
Conformalized Reachable Sets for Obstacle
Avoidance With Spheres

Yongseok Kwon Jonathan Michaux Seth Isaacson Bohao Zhang
Matthew Ejakov Katherine A. Skinner Ram Vasudevan

Department of Robotics, University of Michigan, Ann Arbor, MI 48109, United States
{kwonys, jmichaux, sethgi, jimzhang, ejakovm, kskin, ramv}@umich.edu

Abstract: Safe motion planning algorithms are necessary for deploying au-
tonomous robots in unstructured environments. Motion plans must be safe to
ensure that the robot does not harm humans or damage any nearby objects.
Generating these motion plans in real-time is also important to ensure that the
robot can adapt to sudden changes in its environment. Many trajectory opti-
mization methods introduce heuristics that balance safety and real-time perfor-
mance, potentially increasing the risk of the robot colliding with its environ-
ment. This paper addresses this challenge by proposing Conformalized Reach-
able Sets for Obstacle Avoidance With Spheres (CROWS). CROWS is a novel
real-time, receding-horizon trajectory planner that generates probablistically-safe
motion plans. Offline, CROWS learns a novel neural network-based repre-
sentation of a sphere-based reachable set that overapproximates the swept vol-
ume of the robot’s motion. CROWS then uses conformal prediction to com-
pute a confidence bound that provides a probabilistic safety guarantee on the
learned reachable set. At runtime, CROWS performs trajectory optimization to
select a trajectory that is probabilstically-guaranteed to be collision-free. We
demonstrate that CROWS outperforms a variety of state-of-the-art methods in
solving challenging motion planning tasks in cluttered environments while re-
maining collision-free. Code, data, and video demonstrations can be found at
https://roahmlab.github.io/crows/.

Keywords: Robot Safety, Conformal Prediction, Reachability Analysis

1 Introduction

Robot manipulators have the potential to transform multiple facets of how humans live and work.
This includes using robots to complete daily chores in peoples’ homes, replacing humans in perform-
ing difficult, dangerous, or repetitive tasks at construction sites, and assisting medical professionals
with life-saving surgeries. In each of these settings, it is essential that the robot remain safe at all
times to prevent colliding with obstacles, damaging high-value objects, or harming nearby humans.
It is also critical that the robot generates motion plans in real-time to ensure that any given task
is performed efficiently or the robot can quickly adjust its behavior to react to local changes in its
environment.

A modern approach to motion planning typically involves combining a high-level planner, a mid-
level trajectory planner, and a low-level tracking controller into a hierarchical framework [1, 2].
The high-level planner generates a path between the robot’s start and goal configurations consisting
of a sequence of discrete waypoints. The mid-level trajectory planner computes time-dependent
positions, velocities, and accelerations that move the robot from one waypoint to the next. The low-
level tracking controller generates control inputs that attempt to minimize deviations between the
robot’s actual motion and the desired trajectory. For example, one may use a sampling-based planner

Workshop on Safe and Robust Robot Learning for Operation in the Real World (SAFE-ROL) at CoRL 2024.

https://roahmlab.github.io/crows/

Offline

Online
Execute Current Safe

Trajectory
Solve Trajectory

Optimization
Execute Next Safe

Trajectory

Quantify Uncertainty of NN

(1− α) quantile

Generate Reachability
Dataset

Dataset

dist

Train Neural Network to
Predict Reachable Sets

non-conformity score

Figure 1: Overview of CROWS, a probabilistically-safe receding-horizon trajectory planner. Offline, CROWS
constructs a dataset to train a network that predicts spherical overapproximations of parameterized swept vol-
umes of a robot arm. After training, conformal prediction is used to quantify the uncertainty of the network’s
predictions. Online, the output of the network is buffered by a nonconformity score and used as a safety con-
straint during trajectory optimization. Finally, CROWS executes the trajectory while generating a plan for the
next iteration.

such as an RRT∗ to generate a set of discrete waypoints for a trajectory optimization algorithm such
as TrajOpt [3], and track the resulting trajectories with an inverse dynamics controller [4].

While variations of this planning framework have been demonstrated to work on various robotic
platforms [5, 1, 2], several limitations prevent this approach from being widely deployed in the real-
world. For instance, this approach can become computationally expensive as the complexity of the
environment or robot increases, making it less practical for applications requiring both real-time
performance and safety guarantees. Many algorithms also introduce heuristics to improve com-
putation speed such as reducing the number of collision checks to achieve real-time performance;
however, this may come at the expense of robot safety. Furthermore, many algorithms assume that
the robot’s dynamics are fully known, while in reality there can be considerable model uncertainty.
Unfortunately, both of these factors may increase the potential for the robot to collide with obstacles.

To address this challenge, this paper proposes Conformalized Reachable Sets for Obstacle Avoid-
ance With Spheres (CROWS), a neural network-based safety representation that can be efficiently
integrated into a mid-level trajectory optimization algorithm (Fig. 2). CROWS extends [6] by learn-
ing an overapproximation of the swept volume (i.e. reachable set) of a serial robot manipulator that
is composed entirely of spheres. Prior to planning, a neural network is trained to approximate the
sphere-based reachable set (Sec. 3.1). Then, CROWS applies conformal prediction to compute a
confidence bound that provides a probabilistic safety guarantee (Sec. 3.2). Finally, CROWS uses
the conformalized reachable set and its learned gradient to solve an optimization problem to gener-
ate probabilistically-safe trajectories online (Sec. 3.3). In Sec. 4.1, we demonstrate that this novel
reachable set formulation enables planning in extremely cluttered environments.

