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Abstract001

The rise of synthetic speech audio-based NLP002
tasks has raised critical questions about the003
robustness, fidelity, and fairness. This study004
will empirically examine the relationship be-005
tween Text-to-Speech (TTS) and Speech-to-006
Text (STT) models using hate and non-hate007
speech data. Our evaluation focuses on three008
key dimensions: (1) STT robustness, assess-009
ing the accuracy and gender sensitivity of STT010
models when transcribing synthetic versus hu-011
man audio; (2) TTS synthetic audio fidelity, ex-012
amining human-likeness and model preference013
through annotator evaluations and processing014
speed analysis; and (3) Impact on hate speech015
classification, quantifying how STT and TTS016
combinations affect downstream toxicity pre-017
dictions. Our findings show that synthetic au-018
dio, especially from Microsoft Edge TTS, out-019
performs human audio in both transcription020
accuracy and consistency. WhisperX-Align021
(extended based on OpenAI’s Whisper model)022
emerges as the most robust STT model across023
tasks, although some systems exhibit notable024
gender and domain-specific biases. We recom-025
mend Microsoft Edge TTS as a high fidelity026
benchmark and SpeechT5 as a human proxy027
for perceptual evaluation, while highlighting028
the need for bias aware deployment in sensi-029
tive applications, such as hate speech detection.030
The implementation code is publicly available031
at https://anonymous.4open.science/r/032
Can-AI-Replace-Human-Speech-D0EF/.033

1 Introduction034

The rapid expansion of social media has enabled035

users worldwide to disseminate their views and036

ideas at an unprecedented scale. Initially designed037

to foster connection and learning, these platforms038

have become breeding grounds for extremist ide-039

ologies. Early approaches to detecting harmful040

content mainly relied on text-based classification041

methods (Lee and Ram, 2024; Qian et al., 2018).042

However, as multimodal content, particularly hate- 043

ful memes and videos, has become more common, 044

research has expanded to include visual (Chen and 045

Pan, 2022; Lee et al., 2021) and audio (An et al., 046

2024; Atanu et al., 2023; Imbwaga et al., 2024) hate 047

speech detection. Audio-based detection, the latest 048

frontier in the "trilogy of hate," now encompasses 049

text, image, and audio modalities. A significant 050

barrier in audio classification is the lack of large- 051

scale, annotated datasets for domain-specific or 052

toxic speech. 053

To address this, researchers have turned to 054

Text-to-Speech (TTS) models to generate syn- 055

thetic audio from existing text-based hate speech 056

datasets, leveraging publicly available textual cor- 057

pora (Waseem and Hovy, 2016; Ocampo et al., 058

2023a,b). While synthetic audio offers a scalable 059

alternative to human recordings, it raises critical 060

questions: 061

1. STT Robustness: How well do current 062

STT models transcribe synthetic audio com- 063

pared to human speech across different voice 064

types and genders? We found that synthetic 065

voices, particularly those from Edge-TTS 066

and SpeechT5, consistently outperform hu- 067

man recordings in terms of accuracy. How- 068

ever, gender bias—especially favoring fe- 069

male voices—emerges across models, with 070

SpeechT5 showing the highest disparity. 071

2. TTS synthetic audio fidelity: Which TTS 072

models best simulate human speech from the 073

perspective of human perception? Through a 074

human-likeness ranking study and transcrip- 075

tion speed analysis, we show that SpeechT5 076

is rated most human-like, while Edge-TTS 077

provides the most efficient and consistent tran- 078

scriptions. We also reveal that STT systems 079

generally process female voices faster than 080

male ones, introducing potential biases in data 081

generation workflows. 082
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3. Impact on Hate Speech Classification: How083

do combinations of TTS and STT models in-084

fluence the accuracy of toxicity classification?085

Our results show that using synthetic audio im-086

proves classification performance compared087

to human speech. Nevertheless, hate samples088

are more prone to transcription errors, and spe-089

cific TTS-STT pairings—such as VITS with090

DeepSpeech—exacerbate these issues.091

Together, these findings provide a comprehen-092

sive benchmark for evaluating TTS and STT mod-093

els in both technical and ethical dimensions. We094

conclude with practical recommendations on model095

selection, emphasizing the trade-off between tran-096

scription fidelity and bias in high-stakes applica-097

tions like hate speech detection.098

2 Experiment Settings099

Before we investigate the findings, we will provide100

some background information about each model101

that will be used throughout this paper. The meth-102

ods used for data collection and classification. In103

addition to the technique for audio creation, tran-104

scription, and normalization. All the following105

methods and results were run on a research server.106

Multiple clusters were used, each with 24 CPU107

cores and 64 GB of RAM.108

2.1 TTS Models109

TTS is the technology that transforms written text110

into spoken audio, allowing systems to communi-111

cate with users through synthetic speech. We will112

be using the following TTS models, through out113

our paper.114

• VITS (Kim et al., 2021) with p225 for female115

voice and p229 for male voice.116

• SpeechT5 (Ao et al., 2022), clb for female117

voice and bdl for male voice.118

• Edge TTS1. We used Aria for female voice119

and Christopher for male voice.120

These models were chosen for two key reasons:121

their ease of use and widespread adoption, and122

their support for both male and female voices. The123

latter was essential to evaluate whether STT models124

exhibit inherent gender bias.125

1https://github.com/rany2/Edge-TTS

Figure 1: Overview of the data processing pipeline.

