
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Is Your LLM Overcharging You?
Tokenization, Transparency, and Incentives

Anonymous Authors1

Abstract

State-of-the-art large language models require
specialized hardware and substantial energy to
operate. As a consequence, cloud-based services
that provide access to large language models have
become very popular. In these services, the price
users pay for an output provided by a model de-
pends on the number of tokens the model uses to
generate it—they pay a fixed price per token. In
this work, we show that this pricing mechanism
creates a financial incentive for providers to strate-
gize and misreport the (number of) tokens a model
used to generate an output, and users cannot prove,
or even know, whether a provider is overcharging
them. However, we also show that, if an unfaith-
ful provider is obliged to be transparent about
the generative process used by the model, mis-
reporting optimally without raising suspicion is
hard. Nevertheless, as a proof-of-concept, we
introduce an efficient heuristic algorithm that al-
lows providers to significantly overcharge users
without raising suspicion, highlighting the vulner-
ability of users under the current pay-per-token
pricing mechanism. Further, to completely elimi-
nate the financial incentive to strategize, we intro-
duce a simple incentive-compatible token pricing
mechanism. Under this mechanism, the price
users pay for an output provided by a model de-
pends on the number of characters of the output—
they pay a fixed price per character. Along the
way, to illustrate and complement our theoretical
results, we conduct experiments with several large
language models from the Llama, Gemma and
Ministral families, and input prompts from
the LMSYS Chatbot Arena platform.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction
Large language models (LLMs) are becoming ubiquitous
across multiple industries—from powering chatbots and
virtual assistants to driving innovation in research, health-
care, and finance (Bubeck et al., 2023; Mozannar et al.,
2024; Haupt & Marks, 2023; Romera-Paredes et al., 2024).
However, since the computational resources required to run
these models are significant, most (enterprise) users are un-
able to host them locally. As a result, users rely on a few
cloud-based providers that offer LLMs-as-a-service to ob-
tain access (Chen et al., 2023; Snell et al., 2024; Pais et al.,
2022; Patel et al., 2024).

In a typical LLM-as-a-service, a user submits a prompt to
the provider via an application programming interface (API).
Then, the provider feeds the prompt into an LLM running
on their own hardware, which (stochastically) generates a
sequence of tokens as an output using a generative process.1

Finally, the provider shares the output with the user and
charges them based on a simple pricing mechanism: a fixed
price per token.2 In this paper, we focus on the following
fundamental question:

What incentives does the pay-per-token pricing
mechanism create for providers?

Our key observation is that, in the interaction between a user
and a provider, there is an asymmetry of information (Mil-
grom & Roberts, 1987; Rasmusen, 1989; Mishra et al.,
1998). The provider observes the entire generative process
used by the model to generate an output, including its inter-
mediate steps and the final output tokens, whereas the user
only observes and pays for the (output) tokens shared with
them by the provider. This asymmetry sets the stage for a
situation known in economics as moral hazard (Holmström,
1979), where one party (the provider) has the opportunity to
take actions that are not observable by the other party (the
user) to maximize their own utility at the expense of the
other party.

1Tokens are units that make up sentences and paragraphs, such
as (sub-)words, symbols and numbers.

2https://ai.google.dev/gemini-api/docs/
pricing, https://openai.com/api/pricing/.

1

https://ai.google.dev/gemini-api/docs/pricing
https://ai.google.dev/gemini-api/docs/pricing
https://openai.com/api/pricing/

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

The core of the problem lies in the fact that the tokeniza-
tion of a string is not unique. For example, consider that
the user submits the prompt “Where does the next
NeurIPS take place?” to the provider, the provider
feeds it into an LLM, and the model generates the output
“|San| Diego|” consisting of two tokens. Since the user is
oblivious to the generative process, a self-serving provider
has the capacity to misreport the tokenization of the out-
put to the user without even changing the underlying string.
For instance, the provider could simply share the tokeniza-
tion “|S|a|n| |D|i|e|g|o|” and overcharge the user for nine
tokens instead of two!

A simple remedy to build trust between the two parties
would be to require providers to share with the user more
information about the generative process used by the model,
such as the next-token distribution in each step of the pro-
cess. This would grant the user a form of (partial) auditabil-
ity, since tokenizations, such as the one mentioned above,
may have negligible probability in practice. Importantly, if
the provider implements procedures to prevent the genera-
tion of low-probability tokens (e.g., top-p sampling (Holtz-
man et al., 2019), top-k sampling), as commonly done in
practice, such tokenizations would not only be unlikely, but
rather implausible, giving grounds to the user to contest the
specific tokenization of the output shared with them by the
provider. In this case, a provider would have to invest addi-
tional effort (and resources) to misreport the tokenization of
an output while preserving its plausibility, making such a
strategic behavior significantly less worthy from a financial
point of view.

However, some providers may be highly reluctant to share
information that could potentially expose the internal work-
ings of their LLMs, especially if the LLMs are proprietary
and such information can be used by competitors (Carlini
et al., 2024). In the absence of any additional means for
the users to verify the truthfulness of the providers, the only
remaining option is to regulate the transactions between
users and providers in a way that eliminates the incentive
for providers to engage in misreporting in the first place.
To this end, we introduce and argue for a pay-per-character
pricing mechanism that serves exactly this purpose.

Our contributions. We start by characterizing tokenization
(mis)reporting in LLMs as a principal-agent problem (Gross-
man & Hart, 1992; Bolton & Dewatripont, 2004; Dütting
et al., 2024). Building upon this characterization, we make
the following contributions:

1. We show that, under the pay-per-token pricing
mechanism, providers have a financial incentive to
(mis-)report each character of the outputs generated by
the LLMs they serve as a separate token.

2. We show that, if the providers are transparent about the

next-token distribution used by the LLMs they serve,
they cannot expect to find the longest tokenization of
an output that is plausible in polynomial time.

3. We introduce a heuristic algorithm that, as a proof-
of-concept, allows providers to find plausible token
sequences that are longer or equal than a generated
output token sequence very efficiently.

4. We show that any incentive-compatible pricing mecha-
nism must price tokens linearly on their character count.
Moreover, we further show that, if each character is
priced equally, there is only one incentive-compatible
pricing mechanism, which we refer to as the pay-per-
character pricing mechanism.

Along the way, to illustrate and complement the above con-
tributions, we conduct a series of experiments using LLMs
from the Llama, Gemma and Ministral families and
user input prompts from the LMSYS Chatbot Arena plat-
form. 3 Under the pay-per-token pricing mechanism, we
empirically demonstrate that an unfaithful provider who is
transparent about the generative process used by the LLM
they serve can use our heuristic algorithm to overcharge
users by up to ∼13%.

Further related work. Our work builds upon further related
work on tokenization, economics of LLMs-as-a-service,
mechanism design, and game theory in LLMs.

Multiple lines of empirical evidence have shown that tok-
enization plays a central role in developing and analyzing
LLMs (Rajaraman et al., 2024; Geh et al., 2024; Singh &
Strouse, 2024; Giulianelli et al., 2024; Geh et al., 2025;
Petrov et al., 2023; Ovalle et al., 2024; Chatzi et al., 2025;
Benz et al., 2025). Consequently, there have been a variety
of efforts focusing on better understanding and improving
byte-pair encoding (BPE), the tokenization algorithm most
commonly used in LLMs (Bostrom & Durrett, 2020; Kozma
& Voderholzer, 2024; Zouhar et al., 2023; Lian et al., 2024b;
Sennrich et al., 2016; Lian et al., 2024a). However, this
line of work has overlooked the economic implications of
tokenization (in the context of LLMs-as-a-service), which
is the main focus of our work.

The literature on the economics of LLMs-as-a-service has
been recently growing very rapidly (La Malfa et al., 2024;
Bergemann et al., 2025; Mahmood, 2024; Laufer et al.,
2024; Cai et al., 2025; Saig et al., 2024). Within this liter-
ature, the works by Cai et al. (Cai et al., 2025) and Saig et
al. (Saig et al., 2024) are the most closely related to ours.
Similarly as in our work, they also study a setting in which
the provider has a financial incentive to be unfaithful to the
users. However, in their setting, the provider has an incen-

3We will release the code and data used in our experiments
under a liberal license with the final version of the paper.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

tive to be unfaithful about the LLM they use to generate
outputs rather than the tokenization of the outputs—it may
use a cheaper-to-run LLM than the one it charges the users
for. To reduce the financial incentive to strategize, Cai et al.
argue for solutions based on increased transparency as well
as trusted execution environments, and Saig et al. argue for
a pay-for-performance pricing mechanism using a contract
theory formulation.

The literature on mechanism design and game theory in
LLMs has explored incentive auction mechanisms for gener-
ated content (Duetting et al., 2024), LLM-augmented voting
processes (Fish et al., 2023), and the potential of LLMs as
economic agents (Horton, 2023; Raman et al., 2024; Zhang
et al., 2024; Sun et al., 2025; Kovarik et al., 2023). However,
to the best of our knowledge, our work is the first to explore
incentive-compatible token pricing mechanisms in LLMs.

