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Abstract

State-of-the-art large language models require
specialized hardware and substantial energy to
operate. As a consequence, cloud-based services
that provide access to large language models have
become very popular. In these services, the price
users pay for an output provided by a model de-
pends on the number of tokens the model uses to
generate it—they pay a fixed price per token. In
this work, we show that this pricing mechanism
creates a financial incentive for providers to strate-
gize and misreport the (number of) tokens a model
used to generate an output, and users cannot prove,
or even know, whether a provider is overcharging
them. However, we also show that, if an unfaith-
ful provider is obliged to be transparent about
the generative process used by the model, mis-
reporting optimally without raising suspicion is
hard. Nevertheless, as a proof-of-concept, we
introduce an efficient heuristic algorithm that al-
lows providers to significantly overcharge users
without raising suspicion, highlighting the vulner-
ability of users under the current pay-per-token
pricing mechanism. Further, to completely elimi-
nate the financial incentive to strategize, we intro-
duce a simple incentive-compatible token pricing
mechanism. Under this mechanism, the price
users pay for an output provided by a model de-
pends on the number of characters of the output—
they pay a fixed price per character. Along the
way, to illustrate and complement our theoretical
results, we conduct experiments with several large
language models from the Llama, Gemma and
Ministral families, and input prompts from
the LMSYS Chatbot Arena platform.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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1. Introduction
Large language models (LLMs) are becoming ubiquitous
across multiple industries—from powering chatbots and
virtual assistants to driving innovation in research, health-
care, and finance (Bubeck et al., 2023; Mozannar et al.,
2024; Haupt & Marks, 2023; Romera-Paredes et al., 2024).
However, since the computational resources required to run
these models are significant, most (enterprise) users are un-
able to host them locally. As a result, users rely on a few
cloud-based providers that offer LLMs-as-a-service to ob-
tain access (Chen et al., 2023; Snell et al., 2024; Pais et al.,
2022; Patel et al., 2024).

In a typical LLM-as-a-service, a user submits a prompt to
the provider via an application programming interface (API).
Then, the provider feeds the prompt into an LLM running
on their own hardware, which (stochastically) generates a
sequence of tokens as an output using a generative process.1

Finally, the provider shares the output with the user and
charges them based on a simple pricing mechanism: a fixed
price per token.2 In this paper, we focus on the following
fundamental question:

What incentives does the pay-per-token pricing
mechanism create for providers?

Our key observation is that, in the interaction between a user
and a provider, there is an asymmetry of information (Mil-
grom & Roberts, 1987; Rasmusen, 1989; Mishra et al.,
1998). The provider observes the entire generative process
used by the model to generate an output, including its inter-
mediate steps and the final output tokens, whereas the user
only observes and pays for the (output) tokens shared with
them by the provider. This asymmetry sets the stage for a
situation known in economics as moral hazard (Holmström,
1979), where one party (the provider) has the opportunity to
take actions that are not observable by the other party (the
user) to maximize their own utility at the expense of the
other party.

1Tokens are units that make up sentences and paragraphs, such
as (sub-)words, symbols and numbers.

2https://ai.google.dev/gemini-api/docs/
pricing, https://openai.com/api/pricing/.
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The core of the problem lies in the fact that the tokeniza-
tion of a string is not unique. For example, consider that
the user submits the prompt “Where does the next
NeurIPS take place?” to the provider, the provider
feeds it into an LLM, and the model generates the output
“|San| Diego|” consisting of two tokens. Since the user is
oblivious to the generative process, a self-serving provider
has the capacity to misreport the tokenization of the out-
put to the user without even changing the underlying string.
For instance, the provider could simply share the tokeniza-
tion “|S|a|n| |D|i|e|g|o|” and overcharge the user for nine
tokens instead of two!

A simple remedy to build trust between the two parties
would be to require providers to share with the user more
information about the generative process used by the model,
such as the next-token distribution in each step of the pro-
cess. This would grant the user a form of (partial) auditabil-
ity, since tokenizations, such as the one mentioned above,
may have negligible probability in practice. Importantly, if
the provider implements procedures to prevent the genera-
tion of low-probability tokens (e.g., top-p sampling (Holtz-
man et al., 2019), top-k sampling), as commonly done in
practice, such tokenizations would not only be unlikely, but
rather implausible, giving grounds to the user to contest the
specific tokenization of the output shared with them by the
provider. In this case, a provider would have to invest addi-
tional effort (and resources) to misreport the tokenization of
an output while preserving its plausibility, making such a
strategic behavior significantly less worthy from a financial
point of view.

However, some providers may be highly reluctant to share
information that could potentially expose the internal work-
ings of their LLMs, especially if the LLMs are proprietary
and such information can be used by competitors (Carlini
et al., 2024). In the absence of any additional means for
the users to verify the truthfulness of the providers, the only
remaining option is to regulate the transactions between
users and providers in a way that eliminates the incentive
for providers to engage in misreporting in the first place.
To this end, we introduce and argue for a pay-per-character
pricing mechanism that serves exactly this purpose.

Our contributions. We start by characterizing tokenization
(mis)reporting in LLMs as a principal-agent problem (Gross-
man & Hart, 1992; Bolton & Dewatripont, 2004; Dütting
et al., 2024). Building upon this characterization, we make
the following contributions:

1. We show that, under the pay-per-token pricing
mechanism, providers have a financial incentive to
(mis-)report each character of the outputs generated by
the LLMs they serve as a separate token.

2. We show that, if the providers are transparent about the

next-token distribution used by the LLMs they serve,
they cannot expect to find the longest tokenization of
an output that is plausible in polynomial time.

3. We introduce a heuristic algorithm that, as a proof-
of-concept, allows providers to find plausible token
sequences that are longer or equal than a generated
output token sequence very efficiently.

4. We show that any incentive-compatible pricing mecha-
nism must price tokens linearly on their character count.
Moreover, we further show that, if each character is
priced equally, there is only one incentive-compatible
pricing mechanism, which we refer to as the pay-per-
character pricing mechanism.

Along the way, to illustrate and complement the above con-
tributions, we conduct a series of experiments using LLMs
from the Llama, Gemma and Ministral families and
user input prompts from the LMSYS Chatbot Arena plat-
form. 3 Under the pay-per-token pricing mechanism, we
empirically demonstrate that an unfaithful provider who is
transparent about the generative process used by the LLM
they serve can use our heuristic algorithm to overcharge
users by up to ∼13%.

Further related work. Our work builds upon further related
work on tokenization, economics of LLMs-as-a-service,
mechanism design, and game theory in LLMs.