2.2 STT Models 126

STT refers to the ability of a system to convert spo- 127

ken language into written text, enabling machines 128

to interpret and process audio input. Below is a list 129

of STT models used in this paper: 130

• WhisperX (Bain et al., 2023) we utilize both 131

the standard WhisperX model and its aligned 132

variant WhisperX-Align. 133

• Vosk2. In this study, we employ both the 134

Vosk-Small and Vosk-Giga models. 135

• DeepSpeech3. We utilize both the stan- 136

dard DeepSpeech model and its vari- 137

ant enhanced with the language scorer 138

DeepSpeech-Scorer. 139

2.3 Data Processing Pipeline 140

2.3.1 Data Gathering & Filtering 141

The Mozilla Common Voice 21.0 dataset is a large, 142

multilingual speech corpus for automatic speech 143

recognition, crowdsourced from volunteers glob- 144

ally. Version 21.0 includes over 20,000 hours of 145

validated speech across more than 70 languages. 146

Each entry in the dataset consists of a unique 147

sentence ID, the spoken sentence, the name of 148

2https://alphacephei.com/vosk/
3https://github.com/mozilla/DeepSpeech
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the audio file, the speaker’s gender, and the num-149

ber of upvotes/downvotes the recording received.150

To classify sentences as hate or non-hate, we151

used the toxicity score provided by the Detoxify152

model (Hanu and Unitary team, 2020). Detoxify153

provides several (e.g., identity attack, sexually ex-154

plicit), we focus on the general toxicity score, as155

it aligns best with evaluating harmful or hateful156

speech. we chose the ‘original’ model, which is157

based on BERT. This model was chosen because158

other models yielded worse results, likely due to159

domain mismatch, as many were primarily trained160

on social media data.161

To set an appropriate toxicity threshold for la-162

belling hate content, we manually evaluated 50 hate163

and 50 non-hate sentences. We tested a range of164

threshold scores (0.6 - 0.9) and found that a thresh-165

old of 0.8 yielded the best performance in correctly166

identifying hateful content. These results can be167

found in Table 1.

Table 1: Performance metrics for Detoxify at varying toxicity
thresholds (manual annotation)

Threshold Precision Recall F1 Score

0.6 80.00 96.00 87.27
0.7 86.54 90.00 88.24
0.8 93.33 84.00 88.42
0.9 92.59 50.00 64.94

168

For the non-hate data entries, we included only169

those sentences that had both male and female170

audio recordings. When multiple recordings ex-171

isted for a given gender, we selected the one with172

the highest number of upvotes to prioritise audio173

quality. In contrast, for the hate entries, where174

the number of available samples was more lim-175

ited, we relaxed the gender-pairing requirement176

and selected only a single high-quality recording177

per sentence, again based on upvotes. Table 2178

summarises the number of sentences included in179

the hate and non-hate categories.180

Table 2: Number of sentences in hate and non-hate.

Type Male Female Unique Sentences

Non-Hate 24,536 24,536 24,536
Hate 692 334 924

2.3.2 TTS & STT Processing181

For each sentence, denoted as t, we generate the182

synthetic audio s′ by parsing it through the previ-183

ously selected TTS models. As the STT models184

require the audio file to be in the ‘wav’ format, we185

convert all audio files from ‘mp3’ into ‘wav’ by 186

using ffmpeg4. Then, for all the audio files (syn- 187

thetic s′ and human s), we process them through 188

the selected STT, resulting in t′synthetic and t′human. 189

2.3.3 Text Normalisation 190

To minimise transcription bias, particularly varia- 191

tions in how different models transcribe numbers, 192

we convert all numerals into their word represen- 193

tations (e.g., 42 → forty-two) using the inflect 194

library5. Following this, we normalise the tran- 195

scribed text by converting all characters to low- 196

ercase, removing terminal punctuation marks(“.", 197

“,", “?" and “!"), and eliminating any extra spacing 198

around symbols. This normalisation process en- 199

sures a fair and consistent basis for comparing the 200

outputs of different STT models. 201

3 Experimental Results 202

The evaluation metrics used in this paper can be 203

found in appendix D. 204

3.1 STT Robustness 205

Figure 2: STT robustness on non-hate speech: Comparison of transcription Accuracy across
TTS models and human audio (by gender).

In this section, we introduce a two-stage robust- 206

ness analysis to provide a comprehensive under- 207

standing of how resilient STT models are to varia- 208

tions in voice type, gender, and semantic content. 209

First, we assess the global robustness of STT 210

models when transcribing synthetic audio com- 211

pared to real human audio. Formally, let t de- 212

note the ground truth sentence and shuman the cor- 213

responding human-spoken audio. We proceed as 214

follows: 215

1. TTS Generation: Apply a text-to-speech 216

(TTS) model T to generate synthetic audio 217

4https://ffmpeg.org/
5https://pypi.org/project/inflect/
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Figure 3: STT robustness on hate speech: Comparison of transcription Accuracy across TTS
models and human audio (by gender).