2. A Principal-Agent Model of Delegated
Autoregressive Generation

We characterize the interaction between a user and an LLM
provider as a principal-agent problem (Grossman & Hart,
1992; Bolton & Dewatripont, 2004; Dütting et al., 2024),
where the principal (the user) delegates a task (a generation)
to the agent (the provider), who performs the task on behalf
of the principal and gets paid based on a commonly agreed-
upon contract.

In a typical interaction between a user and a provider, the
user first submits a prompt q ∈ Σ∗ to the provider, where Σ∗

denotes the set of all finite-length strings over an alphabet
(i.e., a finite set of characters) Σ. Then, the provider uses
their own hardware to query an LLM with the prompt q,
and the LLM (stochastically) generates an output token
sequence t = (t1, t2, . . . , tk) ∈ V∗ in an autoregressive
manner, one token at a time. Here, ti ∈ V is the i-th token
in a sequence of k tokens, V ⊂ Σ∗ is the (token) vocabulary
used by the LLM,4 and V∗ denotes the set of all finite-
length sequences over the vocabulary.5 Finally, the provider
reports to the user the generated output token sequence.
Importantly, since the user is oblivious to the autoregressive
process used by the LLM, the provider has the capacity
to misreport the output token sequence to the user—the
reported output token sequence t̃ may not correspond to the
generated output token sequence t.

Before the interaction between a user and an LLM provider

4We assume Σ ⊂ V since this condition must occur for the
vocabulary to be able to tokenize single characters. In this context,
note that standard vocabulary-building algorithms such as BPE
satisfy this by construction (Sennrich et al., 2016).

5In practice, the provider turns the prompt q into a sequence of
tokens using a tokenizer before passing it as input to the model,
but modeling this explicitly is not relevant in our work.

begins, both parties agree on a contract that specifies how
the provider should be compensated for the output token
sequence they report to the user. More specifically, the
user and the provider agree on a pricing mechanism that
determines the monetary reward r

(
t̃
)

that the user should
transfer to the provider for the reported output token se-
quence t̃:

Definition 2.1 (Pricing mechanism). Given a vocabulary of
tokens V , a pricing mechanism is a function r : V∗ → R≥0

that assigns a price to each reported output token sequence
t̃ ∈ V∗.

Throughout the paper, we focus on additive pricing mecha-
nisms, which include the widely used pay-per-token pricing
mechanism. An additive pricing mechanism independently
assigns a price r

(
t̃i
)

to each token t̃i in a reported out-
put token sequence t̃, and calculates the price r

(
t̃
)

of a
reported output token sequence by adding up the price of
each individual token.

Given a generated output token sequence t and a reported
output token sequence t̃, the provider’s utility Uprovider

(
t̃, t

)
is given by the difference between the monetary reward r

(
t̃
)

the provider receives from the user for t̃ and the cost c(t)
of generating the output token sequence t, i.e.,

Uprovider
(
t̃, t

)
= r

(
t̃
)
− c(t). (1)

Here, motivated by recent empirical studies showing
that the energy consumption scales linearly with output
length (Adamska et al., 2025; Fernandez et al., 2025), we
assume that the cost of generating t is a linear function of
its length, that is, c(t) = c0 · len(t), where c0 ∈ R>0 is
a constant that represents the running costs of generating a
single token (e.g., electricity costs, hardware maintenance),
and len(t) denotes the length (i.e., number of tokens) of t.

Given a reported output token sequence t̃, the user’s
utility Uuser

(
t̃
)

is given by the difference between the
value v(t̃) they derive from the sequence t̃ and the mon-
etary reward r(t̃) they pay to the provider for t̃, that is,
Uuser

(
t̃
)
= v

(
t̃
)
− r

(
t̃
)
. However, the user typically de-

rives value from the text that the output token sequence
represents, rather than the token sequence itself. For exam-
ple, in creative writing, the user may be interested in the
extent to which the generated text is captivating to read, and
in code generation, the user may be interested in operational
aspects of the generated code, such as its correctness and
efficiency. Therefore, we assume that v

(
t̃
)
= v

(
str(t̃)

)
,

where str : V∗ → Σ∗ maps a sequence of tokens to the
respective string, and we use |str(t̃)| to denote the number
of characters in the string str(t̃).

While the provider can, in principle, report any token se-
quence t̃ they prefer (e.g., the one that maximizes their
reward based on the pricing mechanism), arbitrary ma-

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

nipulations of the generated output may easily raise sus-
picion about the provider’s practices. Therefore, in our
work, we restrict our focus to a more subtle strategy: misre-
porting the tokenization of the generated output sequence
while preserving its string-level representation. Under this
strategy, given a generated output token sequence t with
s = str(t), the provider reports a token sequence t̃ from
the set V∗

s =
{
t̃ ∈ V∗ : str

(
t̃
)
= s

}
. Then, it is easy to

see that, as long as there exists a token sequence t̃ ∈ V∗
s

such that r
(
t̃
)
> r (t), it holds that

Uprovider
(
t̃, t

)
> Uprovider (t, t) and v

(
t̃
)
= v(t).

In other words, the provider has an incentive not to be
truthful and potentially overcharge the user, and can do
so in a way that maintains the value the user derives from
the reported output sequence. In what follows, we will
explore the conditions under which such strategic behavior
can occur and remain undetected by the user. Later on, we
will propose a pay-per-character pricing mechanism that
provably eliminates the provider’s incentive for this type of
strategic behavior.

3. Provider Incentives under the
Pay-Per-Token Pricing Mechanism

In this section, we analyze the pay-per-token-pricing mech-
anism using the principal-agent model introduced in Sec-
tion 2. First, we show that, under this mechanism, the
provider’s utility is tightly linked to the length of the re-
ported output token sequence—the longer the reported se-
quence, the higher the provider’s utility. Then, we further
show that, if the provider is required to be transparent about
the next-token distribution used by the LLM they serve, they
cannot expect to find the longest tokenization of a given out-
put that appears to be plausible in polynomial time. Finally,
we demonstrate that, in practice, this computational hard-
ness does not preclude the provider from efficiently finding
plausible tokenizations of a given output that increase its
utility.

3.1. Pay-Per-Token Incentivizes (Mis-)Reporting Longer
Tokenizations

To be profitable, a cloud-based LLM provider needs to at
least amortize the cost of output generation. Therefore,
under the assumption that the cost of output generation
is a linear function of the output length, the widely used
pay-per-token pricing mechanism is a natural choice.

Definition 3.1 (Pay-per-token). A pricing mechanism
r : V∗ → R≥0 is called pay-per-token if and only if it is
additive and, for all t ∈ V , it satisfies that r(t) = r0, where
r0 ≥ 0 is a constant price per token.

As an immediate consequence, under the pay-per-token

pricing mechanism, the monetary reward that the provider
receives from reporting an output token sequence t̃ is a lin-
ear function of the output length, i.e., r

(
t̃
)
= r0 · len

(
t̃
)
.

Further, since the cost to generate the output sequence t is in-
dependent of the reported output sequence t̃, the provider’s
utility, given by Eq. 1, is simply a (linearly) increasing func-
tion of the length of the reported output sequence. That is,
for any true output sequence t with str(t) = s, it holds
that

Uprovider
(
t̃, t

)
> Uprovider

(
t̃′, t

)
for any t̃, t̃′ ∈ V∗

s

such that len
(
t̃
)
> len

(
t̃′
)
. (2)

Therefore, a rational provider seeking to maximize their
utility needs to find a tokenization of s with maximum
length, i.e.,

t̃max = argmax
t̃∈V∗

s

len
(
t̃
)
. (3)

Since LLM vocabularies typically include tokens corre-
sponding to all individual characters (i.e., Σ ⊂ V), it is
easy to see that the optimization problem admits a trivial
solution: report each character in s as a separate token.
Strikingly, the financial incentive for (mis-)reporting this
tokenization can be very significant in practice. For ex-
ample, for input prompts from the LMSYS Chatbot Arena
platform (Zheng et al., 2024), an unfaithful provider fol-
lowing such a strategy may overcharge users by ∼3×, as
shown in Table 1 (refer to Appendix A for additional details
regarding our experiments). Importantly, the user has no
grounds to verify whether such a tokenization is indeed the
one generated by the model, or if it has been manipulated
by the provider. That being said, such tokenizations may
arguably raise suspicion, particularly if the provider is re-
quired to be transparent about the next-token distribution
used by the LLM they serve. Next, we will show that an un-
faithful provider who aims to find the longest tokenization
that maximizes their utility and appears to be plausible is
likely to fail.

3.2. Misreporting Optimally Without Raising Suspicion
Is Hard

Given a generated output sequence t with s = str(t),
the provider may raise suspicion if they report t̃max, as de-
fined in Eq. 3, because the probability that an LLM actually
generates t̃max may be negligible in practice. In fact, if the
provider implements procedures to prevent the generation of
low-probability tokens, as commonly done in practice, the
reported output sequence t̃max may be implausible, as ex-
emplified in Figure 1 for top-p sampling. This lends support
to the idea that the provider should not only be required to
report an output sequence, but also the next-token probabil-

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

Table 1. Financial gain from (mis-)reporting each output char-
acter as a separate token. The results show the percentage of
tokens overcharged by an unfaithful provider who (mis-)reports
each character in the output token sequences generated by an LLM
to 400 prompts from the LMSYS Chatbot Arena platform as a
separate token. Here, we set the temperature of the model to 1.0
and repeat each experiment 5 times to obtain 90% confidence in-
tervals.
LLM Overcharged tokens (%)

Llama-3.2-1B-Instruct 344.9± 3.8
Llama-3.2-3B-Instruct 345.2± 6.0
Gemma-3-1B-In 308.9± 1.4
Gemma-3-4B-In 320.8± 5.6
Ministral-8B-Instruct-2410 337.8± 4.29

ity corresponding to each token in the sequence, offering the
user the means to contest a reported output token sequence.