Multiple lines of empirical evidence have shown that tok-
enization plays a central role in developing and analyzing
LLMs (Rajaraman et al., 2024; Geh et al., 2024; Singh &
Strouse, 2024; Giulianelli et al., 2024; Geh et al., 2025;
Petrov et al., 2023; Ovalle et al., 2024; Chatzi et al., 2025;
Benz et al., 2025). Consequently, there have been a variety
of efforts focusing on better understanding and improving
byte-pair encoding (BPE), the tokenization algorithm most
commonly used in LLMs (Bostrom & Durrett, 2020; Kozma
& Voderholzer, 2024; Zouhar et al., 2023; Lian et al., 2024b;
Sennrich et al., 2016; Lian et al., 2024a). However, this
line of work has overlooked the economic implications of
tokenization (in the context of LLMs-as-a-service), which
is the main focus of our work.

The literature on the economics of LLMs-as-a-service has
been recently growing very rapidly (La Malfa et al., 2024;
Bergemann et al., 2025; Mahmood, 2024; Laufer et al.,
2024; Cai et al., 2025; Saig et al., 2024). Within this liter-
ature, the works by Cai et al. (Cai et al., 2025) and Saig et
al. (Saig et al., 2024) are the most closely related to ours.
Similarly as in our work, they also study a setting in which
the provider has a financial incentive to be unfaithful to the
users. However, in their setting, the provider has an incen-

3We will release the code and data used in our experiments
under a liberal license with the final version of the paper.
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tive to be unfaithful about the LLM they use to generate
outputs rather than the tokenization of the outputs—it may
use a cheaper-to-run LLM than the one it charges the users
for. To reduce the financial incentive to strategize, Cai et al.
argue for solutions based on increased transparency as well
as trusted execution environments, and Saig et al. argue for
a pay-for-performance pricing mechanism using a contract
theory formulation.

The literature on mechanism design and game theory in
LLMs has explored incentive auction mechanisms for gener-
ated content (Duetting et al., 2024), LLM-augmented voting
processes (Fish et al., 2023), and the potential of LLMs as
economic agents (Horton, 2023; Raman et al., 2024; Zhang
et al., 2024; Sun et al., 2025; Kovarik et al., 2023). However,
to the best of our knowledge, our work is the first to explore
incentive-compatible token pricing mechanisms in LLMs.

2. A Principal-Agent Model of Delegated
Autoregressive Generation

We characterize the interaction between a user and an LLM
provider as a principal-agent problem (Grossman & Hart,
1992; Bolton & Dewatripont, 2004; Dütting et al., 2024),
where the principal (the user) delegates a task (a generation)
to the agent (the provider), who performs the task on behalf
of the principal and gets paid based on a commonly agreed-
upon contract.

In a typical interaction between a user and a provider, the
user first submits a prompt q ∈ Σ∗ to the provider, where Σ∗

denotes the set of all finite-length strings over an alphabet
(i.e., a finite set of characters) Σ. Then, the provider uses
their own hardware to query an LLM with the prompt q,
and the LLM (stochastically) generates an output token
sequence t = (t1, t2, . . . , tk) ∈ V∗ in an autoregressive
manner, one token at a time. Here, ti ∈ V is the i-th token
in a sequence of k tokens, V ⊂ Σ∗ is the (token) vocabulary
used by the LLM,4 and V∗ denotes the set of all finite-
length sequences over the vocabulary.5 Finally, the provider
reports to the user the generated output token sequence.
Importantly, since the user is oblivious to the autoregressive
process used by the LLM, the provider has the capacity
to misreport the output token sequence to the user—the
reported output token sequence t̃ may not correspond to the
generated output token sequence t.

Before the interaction between a user and an LLM provider

4We assume Σ ⊂ V since this condition must occur for the
vocabulary to be able to tokenize single characters. In this context,
note that standard vocabulary-building algorithms such as BPE
satisfy this by construction (Sennrich et al., 2016).

5In practice, the provider turns the prompt q into a sequence of
tokens using a tokenizer before passing it as input to the model,
but modeling this explicitly is not relevant in our work.

begins, both parties agree on a contract that specifies how
the provider should be compensated for the output token
sequence they report to the user. More specifically, the
user and the provider agree on a pricing mechanism that
determines the monetary reward r

(
t̃
)

that the user should
transfer to the provider for the reported output token se-
quence t̃:

Definition 2.1 (Pricing mechanism). Given a vocabulary of
tokens V , a pricing mechanism is a function r : V∗ → R≥0

that assigns a price to each reported output token sequence
t̃ ∈ V∗.

Throughout the paper, we focus on additive pricing mecha-
nisms, which include the widely used pay-per-token pricing
mechanism. An additive pricing mechanism independently
assigns a price r

(
t̃i
)

to each token t̃i in a reported out-
put token sequence t̃, and calculates the price r

(
t̃
)

of a
reported output token sequence by adding up the price of
each individual token.

Given a generated output token sequence t and a reported
output token sequence t̃, the provider’s utility Uprovider

(
t̃, t

)
is given by the difference between the monetary reward r

(
t̃
)

the provider receives from the user for t̃ and the cost c(t)
of generating the output token sequence t, i.e.,

Uprovider
(
t̃, t

)
= r

(
t̃
)
− c(t). (1)

Here, motivated by recent empirical studies showing
that the energy consumption scales linearly with output
length (Adamska et al., 2025; Fernandez et al., 2025), we
assume that the cost of generating t is a linear function of
its length, that is, c(t) = c0 · len(t), where c0 ∈ R>0 is
a constant that represents the running costs of generating a
single token (e.g., electricity costs, hardware maintenance),
and len(t) denotes the length (i.e., number of tokens) of t.

Given a reported output token sequence t̃, the user’s
utility Uuser

(
t̃
)

is given by the difference between the
value v(t̃) they derive from the sequence t̃ and the mon-
etary reward r(t̃) they pay to the provider for t̃, that is,
Uuser

(
t̃
)
= v

(
t̃
)
− r

(
t̃
)
. However, the user typically de-

rives value from the text that the output token sequence
represents, rather than the token sequence itself. For exam-
ple, in creative writing, the user may be interested in the
extent to which the generated text is captivating to read, and
in code generation, the user may be interested in operational
aspects of the generated code, such as its correctness and
efficiency. Therefore, we assume that v

(
t̃
)
= v

(
str(t̃)

)
,

where str : V∗ → Σ∗ maps a sequence of tokens to the
respective string, and we use |str(t̃)| to denote the number
of characters in the string str(t̃).

While the provider can, in principle, report any token se-
quence t̃ they prefer (e.g., the one that maximizes their
reward based on the pricing mechanism), arbitrary ma-

3
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nipulations of the generated output may easily raise sus-
picion about the provider’s practices. Therefore, in our
work, we restrict our focus to a more subtle strategy: misre-
porting the tokenization of the generated output sequence
while preserving its string-level representation. Under this
strategy, given a generated output token sequence t with
s = str(t), the provider reports a token sequence t̃ from
the set V∗

s =
{
t̃ ∈ V∗ : str

(
t̃
)
= s

}
. Then, it is easy to

see that, as long as there exists a token sequence t̃ ∈ V∗
s

such that r
(
t̃
)
> r (t), it holds that

Uprovider
(
t̃, t

)
> Uprovider (t, t) and v

(
t̃
)
= v(t).