1.1 Related Work

Safe motion planning algorithms ensure that a robot can move from one configuration to another
in its environment while avoiding collisions for all time. Ideally, one would compute the robot’s
swept volume [7, 8, 9, 10, 11, 12] and ensure that it does not intersect with any obstacles nor enter
any unwanted regions of its workspace. Alternatively, many algorithms approximate the swept
volume using occupancy grids, convex polyhedra, or CAD models [13, 14, 15]. However, both
approaches are often intractable or suffer from high computational costs while approximate swept
volume algorithms may be overly conservative [15, 16]. This may limit their utility to offline motion
planning [17].

2

An alternative approach to robot collision avoidance involves modeling the robot or the environment
with simple collision primitives such as spheres [18, 19], ellipsoids [20], capsules [21, 22], and then
performing collision-checking along a given trajectory at discrete time instances. This is common
for state-of-the-art trajectory optimization-based approaches [23, 3, 24, 25]. However, the resulting
trajectories cannot be considered safe as collision avoidance is not enforced for all time.

Reachability-based Trajectory Design (RTD) [5], a recent approach to real-time motion planning,
uses (polynomial) zonotopes [26] to construct reachable sets that overapproximate all possible
robot positions corresponding to a pre-specified family of parameterized trajectories. Notably,
RTD’s reachable sets are constructed to ensure that its obstacle-avoidance constraints are satisfied
in continuous-time. SPARROWS [6], a recent extension to RTD, utilizes sphere-based reachable
sets to generate certifiably-safe motion plans that are considerably less conservative than previous
approaches [1, 27, 2, 28]. The purpose of this paper is to introduce a neural representation of
SPARROWS with uncertainty quantification for real-time probabilistically-safe motion planning.

Several methods have been developed to quantify the uncertainty of neural network models such as
Monte Carlo dropout [29, 30, 31], Laplace approximation [32, 33, 34], and deep ensembles [35, 36].
More recently, conformal prediction [37, 38] has gained popularity due to its ability to provide
probabilistic guarantees on coverage. Conformal prediction has been employed in various robotics
applications including: ensuring the safety of learning-based object detection systems [39]; quan-
tifying the uncertainty of human inputs during teleoperation [40]; ensuring safety in environments
with dynamic obstacles [41, 42]; and applying conformal prediction to align uncertainty in large
language models, enabling them to decide when to seek human assistance. Notably, [43] is closely
related to our work, as it enhances the efficiency of reachable set computations for high-dimensional
systems with neural network while verifying it with conformal prediction.

2 Background

This section summarizes the background necessary for the development of CROWS in Sec. 3.

2.1 Mathematical Preliminaries

Sets, subspaces, and matrices are typeset using capital letters. Let R and N denote the spaces of real
numbers and natural numbers, respectively. Subscripts are primarily used as an index or as a label
for relevant countable sets. For example, if nα ∈ N, then we denote the set Nα = {1, · · · , nα}.
Given a set A, denote its power set as P (A). Given a set Ω ⊂ Rnd , co(Ω) denote its convex hull.

2.2 Arm Occupancy

This subsection describes how to overapproximate the forward occupancy, or swept volume, of a
moving robot arm. Consider a compact time interval T ⊂ R. We define a trajectory for the robot’s
configuration as q : T → Q ⊂ Rnq and a trajectory for the velocity as q̇ : T → Rnq .

To facilitate the later discussion of the robot’s occupancy, we begin by restating an assumption [6,
Ass. 4] about the robot model:

Assumption 1. The robot operates in an three-dimensional workspace, denoted Ws ⊂ R3. There
exists a reference frame called the base frame, denoted the 0th frame, that indicates the origin of
the robot’s kinematic chain within the workspace. The robot is fully actuated and composed of only
revolute joints, where the jth joint actuates the robot’s jth link. The robot’s jth joint has position and
velocity limits given by qj(t) ∈ [q−j,lim, q

+
j,lim] and q̇j(t) ∈ [q̇−j,lim, q̇

+
j,lim] for all t ∈ T , respectively.

Let Lj ⊂ Ws ⊂ R3 denote the volume occupied by the robot’s jth link with respect to the jth

reference frame. Then the forward occupancy of the jth link is the map FOj : Q → P(Ws) defined
as

FOj(q(t)) = pj(q(t))⊕Rj(q(t))Lj , (1)

3

where pj(q(t)) and Rj(q(t)) are computed by the forward kinematics [44] and specify the pose of
the jth joint, and Rj(q(t))Lj is the rotated volume of link j. The volume occupied by the entire arm
in the workspace is the union of the link volumes defined by the map FO : Q → Ws:

FO(q(t)) =

nq⋃
j=1

FOj(q(t)) ⊂ Ws. (2)

Due to the potentially complex geometry of a robot’s links, we reiterate an assumption [6, Ass. 5]
that facilitates the construction of an overapproximation of the forward occupancy:

Assumption 2. Given a robot configuration q(t) and any j ∈ {1, . . . , nq}, there exists a ball with
center pj(q(t)) and radius rj that overapproximates the volume occupied by the jth joint in Ws. We
further assume that link volume Lj is a subset of the tapered capsule formed by the convex hull of
the balls overapproximating the jth and j + 1th joints.

Following Assum. 2, we now define the ball Sj(q(t)) overapproximating the volume occupied by
the jth joint as

Sj(q(t)) = B(pj(q(t)), rj) (3)
and the tapered capsule TCj(q(t)) overapproximating the jth link as

TCj(q(t)) = co
(
Sj(q(t)) ∪ Sj+1(q(t))

)
. (4)

Then, the volumes occupied by the jth link (1) and the entire arm (2) can be overapproximated by

FOj(q(t)) ⊂ TCj(q(t)) (5)

and

FO(q(t)) ⊂
nq⋃
j=1

TCj(q(t)) ⊂ Ws, (6)

respectively.

