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Abstract— We introduce LOTUS, a continual imitation
learning algorithm that empowers a physical robot to contin-
uously and efficiently learn to solve new manipulation tasks
throughout its lifespan. The core idea behind LOTUS is
constructing an ever-growing skill library from a sequence
of new tasks with a small number of human demonstrations.
LOTUS starts with a continual skill discovery process using an
open-vocabulary vision model, which extracts skills as recurring
patterns presented in unsegmented demonstrations. Continual
skill discovery updates existing skills to avoid catastrophic
forgetting of previous tasks and adds new skills to solve novel
tasks. LOTUS trains a meta-controller that flexibly composes
various skills to tackle vision-based manipulation tasks in the
lifelong learning process. Our comprehensive experiments show
that LOTUS outperforms state-of-the-art baselines by over
11% in success rate, showing its superior knowledge transfer
ability compared to prior methods. More results and videos can
be found on the project website: https://ut—austin-rpl.
github.io/Lotus/}

I. INTRODUCTION

Deploying robots in the open world necessitates continual
learning in ever-changing environments. Imagine you bring
home a new appliance — your future home robot is unlikely
to have seen it before and must quickly learn to operate it.
Such a scenario pinpoints the importance of lifelong learning
capabilities [48]], with which a robot can continually learn
and adapt its behaviors over time. Lifelong robot learning
is particularly challenging as it involves constant adaptation
under distribution shifts throughout a robot’s lifespan.

A plethora of literature has investigated lifelong learn-
ing with monolithic neural networks [13] |16l |19, |56l 60].
As these monolithic models have constant capacities, they
often fall short in complex domains such as vision-based
manipulation [26]], where the ever-growing set of tasks would
eventually incur insurmountable computational burdens. Al-
ternatively, the computational burden can be greatly reduced
by exploiting the compositional structures of underlying
tasks. Such structures can be identified as the recurring
segments among the trajectories, corresponding to reusable
skills across different tasks [[63]. Another body of work
has harnessed the recurring patterns in task structures and
extracted skills for knowledge transfer [40, 42, 147,|55]. These
works have demonstrated that skills can be composed by a
hierarchical model to scaffold new behaviors more efficiently
than their monolithic counterparts. Nonetheless, they either
assume a fixed set of skills, thus limiting the range of
behaviors they can express, or demand a prohibitively high
sample complexity for physical robots.
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Fig. 1: Method Overview. LOTUS is a continual imitation learning
algorithm through unsupervised skill discovery. LOTUS starts from
the base task stage, where it builds an initial library of sensorimotor
skills. In the subsequent lifelong task stage, it continuously discov-
ers new skills from a stream of incoming tasks and adds them to
its skill library. A high-level meta-controller composes skills from
the library to solve new manipulation tasks. We mark the newly
acquired skills in the library with %5 .

Recently, imitation learning [7, |52, |61, 62] has shown
great promise in tackling robot manipulation tasks. These
algorithms offer a data-efficient framework for acquiring sen-
sorimotor skills from a small set of human demonstrations,
often collected directly on real robots. Hierarchical imitation
learning methods [25 29, |S9] further harness temporally
extended skills to address long-horizon manipulation tasks
that require prolonged interactions and diverse behaviors.
Nonetheless, most of these works have focused on learning
skills from a single task or a fixed set of tasks known
a priori. These assumptions hinder their effectiveness in
lifelong settings, where the sequence of new tasks results
in non-stationary data distribution.

This work examines the problem of continual imitation
learning for real-world robot manipulation. We aim to de-
velop a practical algorithm that learns over a sequence of
new tasks a physical robot may encounter. Our algorithm
builds up a continually growing skill library by adding new
skills and updating old ones. Our goal is to efficiently learn a
policy that leverages skills extracted from past experiences to
achieve better performance on new tasks (forward transfer)
while retaining its competitive performance on previously
learned tasks (backward transfer).
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To this end, we introduce LOTUS (LifelOng knowledge
Transfer Using Skills). The crux of our method, as illustrated
in Figure |1} is to build an ever-growing library of sensori-
motor skills from a stream of new tasks. Every skill in this
library is modeled as a goal-conditioned visuomotor policy
that operates on raw images. To harness the skill library,
LOTUS trains a meta-controller to invoke one skill by index,
specifying its behavior by generating subgoals at each time
step. We train LOTUS in the continual imitation learning
fashion [13| 26]], where each new task comes with a small
number of human demonstrations collected through teleop-
eration. LOTUS starts from a set of base tasks, acquiring its
initial library of skills. Then, in the subsequent lifelong task
stage, we introduce an incremental skill clustering process
to partition temporal segments of new task demonstrations
to determine whether 1) to add a new skill or 2) to update
an existing skill with new training data. Consequently, we
obtain an ever-increasing skill library for solving previous
and new tasks in the lifelong learning process.