In other words, the provider has an incentive not to be
truthful and potentially overcharge the user, and can do
so in a way that maintains the value the user derives from
the reported output sequence. In what follows, we will
explore the conditions under which such strategic behavior
can occur and remain undetected by the user. Later on, we
will propose a pay-per-character pricing mechanism that
provably eliminates the provider’s incentive for this type of
strategic behavior.

3. Provider Incentives under the
Pay-Per-Token Pricing Mechanism

In this section, we analyze the pay-per-token-pricing mech-
anism using the principal-agent model introduced in Sec-
tion 2. First, we show that, under this mechanism, the
provider’s utility is tightly linked to the length of the re-
ported output token sequence—the longer the reported se-
quence, the higher the provider’s utility. Then, we further
show that, if the provider is required to be transparent about
the next-token distribution used by the LLM they serve, they
cannot expect to find the longest tokenization of a given out-
put that appears to be plausible in polynomial time. Finally,
we demonstrate that, in practice, this computational hard-
ness does not preclude the provider from efficiently finding
plausible tokenizations of a given output that increase its
utility.

3.1. Pay-Per-Token Incentivizes (Mis-)Reporting Longer
Tokenizations

To be profitable, a cloud-based LLM provider needs to at
least amortize the cost of output generation. Therefore,
under the assumption that the cost of output generation
is a linear function of the output length, the widely used
pay-per-token pricing mechanism is a natural choice.

Definition 3.1 (Pay-per-token). A pricing mechanism
r : V∗ → R≥0 is called pay-per-token if and only if it is
additive and, for all t ∈ V , it satisfies that r(t) = r0, where
r0 ≥ 0 is a constant price per token.

As an immediate consequence, under the pay-per-token

pricing mechanism, the monetary reward that the provider
receives from reporting an output token sequence t̃ is a lin-
ear function of the output length, i.e., r

(
t̃
)
= r0 · len

(
t̃
)
.

Further, since the cost to generate the output sequence t is in-
dependent of the reported output sequence t̃, the provider’s
utility, given by Eq. 1, is simply a (linearly) increasing func-
tion of the length of the reported output sequence. That is,
for any true output sequence t with str(t) = s, it holds
that

Uprovider
(
t̃, t

)
> Uprovider

(
t̃′, t

)
for any t̃, t̃′ ∈ V∗

s

such that len
(
t̃
)
> len

(
t̃′
)
. (2)

Therefore, a rational provider seeking to maximize their
utility needs to find a tokenization of s with maximum
length, i.e.,

t̃max = argmax
t̃∈V∗

s

len
(
t̃
)
. (3)

Since LLM vocabularies typically include tokens corre-
sponding to all individual characters (i.e., Σ ⊂ V), it is
easy to see that the optimization problem admits a trivial
solution: report each character in s as a separate token.
Strikingly, the financial incentive for (mis-)reporting this
tokenization can be very significant in practice. For ex-
ample, for input prompts from the LMSYS Chatbot Arena
platform (Zheng et al., 2024), an unfaithful provider fol-
lowing such a strategy may overcharge users by ∼3×, as
shown in Table 1 (refer to Appendix A for additional details
regarding our experiments). Importantly, the user has no
grounds to verify whether such a tokenization is indeed the
one generated by the model, or if it has been manipulated
by the provider. That being said, such tokenizations may
arguably raise suspicion, particularly if the provider is re-
quired to be transparent about the next-token distribution
used by the LLM they serve. Next, we will show that an un-
faithful provider who aims to find the longest tokenization
that maximizes their utility and appears to be plausible is
likely to fail.

3.2. Misreporting Optimally Without Raising Suspicion
Is Hard

Given a generated output sequence t with s = str(t),
the provider may raise suspicion if they report t̃max, as de-
fined in Eq. 3, because the probability that an LLM actually
generates t̃max may be negligible in practice. In fact, if the
provider implements procedures to prevent the generation of
low-probability tokens, as commonly done in practice, the
reported output sequence t̃max may be implausible, as ex-
emplified in Figure 1 for top-p sampling. This lends support
to the idea that the provider should not only be required to
report an output sequence, but also the next-token probabil-
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Table 1. Financial gain from (mis-)reporting each output char-
acter as a separate token. The results show the percentage of
tokens overcharged by an unfaithful provider who (mis-)reports
each character in the output token sequences generated by an LLM
to 400 prompts from the LMSYS Chatbot Arena platform as a
separate token. Here, we set the temperature of the model to 1.0
and repeat each experiment 5 times to obtain 90% confidence in-
tervals.
LLM Overcharged tokens (%)

Llama-3.2-1B-Instruct 344.9± 3.8
Llama-3.2-3B-Instruct 345.2± 6.0
Gemma-3-1B-In 308.9± 1.4
Gemma-3-4B-In 320.8± 5.6
Ministral-8B-Instruct-2410 337.8± 4.29

ity corresponding to each token in the sequence, offering the
user the means to contest a reported output token sequence.

In what follows, we will focus on a setting in which the
provider implements top-p sampling (Holtzman et al., 2020),
a widely used sampling technique that, given a (partial)
token sequence t, restricts the sampling of the next token
to a set of tokens to the smallest set Vp(t) ⊆ V whose
cumulative next-token probability is at least p ∈ (0, 1), and
aims to find the longest plausible tokenization t̃ of s, i.e.,

max
t̃∈V∗

s

len
(
t̃
)

subject to t̃i ∈ Vp(t̃≤i−1) ∀i ∈ [len
(
t̃
)
],

(4)

where t̃≤i−1 = (t̃1, . . . , t̃i−1) is the prefix of the reported
output sequence up to the i-th token.

The following theorem tells us that, in general, the provider
cannot expect to solve the problem of finding the longest
plausible tokenization under top-p sampling in polynomial
time:6

Theorem 3.2. The problem of finding the longest tokeniza-
tion of a given output that is plausible under top-p sampling,
as defined in Eq. 4, is NP-Hard.

The proof of the above theorem relies on a reduction from
the Hamiltonian path problem (Karp, 1972). More specifi-
cally, given a graph, it creates an instance of our problem
that establishes a one-to-one correspondence between a path
that does not visit any node twice and a token sequence that
is plausible only if it does not include any token twice. In
Appendix B.1.1, we show that the above hardness result can
be extended to a setting in which the provider implements
top-k sampling and, in Appendix B.1.2, we show that it can
also be extended to a setting in which the provider does
not implement any procedure to prevent the generation of
low-probability tokens but aims to report sequences whose

6All proofs of theorems and propositions can be found in Ap-
pendix B.

generation probability is greater than a given threshold.

Further, the above hardness result readily implies that there
exists a computational barrier that precludes an unfaithful
provider from optimally benefiting from misreporting with-
out raising suspicion. However, we will next demonstrate
that, in practice, it does not rule out the possibility that a
provider efficiently finds and (mis-)reports plausible tok-
enizations t̃ longer than t.