Note that if the forward occupancy (or reachable set) FO(q(T)) does not intersect with the envi-
ronment, then the arm is collision-free over the time interval T . To facilitate the exposition of our
approach, we summarize the construction of the robot’s safety representation by restating [6][Thm.
10]:

Theorem 3. Given a serial manipulator with nq ∈ N revolute joints, a time partition T of a finite set
of intervals, Ti (i.e., T = ∪nt

i=1Ti), the swept volume corresponding to the robot’s motion over T is
overapproximated by a collection of L2 balls in R3, which we call the Spherical Forward Occupancy
(SFO [6] defined as

SFO = ∪nq

j=1 ∪nt
i=1 ∪nS

m=1Sj,i,m(q(Ti; k)), (7)

where each Sj,i,m(q(Ti; k)) is an L2 ball in R3, nS ∈ N is a parameter that specifies the number
of closed balls overapproximating each of the robot’s links, and k is a trajectory parameter that
characterizes the motion of the robot over T .

Note that one can explicitly construct an SFO that satisfies this assumption using the approach
described in [6].

2.3 Environment Modeling

The SFO constructed in Thm. 3 is composed entirely of spheres, where each sphere is a collision
primitive consisting of a point with a safety margin corresponding to its radius. For simplicity, we
assume that each obstacle O is a polytope. Therefore, to make use of this sphere-based representation
for trajectory planning, we state the result of [6] [Lem. 11] as an assumption describing the existence
of an obstacle exact signed distance:

Assumption 4 (Environment Signed Distance Function). Given the SFO and a convex obstacle
polytope O ∈ R3, there exists a known function, sd(SFO,O), that computes the exact signed dis-
tance between SFO and O.

4

2.4 Conformal Prediction

Consider Ncal i.i.d. samples {δd}Ncal

d=1 of a random variable. For a new i.i.d. sample δd′ , conformal
prediction provides the following guarantee:

P(δd′ ≤ ∆) ≥ 1− ϵ (8)

where ∆ is the ⌈(Ncal+1)(1−ϵ)⌉-th quantile of {δd}Ncal

d=1 . To extend this guarantee to a new sample
δ̄d′ , one would typically need to refresh the calibration data {δ̄d}Ncal

d=1 . In this work, however, we
employ a guarantee conditioned on the calibration dataset Dcal = {δd}Ncal

d=1 , with a probability of
1− ρ [45, 39]:

P(δd′ ≤ ∆1−ϵ̂|Dcal) ≥ BetaNcal+1−ν,ν(ρ) (9)

where ν := ⌊(Ncal + 1)ϵ̂⌋, BetaNcal+1−ν,ν(ρ) is the ρ-quantile of the Beta distribution, ϵ̂ is a user-
defined coverage parameter, and ∆1−ϵ̂ is the ⌈(Ncal + 1)(1− ϵ̂)⌉-th quantile of the nonconformity
scores in the calibration set Dcal. To facilitate the following exposition, we will refer to the notation
in (9) using the same form as in (8).

3 Trajectory Optimization Formulation

The method described in [6] computes provably-safe motion plans by solving a nonlinear optimiza-
tion program in a receding-horizon manner:

min
k∈K

cost(qgoal, k) (Opt) (10)

qj(Ti; k) ⊆ [q−j,lim, q
+
j,lim] ∀(i, j) ∈ Nt ×Nq (11)

q̇j(Ti; k) ⊆ [q̇−j,lim, q̇
+
j,lim] ∀(i, j) ∈ Nt ×Nq (12)

sd(SFO,On) > 0 ∀n ∈ NO, (13)

where On is the nth obstacle for n ∈ NO. Offline, we pre-specify a continuum of trajectories over
a compact set K ⊂ Rnk such that nk ∈ N. Then each trajectory, q(t; k), is defined over a compact
time interval T and is uniquely determined by a trajectory parameter k ∈ K. The cost function
(10) ensures the robot moves towards a user- or task-defined goal qgoal. The constraints (11)–(12)
ensure that the trajectory remains feasible and does not violate the robot’s joint position and velocity
limits, respectively. The last constraint (13) guarantees safety by ensuring that the robot’s forward
occupancy does not collide with any obstacles in the environment.

In the remainder of this section, we describe how CROWS replaces (13) with a fast, neural repre-
sentation with probabilistic safety-guarantees.

3.1 Neural Network Models

In this subsection, we describe how CROWS learns neural network representations of the centers
and radii of SFO in (7) and their gradients with respect to the trajectory parameter.

3.1.1 Neural SFO

Given a family of parameterized trajectories q(t; k) for k ∈ K, we train a neural network to predict
the centers cj,i(qj(Ti; k)) and radii rj,i(qj(Ti; k)) for all (i, j) ∈ Nt ×Nq of the Spherical Forward
Occupancy. For simplicity, we have dropped the subscript m to indicate that the center and radii
networks only predict the spheres that overapproximate the joint volumes.

Following training, we use [6][Lem. 9, Thm. 10] to construct the remaining spheres that overap-
proximate the links. The network takes as input x = (q0, q̇0, k, i), which consists of a concatenation
of vectors corresponding to the initial joint positions q0, initial joint velocities q̇0, trajectory param-
eter k, and the ith time index. The output of the network is y = (ĉj,i, r̂j,i) ∈ R4(nq+1). We discuss
specific training details in Sec. 7.2.