We systematically evaluate LOTUS in continual imitation
learning for vision-based manipulation, both in simulation
and on a real robot. LOTUS reports over 11% higher
average success rates than the state-of-the-art baselines
during the lifelong learning stages. Our results show
the efficacy of using skills to achieve better forward and
backward transfer in lifelong learning settings. Qualitatively,
we find that LOTUS tends to discover new skills to interact
with novel object concepts or generate new motions.

In summary, our contributions are three-fold: 1) We in-
troduce a hierarchical learning algorithm that continually
discovers sensorimotor skills from a stream of new tasks with
human demonstrations; 2) We show that LOTUS transfers
skills to solve new manipulation tasks more effectively than
baselines; 3) We systematically analyze LOTUS’s perfor-
mances and successfully deploy it to physical hardware.

II. RELATED WORK

Lifelong Learning for Decision Making. Lifelong learning
aims to develop generalist agents that adapt to new tasks
in ever-changing environments [21} [34, 38| |47, [53]]. Prior
works have trained monolithic policies [} |16} 27} 57} 58], but
this methodology is shown ineffective in knowledge transfer
for robot manipulation [26]. Alternatively, another line of
research attempts to leverage skills through compositional
modeling of lifelong learning tasks [3l |6l [35] [57]. They
attempt to enable more efficient knowledge transfer com-
pared to the monolithic policy counterparts. These meth-
ods, primarily based on hierarchical reinforcement learn-
ing, induce high sample complexity. They fail to scale to
complex domains such as vision-based manipulation. Unlike
prior works, LOTUS uses skills in a hierarchical imitation
learning framework with experience replay to enable sample-
efficient learning while effectively transferring (backward
and forward) knowledge in vision-based manipulation do-
mains.

Skill Discovery in Robot Manipulation. Skill discovery
studies how a robot identifies recurring segments of

sensorimotor experiences, often termed skills. Many studies
have tackled skill discovery through self-exploration with
hierarchical reinforcement [1}, |12} |14, 22, 24, |51]], or with
information-theoretic bottlenecks [11, |17, 44]. However,
these works demand high sample complexity and often
rely on ground-truth physical states, hindering them from
applying to real robot hardware. another line of works
discover skills from human demonstrations [11, |17, [44].
More recent works have successfully discovered skills from
demonstrations purely based on raw sensory cues, creating
a collection of closed-loop visuomotor policies to tackle
long-horizon manipulations. [8, 46, [63]. However, these
works assume fixed state-action distributions in multitask
settings, preventing them from tackling continually changing
situations during the robot’s lifespan. LOTUS differs from
prior work in that it discovers skills from demonstrations
collected in a sequence of tasks. This approach addresses
the challenge of skill discovery in a dynamic environment
where the data distribution is constantly changing.

Hierarchical Imitation Learning. LOTUS uses hierarchical
imitation learning with temporal abstractions to acquire sen-
sorimotor skills for complex tasks [30} |45]]. Specifically, we
employ hierarchical behavior cloning, a promising technique
in robot manipulation [[15}31}|32}, /49,52, |63]]. These methods
factorize a policy into a two-level hierarchy, where a high-
level policy predicts subgoals and low-level parameterized
skill policies generate motor commands. However, existing
methods only work with a fixed set of skills in multitask
settings, limiting their use in lifelong learning where the
number of skills grows over time. In contrast, LOTUS uses
hierarchical behavioral cloning with Experience Replay [5],
enabling the learning of varying numbers of skill policies.

III. BACKGROUND

In this section, we introduce the formulation of vision-
based robot manipulation and continual imitation learning.
These two formulations are essential to LOTUS.