3.3. Can a Provider Overcharge a User Without Raising
Suspicion?

We answer this question affirmatively. As a proof-of-
concept, we introduce a simple heuristic algorithm that,
given a generated output sequence t with s = str(t), ef-
ficiently finds a plausible tokenization t̃ of s longer than
or equal to t. Here, our goal is to demonstrate that, under
the pay-per-token pricing mechanism predominantly used
by cloud providers of LLM-as-a-service, users are indeed
vulnerable to self-serving providers who may overcharge
them without raising suspicion.

Our heuristic algorithm, summarized in Algorithm 1, is
based on the key empirical observation that, given the most
likely tokenization t of a string s = str(t), alternative
tokenizations of s that are not too different from t are very
likely to be plausible, as exemplified by Figure 1. In a nut-
shell, our algorithm starts from a given output sequence t
and iteratively splits tokens in it for a number of iterations
m specified by the provider. In each iteration, the algorithm
selects the token with the highest index in the vocabulary
and, if it is longer than one character, it splits it into a pair
of new tokens with the highest minimum index in the vocab-
ulary whose concatenation maps to the same string.7 The
algorithm continues either until it has performed m splits
or the selected token is a single character, in which case it
terminates the loop. Finally, it checks whether the resulting
token sequence t̂ is plausible and, if it is indeed plausible,
it reports it to the user. For example, under top-p sam-
pling, evaluating plausibility reduces to checking whether
t̂i ∈ Vp(t̂≤i−1) for all i ∈ [len(t̂)]. However, our algo-
rithm is agnostic to the choice of plausibility criteria (refer
to Appendices B.1.1 and B.1.2 for alternatives). If t̂ is
not plausible, the algorithm reports the true output token
sequence t.

Importantly, an efficient implementation of Algorithm 1 has
a complexity of O(m(logm + σmax)), where σmax is the
number of characters in the longest token in the vocabulary,
and it requires to evaluate the plausibility of a single token

7We focus on splitting tokens based on their index motivated
by the BPE algorithm, where tokens with higher indices are (gen-
erally) longer, and hence are more likely to result in a plausible
tokenization. Refer to Appendix C.2 for concrete examples of how
our heuristic modifies token sequences.
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Figure 1. Distribution of tokenizations for two different output strings using the tokenizer of Llama-3.2-1B-Instruct. The
panels show the distribution of the length of plausible token sequences for two output strings under top-p sampling for two different
values of p and under standard sampling (“No top-p”). Here, we set the temperature of the model to 1.0, and denote the most likely
tokenization of the string using an asterisk (“*”).

sequence—the resulting token sequence t̂. In that context,
note that a provider can evaluate the plausibility of a token
sequence in a single forward pass of the model, as in specu-
lative sampling (Jie et al., 2025; Vaswani et al., 2023). As a
consequence, we argue that, from the provider’s perspective,
the cost of running Algorithm 1 is negligible in comparison
with the monetary reward due to overcharged tokens.

Using prompts from the LMSYS Chatbot Arena platform,
we find empirical evidence that, despite its simplicity, Al-
gorithm 1 succeeds at helping a provider overcharge users
whenever they serve LLMs with temperature values >1.0,
as those commonly used in creative writing tasks. Fig-
ure 2 summarizes the results for two LLMs under top-p
sampling and temperature 1.3. We find that, for Llama-
3.2-1B-Instruct, a provider who uses Algorithm 1
can overcharge users by up to 9.5%, 1.6% and 0.3%, and,
for Ministral-8B-Instruct-2410, they can over-
charge by up to 13%, 2.6%, and 0.3%, respectively for
p = 0.99, 0.95, 0.9. Moreover, we also find that the finan-
cial gain is unimodal with respect to the number of iterations
m and the optimal value of m decreases as p decreases and
achieving plausibility becomes harder. This is because, for
large values of m, the token sequence t̂ resulting from itera-
tively splitting tokens, becomes less likely to be plausible, as
shown in Figure 3 in Appendix C.1. However, if plausible,
it does provide a strictly larger financial gain.

The above empirical results demonstrate that there exist
efficient and easy-to-implement algorithms that allow a
provider to overcharge users without raising suspicion, leav-
ing users vulnerable to the (potentially) malicious behavior

Algorithm 1 It returns a plausible token sequence t̃ with
length greater or equal than the length of t

Input True output token sequence t, number of iterations
m, token-to-id function id(•)
Initialize t̂← t
for m iterations do

i← argmaxj∈[len(t̂)] id(t̂j) ▷ Pick the token with
the highest index
if |str

(
t̂i
)
| = 1 then

break ▷ If it corresponds to a single character,
terminate the loop

end if
(t′1, t

′
2)← argmax

v1,v2∈V:

str((v1,v2))=str(t̂i)

min (id(v1),id(v2))

t̂←
(
t̂<i, t

′
1, t

′
2, t̂>i

)
▷ If not, split it into a pair of

tokens with the max-min index
end for
if plausible

(
t̂
)

then
t̃← t̂ ▷ If the resulting token sequence is plausible,
report it to the user

else
t̃← t ▷ If not, report the true output token sequence

end if
return t̃

of providers. To address this vulnerability, in the next sec-
tion, we introduce a pricing mechanism that eliminates the
provider’s incentive to misreport an output token sequence,
by design.
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4. An Incentive-Compatible Pricing
Mechanism

To eliminate the provider’s incentive to misreport an out-
put token sequence, in this section, we look into the design
of incentive-compatible pricing mechanisms. Incentive-
compatibility is a (desirable) property studied in mechanism
design (Nisan & Ronen, 2001) that, in the context of our
work, ensures that the pricing mechanism creates no eco-
nomic incentive for the provider to misreport an output
token sequence—they cannot benefit from not telling the
truth.8

Definition 4.1. A pricing mechanism r is incentive-
compatible if and only if, for any generated output token
sequence t ∈ V∗ and any reported output token sequence
t̃ ∈ V∗, it holds that Uprovider(t, t) ≥ Uprovider(t̃, t).

Importantly, if a pricing mechanism satisfies incentive-
compatibility, the monetary reward a provider receives for
reporting an output token sequence t̃ depends only on the
string s = str

(
t̃
)

and not on the token sequence itself, as
shown by the following proposition:

Proposition 4.2. If a pricing mechanism r is incentive-
compatible, then, for all t̂, t′ ∈ V∗ such that str

(
t̂
)
=

str (t′), it holds that r
(
t̂
)
= r (t′).

Perhaps surprisingly, the above proposition readily allows
us to provide a simple characterization of the family of
incentive-compatible pricing mechanisms. In particular, the
following theorem tells us that it consists of all mechanisms
that charge for an output sequence t linearly on its character
counts:

Theorem 4.3. A pricing mechanism r is additive and
incentive-compatible if and only if

r(t) =
∑
σ∈Σ

countσ(t) · r(σ) for all t ∈ V, (5)

where countσ(t) counts the number of occurrences of the
character σ in str(t).

