enriches input data with post-level
descriptions, enabling large language models to bet-
ter detect implicit hate speech. In contrast, Lee and
Ram (Lee and Ram, 2024) proposed augmenting
classification inputs with physiological informa-
tion rather than relying solely on textual macro-
and micro-context. Both approaches represent in-
novative efforts to capture nuanced and indirect
forms of harmful content that may otherwise evade
detection by standard models.

Some prior research has focused on predict-
ing user interactions related to hate speech. For
example, Masud et al. (Masud et al., 2021) pro-
pose a case-based approach to predict the poten-
tial spread of hate speech and introduce a corre-
sponding dataset to support this task. Additionally,
Herodotou, Chatzakou, and Kourtellis (of Electri-
cal and Electronics Engineers, 2021-4) developed
a method for real-time aggression detection, specif-
ically designed to efficiently classify large volumes
of data simultaneously.

As the presentation of hate speech evolves, clas-
sification methods have also advanced to address
new modalities. In particular, approaches that in-
corporate visual content have gained attention. For
example, Lee R et al. (Lee et al., 2021) and Chen
Y and Pan F (Chen and Pan, 2022) propose tech-
niques that extract textual information alongside
visual cues, such as identifying targeted individuals

10

or extracting object tags, to improve hate speech
detection in multimodal content.

Modern audio-based hate speech classification
typically involves first transcribing audio record-
ings into text, which is then analysed using es-
tablished text-based hate speech classifiers. Wu
and Bhandary (Wu and Bhandary, 2020), uses the
Google Cloud Speech-to-Text API to transcribe
given YouTube videos, and then classify these be-
ing normal, racist, or sexist. This was done the
help of blob for sentiment analysis. The work by
Imbwaga, Chittaragi, and Koolagudi (Imbwaga
et al., 2024), also transcribes given audio into text.
But utilise whisper as there STT model. There
paper looked more into why classify sentences as
hate speech. And used multiple datasets and LIME
(Local Interpretable Model-agnostic Explanations)
(Ribeiro et al., 2016) model to understand the mod-
els’ predictions. Allowing for insights into models’
classification decisions. Other possible implimen-
tations of audio classification are audio to classifi-
cation models. Examples such as the paper by An J
et al. (An et al., 2024), where they use TTS to cre-
ate their dataset. They showed two pipelines, one
being similar to others, where audio in transcribed
using Whisper and then classified with Bert, but
the other pipeline, utilise wav2vec (Schneider et al.,
2019) to classify audio, into hate or non hate.

D Evaluation Metrics

The evaluation metrics cover multiple levels of
granularity, including sentence-level, word-level,
and character-level differences, as introduced in
the following subsections.

D.0.1 Transcription Accuracy (Radford et al.,
2023)

It is computed at the sentence level to evaluate

how often a transcription matches the reference

text exactly. It is defined as the ratio of correct

transcriptions to the total number of transcriptions:

#Correct Transcriptions

;D

Accuracy = —
y #Total Transcriptions

where, #Correct Transcriptions refers to the number
of transcriptions that perfectly match the reference
sentence, and #Total Transcriptions denotes the
total number of sentences processed by the model.

D.0.2 Word Error Rate (WER) (Radford
et al., 2023)

WER is a standard metric for evaluating the per-
formance of transcription models. It quantifies the



difference between the predicted transcription and
a reference transcript by measuring the minimum
number of word-level edits (i.e., substitutions, dele-
tions, and insertions) required to convert the predic-
tion into the reference. Formally, WER is defined
as:

WER =
#words in reference

2)
A lower WER indicates a more accurate transcrip-
tion, making it a widely adopted benchmark for
comparing STT systems.

D.0.3 Absolute Character Difference
We introduce this metric to quantify the character-
level deviation between the STT-generated tran-
script (t'transcript) and the reference baseline
(tbaseline). It is defined as:

Aabs

char

- ‘len(t{ranscript) - len(tbaseliﬂe) ) (3)
where len(-) denotes the number of characters in
a given text. This metric captures the absolute dif-
ference in length between the transcription and the
baseline, providing a simple yet effective measure
of how much the output diverges in terms of textual
content.