Vision-Based Manipulation. We formulate a vision-based
robot manipulation task as a finite-horizon Markov Decision
Process: M = (S, A, T,H, o, R). Here, S is the space
of the robot’s raw sensory data, including RGB images
and proprioception. A is the space of the robot’s motor
commands. 7 : § X A — § is transition dynamics. H is
the maximal horizon for each episode of tasks. pg is the
initial state distribution. R(s, a, s’) is the reward function. We
consider a sparse-reward setting, where the reward function
is defined by a goal predicate g : S — {0,1}. Each task
T™ = (ug',g™) is defined by the initial state distribution
pot and the goal predicate g™. The robot’s objective is
to learn a policy 7 that maximizes the expected return:
H

maxy J(m) = Es, a,mm,u0[2o421 9(50)]-

Continual Imitation Learning. We consider a continual
imitation learning setting [26] as mentioned in Section [I|
which allows sample efficient policy learning over tasks with
sparse rewards. In this setting, a robot sequentially trains a

policy 7 using imitation learning over M tasks {T™}M_,.



A robot encounters the tasks in sequence Tlma  pmims

, Tme-1mc where 1 < m. < M(1 < ¢ < C) and
mec = M. We break the lifelong learning process into two
stages, a base task stage for learning a multitask policy over
TY™1 and a lifelong task stage where a robot sequentially
learns all the other tasks 7"**™  For clarity of presentation,
the rest of the descriptions in Section [I1If and [IV| assume one
task is learned at every step c during the lifelong task stage.

For each task 7™, a robot is provided with a small dataset
of N demonstrations for 7™, denoted as D™ = {r/™}¥
and a language description {"". The policy is conditioned on
the observations and the task specification, i.e., m(|s;I™).
The demonstrations are collected through expert teleopera-
tion with each trajectory consisting of state action pairs 7;"* =
{(st,a;)}im, where t,, < H. 7 is trained with a behavioral
cloning loss [2]] that clones the demonstrated actions. The
lifelong learning setting assumes the robot loses full access
to {DP : p < m} when learning T™ [54]]. Therefore, naive
multitask learning methods result in catastrophic forgetting
in lifelong learning due to memory bottleneck [21]]. Our
goal is to learn a sample-efficient policy that quickly learns
on new tasks (forward transfer) while retaining its success
rates on previously learned tasks (backward transfer).

Evaluation Metrics. We use three standard metrics to evalu-
ate policy performance in lifelong learning [ 10,26, 28]: FWT
(forward transfer), NBT (negative backward transfer), and
AUC (area under the success rate curve). All three metrics
are calculated in terms of success rates [26], where a higher
FWT suggests quicker adaptation to new tasks, a lower NBT
indicates better performance on past tasks, and a higher AUC
means better average success rates across all tasks evaluated.
Denote 7; ; as the agent’s success rates on task j when it
has just learned over previous 7 tasks. These three metrics
are defined as follows: FWT = }_ ,p , NBT =

M
Zme[M] K=, NBT,, = Mlm Zq m+1(rm7m Tqm)s
and AUC = Zme[M] M » AUC, M—}n+1(rmam +

M
Zq:m—i—l Tqm)-

7711m

IV. METHOD

We present LOTUS, a hierarchical imitation learning
method for robot manipulation in a lifelong learning setting.
Key to LOTUS is building an ever-increasing library of
skill policies through continual skill discovery. LOTUS
segments demonstrations into temporal segments based on
DINOvV2 [37] features. We leverage these features to form
semantically consistent clusters of temporal segments in the
presence of non-stationary data distribution during lifelong
learning. Throughout the lifelong learning process, LOTUS
continually adds new skills to facilitate new task learning
while refining existing ones without catastrophic forgetting
using a skill clustering method adapted from unsupervised
incremental clustering [41]. Moreover, a meta-controller is
trained with hierarchical imitation learning to harness the
skill library. Figure [2] shows the overview of LOTUS.