As an immediate consequence, if the provider decides to
assign the same price rc to each character σ ∈ Σ, there
exists only one incentive-compatible pricing mechanism,
i.e., r(t) = |str(t)| · rc, which we refer to as the pay-per-
character pricing mechanism.

Implementation and downstream effects of pay-per-
character. The pay-per-character pricing mechanism is
a simple solution to the problem of misreporting output to-
ken sequences. However, in practice, both providers and
users may like to avoid financial overheads from transition-
ing from the pay-per-token to the pay-per-character pric-
ing mechanism. In this context, one simple way to reduce

8In the mechanism design literature, an incentive-compatible
mechanism is also called truthful or strategy-proof.

the overheads is to set the price of a single character to
rc = r0/cpt, where r0 is the price of a single token under
the provider’s current pay-per-token pricing mechanism and
cpt is the (empirical) average number of characters per
token across the responses to user prompts. For instance, in
the responses to prompts from the LMSYS Chatbot Arena
platform used in our experiments, the average number of
characters per token is cpt = 4.50 for LLMs in the Llama
family, cpt = 4.22 for the Gemma family and cpt = 4.43
for the Ministral family. This would ensure that, in ex-
pectation, the provider’s revenue and the users’ cost are the
same under both pricing mechanisms.

Moreover, transitioning from a pay-per-token to the pay-
per-character pricing mechanism creates positive incentives
for providers that choose to truthfully report the generated
token sequence. Indeed, under pay-per-token, given two
token sequences t and t′ such that str(t) = str(t′), a
provider that faithfully reports tokenizations would have
higher utility when the longest sequence amongst t and
t′ is generated. On the contrary, for a faithful provider
under the pay-per-character pricing mechanism, it holds
that Uprovider (t, t) > Uprovider (t

′, t′) whenever len(t) <
len(t′). In other words, a provider that never misreports
has a clear incentive to generate the shortest possible out-
put token sequence, and improve current tokenization al-
gorithms such as BPE, so that they compress the output
token sequence as much as possible (Petrov et al., 2023).
Such improvements would not only benefit the provider
by increasing their utility but also have significant positive
downstream effects, such as reduced energy consumption,
faster inference, and better use of limited context windows.

5. Discussion and Limitations
In this section, we highlight several limitations of our work,
discuss its broader impact, and propose avenues for future
work.

Model assumptions. We have focused on additive pricing
mechanisms, which includes the widely used pay-per-token
mechanism. It would be interesting to analyze provider
incentives under other families of pricing mechanisms pro-
posed in the literature, such as those based on the quality
of the generated text (Saig et al., 2024). In this context,
a natural direction is to design a pricing mechanism that
simultaneously incentivizes multiple desirable behaviors,
such as faithful token reporting and output quality. More-
over, we have assumed that the provider pays a negligible
cost for evaluating the plausibility of a token sequence, as
Algorithm 1 only performs such an evaluation once. How-
ever, the design of more complex algorithms performing
multiple evaluations should consider the trade-off between
the additional profit obtained by using the algorithm against
the cost of running it. Further, in the context of contract
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Figure 2. Financial gain from misreporting the tokenization of outputs using Algorithm 1. The panels show the percentage of tokens
overcharged by an unfaithful provider who misreports the tokenization of the outputs generated by an LLM to 400 prompts from the
LMSYS Chatbot Arena platform using Algorithm 1, for different values of m and p. Here, we set the temperature of the model to 1.3
and repeat each experiment 5 times to obtain 90% confidence intervals. Refer to Appendix C.1 for additional results using alternative
temperature values and other LLMs.

theory, a principal typically designs a contract in order to
disincentivize the agent from taking hidden unwanted ac-
tions (Dütting et al., 2024). In our case, the provider (i.e.,
the agent) is the one who both designs the pricing mecha-
nism (i.e., the contract) and has the power to take hidden
actions, leaving the user with limited leverage. In practice, a
shift from pay-per-token to other pricing mechanisms, such
as pay-per-character, would require external regulation (or
user pressure).

Methods. To demonstrate the vulnerability of users under
the pay-per-token pricing mechanism, we have introduced a
heuristic algorithm that allows the provider to increase their
profit by finding longer yet plausible tokenizations of the
true output token sequence. However, there may exist other,
more sophisticated methods for the provider to take advan-
tage of the pay-per-token pricing mechanism, and there
may also exist ways to defend users against such malicious
behavior, other than a change of the pricing mechanism. Fur-
ther, misreporting the tokenization of an output sequence
is not the only type of strategic behavior that the provider
can exhibit, as they have the capacity to misreport other
elements of the generative process, such as the next-token
distributions or the output string. It would be interesting to
explore the implications of these other types of attacks, as
well as the potential for auditing them, for example, by de-
tecting whether there is a mismatch between the next-token
distributions and the frequencies of the tokens over multiple
generations.

Evaluation. We have conducted experiments with state-of-
the-art open-weights LLMs from the Llama, Gemma and

Ministral families, using different tokenizers and archi-
tectures. It would be interesting to evaluate the possibility of
misreporting in proprietary LLMs, which are widely used in
practice. Further, we have illustrated our theoretical results
using prompts from the LMSYS Chatbot Arena platform.
Although this platform is arguably the most widely used
for LLM evaluation based on pairwise comparisons, it is
important to note that it has been recently criticized (Singh
et al., 2025; Zhou et al., 2023), and the prompts submitted
to it may not be representative of the real-world distribution
of user prompts.

6. Conclusions
In this work, we have studied the financial incentives
of cloud-based providers in LLM-as-a-service using a
principal-agent model of delegated autoregressive gener-
ation. We have demonstrated that the widely used pay-per-
token pricing mechanism incentivizes a provider to misre-
port the tokenization of the outputs generated by the LLM
they serve. We have shown that, if the provider is required
to be transparent about the generative process used by the
LLM, it is provably hard for the provider to optimally bene-
fit from misreporting without raising suspicion. However,
we have introduced an efficient algorithm that, in practice,
allows a transparent provider to benefit from misreporting,
overcharging users significantly without raising suspicion.
To address this vulnerability, we have introduced a simple
incentive-compatible pricing mechanism, pay-per-character,
which eliminates the financial incentive for misreporting
tokenizations. We hope that our work will raise aware-
ness that, under pay-per-token, users of LLM-as-a-service

8
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are vulnerable to (unfaithful) providers, and encourage a
paradigm shift towards alternative pricing mechanisms, such
as pay-per-character.

Impact statement
Our work sheds light on the perverse incentives that arise
from the pay-per-token pricing mechanism, which is the
most widely used pricing mechanism in the context of LLM-
as-a-service. On the positive side, we believe that our work
can spark a discussion on the need for more transparent and
fair pricing mechanisms in the LLM ecosystem. On the
flip side, the heuristic algorithm we introduce could be mis-
used by a malicious provider to overcharge users. However,
we emphasize that our intention is to use it as a proof-of-
concept, and not as an algorithm to be deployed in practice,
similarly to the broader literature on adversarial attacks in
machine learning (Szegedy et al., 2013; Goodfellow et al.,
2014; Chakraborty et al., 2021).
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A. Additional Experimental Details
Here, we provide additional details on the experimental setup, including the hardware used, the dataset and models used, as
well as details on the generation process.