5

90%

80%

99%
99.9%

99.999%
99.99%

Joint 4

Nonconformity Scores
0.000 0.004 0.008

Fr
eq

ue
nc

y

0.0

0.4

0.8

1.2

1.6

0.2

1.0

0.6

1.4
A B C

Figure 2: A visual illustration of the construction of CROWS’s conformalized reachable sets. Panel A com-
pares the ground truth (left, purple), predicted (middle, orange), and conformalized (right, pink) reachable sets.
CROWS first defines the nonconformity score in (14), which is the minimum buffer (blue) to ensure that the
predicted sphere (orange) encloses the ground truth sphere (purple) (Panel B). The distribution of the noncon-
formity scores for joint 4 over the interval Ti with the values defining the quantiles indicated in blue (Panel
V). Next, conformal prediction computes a confidence bound that upper bounds the nonconformity scores with
a probability of 1 − ϵ. The predicted joint sphere (A, middle) is then expanded by the size of this confidence
bound to give the conformalized joint sphere (A, right). Finally, applying this procedure for all of the joint
spheres gives the conformalized neural (A, right) reachable set that is guaranteed to cover the ground truth
reachable set with probability greater than (1− ϵ)nq+1 (Thm. 5).

3.1.2 Neural SFO Gradient

To facilitate real-time solutions of (Opt), we also train a neural network to output ∂̂cj,i
∂k , which is

a prediction of the gradient of each joint center with respect to the trajectory parameter k. Because
the radii of SFO do not depend on k, we do not train its corresponding gradient network.

3.2 Conformal Prediction

Next, we describe the use of conformal prediction to formulate probabilistic guarantees for collision
avoidance.

3.2.1 Calibration

We first construct a calibration set Dcal = {(xd, yd)}Ncal

d=1 with i.i.d. samples, where Ncal ∈ N. Let
Bj,i = B(cj,i, rj,i) be a ground truth sphere and B̂j,i(δj) = B(ĉj,i, r̂j,i + δj) be the corresponding
prediction. Note that Bj,i corresponds to Sj,i(q(Ti; k)) in Thm. 3. Then for the calibration step, we
define a nonconformity score δj for each joint sphere such that

δj = max(||cj,i − ĉj,i||2 + rj,i − r̂j,i, 0) (14)

is minimum buffer required for Bj,i ⊆ B̂j,i(δj) as illustrated in Fig. 2 (B).

Given the nonconformity scores over the calibration set Dcal, the nonconformity score δj,d′ on a
new sample (xd′ , yd′) follows a gaurantee by conformal prediction:

P(δj ≤ ∆j) ≥ 1− ϵ (15)

For notational simplicity, we have dropped the subscript d′ here.

3.2.2 Conformalized Reachable Sets

Given (15), the conformalized sphere B̂j,i(∆j) is guaranteed to enclose the ground truth sphere Bj,i

with the following probability:

P(Bj,i ⊆ B̂j,i(∆j)) (16)

≥ P(Bj,i ⊆ B̂j,i(δj)) · P(B̂j,i(δj) ⊆ B̂j,i(∆j)) (17)

= P(B̂j,i(δj) ⊆ B̂j,i(∆j)) (18)
= P(δj ≤ ∆j) ≥ 1− ϵ. (19)

6

Methods # Successes
Scenario 10 Rand. Obs. 20 Rand. Obs. 40 Rand. Obs. Realistic
CROWS 87 58 37 13

CROWS(-) 83 60 30 12
SPARROWS 87 62 40 14

ARMTD 56 17 0 8
CHOMP [23] 76 40 15 10
TrajOpt [3] 33 (67) 9 (91) 6 (94) 5 (9)
MPOT [24] 58 (42) 23 (77) 9 (91) 6 (8)
cuRobo [25] 59 (41) 45 (55) 22 (78) 5 (9)

Table 1: Number of successes out of 100 trials on Random Obstacle Scenarios (the first three columns) and
out of 14 trials on the Realistic Scenarios (the last column). Red indicates the number of failures due to
collision.

This approach can be extended to all joint occupancy spheres to construct a probabilistic safety
guarantee to ensure that the ground truth reachable set is collision-free with probability greater than
(1− ϵ)nq+1 over the ith time interval Ti. We summarize this result in the following theorem whose
proof can be found in Sec. 6:

Theorem 5. Given P(Bj,i ⊆ B̂j,i(∆j)) ≥ 1− ϵ for j ∈ Nq , the following probability holds under
the condition sd(ˆSFOi,O) > 0:

P(sd(FOi,O) > 0) ≥ (1− ϵ)nq+1 (20)

where FOi denotes the forward occupancy over a single time interval Ti ((2)), ˆSFOi is the
Spherical Forward Occupancy constructed from B̂j,i(∆j) for all j ∈ Nq over the same time
interval Ti by Theorem 3, O represents a set of obstacles defined as {On | n ∈ NO}, and
sd(·,O) = minn∈NO

sd(·,On).

3.3 Online Trajectory Optimization

After training, we generate models to predict the spheres of the SFO. Using this representation, we
can reformulate the optimization problem described by (10)–(13) into:

min
k∈K

cost(qgoal, k) (CROWS-Opt) (21)

qj(Ti; k) ⊆ [q−j,lim, q
+
j,lim] ∀(i, j) ∈ Nt ×Nq (22)

q̇j(Ti; k) ⊆ [q̇−j,lim, q̇
+
j,lim] ∀(i, j) ∈ Nt ×Nq (23)

sd(ˆSFOi,O) > 0 ∀i ∈ Nt (24)

where ˆSFO is the conformalized reachable set in Thm. 5.

4 Results

We demonstrate the performance of CROWS in both simulation and hardware experiments.