D.0.4 Inter-Gender Consensus

To assess consistency across genders, we introduce
the Inter-Gender Consensus metric. This measures
the proportion of cases in which the transcriptions
generated for male and female speakers are identi-
cal for the same sentence. Formally, it is defined
as:

Z l(transcriptgemale = transcriptinale),

1

“4)
where N is the total number of sentence instances
evaluated, 1(-) is the indicator function, which re-
turns 1 if the condition is true and 0 otherwise, and
transcript}, ... and transcript . are the transcrip-
tions for the jth sentence by female and male speak-
ers, respectively. This metric captures the level of
agreement between male and female transcriptions
for the same content, providing insight into poten-
tial gender-related variations in how models pro-
cess speech. A lower consensus score may suggest
that the model is more sensitive to gender-specific
acoustic features or pronunciation differences.

N
1
C’inter = N

F#£substitutions + Fdeletions + #insertions
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D.1 Human Like Metrics

To evaluate the perceptual results from human an-
notators, we conducted two analyses. First, we
computed the average human-likeness ranking for
each STT model using the following formula:

N

E Tig,

J=1

1

~ s)

AverageRanking gy, =

where AverageRankingg, is the average ranking
of the i™ STT model, r;; 18 the ranking score given
by annotator 7 to STT model ¢ and NV is the total
number of annotators.

Next, to assess gender preference for each STT
model, we calculated the proportion of times each
gendered voice (male or female) was rated as more
understandable. This is formalized as:

Cy .

Eg’EG Cg/

where g € G = {male, female, none} are the op-
tions for each STT model, Cy is the total num-
ber of times each option g was selected, and
PreferedGender, is the proportion of preferences
for category g.

PreferedGender*gg T — 100, (6)

E Extra Results
E.1 Global & Inter Gender Results

AbsChar Diff ¢
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Figure 9: STT robustness on non-hate speech: Comparison of Absolute Character Difference
across TTS models and human audio (by gender).

E.2 Processing Speed Results
F Annotator Prompt

Here is the following instruction given to the anno-
tators

Please listen to the following audio files, for each
gender and TTS model. And rank them from 1-3
where 1 is the most human like and 3 the least



Table 5: Average Time per Audio Sample (in Seconds) for
different STT models for each given TTS model and voice
option, running on 100 audio samples

TTS Model (F/M) \ Avg pre sample (sec) (F/M) Difference (%)
STT Model: Vosk-Small
SpeechT5 0.8918/0.9276 -3.86
VITS 0.6330/0.8987 -29.56
Edge 0.8968 / 0.8993 -0.28
Human 0.9714 / 0.9406 3.27
STT Model: Vosk-Giga
SpeechT5 1.7589/2.1478 -18.11
VITS 1.3254/1.9887 -33.35
Edge 1.9310/1.9386 -0.39
Human 2.7333/2.4341 12.29
STT Model: WhisperX
SpeechTS 0.3660/ 0.3809 -3.91
VITS 0.2497/0.3575 -30.15
Edge 0.3453/0.3637 -5.06
Human 0.3637/0.3740 -2.75
STT Model: WhisperX-Align
SpeechT5 1.0372/1.1782 -11.97
VITS 0.7697 / 1.0350 -25.63
Edge 1.0310/ 1.0698 -3.63
Human 1.0735/1.0890 -1.42
STT Model: DeepSpeech
SpeechTS 1.9496 /2.7153 -28.2
VITS 1.5764 /2.1352 -26.17
Edge 2.2974/2.3796 -3.45
Human 2.7654 / 2.6886 2.86
STT Model: DeepSpeech-Scorer
SpeechT5 1.6336/2.1171 -22.84
VITS 1.2177/ 1.6847 -27.72
Edge 1.8056/ 1.8468 -2.23
Human 2.2140/2.1591 2.54

WER (%) &

Whisperx - 65.71

Whisperx-Align -

\osk-Giga

STT Model

Deepspeech

Deepspeech-Scorer

SpeechTs_F
SpeechTs_M
Human_F
Human_M

Figure 10: STT robustness on non-hate speech: Comparison of transcription and WER
across TTS models and human audio (by gender).
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Figure 11: STT robustness on hate speech: Comparison of transcription Absolute Character
Difference across TTS models and human audio (by gender).

human like. After please label which gender was
easier to listen for each TTS model.
Also agree that we use this data for our research.
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