In what follows, we will focus on a setting in which the
provider implements top-p sampling (Holtzman et al., 2020),
a widely used sampling technique that, given a (partial)
token sequence t, restricts the sampling of the next token
to a set of tokens to the smallest set Vp(t) ⊆ V whose
cumulative next-token probability is at least p ∈ (0, 1), and
aims to find the longest plausible tokenization t̃ of s, i.e.,

max
t̃∈V∗

s

len
(
t̃
)

subject to t̃i ∈ Vp(t̃≤i−1) ∀i ∈ [len
(
t̃
)
],

(4)

where t̃≤i−1 = (t̃1, . . . , t̃i−1) is the prefix of the reported
output sequence up to the i-th token.

The following theorem tells us that, in general, the provider
cannot expect to solve the problem of finding the longest
plausible tokenization under top-p sampling in polynomial
time:6

Theorem 3.2. The problem of finding the longest tokeniza-
tion of a given output that is plausible under top-p sampling,
as defined in Eq. 4, is NP-Hard.

The proof of the above theorem relies on a reduction from
the Hamiltonian path problem (Karp, 1972). More specifi-
cally, given a graph, it creates an instance of our problem
that establishes a one-to-one correspondence between a path
that does not visit any node twice and a token sequence that
is plausible only if it does not include any token twice. In
Appendix B.1.1, we show that the above hardness result can
be extended to a setting in which the provider implements
top-k sampling and, in Appendix B.1.2, we show that it can
also be extended to a setting in which the provider does
not implement any procedure to prevent the generation of
low-probability tokens but aims to report sequences whose

6All proofs of theorems and propositions can be found in Ap-
pendix B.

generation probability is greater than a given threshold.

Further, the above hardness result readily implies that there
exists a computational barrier that precludes an unfaithful
provider from optimally benefiting from misreporting with-
out raising suspicion. However, we will next demonstrate
that, in practice, it does not rule out the possibility that a
provider efficiently finds and (mis-)reports plausible tok-
enizations t̃ longer than t.

3.3. Can a Provider Overcharge a User Without Raising
Suspicion?

We answer this question affirmatively. As a proof-of-
concept, we introduce a simple heuristic algorithm that,
given a generated output sequence t with s = str(t), ef-
ficiently finds a plausible tokenization t̃ of s longer than
or equal to t. Here, our goal is to demonstrate that, under
the pay-per-token pricing mechanism predominantly used
by cloud providers of LLM-as-a-service, users are indeed
vulnerable to self-serving providers who may overcharge
them without raising suspicion.

Our heuristic algorithm, summarized in Algorithm 1, is
based on the key empirical observation that, given the most
likely tokenization t of a string s = str(t), alternative
tokenizations of s that are not too different from t are very
likely to be plausible, as exemplified by Figure 1. In a nut-
shell, our algorithm starts from a given output sequence t
and iteratively splits tokens in it for a number of iterations
m specified by the provider. In each iteration, the algorithm
selects the token with the highest index in the vocabulary
and, if it is longer than one character, it splits it into a pair
of new tokens with the highest minimum index in the vocab-
ulary whose concatenation maps to the same string.7 The
algorithm continues either until it has performed m splits
or the selected token is a single character, in which case it
terminates the loop. Finally, it checks whether the resulting
token sequence t̂ is plausible and, if it is indeed plausible,
it reports it to the user. For example, under top-p sam-
pling, evaluating plausibility reduces to checking whether
t̂i ∈ Vp(t̂≤i−1) for all i ∈ [len(t̂)]. However, our algo-
rithm is agnostic to the choice of plausibility criteria (refer
to Appendices B.1.1 and B.1.2 for alternatives). If t̂ is
not plausible, the algorithm reports the true output token
sequence t.

Importantly, an efficient implementation of Algorithm 1 has
a complexity of O(m(logm + σmax)), where σmax is the
number of characters in the longest token in the vocabulary,
and it requires to evaluate the plausibility of a single token

7We focus on splitting tokens based on their index motivated
by the BPE algorithm, where tokens with higher indices are (gen-
erally) longer, and hence are more likely to result in a plausible
tokenization. Refer to Appendix C.2 for concrete examples of how
our heuristic modifies token sequences.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

No top-p p = 0.99 p = 0.95

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tokenization length

100

101

102

103

N
u

m
b

er
of

to
ke

n
iz

at
io

n
s

*

“language models”

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tokenization length

100

101

102

103

N
u

m
b

er
of

to
ke

n
iz

at
io

n
s

*

“causal inference”

Figure 1. Distribution of tokenizations for two different output strings using the tokenizer of Llama-3.2-1B-Instruct. The
panels show the distribution of the length of plausible token sequences for two output strings under top-p sampling for two different
values of p and under standard sampling (“No top-p”). Here, we set the temperature of the model to 1.0, and denote the most likely
tokenization of the string using an asterisk (“*”).

sequence—the resulting token sequence t̂. In that context,
note that a provider can evaluate the plausibility of a token
sequence in a single forward pass of the model, as in specu-
lative sampling (Jie et al., 2025; Vaswani et al., 2023). As a
consequence, we argue that, from the provider’s perspective,
the cost of running Algorithm 1 is negligible in comparison
with the monetary reward due to overcharged tokens.

Using prompts from the LMSYS Chatbot Arena platform,
we find empirical evidence that, despite its simplicity, Al-
gorithm 1 succeeds at helping a provider overcharge users
whenever they serve LLMs with temperature values >1.0,
as those commonly used in creative writing tasks. Fig-
ure 2 summarizes the results for two LLMs under top-p
sampling and temperature 1.3. We find that, for Llama-
3.2-1B-Instruct, a provider who uses Algorithm 1
can overcharge users by up to 9.5%, 1.6% and 0.3%, and,
for Ministral-8B-Instruct-2410, they can over-
charge by up to 13%, 2.6%, and 0.3%, respectively for
p = 0.99, 0.95, 0.9. Moreover, we also find that the finan-
cial gain is unimodal with respect to the number of iterations
m and the optimal value of m decreases as p decreases and
achieving plausibility becomes harder. This is because, for
large values of m, the token sequence t̂ resulting from itera-
tively splitting tokens, becomes less likely to be plausible, as
shown in Figure 3 in Appendix C.1. However, if plausible,
it does provide a strictly larger financial gain.

The above empirical results demonstrate that there exist
efficient and easy-to-implement algorithms that allow a
provider to overcharge users without raising suspicion, leav-
ing users vulnerable to the (potentially) malicious behavior

Algorithm 1 It returns a plausible token sequence t̃ with
length greater or equal than the length of t

Input True output token sequence t, number of iterations
m, token-to-id function id(•)
Initialize t̂← t
for m iterations do

i← argmaxj∈[len(t̂)] id(t̂j) ▷ Pick the token with
the highest index
if |str

(
t̂i
)
| = 1 then

break ▷ If it corresponds to a single character,
terminate the loop

end if
(t′1, t

′
2)← argmax

v1,v2∈V:

str((v1,v2))=str(t̂i)

min (id(v1),id(v2))

t̂←
(
t̂<i, t

′
1, t

′
2, t̂>i

)
▷ If not, split it into a pair of

tokens with the max-min index
end for
if plausible

(
t̂
)

then
t̃← t̂ ▷ If the resulting token sequence is plausible,
report it to the user

else
t̃← t ▷ If not, report the true output token sequence

end if
return t̃

of providers. To address this vulnerability, in the next sec-
tion, we introduce a pricing mechanism that eliminates the
provider’s incentive to misreport an output token sequence,
by design.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

4. An Incentive-Compatible Pricing
Mechanism

To eliminate the provider’s incentive to misreport an out-
put token sequence, in this section, we look into the design
of incentive-compatible pricing mechanisms. Incentive-
compatibility is a (desirable) property studied in mechanism
design (Nisan & Ronen, 2001) that, in the context of our
work, ensures that the pricing mechanism creates no eco-
nomic incentive for the provider to misreport an output
token sequence—they cannot benefit from not telling the
truth.8

Definition 4.1. A pricing mechanism r is incentive-
compatible if and only if, for any generated output token
sequence t ∈ V∗ and any reported output token sequence
t̃ ∈ V∗, it holds that Uprovider(t, t) ≥ Uprovider(t̃, t).

Importantly, if a pricing mechanism satisfies incentive-
compatibility, the monetary reward a provider receives for
reporting an output token sequence t̃ depends only on the
string s = str

(
t̃
)

and not on the token sequence itself, as
shown by the following proposition:

Proposition 4.2. If a pricing mechanism r is incentive-
compatible, then, for all t̂, t′ ∈ V∗ such that str

(
t̂
)
=

str (t′), it holds that r
(
t̂
)
= r (t′).