4.1 Simulation Experiments

We compare the performance of CROWS to SPARROWS [6], ARMTD [1], CHOMP [23], TrajOpt
[3], MPOT [24], and cuRobo [25] on two sets of planning tasks. We also include a comparison to
CROWS(-), which uses PyTorch’s built-in autograd function to compute the gradient rather than
the learned model introduced in Sec. 3.1.2. The first set of tasks, Random Obstacle Scenarios,
contains nO = 10, 20, or 40 axis-aligned boxes that are 20cm on each side. For each number
of obstacles, we generate 100 scenes with obstacles placed randomly such that the start and goal
configurations are collision-free. The second set of tasks, Realistic Scenarios, contains 14 scenes
with geometric features similar to those found in a household setting. For both planning tasks, a

7

Figure 3: Sequential images showing CROWS demonstrating safe trajectory planning in real-world experi-
ments, from the initial configuration (left) to the goal configuration (right).

failure occurs if CROWS, SPARROWS, or ARMTD fails to find a plan for two consecutive planning
iterations or if a collision occurs. CROWS, SPARROWS, and ARMTD are given a planning time
limit of 0.5s and a maximum of 150 planning iterations to reach the goal. CHOMP, TrajOpt, and
cuRobo are given planning time limited of 100s, 30s, and 2s, respectively.

Tables 1 compare the success rate of CROWS to the baselines on the Random Obstacle Scenarios
and Realistic Scenarios, respectively. SPARROWS achieves the highest success rate on both sets of
tasks followed by CROWS or CROWS(-). Note that both CROWS and CROWS(-) are competitive
with SPARROWS while also remaining collision-free. In contrast, the baselines TrajOpt, MPOT,
and cuRobo all experience collisions. Sec. 8.2 presents a runtime comparison between CROWS,
SPARROWS, and ARMTD, highlighting the computational advantages of using learned representa-
tion of SFO and its gradient.

4.2 Hardware Experiments

We demonstrate the motion planning task using various initial and goal configurations (Fig. 3).
The hardware setup follows a similar architecture to [46], where a high-level planner and mid-level
trajectory planner run in parallel, and a low-level controller tracks trajectories using the Recursive
Newton-Euler Algorithm (RNEA) [47] alongside a PD controller. In the real-world experiments,
CROWS successfully performs real-time trajectory planning, reaching the goal configuration with-
out colliding with the environment.

5 Conclusion and Future Directions

We present CROWS, a method for generating real-time motion plans for robot manipulators in
cluttered environments. We show CROWS remains safe across many motion planning trials and
has performance comparable to SPARROWS, a state-of-the-art, model-based trajectory optimizer.
We also demonstrate that learning a representation of SFO’s gradient leads to improvements in
both planning time and success rate. CROWS shows promise, as planning time with the learned
representation of reachable sets in [27] scales linearly with problem dimension, whereas planning
time with closed-form methods like those in [6] and [1] scales at a rate exceeding linear growth with
dimension. Future directions will extend CROWS to higher-dimensional systems such as humanoid
robots as well as learning conformalized representations of the robot’s dynamics. Furthermore, we
anticipate that embedding CROWS within end-to-end architectures for planning in more general
scene representations is also a promising direction for future research.

8

Acknowledgments

This work is supported by the National Science Foundation Career Award #1751093 and by the Air
Force Office of Scientific Research under award 23-S15.

References
[1] P. Holmes, S. Kousik, B. Zhang, D. Raz, C. Barbalata, M. J. Roberson, and R. Vasude-

van. Reachable Sets for Safe, Real-Time Manipulator Trajectory Design. In Proceedings
of Robotics: Science and Systems, Corvalis, Oregon, USA, 7 2020. doi:10.15607/RSS.2020.
XVI.100.

[2] J. Michaux, P. Holmes, B. Zhang, C. Chen, B. Wang, S. Sahgal, T. Zhang, S. Dey, S. Kousik,
and R. Vasudevan. Can’t touch this: Real-time, safe motion planning and control for manipu-
lators under uncertainty, 2023.

[3] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg,
and P. Abbeel. Motion planning with sequential convex optimization and convex collision
checking. The International Journal of Robotics Research, 33(9):1251–1270, 2014. doi:10.
1177/0278364914528132. URL https://doi.org/10.1177/0278364914528132.

[4] F. Caccavale. Inverse Dynamics Control, pages 1–5. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2020. ISBN 978-3-642-41610-1. doi:10.1007/978-3-642-41610-1 95-1. URL
https://doi.org/10.1007/978-3-642-41610-1_95-1.

[5] S. Kousik, S. Vaskov, M. Johnson-Roberson, and R. Vasudevan. Safe trajectory synthesis for
autonomous driving in unforeseen environments. In ASME 2017 Dynamic Systems and Control
Conference. American Society of Mechanical Engineers Digital Collection, 2017.

[6] J. Michaux, A. Li, Q. Chen, C. Chen, B. Zhang, and R. Vasudevan. Safe planning for articu-
lated robots using reachability-based obstacle avoidance with spheres. ArXiv, abs/2402.08857,
2024. URL https://arxiv.org/abs/2402.08857.

[7] D. Blackmore and M. Leu. A differential equation approach to swept volumes. In [1990]
Proceedings. Rensselaer’s Second International Conference on Computer Integrated Manu-
facturing, pages 143–149, May 1990. doi:10.1109/CIM.1990.128088.

[8] D. Blackmore and M. Leu. Analysis of Swept Volume via Lie Groups and Differential
Equations. The International Journal of Robotics Research, 11(6):516–537, Dec. 1992.
ISSN 0278-3649. doi:10.1177/027836499201100602. URL https://doi.org/10.1177/

027836499201100602. Publisher: SAGE Publications Ltd STM.

[9] D. Blackmore, M. C. Leu, and F. Shih. Analysis and modelling of deformed swept vol-
umes. Computer-Aided Design, 26(4):315–326, Apr. 1994. ISSN 0010-4485. doi:10.1016/
0010-4485(94)90077-9. URL https://www.sciencedirect.com/science/article/

pii/0010448594900779.