Figure 4: Inter-gender consistency on non-hate speech: Measuring STT model sensitivity to
gender variation using Inter_C

from the text:218

ssynthetic = T (t).219

2. STT Transcription: Apply the same speech-220

to-text (STT) model S to both audio samples:221

thuman = S(shuman), tsynthetic = S(ssynthetic)222

3. Similarity Comparison: Measure the similar-223
ity between the transcriptions and the ground224
truth using an evaluation metric D(·, ·) (i.e.,225
Transcription Accuracy, Absolute Character226
Distance, and WER):227

Dhuman = D(t, thuman), Dsynthetic = D(t, tsynthetic)228

We then compare Dhuman and Dsynthetic to evaluate229

the robustness of the STT model when transcribing230

synthetic versus real human speech. The exper-231

imental results are shown in Figs. 2 and 3 with232

additional information in appendix, which we will233

detail the analysis in Section 3.1.1 and 3.1.2, re-234

spectively.235

Then, we examine how STT performance varies236

across speaker gender for each audio type. For-237

mally, we proceed as follows:238

Figure 5: Inter-gender consistency on hate speech: Measuring STT model sensitivity to
gender variation using Inter_C

1. TTS Generation: Apply a text-to-speech 239

(TTS) model T to generate synthetic audio 240

from the text for both male and female voices: 241

smale
synthetic = Tmale(t), sfemale

synthetic = Tfemale(t) 242

2. STT Transcription: Apply the same speech- 243
to-text (STT) model S to the human audio and 244
both synthetic audios: 245

tmale
human = S(shuman), tfemale

human = S(shuman), 246

247
tmale

synthetic = S(smale
synthetic), tfemale

synthetic = S(sfemale
synthetic) 248

3. Similarity Comparison: Measure the similar- 249
ity between the transcriptions and the ground 250
truth using an evaluation metric D(·, ·): 251

Dmale
human = D(t, tmale

human), Dfemale
human = D(t, tfemale

human), 252

253
Dmale

synthetic = D(t, tmale
synthetic), Dfemale

synthetic = D(t, tfemale
synthetic) 254

We then compare D
male/female
human , Dmale/female

synthetic to eval- 255

uate the robustness of the STT model when tran- 256

scribing real versus synthetic speech and investi- 257

gate any performance gaps related to speaker gen- 258

der. Figs. 4 and 5, which we will detail the analysis 259

in Section 3.1.1 and 3.1.2, respectively. 260

3.1.1 Non-Hate 261

STT Robustness with Synthetic vs. Human Au- 262

dio Fig. 2 presents the global robustness of STT 263

models across synthetic and human audio in the 264

non-hate speech domain, with heatmaps displaying 265

sentence-level accuracy, absolute character differ- 266

ence, and WER. 267

Performance on human speech varies signifi- 268

cantly across STT models, ranging from 10.45% 269

/ 8.63% to 47.37% / 45.47% for female and male 270

voices, respectively. This variation highlights 271

that even real human audio poses challenges for 272
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some STT models, particularly DeepSpeech and273