Perhaps surprisingly, the above proposition readily allows
us to provide a simple characterization of the family of
incentive-compatible pricing mechanisms. In particular, the
following theorem tells us that it consists of all mechanisms
that charge for an output sequence t linearly on its character
counts:

Theorem 4.3. A pricing mechanism r is additive and
incentive-compatible if and only if

r(t) =
∑
σ∈Σ

countσ(t) · r(σ) for all t ∈ V, (5)

where countσ(t) counts the number of occurrences of the
character σ in str(t).

As an immediate consequence, if the provider decides to
assign the same price rc to each character σ ∈ Σ, there
exists only one incentive-compatible pricing mechanism,
i.e., r(t) = |str(t)| · rc, which we refer to as the pay-per-
character pricing mechanism.

Implementation and downstream effects of pay-per-
character. The pay-per-character pricing mechanism is
a simple solution to the problem of misreporting output to-
ken sequences. However, in practice, both providers and
users may like to avoid financial overheads from transition-
ing from the pay-per-token to the pay-per-character pric-
ing mechanism. In this context, one simple way to reduce

8In the mechanism design literature, an incentive-compatible
mechanism is also called truthful or strategy-proof.

the overheads is to set the price of a single character to
rc = r0/cpt, where r0 is the price of a single token under
the provider’s current pay-per-token pricing mechanism and
cpt is the (empirical) average number of characters per
token across the responses to user prompts. For instance, in
the responses to prompts from the LMSYS Chatbot Arena
platform used in our experiments, the average number of
characters per token is cpt = 4.50 for LLMs in the Llama
family, cpt = 4.22 for the Gemma family and cpt = 4.43
for the Ministral family. This would ensure that, in ex-
pectation, the provider’s revenue and the users’ cost are the
same under both pricing mechanisms.

Moreover, transitioning from a pay-per-token to the pay-
per-character pricing mechanism creates positive incentives
for providers that choose to truthfully report the generated
token sequence. Indeed, under pay-per-token, given two
token sequences t and t′ such that str(t) = str(t′), a
provider that faithfully reports tokenizations would have
higher utility when the longest sequence amongst t and
t′ is generated. On the contrary, for a faithful provider
under the pay-per-character pricing mechanism, it holds
that Uprovider (t, t) > Uprovider (t

′, t′) whenever len(t) <
len(t′). In other words, a provider that never misreports
has a clear incentive to generate the shortest possible out-
put token sequence, and improve current tokenization al-
gorithms such as BPE, so that they compress the output
token sequence as much as possible (Petrov et al., 2023).
Such improvements would not only benefit the provider
by increasing their utility but also have significant positive
downstream effects, such as reduced energy consumption,
faster inference, and better use of limited context windows.

5. Discussion and Limitations
In this section, we highlight several limitations of our work,
discuss its broader impact, and propose avenues for future
work.

Model assumptions. We have focused on additive pricing
mechanisms, which includes the widely used pay-per-token
mechanism. It would be interesting to analyze provider
incentives under other families of pricing mechanisms pro-
posed in the literature, such as those based on the quality
of the generated text (Saig et al., 2024). In this context,
a natural direction is to design a pricing mechanism that
simultaneously incentivizes multiple desirable behaviors,
such as faithful token reporting and output quality. More-
over, we have assumed that the provider pays a negligible
cost for evaluating the plausibility of a token sequence, as
Algorithm 1 only performs such an evaluation once. How-
ever, the design of more complex algorithms performing
multiple evaluations should consider the trade-off between
the additional profit obtained by using the algorithm against
the cost of running it. Further, in the context of contract

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

p = 0.99 p = 0.95 p = 0.90

0 20 40 60 80

Number of iterations, m

1

10

O
ve

rc
h

a
rg

ed
to

ke
n

s
(%

)

Llama-3.2-1B-Instruct

0 20 40 60 80

Number of iterations, m

1

10

O
ve

rc
h

a
rg

ed
to

ke
n

s
(%

)

Ministral-8B-Instruct-2410

Figure 2. Financial gain from misreporting the tokenization of outputs using Algorithm 1. The panels show the percentage of tokens
overcharged by an unfaithful provider who misreports the tokenization of the outputs generated by an LLM to 400 prompts from the
LMSYS Chatbot Arena platform using Algorithm 1, for different values of m and p. Here, we set the temperature of the model to 1.3
and repeat each experiment 5 times to obtain 90% confidence intervals. Refer to Appendix C.1 for additional results using alternative
temperature values and other LLMs.

theory, a principal typically designs a contract in order to
disincentivize the agent from taking hidden unwanted ac-
tions (Dütting et al., 2024). In our case, the provider (i.e.,
the agent) is the one who both designs the pricing mecha-
nism (i.e., the contract) and has the power to take hidden
actions, leaving the user with limited leverage. In practice, a
shift from pay-per-token to other pricing mechanisms, such
as pay-per-character, would require external regulation (or
user pressure).

Methods. To demonstrate the vulnerability of users under
the pay-per-token pricing mechanism, we have introduced a
heuristic algorithm that allows the provider to increase their
profit by finding longer yet plausible tokenizations of the
true output token sequence. However, there may exist other,
more sophisticated methods for the provider to take advan-
tage of the pay-per-token pricing mechanism, and there
may also exist ways to defend users against such malicious
behavior, other than a change of the pricing mechanism. Fur-
ther, misreporting the tokenization of an output sequence
is not the only type of strategic behavior that the provider
can exhibit, as they have the capacity to misreport other
elements of the generative process, such as the next-token
distributions or the output string. It would be interesting to
explore the implications of these other types of attacks, as
well as the potential for auditing them, for example, by de-
tecting whether there is a mismatch between the next-token
distributions and the frequencies of the tokens over multiple
generations.

Evaluation. We have conducted experiments with state-of-
the-art open-weights LLMs from the Llama, Gemma and

Ministral families, using different tokenizers and archi-
tectures. It would be interesting to evaluate the possibility of
misreporting in proprietary LLMs, which are widely used in
practice. Further, we have illustrated our theoretical results
using prompts from the LMSYS Chatbot Arena platform.
Although this platform is arguably the most widely used
for LLM evaluation based on pairwise comparisons, it is
important to note that it has been recently criticized (Singh
et al., 2025; Zhou et al., 2023), and the prompts submitted
to it may not be representative of the real-world distribution
of user prompts.

6. Conclusions
In this work, we have studied the financial incentives
of cloud-based providers in LLM-as-a-service using a
principal-agent model of delegated autoregressive gener-
ation. We have demonstrated that the widely used pay-per-
token pricing mechanism incentivizes a provider to misre-
port the tokenization of the outputs generated by the LLM
they serve. We have shown that, if the provider is required
to be transparent about the generative process used by the
LLM, it is provably hard for the provider to optimally bene-
fit from misreporting without raising suspicion. However,
we have introduced an efficient algorithm that, in practice,
allows a transparent provider to benefit from misreporting,
overcharging users significantly without raising suspicion.
To address this vulnerability, we have introduced a simple
incentive-compatible pricing mechanism, pay-per-character,
which eliminates the financial incentive for misreporting
tokenizations. We hope that our work will raise aware-
ness that, under pay-per-token, users of LLM-as-a-service

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

are vulnerable to (unfaithful) providers, and encourage a
paradigm shift towards alternative pricing mechanisms, such
as pay-per-character.

Impact statement
Our work sheds light on the perverse incentives that arise
from the pay-per-token pricing mechanism, which is the
most widely used pricing mechanism in the context of LLM-
as-a-service. On the positive side, we believe that our work
can spark a discussion on the need for more transparent and
fair pricing mechanisms in the LLM ecosystem. On the
flip side, the heuristic algorithm we introduce could be mis-
used by a malicious provider to overcharge users. However,
we emphasize that our intention is to use it as a proof-of-
concept, and not as an algorithm to be deployed in practice,
similarly to the broader literature on adversarial attacks in
machine learning (Szegedy et al., 2013; Goodfellow et al.,
2014; Chakraborty et al., 2021).

References
Adamska, M., Smirnova, D., Nasiri, H., Yu, Z., and

Garraghan, P. Green prompting. arXiv preprint
arXiv:2503.10666, 2025.

Benz, N. C., Tsirtsis, S., Straitouri, E., Chatzi, I., Velasco,
A. A., Thejaswi, S., and Gomez-Rodriguez, M. Evalua-
tion of large language models via coupled token genera-
tion. arXiv preprint arXiv:2502.01754, 2025.

Bergemann, D., Bonatti, A., and Smolin, A. The economics
of large language models: Token allocation, fine-tuning,
and optimal pricing, 2025. URL https://arxiv.
org/abs/2502.07736.

Bolton, P. and Dewatripont, M. Contract theory. MIT press,
2004.

Bostrom, K. and Durrett, G. Byte pair encoding is subopti-
mal for language model pretraining. In Cohn, T., He, Y.,
and Liu, Y. (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pp. 4617–4624,
Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.
414. URL https://aclanthology.org/2020.
findings-emnlp.414/.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lund-
berg, S., Nori, H., Palangi, H., Ribeiro, M. T., and Zhang,
Y. Sparks of artificial general intelligence: Early experi-
ments with gpt-4, 2023. URL https://arxiv.org/
abs/2303.12712.