[10] D. Blackmore, M. Leu, and L. P. Wang. The sweep-envelope differential equation algorithm
and its application to NC machining verification. Computer-Aided Design, 29(9):629–637,
Sept. 1997. ISSN 0010-4485. doi:10.1016/S0010-4485(96)00101-7. URL https://www.

sciencedirect.com/science/article/pii/S0010448596001017.

[11] D. Blackmore, R. Samulyak, and M. C. Leu. Trimming swept volumes.
Computer-Aided Design, 31(3):215–223, Mar. 1999. ISSN 0010-4485. doi:
10.1016/S0010-4485(99)00017-2. URL https://www.sciencedirect.com/science/

article/pii/S0010448599000172.

[12] Lozano-Perez. Spatial planning: A configuration space approach. IEEE Transactions on Com-
puters, C-32(2):108–120, 1983. doi:10.1109/TC.1983.1676196.

9

http://dx.doi.org/10.15607/RSS.2020.XVI.100
http://dx.doi.org/10.15607/RSS.2020.XVI.100
http://dx.doi.org/10.1177/0278364914528132
http://dx.doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
http://dx.doi.org/10.1007/978-3-642-41610-1_95-1
https://doi.org/10.1007/978-3-642-41610-1_95-1
https://arxiv.org/abs/2402.08857
http://dx.doi.org/10.1109/CIM.1990.128088
http://dx.doi.org/10.1177/027836499201100602
https://doi.org/10.1177/027836499201100602
https://doi.org/10.1177/027836499201100602
http://dx.doi.org/10.1016/0010-4485(94)90077-9
http://dx.doi.org/10.1016/0010-4485(94)90077-9
https://www.sciencedirect.com/science/article/pii/0010448594900779
https://www.sciencedirect.com/science/article/pii/0010448594900779
http://dx.doi.org/10.1016/S0010-4485(96)00101-7
https://www.sciencedirect.com/science/article/pii/S0010448596001017
https://www.sciencedirect.com/science/article/pii/S0010448596001017
http://dx.doi.org/10.1016/S0010-4485(99)00017-2
http://dx.doi.org/10.1016/S0010-4485(99)00017-2
https://www.sciencedirect.com/science/article/pii/S0010448599000172
https://www.sciencedirect.com/science/article/pii/S0010448599000172
http://dx.doi.org/10.1109/TC.1983.1676196

[13] M. Campen and L. P. Kobbelt. Polygonal boundary evaluation of minkowski sums and swept
volumes. Computer Graphics Forum, 29, 2010.

[14] Y. J. Kim, G. Varadhan, M. C. Lin, and D. Manocha. Fast swept volume approximation of
complex polyhedral models. Comput. Aided Des., 36:1013–1027, 2003.

[15] A. Gaschler, R. P. A. Petrick, T. Kröger, O. Khatib, and A. Knoll. Robot task and motion
planning with sets of convex polyhedra. In Robotics: Science and Systems Conference, 2013.

[16] C. Ekenna, D. Uwacu, S. Thomas, and N. M. Amato. Improved roadmap connection via local
learning for sampling based planners. In 2015 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 3227–3234, 2015. doi:10.1109/IROS.2015.7353825.

[17] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida. Fast humanoid robot collision-
free footstep planning using swept volume approximations. IEEE Transactions on Robotics,
28(2):427–439, 2012. doi:10.1109/TRO.2011.2172152.

[18] S. Duenser, J. M. Bern, R. Poranne, and S. Coros. Interactive robotic manipulation of elastic
objects. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3476–3481, 2018. doi:10.1109/IROS.2018.8594291.

[19] M. Gaertner, M. Bjelonic, F. Farshidian, and M. Hutter. Collision-free mpc for legged robots
in static and dynamic scenes, 2021.

[20] B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora. Model predictive contouring control for
collision avoidance in unstructured dynamic environments, 2020.

[21] C. Dube. Self collision avoidance for humanoids using circular and elliptical capsule bounding
volumes. In 2013 Africon, pages 1–6, 2013. doi:10.1109/AFRCON.2013.6757663.

[22] A. El Khoury, F. Lamiraux, and M. Taı̈x. Optimal motion planning for humanoid robots. In
2013 IEEE International Conference on Robotics and Automation, pages 3136–3141, 2013.
doi:10.1109/ICRA.2013.6631013.

[23] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A.
Bagnell, and S. S. Srinivasa. Chomp: Covariant hamiltonian optimization for motion planning.
The International Journal of Robotics Research, 32(9-10):1164–1193, 2013. doi:10.1177/
0278364913488805. URL https://doi.org/10.1177/0278364913488805.

[24] A. T. Le, G. Chalvatzaki, A. Biess, and J. Peters. Accelerating motion planning via optimal
transport, 2023.

[25] B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett, K. V. Wyk, V. Blukis, A. Millane,
H. Oleynikova, A. Handa, F. Ramos, N. Ratliff, and D. Fox. curobo: Parallelized collision-free
minimum-jerk robot motion generation, 2023.

[26] N. Kochdumper and M. Althoff. Sparse polynomial zonotopes: A novel set representation for
reachability analysis. IEEE Transactions on Automatic Control, 66(9):4043–4058, 2020.

[27] J. B. Michaux, Y. S. Kwon, Q. Chen, and R. Vasudevan. Reachability-based Trajectory Design
with Neural Implicit Safety Constraints. In Proceedings of Robotics: Science and Systems,
Daegu, Republic of Korea, July 2023. doi:10.15607/RSS.2023.XIX.062.

[28] Z. Brei, J. Michaux, B. Zhang, P. Holmes, and R. Vasudevan. Serving time: Real-time, safe
motion planning and control for manipulation of unsecured objects. IEEE Robotics and Au-
tomation Letters, 9(3):2383–2390, 2024. doi:10.1109/LRA.2024.3355731.

[29] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR, 2016.