DeepSpeech-Scorer.274

Edge-TTS emerges as the most robust and bal-275

anced TTS model, outperforming both SpeechT5276

and human voices across all STT models. Its per-277

formance remains consistently high, with relatively278

low gender bias, indicating strong generalizability279

and clarity across genders. This makes Edge-TTS a280

strong candidate for use as a synthetic benchmark.281

Across the STT models, WhisperX-Align con-282

sistently achieves the best results, regardless283

of TTS voice or gender, and leads in transcrip-284

tion accuracy, character difference, and WER. It285

demonstrates a slight preference for female voices286

in non-hate samples, aligning with previously re-287

ported gender bias trends.288

Inter-Gender Robustness Analysis Fig. 4289

shows the inter-gender robustness of STT mod-290

els across synthetic and human audio in the non-291

hate domain, focusing on sentence-level agreement292

(InterC), absolute character difference, and WER293

across male and female voices for the same content.294

We observe that synthetic voices consistently295

outperform human voices in terms of inter-gender296

transcription consistency. Human audio yields297

the highest character-level differences across gen-298

ders, mainly when processed by DeepSpeech and299

DeepSpeech-Scorer, indicating that these models300

are more sensitive to natural voice variations.301

Interestingly, while VITS generally underper-302

forms in global accuracy (Fig. 2), it achieves strong303

inter-gender consistency across STT models. In304

particular, VITS paired with DeepSpeech per-305

forms better than human audio, which contrasts306

with the global results. This suggests that although307

VITS may struggle with overall transcription accu-308

racy, its generated male and female voices are more309

acoustically aligned, leading to higher cross-gender310

consistency.311

SpeechT5, despite being highly rated for human-312

likeness and global accuracy, exhibits the largest313

gender-based character differences. This further314

reinforces concerns about its strong gender bias,315

already observed in Fig. 2.316

Among STT models, Vosk-Giga delivers the317

best inter-gender consistency in this setting, out-318

performing even WhisperX-Align, which led in319

global metrics. This suggests that Vosk-Giga is320

less sensitive to pitch, timbre, or spectral variations321

introduced by gender shifts.322

Finally, the WER results reinforce earlier obser-323

vations: human audio again shows the most varia- 324

tion between genders, while synthetic voices, espe- 325

cially from Edge-TTS and VITS, are more stable. 326

Overall, this highlights that certain synthetic voices 327

offer not just better average performance, but also 328

stronger consistency across gender variants. 329

3.1.2 Hate 330

STT Robustness with Synthetic vs. Human Au- 331

dio Fig. 3 illustrates the performance of STT 332

models when transcribing synthetic versus human 333

audio in the hate speech domain. 334

Overall transcription performance declines 335

across all TTS and STT combinations when tran- 336

sitioning from non-hate to hate speech samples. 337

Human voice performance ranges from 8.82% / 338

6.86% to 40.20% / 43.14% (female / male), show- 339

ing slightly reduced variability compared to the 340

non-hate domain. 341

Despite the domain shift, Edge-TTS continues 342

to outperform all other TTS models across all STTs 343

and metrics, maintaining strong accuracy and low 344

character and word error rates. This reinforces its 345

status as the most robust and reliable TTS model 346

across different content types. 347

Across STT models, WhisperX-Align remains 348

the top performer in the evaluation metrics. How- 349

ever, in this domain, the gap between WhisperX- 350

Align and other STTs, such as Vosk-Giga, narrows, 351

indicating that more STT models can handle hate 352

speech robustly if paired with strong TTS input. 353

Another key difference from the non-hate set- 354

ting is the shift in gender preference. While most 355

models favored female voices in non-hate speech, 356

hate samples see a partial reversal: more STT 357

models prefer male voices, and gender bias magni- 358

tudes are generally smaller. This may indicate that 359

models perceive aggressive or emotionally charged 360

prosody in male synthetic voices as more intelligi- 361

ble in hate contexts. 362

Inter-Gender Robustness Analysis Fig. 5 ex- 363

amines the inter-gender transcription consistency 364

of STT models in the hate speech domain. 365

In line with global observations, we find that 366

all systems perform worse in the hate domain 367

compared to the non-hate setting. 368

Edge-TTS maintains its strong performance 369

across all metrics. It continues to produce the most 370

consistent outputs between male and female voices, 371

suggesting a balanced acoustic profile across gen- 372

ders even under emotionally or semantically com- 373
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plex content.374

Among STT models, Vosk-Giga again provides375

the most stable inter-gender results, outperform-376

ing even WhisperX-Align in consistency across377

genders. This trend mirrors the findings from the378

non-hate domain. It suggests that Vosk-Giga may379

be more resilient to pitch and tonal variations in-380

troduced by gender, particularly in emotionally381

charged speech.382

3.2 TTS Synthetic Audio Fidelity383

While identifying the most accurate TTS model is384

important, it does not necessarily indicate which385

model best replicates human speech. Therefore,386

we conducted a dedicated evaluation to determine387

which TTS model serves as the most suitable sub-388

stitute for human audio. This distinction is critical,389

especially if the most human-like model differs390

from the one that yields the highest transcription391

accuracy. Additionally, we examine whether lis-392

tener preferences exhibit gender-based variation,393

and whether processing time differs across TTS-394

STT combinations, particularly in cases where gen-395

der bias may lead to faster processing. If such396

disparities exist, they may influence the practical397

choice of synthetic voices for large-scale data gen-398

eration.399

To evaluate human-likeness and clarity, we con-400

ducted a perceptual study involving seven annota-401

tors. Each participant was asked to rank non-hate402

synthetic audio samples on a scale from 1 to 3,403

where 1 indicates the most human-like and 3 the404

least. Annotators also indicated which gendered405

voice (male or female) was more understandable406

for each TTS model. Each model was represented407

by three audio samples per gender. The number408

of samples was determined based on preliminary409

testing, which showed that annotators were able410

to form reliable judgements with one to two exam-411

ples, and three samples provided a good balance412

of confidence and coverage. Details about metrics413

used can be found in appendix D.1.414

3.2.1 Preferred TTS and Gender415

Table 3: Average human-likeness rankings for TTS models by
gender (lower is better)

Gender Edge (Rank) SpeechT5 (Rank) VITS (Rank)

Male 2.43 1.71 1.86
Female 2.0 1.86 2.14

Among the evaluated TTS models, Edge-TTS416

was initially identified as the best-performing417

Table 4: Annotator Preferences for Gendered Voices by TTS
Model

Preferred Gender Edge (%) SpeechT5 (%) VITS (%)