Hierarchical Imitation Learning With Continual Skill
Discovery. LOTUS aims to learn a hierarchical policy that

sample-efficiently adapts to new tasks continually during
the lifelong learning process while retaining performance on
previous tasks. The hierarchical policy learning considers the
policy m with a two-level hierarchy: the low level is a set
of skills from the continually growing skill library {m}F}%_ |
and the high level is a meta-controller 7% that invokes the
skills. At lifelong learning stage c¢, a policy is factorized
as: ﬂ(at|st, 1) = 7 (wy, ke|se, D)t (ag]sy,wy), where | €
{1 Me |k € [K.], w; is the subgoal parameter. K. is the
maximal number of skills discovered until step c. In continual
imitation learning [21]], the hierarchical policy is trained over
a sequence of tasks that come with demonstrations. Since
demonstrations from previous tasks are not fully available
in a lifelong setting, LOTUS uses Experience Replay (ER)
to learn policies with a memory buffer B, that saves some
exemplar data for each task introduced before step c.

Key to training 7 in LOTUS is to maintain a growing
skill library {w£}X_|. This goal entails continually clustering
demonstrations of new tasks into skill partitions, which we
term continual skill discovery. Specifically, at a lifelong
learning step ¢, demonstrations are split into maximally K.
partitions {Dj,} < . Each partition Dy, is used to fine-tune
an existing skill policy k£ when k < K(._1) or train a new
skill policy if K(._1) < k < K_. If a partition k is empty at
step ¢, we do not update W,%. Note that the base task stage is
equivalent to continual skill discovery in multitask learning.

A. Continual Skill Discovery With Open-World Perception

For continually discovering new skill policies {mZ}5 |,
it is crucial to split demonstrations D™ of a task 7" into
partitions {Dj,}1¢, where Dy consists of training data for
skill k. The key to curating partitions for training skill
policies is to identify the recurring temporal segments in the
demonstration of new tasks. LOTUS first uses a bottom-up
hierarchical clustering approach [63] to temporally segment
demonstrations and incrementally cluster temporal segments
into partitions.

Temporal Segmentation with Open-World Vision Model.
To recognize recurring patterns for obtaining the partitions,
LOTUS first needs to identify the coherent temporal seg-
ments from demonstrations based on scene similarity [63]].
We apply hierarchical clustering on each demonstration
based on agglomerative clustering [23], which breaks a
demonstration into a sequence of disjoint temporal segments
in a bottom-up manner. The essence of the hierarchical
clustering step is to merge temporally adjacent segments that
are most semantically similar until a task hierarchy is formed,
from which the temporal segments can be decided [63]].
The primary challenge of applying hierarchical clustering
in the lifelong setting is consistently identifying the semantic
similarity between temporally adjacent segments in a non-
stationary data distribution of lifelong learning. We use
DINOvV2 [37], an open-world vision model that can output
consistent semantic features of open-world images [61]],
allowing LOTUS to reliably measure the semantic similarity
between temporally adjacent segments. Specifically, to
incorporate temporal information, we aggregate DINOv2
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Fig. 2: LOTUS consists of two processes: continual skill discovery with open-world perception and hierarchical policy learning with the
skill library. For continual skill discovery, we obtain temporal segments from demonstrations using hierarchical clustering with DINOv2
features and incrementally cluster the temporal segments into partitions to either update existing skills or learn new skills. For the

hierarchical policy, a meta-controller 7%

selects a skill by predicting an index k and specifies the subgoals for the selected skill 75 to

achieve. Note that because the input to a transformer is permutation invariant, we also add sinusoidal positional encoding to input tokens
to inform transformers of the temporal order of input tokens [S0]. We omit this information in the figure for clarity.

features of all frames in the segment using a global pooling
operation. Then, the semantic similarity between consecutive
temporal segments is quantified using the cosine similarity
scores between pooling features.

Incremental Clustering for Skill Partitions. The identified
temporal segments from demonstrations pave the way for
subsequent steps of identifying recurring patterns among
tasks and clustering them into partition data used to train skill
policies. We develop an incremental skill clustering method
that segments demonstrations into temporal segments using
unsupervised skill discovery [63]] and clusters the temporal
segments into either existing or new partitions as follows:
In the base task stage, LOTUS uses spectral clustering [41]
to first partition the demonstrations into K skills. LOTUS
determines the value of K using the Silhouette method [41]],
which quantifies the score of how well data points match with
their clusters on a scale of —1 to 1. We sweep through the
integer values of K to find the one with the highest Silhou-
ette value. LOTUS then continually groups new temporal
segments into increasing partitions in the subsequent lifelong
learning stages, where it either adds a segment to an existing
partition to help backward transfer or creates a new partition
which is used to train a new skill to learn new behaviors that
facilitate forward transfer.