10

http://dx.doi.org/10.1109/IROS.2015.7353825
http://dx.doi.org/10.1109/TRO.2011.2172152
http://dx.doi.org/10.1109/IROS.2018.8594291
http://dx.doi.org/10.1109/AFRCON.2013.6757663
http://dx.doi.org/10.1109/ICRA.2013.6631013
http://dx.doi.org/10.1177/0278364913488805
http://dx.doi.org/10.1177/0278364913488805
https://doi.org/10.1177/0278364913488805
http://dx.doi.org/10.15607/RSS.2023.XIX.062
http://dx.doi.org/10.1109/LRA.2024.3355731

[30] A. Shamsi, H. Asgharnezhad, M. Abdar, A. Tajally, A. Khosravi, S. Nahavandi, and H. Leung.
Improving mc-dropout uncertainty estimates with calibration error-based optimization. arXiv
preprint arXiv:2110.03260, 2021.

[31] B. Lütjens, M. Everett, and J. P. How. Safe reinforcement learning with model uncertainty
estimates. In 2019 International Conference on Robotics and Automation (ICRA), pages 8662–
8668. IEEE, 2019.

[32] E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig. Laplace
redux-effortless bayesian deep learning. Advances in Neural Information Processing Systems,
34:20089–20103, 2021.

[33] H. Ritter, A. Botev, and D. Barber. A scalable laplace approximation for neural networks.
In 6th international conference on learning representations, ICLR 2018-conference track pro-
ceedings, volume 6. International Conference on Representation Learning, 2018.

[34] L. Goli, C. Reading, S. Sellán, A. Jacobson, and A. Tagliasacchi. Bayes’ rays: Uncertainty
quantification for neural radiance fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 20061–20070, 2024.

[35] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. Advances in neural information processing
systems, 31, 2018.

[36] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. Advances in neural information processing systems, 30,
2017.

[37] A. N. Angelopoulos and S. Bates. A gentle introduction to conformal prediction and
distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511, 2021.

[38] G. Shafer and V. Vovk. A tutorial on conformal prediction. Journal of Machine Learning
Research, 9(3), 2008.

[39] A. Dixit, Z. Mei, M. Booker, M. Storey-Matsutani, A. Z. Ren, and A. Majumdar. Perceive with
confidence: Statistical safety assurances for navigation with learning-based perception. In 8th
Annual Conference on Robot Learning, 2024.

[40] M. Zhao, R. Simmons, H. Admoni, and A. Bajcsy. Conformalized teleoperation: Confidently
mapping human inputs to high-dimensional robot actions. arXiv preprint arXiv:2406.07767,
2024.

[41] L. Lindemann, M. Cleaveland, G. Shim, and G. J. Pappas. Safe planning in dynamic environ-
ments using conformal prediction. IEEE Robotics and Automation Letters, 2023.

[42] J. Lekeufack, A. N. Angelopoulos, A. Bajcsy, M. I. Jordan, and J. Malik. Conformal decision
theory: Safe autonomous decisions from imperfect predictions. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages 11668–11675. IEEE, 2024.

[43] A. Lin and S. Bansal. Verification of neural reachable tubes via scenario optimization and
conformal prediction. In 6th Annual Learning for Dynamics & Control Conference, pages
719–731. PMLR, 2024.

[44] M. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and control. 2005.

[45] V. Vovk. Conditional validity of inductive conformal predictors. In Asian conference on ma-
chine learning, pages 475–490. PMLR, 2012.

11

[46] J. Michaux, S. Isaacson, C. E. Adu, A. Li, R. K. Swayampakula, P. Ewen, S. Rice, K. A. Skin-
ner, and R. Vasudevan. Let’s make a splan: Risk-aware trajectory optimization in a normalized
gaussian splat. arXiv preprint arXiv:2409.16915, 2024.

[47] J. Y. Luh, M. W. Walker, and R. P. Paul. On-line computational scheme for mechanical manip-
ulators. 1980.

[48] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

[49] A. Wächter and L. Biegler. On the implementation of an interior-point filter line-search al-
gorithm for large-scale nonlinear programming. Mathematical programming, 106:25–57, 03
2006. doi:10.1007/s10107-004-0559-y.

[50] Kinova. User Guide - KINOVA Gen3 Ultra lightweight robot. 2022.

[51] Dawson-Haggerty et al. trimesh, 2019. URL https://trimesh.org/.

[52] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus), 2023. URL https://

arxiv.org/abs/1606.08415.

[53] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017. URL https:

//arxiv.org/abs/1412.6980.

12

http://dx.doi.org/10.1007/s10107-004-0559-y
https://trimesh.org/
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

6 Proof of Theorem 5

Proof. The convex hull of two conformalized spheres encloses the convex hull of the corresponding
ground truth spheres with probability:

P(TCi,j ⊆ T̂Ci,j) ≥
j+1∏
j′=j

P(Bj′,i ⊆ B̂j′,i(∆j′)) ≥ (1− ϵ)2 (25)

where TCi,j = co(
⋃j+1

j′=j(Bj′,i)) and T̂Ci,j = co(
⋃j+1

j′=j(B̂j′,i(∆j′)). This probability extends
across all the joints as follows:

P(
nq⋃
j=1

TCi,j ⊆
nq⋃
j=1

T̂Ci,j) ≥ (1− ϵ)nq+1 (26)

Because FOi ⊆
⋃nq

j=1 TCi,j and
⋃nq

j=1 T̂Ci,j ⊆ ˆSFOi, the following guarantee holds:

P(FOi ⊆ ˆSFOi) ≥ (1− ϵ)nq+1 (27)

Therefore, the probability that the signed distance between the ground truth forward occupancy FOi

and obstacle set O remains positive is bounded by:

P(sd(FOi,O) > 0) (28)

= P(FOi ⊆ ˆSFOi) · P(sd(ˆSFOj ,O) > 0) (29)

≥ (1− ϵ)nq+1 · P(s(ˆSFOj ,O) > 0) (30)

If we enforce P(sd(ˆSFOj ,O) > 0) = 1, then the following probability holds:

P(sd(FOi,O) > 0) ≥ (1− ϵ)nq+1. (31)

7 Implementation Details

A computer with 12 Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz and an NVIDIA RTX A6000
GPU was used for the motion planning experiment in Sec. 4.1. The CROWS model is built and
trained with Pytorch [48]. The trajectory optimization (CROWS-Opt)was solved with IPOPT [49].