Female 42.86 71.43 71.43
Male 57.14 28.57 28.57

model based on objective metrics (Accuracy, WER 418

and absolute character difference). However, to 419

assess human-likeness, we refer to the subjective 420

ratings presented in Table. 3, where SpeechT5 421

was consistently rated as the most human-sounding 422

across all voice genders. Notably, Edge-TTS was 423

ranked as the least human-like model despite its 424

objective performance. 425

Additionally, the female voices exhibited a nar- 426

rower rating range compared to male voices, in- 427

dicating more consistent preferences or percep- 428

tions among listeners. The gap in ratings between 429

SpeechT5 and VITS was smaller for the male voice, 430

suggesting a more stable ranking order for male 431

speakers. 432

Table. 4 further reveals that annotators showed 433

a clear preference for female voices in both 434

the SpeechT5 and VITS models, whereas male 435

voices were preferred for Edge-TTS. Moreover, 436

the magnitude of gender preference bias was more 437

pronounced for SpeechT5 and VITS than for 438

Edge-TTS, indicating stronger listener preferences 439

aligned with gender for these models. 440

Overall, the experimental results demonstrate 441

that STT models are generally robust and perform 442

well across various TTS-generated samples. How- 443

ever, both the STT models and human annotators 444

demonstrate biases when the transcriptions origi- 445

nate from specific TTS voices. 446

3.2.2 Assessing Gender Bias in STT 447

Transcription Speed 448

Finally, we investigate whether there are any 449

gender-based biases in the processing time required 450

by STT models. To evaluate this, we use a subset 451

of 100 audio samples and measure the average tran- 452

scription time for each STT–TTS–gender combina- 453

tion. This setup mirrors our transcription method 454

used earlier. 455

Formally, let S denote a given STT model, and 456

T a TTS model. We define the processing times 457

for female and male voices as follows: 458

1. Female Voice Transcription Time: 459

tfemale = time(S(Tfemale(t))) 460
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Figure 6: Percentage difference in average processing time between male and female voices
across various TTS and STT model combinations. Negative values indicate faster processing
for female voices, while positive values indicate faster processing for male voices. Results
are based on 100 audio samples per configuration.

2. Male Voice Transcription Time:461

tmale = time(S(Tmale(t)))462

3. Relative Speed Difference: We then compute463

the relative difference in processing speed be-464

tween female and male samples as:465

SpeedDiff =
tfemale − tmale

tmale
× 100,466

where, SpeedDiff quantifies the percentage differ-467

ence in processing time between female and male468

audio for a given STT–TTS pair, allowing us to469

identify potential gender-related latency biases in470

STT performance; and time(·) denotes the average471

time taken to transcribe 100 audio samples.472

The results are presented in Fig. 6, and ad-473

ditional information is in the appendix E.2. As474

we can see, all synthetic voice models exhibit a475

preference for female voices in terms of faster476

processing times. In contrast, for human voice477

recordings, the preferred gender varies depend-478

ing on the specific STT model used. Notably, the479

gender-based processing time differences are most480

pronounced for the VITS and SpeechT5 models,481

with disparities reaching up to 33.35%. In general,482

larger models tend to have longer processing times483

compared to their smaller counterparts. An excep-484

tion is observed with DeepSpeech-Scorer, where485

enabling the language scorer unexpectedly resulted486

in faster processing.487

Due to the lack of publicly available informa-488

tion regarding the gender distribution in the train-489

ing data of these models, we can only hypothesise490

about the underlying causes of this observed bias.491

A possible reason could be that the model may 492

have been overexposed to female voice data during 493

training, resulting in fewer recognition paths for 494

male voices, or has allowed the model to become 495

attuned to specific vocal features more commonly 496

present in female speech, and thus faster processing 497

for female samples. Or differences in pre- and post- 498

processing pipelines might favour specific acoustic 499

characteristics that are more prevalent in female 500

voices, making them easier for the model to handle. 501

3.3 Impact of STT and TTS on Hate Speech 502

Classification 503

Modern audio-based classification pipelines of- 504

ten rely on transcripts generated by STT models. 505

Therefore, it is critical to understand how different 506

STT and TTS models influence the final classifi- 507

cation results, particularly in tasks involving hate 508

speech detection. 509

To evaluate this, we measure whether the clas- 510

sification of a sentence remains consistent before 511

and after applying TTS and STT transformations. 512

Let c(t) be the classification outcome of the orig- 513

inal sentence t, and let ttranscribed
j be the transcript 514

obtained by passing t through a TTS model fol- 515

lowed by an STT model. In experiments, we use 516

Detoxify model (Hanu and Unitary team, 2020) as 517

the classifier. 518

We define the classification preservation metric 519

as follows: 520

1. Original Classification: Assign a class label 521

to the baseline text input: 522

ybaseline
j = c(tj) 523

2. Transformed Classification: Apply a TTS 524
model T followed by an STT model S, then 525
classify the resulting transcription: 526

ttranscribed
j = S(T (tj)), ytranscribed

j = c(ttranscribed
j ) 527

3. Classification Stability: Compute the propor- 528
tion of unchanged classification outcomes: 529

Unchanged =
1

N

N∑
j=1

1
(
ytranscribed
j = ybaseline

j

)
, 530

where, N is the total number of sentences evalu- 531

ated, and 1(·) is the indicator function that returns 532

1 if the classification label remains unchanged (i.e., 533

does not flip from hate to non-hate or vice versa), 534

and 0 otherwise., and the metric Unchanged helps 535

quantify the reliability of STT and TTS models in 536
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Figure 7: Non-Hate Dataset Detoxify Scores: Transcription accuracy and average hate
speech score relative to the baseline

Figure 8: Hate Dataset Detoxify Scores: Transcription accuracy and average hate speech
score relative to the baseline