At the lifelong learning step ¢, LOTUS calculates the
Silhouette value between new temporal segments and the
previous K._; partitions to determine the new partitions.
Segments with Silhouette values above a threshold are
grouped with the partition having the highest value,
indicating high similarity between the temporal segment
and existing skill. In contrast, segments with values below
the threshold are assigned to a new partition. This process
is repeated serially for all segments. Our preliminary results
indicate that the clustering is robust and tolerates a range of
threshold values. After partitioning new segments into par-

titions, LOTUS clusters demonstrations D™ into partitions
{Dk}kl,(zcl, each corresponding to an existing or new skill.

B. Hierarchical Imitation Learning With Experience Replay

LOTUS uses the partitions ({Dj};<,) obtained from
continual skill discovery to train the skill library {7Z}5
from which the meta-controller 7y can invoke individual
skills. In a lifelong learning setting, with no full access to
demonstrations from previous tasks, LOTUS uses Experi-
ence Replay (ER) [5]] to learn the policies for its effectiveness
in knowledge transfer [26]. Concretely, LOTUS trains the
policy using behavior cloning with a dataset that consists of
demonstrations D™ of the new task at step ¢ and data stored
in the memory buffer B.. After learning, LOTUS saves a
subset of demonstration trajectories D’ C D™ into the
buffer: B.,1 = B.U D™,

In the following parts, we describe skill policy learning,
where LOTUS keeps track of skill partitions in the memory
buffer. Then, we describe the design of the meta-controller
that invokes skills from the continually growing library.
Skill Policy Learning. The partitions {Dk}fzcl from contin-
ual skill discovery provide the training datasets for each skill
policy. Along with the partitions, to retain previous knowl-
edge while finetuning the skill policies, LOTUS leverages
exemplar data from the memory buffer B, that also retains
partition information of the saved demonstrations. The saved
partition for a skill k at a learning step c is denoted as By, .
in buffer B.. Every existing skills 7} is fine-tuned using
Dy, U By, while newly-created skills are directly trained
on Dy. After the policy finishes training on task 7", the
memory buffer updates the 1nf0rmat10n of skill partitions
with a subset of demonstratlons D C Dy, for partition k:
Bk,c+1 - Bk,c U D .

LOTUS models each skill as a goal-conditioned visuo-
motor policy, which allows the meta-controller to specify
which subgoal for the skill to achieve. LOTUS encodes
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Fig. 3: LOTUS continually discovers skills from real-world tasks in the robot’s lifespan of learning (each color represents a skill). The skill
(in blue) used for “reaching the bottom drawer” is also used for “pushing the oven tray inside” due to similar motion in action space. It
shows the forward transfer of skills enabled by LOTUS. The skill (in purple) discovered in Step 3 of “putting the yellow bowl on the oven
tray” is used for a previous task, “putting the bread on the oven tray,” demonstrating the backward transfer of learned skills in our method.

the look-ahead images within temporal segments using a
subgoal encoder into the subgoal embedding w; and is jointly
trained with skill policies. Representing the subgoals in latent
space makes the meta-controller computationally tractable to
predict w; during inference. The history of input images from
the workspace and wrist cameras are encoded with ResNet-
18 encoders [18] before passing it through the transformer
encoder along with subgoal embedding w;. For
computing the actions, the output token from the transformer
encoder corresponding to w; is then passed into a Gaussian
Mixture Model (GMM) neural network [4] 33]] to model the
multi-modal action distribution in demonstrations.

Skill Composition With Meta-Controller. To harness the
learned library of skill policies, we use a meta-controller
7 to compose the skills. 7 is designed for two purposes:
selects a skill k, and specifies subgoals (w;) for the selected
skill to achieve. Given a task description (™, 7H decides
which skill and subgoal to achieve by considering the current
task progress. To understand the task progress, /7 perceives
the current layouts of objects and the robot’s states captured
by workspace images and robot proprioception, respectively.
As the true state of the task is partially observable, the meta-
controller takes a history of past observations as inputs and
allows temporal modeling of the underlying states by using a
transformer. The observation inputs are converted to tokens
with ResNet-18 encoders [[18]], whereas [ is encoded into
a language token by a pretrained language model, Bert [9],
before passing it to the transformer encoder. To capture the
multi-modal distribution of skill indices and subgoals under-
lying human demonstrations, LOTUS trains a conditional
Variational Auto-Encoder (¢cVAE) by minimizing an ELBO
loss over demonstrations [20]]. The training supervision for
the meta-controller comes from continual skill discovery and
skill policy learning: 1) The labels of skill indices k; from the
clustering step; 2) The subgoal embeddings w; obtained from
encoding look-ahead images of temporal segments using
subgoal encoder. It is important to note that the subgoal
encoder is jointly trained with skill policy learning.