Hardware setup. Our experiments are executed on a compute server equipped with 2 × Intel Xeon Gold 5317 CPU, 1,024
GB main memory, and 2 × A100 Nvidia Tesla GPU (80 GB, Ampere Architecture). In each experiment, a single Nvidia
A100 GPU is used.

Datasets. For the results presented in Figure 2, Table 1 and Appendix C.1 we generated model responses to prompts
obtained from the LMSYS-Chat-1M dataset (Zheng et al., 2024). We use the LMSYS-Chat-1M dataset exclusively to
obtain a varied sample of potential user prompts. We filter user prompts to obtain the 400 first questions that are in English
language (by using the language keyword) and whose length (in number of characters) is in the range [20, 100], to avoid
trivial or overly elaborated prompts.

Models. In our experiments, we use the models Llama-3.2-3B-Instruct and Llama-3.2-3B-Instruct from
the Llama family, the models Gemma-3-1B-It and Gemma-3-4B-It from the Gemma family, and Ministral-
8BInstruct-2410. The models are obtained from publicly available repositories from Hugging Face9.

Generation details. For the experiments in Figure 1, we run an exhaustive search over all possible tokenizations for each
string, reporting the distribution of their length under the name “No top-p”. For every tokenization, we make a forward pass
with the model Llama-3.2-1B-Instruct to obtain the token probabilities from the combination of prompt and token
sequence. We then verify if the token sequence is plausible under top-p sampling with temperature 1 and various values of
the parameter p. Note that since this is a deterministic process, we do not report any error bars.

For the experiments involving the LMSYS dataset, we use the transformers library in Python 3.11 to generate
outputs of varying length between 200 and 300 tokens under various temperature and p values. Each model generates a
total of 2000 output token sequences for the first 400 filtered prompts of the LMSYS dataset, by running 5 independent
generations with different seeds. We then compute standard deviations across the 5 repetitions, and 90% symmetric
confidence intervals for the mean values assuming a t−distribution value of 2.015. The 90% confidence intervals are shown
in the plots and table.

Licenses. The LMSYS-Chat-1M dataset is licensed under the LMSYS-Chat-1M Dataset License Agreement.10 The Llama-
3.2-1B-Instruct and Llama-3.2-3B-Instruct models are licensed under the LLAMA 3.2 COMMUNITY
LICENSE AGREEMENT.11. The Gemma-3-1B-It and Gemma-3-4B-It models are licensed under the GEMMA
TERMS OF USE.12. The Ministral-8B-Instruct-2410 model is licensed under the MISTRAL AI RESEARCH
LICENSE.13.

9https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/google/gemma-3-1b-it
https://huggingface.co/google/gemma-3-4b-it
https://huggingface.co/mistralai/Ministral-8B-Instruct-2410

10https://huggingface.co/datasets/lmsys/lmsys-chat-1m
11https://ai.google.dev/gemma/terms
12https://www.gemma.com/gemma3_0/license/
13https://mistral.ai/static/licenses/MRL-0.1.md
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B. Proofs
B.1. Proof of Theorem 3.2

We prove the theorem by reduction from the Hamiltonian path problem (Karp, 2010), which is known to be NP-complete, to
the problem of finding a plausible tokenization under top-p sampling longer than a given number of tokens. Consequently,
this will prove the hardness of the problem of finding a longest plausible token sequence t̃ under top-p sampling, as stated in
Eq. 4. In the Hamiltonian path problem, we are given a directed graph G, that is, a set of nodes N = {1, . . . , n} and a set
of edges E between them, where e = (ν, ν′) denotes an edge from node ν to node ν′. The goal is to decide whether there
exists a path that visits all nodes exactly once.

The core idea of the construction is to represent a path in the graph G as a sequence of tokens, where each node j ∈ N is
represented by a token consisting of j times the character “a”. In addition, we set the parameter p ∈ (0, 1) of top-p sampling
and the next-token distributions of the LLM such that a token sequence t̃ with str

(
t̃
)
= str(t) and len

(
t̃
)
> 1 is

plausible if and only if the tokens in t̃ correspond to a Hamiltonian path in the graph G.

We proceed with the construction as follows. Let Σ = {“a”} be the alphabet and the LLM’s vocabulary be

V = {“a”, “aa”, . . . , “a...a”︸ ︷︷ ︸
n times

, “a...a”︸ ︷︷ ︸
λ times

,∅},

where λ =
∑n

j=1 j = n(n+ 1)/2 and ∅ denotes the end-of-sequence token. Moreover, let the true output token sequence t
consist of a single token—the one that contains λ times the character “a”. Further, to keep the notation concise, we refer to
the set of the first n tokens in V as Vn. Then, we define a mapping Φ: Vn → N from tokens to nodes as

Φ(“a...a”︸ ︷︷ ︸
j times

) = j for j = 1, . . . , n.

We fix the parameter p and a next-token distribution of the LLM such that, given a (partial) token sequence t̃ =
(
t̃1, . . . , t̃k

)
,

the restricted set of tokens Vp
(
t̃
)

from which the LLM can sample the next token is given by

Vp
(
t̃
)
=


{∅} if

∣∣str
(
t̃
)∣∣ ≥ λ

V \∅ if t̃ = (){
v ∈ Vn : v ̸= t̃i for all i ∈ [k] and

(
Φ
(
t̃k
)
,Φ(v)

)
∈ E

}
∪ {∅} otherwise.

(6)

In words, the last case states that the LLM can sample any token consisting of up to n times the character “a” as long as it is
not already in the sequence t̃, that is, the corresponding node has not been visited yet, and there is an edge in the graph G
connecting that node to the node corresponding to the last token in t̃. When the sequence t̃ is empty (i.e., the path has not
started yet), the LLM can sample any token in V except for the end-of-sequence token ∅, which it is only allowed to sample
when the sequence t̃ contains at least λ characters.

We can now show that a Hamiltonian path in the graph G exists if and only if the solution t̃ to the optimization problem
given by Eq. 4 has len

(
t̃
)
> 1.14 Assume that the optimal solution to the problem is such that len

(
t̃
)
> 1. Then, t̃

cannot contain the token that consists of λ times the character “a” because this would imply that it consists of strictly more
than λ characters and, therefore, str(t̃) ̸= str(t). Additionally, t̃ cannot contain any token twice as that would violate
its plausibility according to Eq. 6. Therefore, it has to hold that t̃ contains all tokens in Vn exactly once, since this is the
only way to form a sequence that contains λ =

∑n
j=1 j characters. This implies that there exists a sequence of edges(

Φ
(
t̃1
)
,Φ

(
t̃2
))

, . . . ,
(
Φ
(
t̃n−1

)
,Φ

(
t̃n
))

in the graph G that visits all nodes exactly once. Hence, a Hamiltonian path
exists.