preserving semantic integrity under classification537

tasks sensitive to lexical changes.538

The results in Fig 7 & 8 show that, STT models539

generally perform worse with human speech than540

synthetic audio. The most significant degradation541

in classification accuracy (49.38%), was observed542

when combining DeepSpeech with a human hate543

speech sample. This suggests that transcription544

errors have a significant impact on downstream545

classification results.546

The impact was less pronounced for non-hate547

samples, indicating that inaccuracies are less likely548

to elevate non-hateful content into the hate cate-549

gory falsely. This asymmetry highlights the greater550

vulnerability of hate speech samples to semantic551

distortion during transcription.552

Among the TTS models evaluated, only Edge- 553

TTS and SpeechT5 consistently held average toxic- 554

ity scores exceeding the 0.8 threshold, reaffirming 555

their ability to preserve critical lexical cues associ- 556

ated with hate speech. Overall, Edge-TTS emerged 557

as the most reliable TTS model across both hate 558

and non-hate datasets. At the same time, WhisperX- 559

Align and Vosk-Giga were the top-performing STT 560

models in preserving classification fidelity. 561

4 Conclusion 562

This study examined the robustness of STT and 563

TTS models, focusing on inter-gender and intra- 564

gender metrics, gender bias, and processing speed. 565

The best-performing TTS model was Edge-TTS, 566

consistently delivering top results across all cate- 567

gories, indicating strong compatibility with various 568

STT models. SpeechT5 stood out as the most natu- 569

ral and human-like vocal output, making it a strong 570

candidate for a human audio baseline. For STT 571

models, WhisperX-Align was the top performer, ex- 572

hibiting high accuracy and low deviations at both 573

word and character levels. However, it showed 574

a gender bias towards female voices, particularly 575

with SpeechT5-generated audio. Despite this, its 576

overall performance remains superior, while Vosk- 577

Giga is recommended for scenarios requiring min- 578

imal gender bias. All STT models showed a ten- 579

dency to favor synthetic voices over human audio. 580

The study also identified a general bias towards 581

female voices, which affects evaluation metrics and 582

processing speed. As it was found to be faster to 583

process female spoken audio samples then male 584

ones. This bias may stem from training data im- 585

balances. Furthermore, STT model choice had a 586

more significant impact on hate speech classifica- 587

tion, with human audio samples causing more de- 588

viations than synthetic ones. It was also found that 589

current STT models struggle to transcript hate au- 590

dio correctly, requiring a fine tuned or better ASR 591

model. 592

In conclusion, Edge-TTS is recommended as a 593

high-performance TTS benchmark to estimate the 594

theoretical upper bound of model performance. At 595

the same time, SpeechT5 serves as an effective re- 596

placement for human baselines when human audio 597

is unavailable. For transcription tasks, WhisperX- 598

Align is recommended for its accuracy; however, 599

researchers should also account for potential gen- 600

der biases, particularly in hate speech classification. 601
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5 Limitations602