Cai, W., Shi, T., Zhao, X., and Song, D. Are you getting

what you pay for? auditing model substitution in llm apis.
arXiv preprint arXiv:2504.04715, 2025.

Carlini, N., Paleka, D., Dvijotham, K. D., Steinke, T.,
Hayase, J., Cooper, A. F., Lee, K., Jagielski, M., Nasr, M.,
Conmy, A., et al. Stealing part of a production language
model. arXiv preprint arXiv:2403.06634, 2024.

Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., and
Mukhopadhyay, D. A survey on adversarial attacks and
defences. CAAI Transactions on Intelligence Technology,
6(1):25–45, 2021.

Chatzi, I., Benz, N. C., Straitouri, E., Tsirtsis, S., and
Gomez-Rodriguez, M. Counterfactual token generation
in large language models. In Proceedings of the Fourth
Conference on Causal Learning and Reasoning, 2025.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling, 2023. URL https:
//arxiv.org/abs/2302.01318.

Duetting, P., Mirrokni, V., Paes Leme, R., Xu, H., and
Zuo, S. Mechanism design for large language models.
In Proceedings of the ACM Web Conference 2024, pp.
144–155, 2024.

Dütting, P., Feldman, M., Talgam-Cohen, I., et al. Algorith-
mic contract theory: A survey. Foundations and Trends®
in Theoretical Computer Science, 16(3-4):211–412, 2024.

Fernandez, J., Na, C., Tiwari, V., Bisk, Y., Luccioni, S., and
Strubell, E. Energy considerations of large language
model inference and efficiency optimizations. arXiv
preprint arXiv:2504.17674, 2025.

Fish, S., Gölz, P., Parkes, D. C., Procaccia, A. D., Rusak, G.,
Shapira, I., and Wüthrich, M. Generative social choice.
arXiv preprint arXiv:2309.01291, 2023.

Geh, R., Zhang, H., Ahmed, K., Wang, B., and Van
Den Broeck, G. Where is the signal in tokenization
space? In Al-Onaizan, Y., Bansal, M., and Chen, Y.-N.
(eds.), Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 3966–
3979, Miami, Florida, USA, November 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.
emnlp-main.230. URL https://aclanthology.
org/2024.emnlp-main.230/.

Geh, R. L., Shao, Z., and Broeck, G. V. d. Adversarial
tokenization. arXiv preprint arXiv:2503.02174, 2025.

Giulianelli, M., Malagutti, L., Gastaldi, J. L., DuSell, B.,
Vieira, T., and Cotterell, R. On the proper treatment
of tokenization in psycholinguistics. In Al-Onaizan,
Y., Bansal, M., and Chen, Y.-N. (eds.), Proceedings

9

https://arxiv.org/abs/2502.07736
https://arxiv.org/abs/2502.07736
https://aclanthology.org/2020.findings-emnlp.414/
https://aclanthology.org/2020.findings-emnlp.414/
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://aclanthology.org/2024.emnlp-main.230/
https://aclanthology.org/2024.emnlp-main.230/

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

of the 2024 Conference on Empirical Methods in Nat-
ural Language Processing, pp. 18556–18572, Miami,
Florida, USA, November 2024. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
1032. URL https://aclanthology.org/2024.
emnlp-main.1032/.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Grossman, S. J. and Hart, O. D. An analysis of the
principal-agent problem. In Foundations of insurance
economics: Readings in economics and finance, pp. 302–
340. Springer, 1992.

Haupt, C. E. and Marks, M. Ai-generated medical ad-
vice—gpt and beyond. JAMA, 329(16):1349–1350, 04
2023. ISSN 0098-7484. doi: 10.1001/jama.2023.5321.
URL https://doi.org/10.1001/jama.2023.
5321.

Holmström, B. Moral hazard and observability. The Bell
journal of economics, pp. 74–91, 1979.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The
curious case of neural text degeneration. arXiv preprint
arXiv:1904.09751, 2019.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi,
Y. The curious case of neural text degeneration. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rygGQyrFvH.

Horton, J. J. Large language models as simulated economic
agents: What can we learn from homo silicus? Technical
report, National Bureau of Economic Research, 2023.

Jie, S., Tang, Y., Han, K., Deng, Z.-H., and Han, J. Specache:
Speculative key-value caching for efficient generation
of llms, 2025. URL https://arxiv.org/abs/
2503.16163.

Karp, R. M. Reducibility among Combinatorial Prob-
lems, pp. 85–103. Springer US, Boston, MA,
1972. ISBN 978-1-4684-2001-2. doi: 10.1007/
978-1-4684-2001-2 9. URL https://doi.org/10.
1007/978-1-4684-2001-2_9.

Karp, R. M. Reducibility Among Combinatorial Prob-
lems, pp. 219–241. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010. ISBN 978-3-540-68279-0. doi:
10.1007/978-3-540-68279-0 8. URL https://doi.
org/10.1007/978-3-540-68279-0_8.

Kovarik, V., Oesterheld, C., and Conitzer, V. Game the-
ory with simulation of other players. arXiv preprint
arXiv:2305.11261, 2023.

Kozma, L. and Voderholzer, J. Theoretical analysis of byte-
pair encoding, 2024. URL https://arxiv.org/
abs/2411.08671.

La Malfa, E., Petrov, A., Frieder, S., Weinhuber, C., Burnell,
R., Nazar, R., Cohn, A., Shadbolt, N., and Wooldridge,
M. Language-models-as-a-service: Overview of a new
paradigm and its challenges. Journal of Artificial Intelli-
gence Research, 80:1497–1523, 2024.

Laufer, B., Kleinberg, J., and Heidari, H. Fine-tuning games:
Bargaining and adaptation for general-purpose models.
In Proceedings of the ACM Web Conference 2024, pp.
66–76, 2024.

Lian, H., Xiong, Y., Lin, Z., Niu, J., Mo, S., Chen, H.,
Liu, P., and Ding, G. Lbpe: Long-token-first tokeniza-
tion to improve large language models. arXiv preprint
arXiv:2411.05504, 2024a.

Lian, H., Xiong, Y., Niu, J., Mo, S., Su, Z., Lin, Z., Chen, H.,
Liu, P., Han, J., and Ding, G. Scaffold-bpe: Enhancing
byte pair encoding for large language models with sim-
ple and effective scaffold token removal. arXiv preprint
arXiv:2404.17808, 2024b.

Mahmood, R. Pricing and competition for generative AI.
In The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems, 2024. URL https:
//openreview.net/forum?id=8LbJfEjIrT.

Milgrom, P. and Roberts, J. Informational asymmetries,
strategic behavior, and industrial organization. The Amer-
ican Economic Review, 77(2):184–193, 1987.

Mishra, D. P., Heide, J. B., and Cort, S. G. Information
asymmetry and levels of agency relationships. Journal of
marketing Research, 35(3):277–295, 1998.

Mozannar, H., Bansal, G., Fourney, A., and Horvitz, E.
Reading between the lines: Modeling user behavior and
costs in ai-assisted programming. In Proceedings of the
2024 CHI Conference on Human Factors in Computing
Systems, CHI ’24, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400703300.
doi: 10.1145/3613904.3641936. URL https://doi.
org/10.1145/3613904.3641936.

Nisan, N. and Ronen, A. Algorithmic mechanism design.
Games and Economic Behavior, 35(1):166–196, 2001.
ISSN 0899-8256. doi: https://doi.org/10.1006/game.1999.
0790. URL https://www.sciencedirect.com/
science/article/pii/S089982569990790X.

Ovalle, A., Mehrabi, N., Goyal, P., Dhamala, J., Chang,
K.-W., Zemel, R., Galstyan, A., Pinter, Y., and Gupta, R.
Tokenization matters: Navigating data-scarce tokeniza-
tion for gender inclusive language technologies, 2024.
URL https://arxiv.org/abs/2312.11779.

10

https://aclanthology.org/2024.emnlp-main.1032/
https://aclanthology.org/2024.emnlp-main.1032/
https://doi.org/10.1001/jama.2023.5321
https://doi.org/10.1001/jama.2023.5321
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://arxiv.org/abs/2503.16163
https://arxiv.org/abs/2503.16163
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1007/978-3-540-68279-0_8
https://arxiv.org/abs/2411.08671
https://arxiv.org/abs/2411.08671
https://openreview.net/forum?id=8LbJfEjIrT
https://openreview.net/forum?id=8LbJfEjIrT
https://doi.org/10.1145/3613904.3641936
https://doi.org/10.1145/3613904.3641936
https://www.sciencedirect.com/science/article/pii/S089982569990790X
https://www.sciencedirect.com/science/article/pii/S089982569990790X
https://arxiv.org/abs/2312.11779

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

Pais, S., Cordeiro, J., and Jamil, M. L. Nlp-based plat-
form as a service: a brief review. Journal of Big Data,
9(1), April 2022. ISSN 2196-1115. doi: 10.1186/
s40537-022-00603-5. URL http://dx.doi.org/
10.1186/s40537-022-00603-5.

Patel, D., Raut, G., Cheetirala, S. N., Nadkarni, G. N.,
Freeman, R., Glicksberg, B. S., Klang, E., and Timsina, P.
Cloud platforms for developing generative ai solutions: A
scoping review of tools and services, 2024. URL https:
//arxiv.org/abs/2412.06044.