The meta-controller must handle a variable number of
skills due to the ever-growing nature of the skill library. To
address this challenge, we design the meta-controller with
an output head that predicts a sufficiently large number of
skills, noted K, 4.. Then, we introduce a binary mask whose
first K. entries are set to 1 at a lifelong learning step c. The

mask limits the skill index prediction to the existing set of
skills, and when new skills are added, the meta-controller
can predict more skills based on modified masking. Note that
the mask does not change back when the policy is evaluated
on tasks prior to step ¢, so that my can transfer new skills
to previously learned tasks. Concretely, the meta-controller
first predicts logits z € R¥mas then applies masking to z
which returns modified logits denoted as 2z’ where z;, = z
if £ < K_; otherwise, zfc = —o0. The probabillity for a given

ek Applying

skill k is computed as Softmax(z;) = —5—
masking directly to the output probabilit]igé from logits z
would require reweighting the probability during lifelong
learning, giving rise to numerical instability. Our masking

design mitigates this issue.

V. EXPERIMENTS

We design the experiments to answer the following ques-
tions: 1) Does hierarchical policy design improve knowledge
transfer in the lifelong setting? 2) Do the newly discovered
skills facilitate knowledge transfer? 3) Is the hierarchical
design of LOTUS more sample-efficient than baselines that
do not use skills? 4) How does the choice of large vision
models affect knowledge transfer? 5) Is LOTUS practical
for real-robot deployment?

A. Experimental Setup

Simulation Experiments. We conduct evaluations in
simulation using the task suites from the lifelong robot
learning benchmark, LIBERO . We select three suites,
namely LIBERO-OBJECT (10 tasks), LIBERO-GOAL
(10 tasks), and LIBERO-50 (50 kitchen tasks from
LIBERO-100). The benchmarks evaluate the robot’s ability
to understand different object concepts, execute different
motions, and achieve both, respectively.

Real Robot Tasks. We evaluate LOTUS on a real robot
manipulation task suite, MUTEX (50 tasks). They
include a variety of tasks, such as “open the air fryer and
put the bowl with hot dogs in it.” Additional details are
provided on our project website.

B. Quantitative Results

For all simulation experiments, we compare LOTUS
against multiple baselines in each task suite for 20 trials per
task, repeated for three random seeds (Table[l). We evaluate



Tasks Evaluation Setting ‘ SEQUENTIAL [26] ER [5] BUDS [63] LOTUS-ft LOTUS

LIBERO-OBJECT FWT (1) 620 £00 5604 1.0 520+20 680440 74.0 + 30 Mewics | CLIP M DINOw2
NBT (1) 630+£20  240+00 21.0+10 600+ 10 110+ 1.0 -
AUC (1) 300 £00 490+ 1.0 470+ 10 340420 650 + 30 FWT (1) | 120 £1.0 57.0 £40 61.0 £3.0

LIBERO-GOAL  FWT (1) 5504+ 00 530+ 1.0 500+ 1.0 560400 610+ 3.0 NBT (1) | 43.0 £2.0 33.0 £2.0 30.0 £1.0
NBT (1) 700 £ 10 360+ 1.0 390+ 10 73.0+ 1.0 30.0 + 1.0 AUC (1) | 29.0 £2.0 52.0 £3.0 56.0 £1.0
AUC (1) 230 +£00  47.0+£20 420+ 10 260+ 1.0 560+ 1.0

LIBERO-50 FWT (1) 320+ 1.0 350 +30 290+30 320420 39.0+ 20 TABLE II: Ablation study on using
NBT (1) 900 £20 490+ 1.0 500 +£40 87.0+£20 43.0% 1.0 : -
AUC (1) 140 £20 360 +30 33.0+30 160+ 1.0 45.0 + 2.0 different large vision models for con-

tinual skill discovery.