One main limitation of this study is the lack of603

gold-standard text transcriptions corresponding to604

the hate speech audio samples. This limitation re-605

sulted in a smaller and less comprehensive dataset606

of human-generated hate speech compared to the607

non-hate subset. Future work could address this608

by developing a larger, more representative dataset609

of hate speech audio with accurate ground-truth610

transcriptions.611

Another challenge encountered was that some612

TTS models occasionally failed to synthesize spe-613

cific audio files, requiring multiple attempts to gen-614

erate a balanced dataset. Despite these efforts, in-615

consistencies and gaps remained, which were only616

a few audio samples. Additionally, some models617

exhibited “hallucination” behaviour during tran-618

scription, repeatedly generating the same word and619

thereby degrading transcription quality.620

Lastly, platform and licensing restrictions lim-621

ited our ability to use more advanced commercial622

models such as Google Voice or OpenAI’s voice623

assistant, since generating audio with these tools624

would violate their terms of service. Consequently,625

future research in this area may be limited by the626

availability and ethical considerations surrounding627

cutting-edge speech synthesis technologies.628

The use of synthetic voice would allow for the629

reduction of the requirement for audio hate speech.630

However, by doing so, the increase in fidelity or631

humanness of audio may enable actors to use it to632

create hate speech and attack people.633

6 AI-Generated Content634

Acknowledgement635

We acknowledge the use of AI in this paper. We636

used ChatGPT to assist in creating table titles and637

captions. It was also used to improve paragraphs,638

but a human then rewrote/modified all generated639

paragraphs. It was also used to find better ways to640

display the data, i.e, changing it from a table to a641

graph, creating Python code to display new data642

options, and for basic code structure and optimisa-643

tion. The use of an AI-assisted spelling & grammar644

checker was also used in this paper.645

7 Appendix646

A TTS and STT Model Information647

• VITS (Kim et al., 2021) is a neural TTS model648

that unifies the training of the acoustic model649

and vocoder into a single framework. VITS 650

integrates a variational autoencoder (Kingma 651

et al., 2013), and normalising the flow. The ad- 652

dition of adversarial training, along with other 653

methods, is used to create natural-sounding 654

speech. 655

• SpeechT5 (Ao et al., 2022) is a unified model 656

for speech transcription, inspired by the work 657

of the T5 (Text-To-Text Transfer Transformer) 658

framework. It uses a shared encoder-decoder 659

architecture, and enables a range of tasks, 660

including speech recognition, text-to-speech, 661

speech translation, voice conversion, speech 662

enhancement, and speaker identification. 663

• Edge TTS6 is a Python wrapper of the TTS 664

service provided by Microsoft, which lever- 665

ages techniques such as FastSpeech to pro- 666

duce audio and supports multiple languages. 667

• WhisperX (Bain et al., 2023) extends Ope- 668

nAI’s Whisper model (Radford et al., 2023) by 669

enhancing timestamp alignment and improv- 670

ing transcription of longer audio recordings. 671

These advancements are achieved through 672

modifications to the Voice Activity Detec- 673

tion (VAD) component and the integration 674

of forced phoneme alignment, resulting in 675

more accurate word alignment. As a result, 676

WhisperX provides more precise timestamps 677

and higher-quality transcriptions. Making it 678

a widely used transcription model in industry 679

and research. 680

• Vosk7 is an open-source STT toolkit that pro- 681

vides real-time transcription capabilities. It 682

is built on top of the Kaldi automatic speech 683

recognition framework (Povey et al., 2011). 684

Vosk supports a range of model sizes to 685

accommodate different performance and re- 686

source requirements. 687

• DeepSpeech8 is an open-source implementa- 688

tion of the STT model proposed by Awni Han- 689

nun et al. (Hannun et al., 2014), developed 690

by Mozilla. It is designed to function both 691

with and without an external language scorer, 692

which helps improve transcription accuracy 693

by providing contextual guidance during the 694

decoding process. 695

6https://github.com/rany2/Edge-TTS
7https://alphacephei.com/vosk/
8https://github.com/mozilla/DeepSpeech
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B Dataset696

The common voice dataset is publicly available, at697

https://commonvoice.mozilla.org/en and is under698

Mozilla Public License 2.0.699

C Related Work700

Automatic hate speech classification has been a701

longstanding research focus within the NLP com-702

munity, with numerous studies exploring various703

classification frameworks and strategies. Notable704

contributions include the work of Tommaso Caselli705

et al. (Caselli et al., 2020) and Rui Cao, Roy Ka-706

Wei Lee, and Tuan-Anh Hoang (Cao et al., 2020),707

which propose different models and architectures708

for detecting hate speech. These methods are partic-709

ularly effective in identifying explicit hate speech710

in large, general-purpose datasets or within domain-711

specific contexts.712

Beyond basic classification, recent research has713

also investigated methods to enhance the accuracy714

and robustness of hate speech detection. For exam-715

ple, Yadav et al. (Yadav et al., 2024) introduced an716

approach that enriches input data with post-level717

descriptions, enabling large language models to bet-718

ter detect implicit hate speech. In contrast, Lee and719

Ram (Lee and Ram, 2024) proposed augmenting720

classification inputs with physiological informa-721

tion rather than relying solely on textual macro-722

and micro-context. Both approaches represent in-723

novative efforts to capture nuanced and indirect724

forms of harmful content that may otherwise evade725

detection by standard models.726

Some prior research has focused on predict-727

ing user interactions related to hate speech. For728

example, Masud et al. (Masud et al., 2021) pro-729

pose a case-based approach to predict the poten-730

tial spread of hate speech and introduce a corre-731

sponding dataset to support this task. Additionally,732

Herodotou, Chatzakou, and Kourtellis (of Electri-733

cal and Electronics Engineers, 2021-4) developed734

a method for real-time aggression detection, specif-735

ically designed to efficiently classify large volumes736

of data simultaneously.737

As the presentation of hate speech evolves, clas-738

sification methods have also advanced to address739

new modalities. In particular, approaches that in-740

corporate visual content have gained attention. For741

example, Lee R et al. (Lee et al., 2021) and Chen742

Y and Pan F (Chen and Pan, 2022) propose tech-743

niques that extract textual information alongside744

visual cues, such as identifying targeted individuals745

or extracting object tags, to improve hate speech 746

detection in multimodal content. 747

Modern audio-based hate speech classification 748

typically involves first transcribing audio record- 749

ings into text, which is then analysed using es- 750

tablished text-based hate speech classifiers. Wu 751

and Bhandary (Wu and Bhandary, 2020), uses the 752

Google Cloud Speech-to-Text API to transcribe 753

given YouTube videos, and then classify these be- 754

ing normal, racist, or sexist. This was done the 755

help of blob for sentiment analysis. The work by 756

Imbwaga, Chittaragi, and Koolagudi (Imbwaga 757

et al., 2024), also transcribes given audio into text. 758

But utilise whisper as there STT model. There 759

paper looked more into why classify sentences as 760

hate speech. And used multiple datasets and LIME 761

(Local Interpretable Model-agnostic Explanations) 762

(Ribeiro et al., 2016) model to understand the mod- 763

els’ predictions. Allowing for insights into models’ 764

classification decisions. Other possible implimen- 765

tations of audio classification are audio to classifi- 766

cation models. Examples such as the paper by An J 767

et al. (An et al., 2024), where they use TTS to cre- 768

ate their dataset. They showed two pipelines, one 769

being similar to others, where audio in transcribed 770

using Whisper and then classified with Bert, but 771

the other pipeline, utilise wav2vec (Schneider et al., 772

2019) to classify audio, into hate or non hate. 773

D Evaluation Metrics 774

The evaluation metrics cover multiple levels of 775

granularity, including sentence-level, word-level, 776

and character-level differences, as introduced in 777

the following subsections. 778

D.0.1 Transcription Accuracy (Radford et al., 779

2023) 780

It is computed at the sentence level to evaluate 781

how often a transcription matches the reference 782

text exactly. It is defined as the ratio of correct 783

transcriptions to the total number of transcriptions: 784

Accuracy =
#Correct Transcriptions
#Total Transcriptions

, (1) 785

where, #Correct Transcriptions refers to the number 786

of transcriptions that perfectly match the reference 787

sentence, and #Total Transcriptions denotes the 788

total number of sentences processed by the model. 789

D.0.2 Word Error Rate (WER) (Radford 790

et al., 2023) 791

WER is a standard metric for evaluating the per- 792

formance of transcription models. It quantifies the 793
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difference between the predicted transcription and794

a reference transcript by measuring the minimum795

number of word-level edits (i.e., substitutions, dele-796

tions, and insertions) required to convert the predic-797

tion into the reference. Formally, WER is defined798

as:799

WER =
#substitutions +#deletions +#insertions

#words in reference
.