Petrov, A., Malfa, E. L., Torr, P., and Bibi, A. Lan-
guage model tokenizers introduce unfairness between
languages. In Thirty-seventh Conference on Neural In-
formation Processing Systems, 2023. URL https:
//openreview.net/forum?id=78yDLKi95p.

Rajaraman, N., Jiao, J., and Ramchandran, K. To-
ward a theory of tokenization in llms. arXiv preprint
arXiv:2404.08335, 2024.

Raman, N., Lundy, T., Amouyal, S., Levine, Y., Leyton-
Brown, K., and Tennenholtz, M. Steer: Assessing the
economic rationality of large language models. arXiv
preprint arXiv:2402.09552, 2024.

Rasmusen, E. Games and information, volume 13. Basil
Blackwell Oxford, 1989.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J. R., Ellen-
berg, J. S., Wang, P., Fawzi, O., Kohli, P., and Fawzi,
A. Mathematical discoveries from program search with
large language models. Nat., 625(7995):468–475, Jan-
uary 2024. URL https://doi.org/10.1038/
s41586-023-06924-6.

Saig, E., Einav, O., and Talgam-Cohen, I. Incentivizing
quality text generation via statistical contracts. arXiv
preprint arXiv:2406.11118, 2024.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. In Erk,
K. and Smith, N. A. (eds.), Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725,
Berlin, Germany, August 2016. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P16-1162. URL
https://aclanthology.org/P16-1162/.

Singh, A. K. and Strouse, D. Tokenization counts: the
impact of tokenization on arithmetic in frontier llms, 2024.
URL https://arxiv.org/abs/2402.14903.

Singh, S., Nan, Y., Wang, A., D’Souza, D., Kapoor, S.,
Üstün, A., Koyejo, S., Deng, Y., Longpre, S., Smith,

N., Ermis, B., Fadaee, M., and Hooker, S. The leader-
board illusion, 2025. URL https://arxiv.org/
abs/2504.20879.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters, 2024. URL https://arxiv.
org/abs/2408.03314.

Sun, H., Wu, Y., Cheng, Y., and Chu, X. Game theory
meets large language models: A systematic survey. arXiv
preprint arXiv:2502.09053, 2025.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2023. URL https://arxiv.org/
abs/1706.03762.

Zhang, Y., Mao, S., Ge, T., Wang, X., de Wynter, A., Xia, Y.,
Wu, W., Song, T., Lan, M., and Wei, F. Llm as a master-
mind: A survey of strategic reasoning with large language
models. arXiv preprint arXiv:2404.01230, 2024.

Zheng, L., Chiang, W.-L., Sheng, Y., Li, T., Zhuang, S.,
Wu, Z., Zhuang, Y., Li, Z., Lin, Z., Xing, E. P., Gonzalez,
J. E., Stoica, I., and Zhang, H. Lmsys-chat-1m: A large-
scale real-world llm conversation dataset, 2024. URL
https://arxiv.org/abs/2309.11998.

Zhou, K., Zhu, Y., Chen, Z., Chen, W., Zhao, W. X., Chen,
X., Lin, Y., Wen, J.-R., and Han, J. Don’t make your llm
an evaluation benchmark cheater, 2023. URL https:
//arxiv.org/abs/2311.01964.

Zouhar, V., Meister, C., Gastaldi, J. L., Du, L., Vieira, T.,
Sachan, M., and Cotterell, R. A formal perspective on
byte-pair encoding. arXiv preprint arXiv:2306.16837,
2023.

11

http://dx.doi.org/10.1186/s40537-022-00603-5
http://dx.doi.org/10.1186/s40537-022-00603-5
https://arxiv.org/abs/2412.06044
https://arxiv.org/abs/2412.06044
https://openreview.net/forum?id=78yDLKi95p
https://openreview.net/forum?id=78yDLKi95p
https://doi.org/10.1038/s41586-023-06924-6
https://doi.org/10.1038/s41586-023-06924-6
https://aclanthology.org/P16-1162/
https://arxiv.org/abs/2402.14903
https://arxiv.org/abs/2504.20879
https://arxiv.org/abs/2504.20879
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2309.11998
https://arxiv.org/abs/2311.01964
https://arxiv.org/abs/2311.01964

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

A. Additional Experimental Details
Here, we provide additional details on the experimental setup, including the hardware used, the dataset and models used, as
well as details on the generation process.

Hardware setup. Our experiments are executed on a compute server equipped with 2 × Intel Xeon Gold 5317 CPU, 1,024
GB main memory, and 2 × A100 Nvidia Tesla GPU (80 GB, Ampere Architecture). In each experiment, a single Nvidia
A100 GPU is used.

Datasets. For the results presented in Figure 2, Table 1 and Appendix C.1 we generated model responses to prompts
obtained from the LMSYS-Chat-1M dataset (Zheng et al., 2024). We use the LMSYS-Chat-1M dataset exclusively to
obtain a varied sample of potential user prompts. We filter user prompts to obtain the 400 first questions that are in English
language (by using the language keyword) and whose length (in number of characters) is in the range [20, 100], to avoid
trivial or overly elaborated prompts.

Models. In our experiments, we use the models Llama-3.2-3B-Instruct and Llama-3.2-3B-Instruct from
the Llama family, the models Gemma-3-1B-It and Gemma-3-4B-It from the Gemma family, and Ministral-
8BInstruct-2410. The models are obtained from publicly available repositories from Hugging Face9.

Generation details. For the experiments in Figure 1, we run an exhaustive search over all possible tokenizations for each
string, reporting the distribution of their length under the name “No top-p”. For every tokenization, we make a forward pass
with the model Llama-3.2-1B-Instruct to obtain the token probabilities from the combination of prompt and token
sequence. We then verify if the token sequence is plausible under top-p sampling with temperature 1 and various values of
the parameter p. Note that since this is a deterministic process, we do not report any error bars.

For the experiments involving the LMSYS dataset, we use the transformers library in Python 3.11 to generate
outputs of varying length between 200 and 300 tokens under various temperature and p values. Each model generates a
total of 2000 output token sequences for the first 400 filtered prompts of the LMSYS dataset, by running 5 independent
generations with different seeds. We then compute standard deviations across the 5 repetitions, and 90% symmetric
confidence intervals for the mean values assuming a t−distribution value of 2.015. The 90% confidence intervals are shown
in the plots and table.

Licenses. The LMSYS-Chat-1M dataset is licensed under the LMSYS-Chat-1M Dataset License Agreement.10 The Llama-
3.2-1B-Instruct and Llama-3.2-3B-Instruct models are licensed under the LLAMA 3.2 COMMUNITY
LICENSE AGREEMENT.11. The Gemma-3-1B-It and Gemma-3-4B-It models are licensed under the GEMMA
TERMS OF USE.12. The Ministral-8B-Instruct-2410 model is licensed under the MISTRAL AI RESEARCH
LICENSE.13.

9https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/google/gemma-3-1b-it
https://huggingface.co/google/gemma-3-4b-it
https://huggingface.co/mistralai/Ministral-8B-Instruct-2410

10https://huggingface.co/datasets/lmsys/lmsys-chat-1m
11https://ai.google.dev/gemma/terms
12https://www.gemma.com/gemma3_0/license/
13https://mistral.ai/static/licenses/MRL-0.1.md

12

https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/google/gemma-3-1b-it
https://huggingface.co/google/gemma-3-4b-it
https://huggingface.co/mistralai/Ministral-8B-Instruct-2410
https://huggingface.co/datasets/lmsys/lmsys-chat-1m
https://ai.google.dev/gemma/terms
https://www.gemma.com/gemma3_0/license/
https://mistral.ai/static/licenses/MRL-0.1.md

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

B. Proofs
B.1. Proof of Theorem 3.2

We prove the theorem by reduction from the Hamiltonian path problem (Karp, 2010), which is known to be NP-complete, to
the problem of finding a plausible tokenization under top-p sampling longer than a given number of tokens. Consequently,
this will prove the hardness of the problem of finding a longest plausible token sequence t̃ under top-p sampling, as stated in
Eq. 4. In the Hamiltonian path problem, we are given a directed graph G, that is, a set of nodes N = {1, . . . , n} and a set
of edges E between them, where e = (ν, ν′) denotes an edge from node ν to node ν′. The goal is to decide whether there
exists a path that visits all nodes exactly once.

The core idea of the construction is to represent a path in the graph G as a sequence of tokens, where each node j ∈ N is
represented by a token consisting of j times the character “a”. In addition, we set the parameter p ∈ (0, 1) of top-p sampling
and the next-token distributions of the LLM such that a token sequence t̃ with str

(
t̃
)
= str(t) and len

(
t̃
)
> 1 is

plausible if and only if the tokens in t̃ correspond to a Hamiltonian path in the graph G.

We proceed with the construction as follows. Let Σ = {“a”} be the alphabet and the LLM’s vocabulary be

V = {“a”, “aa”, . . . , “a...a”︸ ︷︷ ︸
n times

, “a...a”︸ ︷︷ ︸
λ times

,∅},

where λ =
∑n

j=1 j = n(n+ 1)/2 and ∅ denotes the end-of-sequence token. Moreover, let the true output token sequence t
consist of a single token—the one that contains λ times the character “a”. Further, to keep the notation concise, we refer to
the set of the first n tokens in V as Vn. Then, we define a mapping Φ: Vn → N from tokens to nodes as

Φ(“a...a”︸ ︷︷ ︸
j times

) = j for j = 1, . . . , n.