Now, assume that there exists a Hamiltonian path in the graph G that visits all nodes once, forming a sequence (ν1, ν2, . . . , νn)
with νi ∈ N and νi ̸= νj for i ̸= j. Then, the corresponding token sequence t′ = (t′1, t

′
2, . . . , t

′
n) with Φ (t′i) = νi for

i ∈ [n] is a valid tokenization of the string str(t) since
∑n

i=1 |str(t′i)| =
∑n

i=1 νi = λ. Moreover, the sequence t′ is
plausible by construction and satisfies len (t′) = n > 1 = len

(
t̃
)
. Finally, note that if G does not admit a Hamiltonian

path, then str(t) cannot be tokenized as a sequence of plausible tokens in Vn. Hence, the only plausible tokenization is the
token with λ characters, which has length 1. This concludes the proof.

14For ease of exposition, we assume that the end-of-sequence token ∅ does not contribute to the length of the sequence t̃.

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

In what follows, we present two extensions of the reduction to other settings where a provider may want to misreport the
output token sequence without raising suspicion. Specifically, we consider the case where the provider reports a token
sequence t̃ that is plausible under top-k sampling and the case where the provider reports a token sequence t̃ whose
probability is greater than a given threshold.

B.1.1. HARDNESS OF FINDING THE LONGEST PLAUSIBLE TOKENIZATION UNDER TOP-k SAMPLING

Top-k sampling is an approach of filtering out low-probability tokens during the sampling process, similar to top-p sampling.
In top-k sampling, given a partial token sequence t̃, the LLM samples the next token from the set of k most probable tokens
Vk

(
t̃
)

at each step of the autoregressive process, where k ∈ {1, . . . , |V| − 1}. In this setting, the problem of finding a
longest tokenization of a given output token sequence t that is plausible under top-k sampling is NP-Hard with the core idea
of the reduction being similar to the one for top-p sampling.

The main difference lies in the fact that, in top-k sampling, the restricted set of tokens Vk
(
t̃
)

needs to have a fixed size k in
contrast to the construction of Vp

(
t̃
)

in Eq. 6, which is a variable size set. To ensure that similar arguments for establishing
a one-to-one correspondence between a Hamiltonian path in the graph G and a plausible token sequence t̃ of length greater
than 1 still hold, one can construct the set Vk

(
t̃
)

using a similar approach as in Eq. 6 but also including “padding” tokens
that do not correspond to any node in the graph G to maintain a fixed size. To this end, we can maintain the same true output
token sequence t, consisting of n(n+ 1)/2 times “a” and augment the vocabulary V of the previous construction by adding
n additional tokens

Vb = {“b”, “bb”, . . . , “b...b”︸ ︷︷ ︸
n times

}

that are irrelevant for the string s = str(t), do not correspond to any node in the graph G, and do not affect the mapping Φ.

Then, note that, the set Vp
(
t̃
)

in Eq. 6 contains at most n+ 1 tokens. Here, the idea is to set k = n+ 1 and to construct the
set Vk

(
t̃
)

as follows:

Vk
(
t̃
)
= Vp

(
t̃
)
∪G

(
Vp

(
t̃
))

, (7)

where G
(
Vp

(
t̃
))

is the set of the first n+ 1− |Vp
(
t̃
)
| tokens in Vb. Since the additional tokens in G

(
Vp

(
t̃
))

are not part
of the mapping Φ and cannot be used to tokenize the string s = str(t), they influence neither the plausibility of the optimal
solution to the problem of Eq. 4 nor the corresponding Hamiltonian path in the graph G. Therefore, the same arguments as
in the proof of Theorem 3.2 hold, and we conclude that the problem of finding a longest tokenization of a given output token
sequence t that is plausible under top-k sampling is NP-Hard.

B.1.2. HARDNESS OF FINDING THE LONGEST TOKENIZATION WHOSE GENERATION PROBABILITY IS GREATER
THAN A THRESHOLD

We now focus on a slightly different setting where the provider reports a token sequence t̃ under the plausibility condition
that the LLM does not assign very low probability to the sequence as a whole. Formally, we require that the probability of
the LLM generating the token sequence t̃ satisfies

P
(
t̃
)
:= P

(
t̃1
) k∏
i=2

P
(
t̃i | t̃<i

)
≥ ε, (8)

where ε is a user-specified threshold and P
(
t̃i | t̃<i

)
is the probability of the LLM generating the token t̃i given the

previously generated tokens t̃<i =
(
t̃1, . . . , t̃i−1

)
. In this setting, the problem of finding a longest tokenization under Eq. 8

is also NP-hard. Similarly, as before, the proof is to set the next-token distributions of the LLM in a way that assigns
low probability to token sequences that do not lead to a Hamiltonian path in G. Specifically, let δ be a constant such that
0 < δ < 1/(n + 1), and assume all next-token distributions are such that, given

(
t̃1, . . . , t̃k

)
, assign probability mass

(1− δ)/n to each of the tokens in

Hi :=
{
v ∈ Vn : v ̸= t̃i for all i ∈ [k] and

(
Φ
(
t̃k
)
,Φ(v)

)
∈ E

}
, (9)

δ to each of the tokens in Vn \ Hi, 0 to the token with λ times the character “a”, and any remaining probability mass to the
end-of-sequence token ∅.15 The high-level idea here is to set the probabilities of next tokens in such a way that the LLM

15Using the assumption that δ < 1/(n+ 1), it is easy to verify that the above construction leads to a valid probability distribution.
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assigns very low probability to the entire token sequence t̃ if it concatenates two tokens whose corresponding nodes are not
connected via an edge in the graph G or if the latter token has already been used in the sequence.

Given this construction, we set the user-specified threshold as ε =
(
1−δ
n

)n
. Now, given a Hamiltonian path in the

graph G that visits all nodes once and forms a sequence (ν1, ν2, . . . , νn) with νi ∈ N and νi ̸= νj for i ̸= j, the
corresponding token sequence t′ = (t′1, t

′
2, . . . , t

′
n) has cumulative probability exactly ε, so it is plausible and has length

greater than 1. Reciprocally, given a plausible tokenization t̃ with length greater than 1, the corresponding sequence(
Φ
(
t̃1
)
,Φ

(
t̃2
))

, . . . ,
(
Φ
(
t̃n−1

)
,Φ

(
t̃n
))

has to be a Hamiltonian path. If this is not true, at least one of the tokens in t̃

does not belong in its respective setHi defined by Eq. 9, and hence the probability of the sequence t̃ is at most

P
(
t̃
)
≤ δ

(
1− δ

n

)n−1

< ε, (10)

which contradicts the assumption that t̃ is plausible.

B.2. Proof of Proposition 4.2

Let t = t̂ be the true output sequence generated by the LLM. Then, by Definition 4.1, it holds that

Uprovider(t̂, t̂) ≥ Uprovider(t
′, t̂)

(∗)
=⇒ r

(
t̂
)
− c

(
t̂
)
≥ r (t′)− c

(
t̂
)

=⇒ r
(
t̂
)
≥ r (t′) ,

where (∗) follows from Eq. 1.