(2)800

A lower WER indicates a more accurate transcrip-801

tion, making it a widely adopted benchmark for802

comparing STT systems.803

D.0.3 Absolute Character Difference804

We introduce this metric to quantify the character-805

level deviation between the STT-generated tran-806

script (t′transcript) and the reference baseline807

(tbaseline). It is defined as:808

∆abs
char =

∣∣len(t′transcript)− len(tbaseline)
∣∣ , (3)809

where len(·) denotes the number of characters in810

a given text. This metric captures the absolute dif-811

ference in length between the transcription and the812

baseline, providing a simple yet effective measure813

of how much the output diverges in terms of textual814

content.815

D.0.4 Inter-Gender Consensus816

To assess consistency across genders, we introduce817

the Inter-Gender Consensus metric. This measures818

the proportion of cases in which the transcriptions819

generated for male and female speakers are identi-820

cal for the same sentence. Formally, it is defined821

as:822

Cinter =
1

N

N∑
j=1

1(transcriptjfemale = transcriptjmale),

(4)823

where N is the total number of sentence instances824

evaluated, 1(·) is the indicator function, which re-825

turns 1 if the condition is true and 0 otherwise, and826

transcriptjfemale and transcriptjmale are the transcrip-827

tions for the jth sentence by female and male speak-828

ers, respectively. This metric captures the level of829

agreement between male and female transcriptions830

for the same content, providing insight into poten-831

tial gender-related variations in how models pro-832

cess speech. A lower consensus score may suggest833

that the model is more sensitive to gender-specific834

acoustic features or pronunciation differences.835

D.1 Human Like Metrics 836

To evaluate the perceptual results from human an- 837

notators, we conducted two analyses. First, we 838

computed the average human-likeness ranking for 839

each STT model using the following formula: 840

AverageRankingSTTi
=

1

N

N∑
j=1

rij , (5) 841

where AverageRankingSTTi
is the average ranking 842

of the ith STT model, rij is the ranking score given 843

by annotator j to STT model i and N is the total 844

number of annotators. 845

Next, to assess gender preference for each STT 846

model, we calculated the proportion of times each 847

gendered voice (male or female) was rated as more 848

understandable. This is formalized as: 849

PreferedGenderSTT
g =

Cg∑
g′∈GCg′

∗ 100, (6) 850

where g ∈ G = {male, female, none} are the op- 851

tions for each STT model, Cg is the total num- 852

ber of times each option g was selected, and 853

PreferedGenderg is the proportion of preferences 854

for category g. 855

E Extra Results 856

E.1 Global & Inter Gender Results 857

Figure 9: STT robustness on non-hate speech: Comparison of Absolute Character Difference
across TTS models and human audio (by gender).

E.2 Processing Speed Results 858

F Annotator Prompt 859

Here is the following instruction given to the anno- 860

tators 861

Please listen to the following audio files, for each 862

gender and TTS model. And rank them from 1-3 863

where 1 is the most human like and 3 the least 864
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Table 5: Average Time per Audio Sample (in Seconds) for
different STT models for each given TTS model and voice
option, running on 100 audio samples

TTS Model (F/M) Avg pre sample (sec) (F/M) Difference (%)

STT Model: Vosk-Small

SpeechT5 0.8918 / 0.9276 -3.86
VITS 0.6330 / 0.8987 -29.56
Edge 0.8968 / 0.8993 -0.28

Human 0.9714 / 0.9406 3.27

STT Model: Vosk-Giga

SpeechT5 1.7589 / 2.1478 -18.11
VITS 1.3254 / 1.9887 -33.35
Edge 1.9310 / 1.9386 -0.39

Human 2.7333 / 2.4341 12.29

STT Model: WhisperX

SpeechT5 0.3660 / 0.3809 -3.91
VITS 0.2497 / 0.3575 -30.15
Edge 0.3453 / 0.3637 -5.06

Human 0.3637 / 0.3740 -2.75

STT Model: WhisperX-Align

SpeechT5 1.0372 / 1.1782 -11.97
VITS 0.7697 / 1.0350 -25.63
Edge 1.0310 / 1.0698 -3.63

Human 1.0735 / 1.0890 -1.42

STT Model: DeepSpeech

SpeechT5 1.9496 / 2.7153 -28.2
VITS 1.5764 / 2.1352 -26.17
Edge 2.2974 / 2.3796 -3.45

Human 2.7654 / 2.6886 2.86

STT Model: DeepSpeech-Scorer

SpeechT5 1.6336 / 2.1171 -22.84
VITS 1.2177 / 1.6847 -27.72
Edge 1.8056 / 1.8468 -2.23

Human 2.2140 / 2.1591 2.54

Figure 10: STT robustness on non-hate speech: Comparison of transcription and WER
across TTS models and human audio (by gender).

Figure 11: STT robustness on hate speech: Comparison of transcription Absolute Character
Difference across TTS models and human audio (by gender).

human like. After please label which gender was 865

easier to listen for each TTS model. 866

Also agree that we use this data for our research. 867
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