We fix the parameter p and a next-token distribution of the LLM such that, given a (partial) token sequence t̃ =
(
t̃1, . . . , t̃k

)
,

the restricted set of tokens Vp
(
t̃
)

from which the LLM can sample the next token is given by

Vp
(
t̃
)
=

{∅} if

∣∣str
(
t̃
)∣∣ ≥ λ

V \∅ if t̃ = (){
v ∈ Vn : v ̸= t̃i for all i ∈ [k] and

(
Φ
(
t̃k
)
,Φ(v)

)
∈ E

}
∪ {∅} otherwise.

(6)

In words, the last case states that the LLM can sample any token consisting of up to n times the character “a” as long as it is
not already in the sequence t̃, that is, the corresponding node has not been visited yet, and there is an edge in the graph G
connecting that node to the node corresponding to the last token in t̃. When the sequence t̃ is empty (i.e., the path has not
started yet), the LLM can sample any token in V except for the end-of-sequence token ∅, which it is only allowed to sample
when the sequence t̃ contains at least λ characters.

We can now show that a Hamiltonian path in the graph G exists if and only if the solution t̃ to the optimization problem
given by Eq. 4 has len

(
t̃
)
> 1.14 Assume that the optimal solution to the problem is such that len

(
t̃
)
> 1. Then, t̃

cannot contain the token that consists of λ times the character “a” because this would imply that it consists of strictly more
than λ characters and, therefore, str(t̃) ̸= str(t). Additionally, t̃ cannot contain any token twice as that would violate
its plausibility according to Eq. 6. Therefore, it has to hold that t̃ contains all tokens in Vn exactly once, since this is the
only way to form a sequence that contains λ =

∑n
j=1 j characters. This implies that there exists a sequence of edges(

Φ
(
t̃1
)
,Φ

(
t̃2
))

, . . . ,
(
Φ
(
t̃n−1

)
,Φ

(
t̃n
))

in the graph G that visits all nodes exactly once. Hence, a Hamiltonian path
exists.

Now, assume that there exists a Hamiltonian path in the graph G that visits all nodes once, forming a sequence (ν1, ν2, . . . , νn)
with νi ∈ N and νi ̸= νj for i ̸= j. Then, the corresponding token sequence t′ = (t′1, t

′
2, . . . , t

′
n) with Φ (t′i) = νi for

i ∈ [n] is a valid tokenization of the string str(t) since
∑n

i=1 |str(t′i)| =
∑n

i=1 νi = λ. Moreover, the sequence t′ is
plausible by construction and satisfies len (t′) = n > 1 = len

(
t̃
)
. Finally, note that if G does not admit a Hamiltonian

path, then str(t) cannot be tokenized as a sequence of plausible tokens in Vn. Hence, the only plausible tokenization is the
token with λ characters, which has length 1. This concludes the proof.

14For ease of exposition, we assume that the end-of-sequence token ∅ does not contribute to the length of the sequence t̃.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

In what follows, we present two extensions of the reduction to other settings where a provider may want to misreport the
output token sequence without raising suspicion. Specifically, we consider the case where the provider reports a token
sequence t̃ that is plausible under top-k sampling and the case where the provider reports a token sequence t̃ whose
probability is greater than a given threshold.

B.1.1. HARDNESS OF FINDING THE LONGEST PLAUSIBLE TOKENIZATION UNDER TOP-k SAMPLING

Top-k sampling is an approach of filtering out low-probability tokens during the sampling process, similar to top-p sampling.
In top-k sampling, given a partial token sequence t̃, the LLM samples the next token from the set of k most probable tokens
Vk

(
t̃
)

at each step of the autoregressive process, where k ∈ {1, . . . , |V| − 1}. In this setting, the problem of finding a
longest tokenization of a given output token sequence t that is plausible under top-k sampling is NP-Hard with the core idea
of the reduction being similar to the one for top-p sampling.

The main difference lies in the fact that, in top-k sampling, the restricted set of tokens Vk
(
t̃
)

needs to have a fixed size k in
contrast to the construction of Vp

(
t̃
)

in Eq. 6, which is a variable size set. To ensure that similar arguments for establishing
a one-to-one correspondence between a Hamiltonian path in the graph G and a plausible token sequence t̃ of length greater
than 1 still hold, one can construct the set Vk

(
t̃
)

using a similar approach as in Eq. 6 but also including “padding” tokens
that do not correspond to any node in the graph G to maintain a fixed size. To this end, we can maintain the same true output
token sequence t, consisting of n(n+ 1)/2 times “a” and augment the vocabulary V of the previous construction by adding
n additional tokens

Vb = {“b”, “bb”, . . . , “b...b”︸ ︷︷ ︸
n times

}

that are irrelevant for the string s = str(t), do not correspond to any node in the graph G, and do not affect the mapping Φ.

Then, note that, the set Vp
(
t̃
)

in Eq. 6 contains at most n+ 1 tokens. Here, the idea is to set k = n+ 1 and to construct the
set Vk

(
t̃
)

as follows:

Vk
(
t̃
)
= Vp

(
t̃
)
∪G

(
Vp

(
t̃
))

, (7)

where G
(
Vp

(
t̃
))

is the set of the first n+ 1− |Vp
(
t̃
)
| tokens in Vb. Since the additional tokens in G

(
Vp

(
t̃
))

are not part
of the mapping Φ and cannot be used to tokenize the string s = str(t), they influence neither the plausibility of the optimal
solution to the problem of Eq. 4 nor the corresponding Hamiltonian path in the graph G. Therefore, the same arguments as
in the proof of Theorem 3.2 hold, and we conclude that the problem of finding a longest tokenization of a given output token
sequence t that is plausible under top-k sampling is NP-Hard.

B.1.2. HARDNESS OF FINDING THE LONGEST TOKENIZATION WHOSE GENERATION PROBABILITY IS GREATER
THAN A THRESHOLD

We now focus on a slightly different setting where the provider reports a token sequence t̃ under the plausibility condition
that the LLM does not assign very low probability to the sequence as a whole. Formally, we require that the probability of
the LLM generating the token sequence t̃ satisfies

P
(
t̃
)
:= P

(
t̃1
) k∏
i=2

P
(
t̃i | t̃<i

)
≥ ε, (8)

where ε is a user-specified threshold and P
(
t̃i | t̃<i

)
is the probability of the LLM generating the token t̃i given the

previously generated tokens t̃<i =
(
t̃1, . . . , t̃i−1

)
. In this setting, the problem of finding a longest tokenization under Eq. 8

is also NP-hard. Similarly, as before, the proof is to set the next-token distributions of the LLM in a way that assigns
low probability to token sequences that do not lead to a Hamiltonian path in G. Specifically, let δ be a constant such that
0 < δ < 1/(n + 1), and assume all next-token distributions are such that, given

(
t̃1, . . . , t̃k

)
, assign probability mass

(1− δ)/n to each of the tokens in

Hi :=
{
v ∈ Vn : v ̸= t̃i for all i ∈ [k] and

(
Φ
(
t̃k
)
,Φ(v)

)
∈ E

}
, (9)

δ to each of the tokens in Vn \ Hi, 0 to the token with λ times the character “a”, and any remaining probability mass to the
end-of-sequence token ∅.15 The high-level idea here is to set the probabilities of next tokens in such a way that the LLM

15Using the assumption that δ < 1/(n+ 1), it is easy to verify that the above construction leads to a valid probability distribution.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

assigns very low probability to the entire token sequence t̃ if it concatenates two tokens whose corresponding nodes are not
connected via an edge in the graph G or if the latter token has already been used in the sequence.

Given this construction, we set the user-specified threshold as ε =
(
1−δ
n

)n
. Now, given a Hamiltonian path in the

graph G that visits all nodes once and forms a sequence (ν1, ν2, . . . , νn) with νi ∈ N and νi ̸= νj for i ̸= j, the
corresponding token sequence t′ = (t′1, t

′
2, . . . , t

′
n) has cumulative probability exactly ε, so it is plausible and has length

greater than 1. Reciprocally, given a plausible tokenization t̃ with length greater than 1, the corresponding sequence(
Φ
(
t̃1
)
,Φ

(
t̃2
))

, . . . ,
(
Φ
(
t̃n−1

)
,Φ

(
t̃n
))

has to be a Hamiltonian path. If this is not true, at least one of the tokens in t̃

does not belong in its respective setHi defined by Eq. 9, and hence the probability of the sequence t̃ is at most

P
(
t̃
)
≤ δ

(
1− δ

n

)n−1

< ε, (10)

which contradicts the assumption that t̃ is plausible.

B.2. Proof of Proposition 4.2

Let t = t̂ be the true output sequence generated by the LLM. Then, by Definition 4.1, it holds that

Uprovider(t̂, t̂) ≥ Uprovider(t
′, t̂)

(∗)
=⇒ r

(
t̂
)
− c

(
t̂
)
≥ r (t′)− c

(
t̂
)

=⇒ r
(
t̂
)
≥ r (t′) ,

where (∗) follows from Eq. 1.