Now, consider that the true output sequence generated by the LLM is t = t′. Similarly, as before, we have U(t′, t′) ≥
U(t̂, t′), which implies that r (t′) ≥ r

(
t̂
)
. Combining the two inequalities, we get r

(
t̂
)
= r (t′).

B.3. Proof of Theorem 4.3

Let t′ = (t′1, . . . , t
′
k) be the tokenization of the string s = str(t) that consists only of single-character tokens, i.e.,

str (t) = str (t′) with |str (t′) | = |str (t) | = k. Note that such a tokenization exists, since Σ ⊆ V . From
Proposition 4.2, we get

r (t) = r (t′)
(∗)
=

k∑
i=1

r (t′i) =

k∑
i=1

∑
σ∈Σ

1[t′i = σ] · r(σ)

=
∑
σ∈Σ

countσ (t
′) · r(σ) (∗∗)

=
∑
σ∈Σ

countσ (t) · r(σ),

where 1 denotes the indicator function, (∗) holds because the pricing mechanism is additive and (∗∗) holds because
str (t′) = str (t).
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C. Additional Experimental Results
C.1. Performance of Algorithm 1 under Different LLMs and Temperature Values

In this section, we evaluate Algorithm 1 on outputs generated by five LLMs to the same prompts used in Section 3 under
different temperature values.

Figure 3 shows the fraction of generated outputs for which Algorithm 1 finds a longer plausible tokenization. We observe that,
the higher the values of p and temperature, the higher the likelihood that Algorithm 1 finds plausible longer tokenizations.
Moreover, we also observe that, for outputs given by the Gemma-3-4B-It model, Algorithm 1 is less likely to find
plausible longer tokenizations across all temperature and p values. We hypothesize that this is due to the fact that Gemma-
3-4B-It is the only model in our experiments that is multimodal and the level of randomness in its next-token distributions
may be lower than in the other models.

Figure 4 shows the percentage of tokens overcharged by an unfaithful provider who uses Algorithm1. We observe that
the percentage of overcharged tokens is unimodal with respect to the number of iterations m, and the higher the value the
temperature and p, the higher the percentage of overcharged tokens, as the top-p sets become larger and the likelihood that a
longer tokenization is plausible increases.
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Figure 3. Fraction of generated outputs for which Algorithm 1 finds a plausible longer tokenization. The figure shows, for different
model families, the fraction of token sequences where the heuristic implemented in Algorithm 1 finds a plausible longer tokenization
under top−p sampling and various temperature levels, as a function of the additional tokens overcharged to the user (i.e., the number of
iterations m in Algorithm 1). The output token sequences t are generated for the first 400 prompts in the LMSYS dataset. We repeat each
experiment 5 times to calculate 90% confidence intervals.
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Figure 4. Financial gain from misreporting the tokenization of outputs using Algorithm 1. The figure shows, across different model
families and for the first 400 LMSYS prompts, the total percentage of tokens that a provider using top−p sampling following the heuristic
in Algorithm1 could overcharge the user, as a function of the number of iterations and for various temperature values. Dashed lines
correspond to the maximum of each curve. We repeat each experiment 5 times to calculate 90% confidence intervals.
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C.2. Examples of Plausible Output Token Sequences Found by Algorithm 1

To illustrate how Algorithm 1 works, here, we provide examples of output token sequences generated by the Llama-3.2-
1B-Instruct model, where the algorithm has found plausible tokenizations that are longer than the original output token
sequence. Across all examples, we use the Llama-3.2-1B-Instruct model and set p = 0.95 and the temperature
of the model to 1.3. We select prompts from the LMSYS dataset. For each example, we show (i) the true output token
sequence generated by the model, and (ii) the modified output token sequence returned by Algorithm 1. We use “|” to
indicate separations between tokens as generated by the model, and we use “|” to indicate the split points of the tokens
that result from Algorithm 1. The number above each red separator indicates the iteration of the algorithm in which the
respective token was split. We show all iterations until the sequence first becomes non-plausible.

... The| third| film| appears| to| delve| into| the| themes| of| societal|
reaction| and|... Here| are| movies| that| offer| similar| thematic con-
cerns|...

(a) True output token sequence

... The| third| film| appears| to| del
(1)

| ve| into| the| themes| of|

soci
(2)

| etal| reaction| and|... Here| are| movies| that| offer| similar| the-

matic conce
(3)

| rns|...

(b) Modified output token sequence

Figure 5. Responses to the prompt “is Dead Snow worth watching or should I watch directly Dead Snow
2?”.

... Here| are| a| few| options| :|
1|.| **| T|rello|**:| T|rello| is| a| visual| project| management| tool|...
2|.| **| J|IRA|**:| As| mentioned|,| J|IRA| is| a| popular| At|lassian| suite|...

(a) True output token sequence

... Here| are| a| few| options| :|

1|.| **| T|rello|**
(1)

| :| T|rello| is| a| visual| project| management| tool|...

2|.| **| J|IRA|**
(2)

| :| As| mentioned|,| J|IRA| is| a| popular| At|las
(3)

| sian|
suite|...

(b) Modified output token sequence

Figure 6. Responses to the prompt “What is a good tool to plan a complex server deployment?”.
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The| easiest| way| to| invest| in| property|... Real| estate| investment|
trusts| or| RE|IT|s|,| real| estate| mutual| funds| may| be| the| easiest|.|...
There| are| many| options| for| acquiring| income| such| as| ground| level|
rental| or| owning| a| building| through| a| partnership|.| The| highest|
performing| investment| may| remain| a| gamble| and| have| no| guarantee|.|
The| next| hightest| would| have| to| be| investing| in| stocks| and| bonds|,
the| old| main|stay|.| Div|idend| and| bonds| have| higher| reliability|...
Note|:| the| previous| responses| and| answers| have| been| simplified|...

(a) True output token sequence

The| eas
(8)

| iest| way| to| invest| in| property|... Real| estate| investment|

trust
(2)

| s| or| RE|IT|s|,| real| estate| mutual| funds| may| be| the| easiest|.|...

There| are| many| options| for| acqu
(6)

| iring| income| such| as| ground|

level| rental| or| ow
(7)

| ning| a| building| through| a| partnership|.| The|

highest| performing| investment| may| remain| a| gam
(3)

| ble| and| have| no|
guarantee|.| The| next| hightest| would| have| to| be| investing| in| stocks|

and| bonds|, the| old| main|st
(4)

| ay|.| Div|id
(1)

| end| and| bonds| have| higher|

reli
(2)

| ability|... Note|:| the| previous| responses| and| answers| have| been|

simpl
(5)

| ified|...

(b) Modified output token sequence

Figure 7. Responses to the prompt “What is currently the easiest investment opportunity with the
capital and the highest game?”.

20