TABLE I: Main Experiments. Results are averaged over three seeds and we report the mean
and standard error. All metrics are computed in terms of success rates (%).

models with FWT, NBT, and AUC, defined in Section [III}
We compare our method with the following baselines:

e SEQUENTIAL: Naively fine-tuning the new tasks in se-
quence using the ResNet-Transformer architecture from
LIBERO [26].

o ER [5]]: Experience Replay baseline using the ResNet-
Transformer without the inductive bias of skills.

e« BUDS [63]: A hierarchical policy baseline that learns
policies from multitask skill discovery. We adopt BUDS
to lifelong learning by re-training it every lifelong step,
using the same policy architecture as LOTUS.

o« LOTUS-ft: LOTUS variant which only fine-tunes the
new task demonstrations without ER.

Table [I] provides a comprehensive evaluation of LOTUS
and the baselines in simulation. It answers question (1)
by showing that LOTUS consistently outperforms the best
baseline, ER, across all three metrics. Additionally, while
ER yields worse FWT than its fine-tuning counterpart,
SEQUENTIAL (a consistent finding shown in the prior
work [26]), LOTUS yields better FWT than its fine-tuning
counterpart, LOTUS-ft. This result shows that the inductive
bias of skills in policy architectures is important for a
memory-based lifelong learning algorithm to transfer
previous knowledge to new tasks effectively.

Ablative Studies. We use LIBERO-GOAL for conducting
all ablations. We answer the question (2) by comparing
LOTUS with its variant without adding new skills, which
decreases by 13.0, —3.0, and 7.0 in FWT, NBT, and AUC,
respectively. The performance declines in all metrics when
no new skills are introduced, highlighting the importance
of expanding the skill library for LOTUS to achieve better
knowledge transfer. To address the question (3), we in-
crementally increase the demonstrations per task for train-
ing ER. The AUC are 0.47 (10 demos), 0.53 (15 demos),
0.53 (20 demos), and 0.57 (25 demos), respectively. ER only
surpasses LOTUS when using 25 demonstrations, implying
significantly better data efficiency of LOTUS compared to
other baselines.

To answer question (4), we compare our DINOv2-based
method with other large vision models that are pretrained on
Internet-scale datasets and human activity datasets, namely
CLIP [39] and R3M [36]. The result in Table [ shows
that our choice of DINOv2 is the best for continual skill
discovery. At the same time, R3M is also significantly better
than CLIP at skill discovery, even though R3M performs
worse than DINOv2. Note that our open-world vision model

choice is not limited to DINOv2 and can be replaced by
superior models in the future.

Real Robot Results. We compare LOTUS with the best
baseline ER on MUTEX tasks. Our evaluation shows that
LOTUS achieved 50 in FWT (+11%), 21 in NBT (+ 2%),
and 56 in AUC (+9%) in comparison to ER. The perfor-
mance over the three metrics shows the efficacy of LOTUS
policies on real robot hardware, answering the question (5).
This result also shows that our choice of DINOv2 features
is general across both simulated and real-world images.
Additionally, we visualize the skill compositions during real
robot evaluation in Figure [3] showing that LOTUS not
only transfers previous skills to new tasks but also achieves
promising results of transferring new skills to previous tasks.

VI. CONCLUSION

We introduce LOTUS, a continual imitation learning
method for building vision-based manipulation policies with
skills. LOTUS tackles continual skill discovery by using
an open-world vision model to extract recurring patterns
in unsegmented demonstrations and an incremental skill
clustering method that clusters demonstrations into an in-
creasing number of skills. LOTUS continually updates the
skill library to avoid catastrophic forgetting of previous tasks
and adds new skills to exhibit novel behaviors. LOTUS uses
hierarchical imitation learning with experience replay to train
both the skill library and the meta-controller that adaptively
composes various skills.

Currently, LOTUS requires expert human demonstrations
through teleoperation, which can be costly. For future work,
we intend to look into discovering skills from human videos.
Moreover, LOTUS still requires storing demonstrations of
previously learned tasks in the experience replay to ensure
effective forward and backward transfers. It would incur
large memory burdens if the number of tasks increases to
thousands. For future work, we plan to investigate compress-
ing data from prior tasks to improve the memory efficiency
of our algorithm.
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