Now, consider that the true output sequence generated by the LLM is t = t′. Similarly, as before, we have U(t′, t′) ≥
U(t̂, t′), which implies that r (t′) ≥ r

(
t̂
)
. Combining the two inequalities, we get r

(
t̂
)
= r (t′).

B.3. Proof of Theorem 4.3

Let t′ = (t′1, . . . , t
′
k) be the tokenization of the string s = str(t) that consists only of single-character tokens, i.e.,

str (t) = str (t′) with |str (t′) | = |str (t) | = k. Note that such a tokenization exists, since Σ ⊆ V . From
Proposition 4.2, we get

r (t) = r (t′)
(∗)
=

k∑
i=1

r (t′i) =

k∑
i=1

∑
σ∈Σ

1[t′i = σ] · r(σ)

=
∑
σ∈Σ

countσ (t
′) · r(σ) (∗∗)

=
∑
σ∈Σ

countσ (t) · r(σ),

where 1 denotes the indicator function, (∗) holds because the pricing mechanism is additive and (∗∗) holds because
str (t′) = str (t).

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

C. Additional Experimental Results
C.1. Performance of Algorithm 1 under Different LLMs and Temperature Values

In this section, we evaluate Algorithm 1 on outputs generated by five LLMs to the same prompts used in Section 3 under
different temperature values.

Figure 3 shows the fraction of generated outputs for which Algorithm 1 finds a longer plausible tokenization. We observe that,
the higher the values of p and temperature, the higher the likelihood that Algorithm 1 finds plausible longer tokenizations.
Moreover, we also observe that, for outputs given by the Gemma-3-4B-It model, Algorithm 1 is less likely to find
plausible longer tokenizations across all temperature and p values. We hypothesize that this is due to the fact that Gemma-
3-4B-It is the only model in our experiments that is multimodal and the level of randomness in its next-token distributions
may be lower than in the other models.

Figure 4 shows the percentage of tokens overcharged by an unfaithful provider who uses Algorithm1. We observe that
the percentage of overcharged tokens is unimodal with respect to the number of iterations m, and the higher the value the
temperature and p, the higher the percentage of overcharged tokens, as the top-p sets become larger and the likelihood that a
longer tokenization is plausible increases.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

p = 0.99 p = 0.95 p = 0.90
L
l
a
m
a
-
3
.
2
-
1
B
-
I
n
s
t
r
u
c
t

0

20

40

60

80

100

P
la

u
si

b
le

se
q
u

en
ce

s
(%

)

L
l
a
m
a
-
3
.
2
-
3
B
-
I
n
s
t
r
u
c
t

0

20

40

60

80

100

P
la

u
si

b
le

se
q
u

en
ce

s
(%

)

G
e
m
m
a
-
3
-
1
B
-
I
t

0

20

40

60

80

100

P
la

u
si

b
le

se
q
u

en
ce

s
(%

)

G
e
m
m
a
-
3
-
4
B
-
I
t

0

20

40

60

80

100

P
la

u
si

b
le

se
q
u

en
ce

s
(%

)

M
i
s
t
r
a
l
-
8
B
-
I
n
s
t
r
u
c
t
-
2
4
1
0

0 50 100 150 200

Number of iterations, m

0

25

50

75

100

P
la

u
si

b
le

se
q
u

en
ce

s
(%

)

0 20 40 60 80 100

Number of iterations, m

0 20 40 60 80 100

Number of iterations, m

Temperature 1.45 Temperature 1.30 Temperature 1.15

Figure 3. Fraction of generated outputs for which Algorithm 1 finds a plausible longer tokenization. The figure shows, for different
model families, the fraction of token sequences where the heuristic implemented in Algorithm 1 finds a plausible longer tokenization
under top−p sampling and various temperature levels, as a function of the additional tokens overcharged to the user (i.e., the number of
iterations m in Algorithm 1). The output token sequences t are generated for the first 400 prompts in the LMSYS dataset. We repeat each
experiment 5 times to calculate 90% confidence intervals.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

p = 0.99 p = 0.95 p = 0.90
L
l
a
m
a
-
3
.
2
-
1
B
-
I
n
s
t
r
u
c
t

0

1

10

O
ve

rc
h

ar
ge

d
to

ke
n

s
(%

)

0

1

10

1

0

L
l
a
m
a
-
3
.
2
-
3
B
-
I
n
s
t
r
u
c
t

0

1

10

O
ve

rc
h

ar
ge

d
to

ke
n

s
(%

)

0

1

10

1

0

G
e
m
m
a
-
3
-
1
B
-
I
t

0

1

10

O
ve

rc
h

ar
ge

d
to

ke
n

s
(%

)

0

1

10

1

0

G
e
m
m
a
-
3
-
4
B
-
I
t

0

1

10

O
ve

rc
h

ar
ge

d
to

ke
n

s
(%

)

0

1

10

1

0

M
i
s
t
r
a
l
-
8
B
-
I
n
s
t
r
u
c
t
-
2
4
1
0

0 50 100 150 200

Number of iterations, m

0

1

10

O
ve

rc
h

ar
ge

d
to

ke
n

s
(%

)

0 20 40 60 80 100

Number of iterations, m

0

1

10

0 20 40 60 80 100

Number of iterations, m

1

0

Temperature 1.45 Temperature 1.30 Temperature 1.15

Figure 4. Financial gain from misreporting the tokenization of outputs using Algorithm 1. The figure shows, across different model
families and for the first 400 LMSYS prompts, the total percentage of tokens that a provider using top−p sampling following the heuristic
in Algorithm1 could overcharge the user, as a function of the number of iterations and for various temperature values. Dashed lines
correspond to the maximum of each curve. We repeat each experiment 5 times to calculate 90% confidence intervals.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

C.2. Examples of Plausible Output Token Sequences Found by Algorithm 1

To illustrate how Algorithm 1 works, here, we provide examples of output token sequences generated by the Llama-3.2-
1B-Instruct model, where the algorithm has found plausible tokenizations that are longer than the original output token
sequence. Across all examples, we use the Llama-3.2-1B-Instruct model and set p = 0.95 and the temperature
of the model to 1.3. We select prompts from the LMSYS dataset. For each example, we show (i) the true output token
sequence generated by the model, and (ii) the modified output token sequence returned by Algorithm 1. We use “|” to
indicate separations between tokens as generated by the model, and we use “|” to indicate the split points of the tokens
that result from Algorithm 1. The number above each red separator indicates the iteration of the algorithm in which the
respective token was split. We show all iterations until the sequence first becomes non-plausible.

... The| third| film| appears| to| delve| into| the| themes| of| societal|
reaction| and|... Here| are| movies| that| offer| similar| thematic con-
cerns|...

(a) True output token sequence

... The| third| film| appears| to| del
(1)

| ve| into| the| themes| of|

soci
(2)

| etal| reaction| and|... Here| are| movies| that| offer| similar| the-

matic conce
(3)

| rns|...

(b) Modified output token sequence

Figure 5. Responses to the prompt “is Dead Snow worth watching or should I watch directly Dead Snow
2?”.

... Here| are| a| few| options| :|
1|.| **| T|rello|**:| T|rello| is| a| visual| project| management| tool|...
2|.| **| J|IRA|**:| As| mentioned|,| J|IRA| is| a| popular| At|lassian| suite|...

(a) True output token sequence

... Here| are| a| few| options| :|

1|.| **| T|rello|**
(1)

| :| T|rello| is| a| visual| project| management| tool|...

2|.| **| J|IRA|**
(2)

| :| As| mentioned|,| J|IRA| is| a| popular| At|las
(3)

| sian|
suite|...

(b) Modified output token sequence

Figure 6. Responses to the prompt “What is a good tool to plan a complex server deployment?”.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives

The| easiest| way| to| invest| in| property|... Real| estate| investment|
trusts| or| RE|IT|s|,| real| estate| mutual| funds| may| be| the| easiest|.|...
There| are| many| options| for| acquiring| income| such| as| ground| level|
rental| or| owning| a| building| through| a| partnership|.| The| highest|
performing| investment| may| remain| a| gamble| and| have| no| guarantee|.|
The| next| hightest| would| have| to| be| investing| in| stocks| and| bonds|,
the| old| main|stay|.| Div|idend| and| bonds| have| higher| reliability|...
Note|:| the| previous| responses| and| answers| have| been| simplified|...

(a) True output token sequence

The| eas
(8)

| iest| way| to| invest| in| property|... Real| estate| investment|

trust
(2)

| s| or| RE|IT|s|,| real| estate| mutual| funds| may| be| the| easiest|.|...

There| are| many| options| for| acqu
(6)

| iring| income| such| as| ground|

level| rental| or| ow
(7)

| ning| a| building| through| a| partnership|.| The|

highest| performing| investment| may| remain| a| gam
(3)

| ble| and| have| no|
guarantee|.| The| next| hightest| would| have| to| be| investing| in| stocks|

and| bonds|, the| old| main|st
(4)

| ay|.| Div|id
(1)

| end| and| bonds| have| higher|

reli
(2)

| ability|... Note|:| the| previous| responses| and| answers| have| been|

simpl
(5)

| ified|...

(b) Modified output token sequence

Figure 7. Responses to the prompt “What is currently the easiest investment opportunity with the
capital and the highest game?”.

20