7.1 Simulation and Simulation Environment

We simulate the Kinova Gen3 7-DOF serial manipulator [50]. The robot’s collision geometry is
provided as a mesh, which we utilize with the trimesh library [51] to check for collisions with
obstacles. For simplicity, we do not check self-collisions of the robot and all obstacles are static,
axis-aligned cubes. We assume that the start and goal configurations of the robot are collision-free.

7.2 Training Details

Fully-connected networks were trained to predict the centers, radii, and gradients of the centers
with respect to the trajectory parameter. These networks have a width 1024 with 3, 9, and 12 hidden
layers, respectively. The radii network uses the ReLU activation function while the others use GELU
[52]. As discussed in 3.1.1, the networks only predict the centers and radii that overapproximate the
joint volumes. The networks also do not predict the center and radius of the base joint sphere as it
remains constant for all time. For the loss function, we used the mean squared error between the
target and the prediction. Each network was trained using the AdamW [53] optimizer with learning
rate 0.0003, beta (0.9,0.999), and weight decay 0.0001. The training, validation, and calibration
datasets consisted of 8e5, 1e5, and 1e5 samples, respectively.

13

Methods mean planning time [s]
Obstacles 10 20 40

CROWS 0.14 ± 0.29 0.16 ± 0.10 0.21 ± 0.10
CROWS(-) 0.17 ± 0.10 0.20 ± 0.10 0.24 ± 0.11

SPARROWS 0.16 ± 0.08 0.18 ± 0.08 0.24 ± 0.09
ARMTD 0.24 ± 0.09 0.38 ± 0.10 0.51 ± 0.04

Table 2: Mean per-step planning time across 100 Random Obstacle Scenarios under a 0.5s planning time
limit ↓. Red indicates that the average planning time limit has been exceeded.

Methods mean constraint eval. time [ms]
Obstacles 10 20 40

CROWS 3.5 ± 0.2 4.1 ± 0.1 5.5 ± 0.1
CROWS(-) 6.3 ± 1.5 6.9 ± 1.2 8.3 ± 1.2

SPARROWS 3.1± 0.1 3.8 ± 0.1 5.2 ± 0.1
ARMTD 4.1 ± 0.3 5.4 ± 0.5 8.1 ± 0.7

Table 3: Mean runtime for constraint and constraint gradient evaluation across 100 Random Obstacle Scenar-
ios under a 0.5s planning time limit ↓.

8 Additional Experimental Results

This section evaluates the performance of CROWS by measuring its prediction accuracy and its
runtime.

8.1 Model Prediction Accuracy

The mean and maximum errors of the center predictions across all joints are 0.87cm and 2.10cm,
respectively. For the radius predictions, the mean and maximum errors are 0.12 cm and 0.59cm.
The median relative error of the neural SFO gradient is 1.25%. The nonconformity scores (14) are
computed using the calibration set. The 99.9th percentile of the nonconformity scores for joints 2
through 8 are (0.05, 0.18, 0.35, 0.44, 0.56, 0.64, 0.75) cm, measured from the proximal to distal
joint. In the trajectory optimization (CROWS-Opt), an uncertainty bound of ϵ̂ = 0.001 was used.

8.2 Runtime Comparisons

We compare the runtime performance of CROWS to SPARROWS and ARMTD under a planning
time limit while varying the number of obstacles. We measure the mean constraint evaluation time as
well as the mean planning time. Constraint evaluation includes the time to compute the constraints
and the constraint gradients. Planning time includes the time required to construct the reachable sets
and the total time required to solve (Opt) including constraint gradients evaluations. For each case,
the results are averaged over 100 trials.

Tables 2 and 3 summarize the runtime comparisons under a planning time limit of 0.5s. SPARROWS
has the lowest mean constraint evaluation time followed by CROWS, CROWS(-), and ARMTD.
CROWS, on the other hand, has the lowest per-step planning time followed by SPARROWS,
CROWS(-), and ARMTD. These results indicate that learned gradient improves the solve time
of (CROWS-Opt)when using the learned safety representation.

14

Figure 4: A demonstration of CROWS generating safe motion plans in a scene with bookshelves. Each start and
goal configuration is shown in blue and green, respectively. The conformalized reachable set for an intermediate
trajectory is shown in pink (transparent).

Figure 5: A subset of Realistic Scenarios where CROWS succeeds. The start, goal, and intermediate poses are
shown in blue, green, and grey (transparent), respectively. Obstacles are shown in red (transparent).

15

	Introduction
	Related Work

	Background
	Mathematical Preliminaries
	Arm Occupancy
	Environment Modeling
	Conformal Prediction

	Trajectory Optimization Formulation
	Neural Network Models
	Neural SFO
	Neural SFO Gradient

	Conformal Prediction
	Calibration
	Conformalized Reachable Sets

	Online Trajectory Optimization

	Results
	Simulation Experiments
	Hardware Experiments

	Conclusion and Future Directions
	Proof of Theorem 5
	Implementation Details
	Simulation and Simulation Environment
	Training Details

	Additional Experimental Results
	Model Prediction Accuracy
	Runtime Comparisons

