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Abstract

Despite the prevailing applications of foun-
dation models, when adapted to downstream
tasks, their performance sensitively varies with
the distribution shift/gap between the pertain-
ing task and the target task. Moreover, direct
fine-tuning might be overfitting to limited target
task data. In the realm of NLP, tasks are seman-
tically related with shared skills and those gen-
eral purposed ones usually have more available
data than the highly specific and user-defined
ones. In this paper, we mitigate the distribution
shift in task adaptation by developing a smooth
transfer learning curriculum, which, by fine-
tuning the model along a path of intermediate
tasks on a graph, progressively bridges the gap
between the pretrained model and a target task
with limited data. To this end, we formulate
the curriculum learning as a graph search prob-
lem and address its efficiency by a deep dive
into accelerating the transferability estimation
between tasks and two classical search algo-
rithm applied to our problem, i.e., greedy best
first search and Monte Carlo tree search. We
evaluate our approach, i.e., “task-adaptation
curriculum learning (TACL)” on two bench-
mark settings with tasks drawn from GLUE.
Extensive experiments on different target tasks
demonstrate the effectiveness and advantages
of TACL on more specific and data-deficient
downstream tasks.

1 Introduction

Foundation models pretrained on large-scale cor-
pora have shown substantial potential to generalize
to downstream tasks with promising performance
(Devlin et al., 2019). While simple fine-tuning
these models on the target task data usually suffices
to obtain a transfer learning from the pretrained
task to the target task, the final performance heav-
ily depends on the distribution shift between the
two tasks and the amount of fine-tuning data avail-
able for the target task, e.g., transfer learning may

perform poorly under large distribution shift and
limited target task data.

Fortunately, many NLP tasks are semantically
related and their structures are shared so we may
fine-tune on an intermediate task before transition-
ing to the target task. This approach is valuable
because the intermediate task may encapsulate per-
tinent information for solving the target task, facili-
tating smoother training and aiding in the retention
of knowledge acquired from pretrained tasks. Rec-
ognizing the efficacy of utilizing relevant tasks,
our objective is to devise a method that guides the
model through a sequence of intermediate tasks.
This approach aims to establish a seamless transfer
pathway from pretraining tasks to the target task,
addressing issues related to overfitting and task
distribution shift. However, the search for the opti-
mal transfer curriculum presents a formidable chal-
lenge, characterized by a combinatorial optimiza-
tion problem. The impracticality of a brute-force
solution becomes evident as the sequence length
increases, leading to an exponential growth in the
number of possible task combinations. Further-
more, discerning the relative importance of each
task in the sequence to the target task is challenging.
Additionally, the dynamic nature of model param-
eters, altered after training on each task, makes it
hard to determine a sequence in an a priori manner.

To mitigate these challenges, we address the
problem by formulating it as searching for a path
on a graph of tasks, effectively connecting the pre-
trained task to the target task. This graph-based ap-
proach offers several advantages in tackling these
issues. Firstly, leveraging existing graph search
algorithms allows us to confine the search space,
thereby circumventing the need for a computation-
ally intensive brute-force solution. Secondly, the
flexibility of employing heuristic or non-heuristic
methods facilitates the estimation of the priority
of specific states within the graph. Lastly, the dy-
namic nature of graph search takes into account the
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Figure 1: Comparison of direct transfer learning (bottom) vs. task-adaptation curriculum learning (top).

evolving model parameters.

To this end, we proposed the framework of task-
adaptation curriculum learning, which involves
finding a sequence of adaptation tasks that pro-
gressively bridges the gap between the pretrained
model and the target task by searching a transfer
learning path on a graph of tasks. Specifically, we
employ two classic search algorithms within this
framework: greedy best-first search and Monte-
Carlo tree search. We employ some approxima-
tion methods to avoid intensive computation. Our
approach is examined on two sets of NLP tasks.
Through a meticulous analysis of the experimen-
tal results, we find that task-adaptation curriculum
learning emerges as a beneficial approach, partic-
ularly in scenarios characterized by limited data
availability. Furthermore, our findings underscore
the scalability and flexibility of this framework,
showcasing its adaptability to diverse task settings.

2 Related Work

The method that we propose in this paper addresses
the general problem of task adaptation, which gen-
erally refers to adapting a pre-trained model to
a downstream task. Commonly employed prac-
tices include fine-tuning directly and linear prob-
ing. Others, such as task/domain-adaptive methods,
consider the issue of catastrophic forgetting (Kirk-
patrick et al., 2017), wherein models may forget
knowledge from previous tasks after training on a
new one, leading to negative transfer. DAPT (Gu-
rurangan et al., 2020) tackles this by first tuning
the pre-trained model on data related to the target
domain or the target task itself, and then fine-tuning
the adaptive-tuned model on the target task. Simi-
larly, Dery et al. (2021) propose a multi-task frame-
work to bridge the gap between pre-trained tasks
and the end task by adaptively updating weights

of auxiliary tasks. However, our method differs in
that it seeks to design an algorithm capable of au-
tomatically determining intermediate training task
sequences between pre-trained tasks and the target
task, eschewing a multi-task approach.

The concept of intermediate training is also per-
tinent to our work. In this paradigm, practitioners
typically designate one task as an intermediate step
between pre-trained tasks and the target task. Pre-
vious works in this domain leverage transferabil-
ity or similarity to identify intermediate tasks (Vu
et al., 2020). For instance, task embeddings for
transfer learning (Achille et al., 2019) consider the
Fisher information matrix of a model fine-tuned on
a task as the "task embedding," predicting inter-task
transferability by computing the cosine similarity
between the task embeddings of the source and tar-
get tasks. Notably, our approach diverges in that we
seek not just one intermediate task but a sequence
of adaptation tasks.

Our method also intersects with the concept
of curriculum learning, which involves ranking
the difficulty or priority of learning examples and
then proceeding with learning in such a sequence.
While traditional curriculum learning operates at
the data level, our focus in the realm of task adap-
tation learning is on task-level curriculum learning.
Noteworthy work by Pentina et al. (2015) employs
curriculum learning to sequentially solve multiple
tasks, demonstrating its superiority over joint task-
solving. Their aim, however, was to enhance the av-
erage performance across multiple tasks, whereas
our method specifically targets the performance
improvement of the target task.

3 Problem Formulation

The task is a pair of an objective function and a
dataset: 7 := {L£, D}, where D consists of n sam-



ples. Given a specific end-task 7, our aim is to
improve the performance on 7* by leveraging a
set of auxiliary tasks {7, } := {71, 72, T3, Tn}-
A task graph, denoted as G,, is a graph wherein
the nodes represent individual tasks, and the edges
symbolize the connections between these tasks.
Typically, we assume G,, to be a complete graph,
signifying that each task is directly connected to ev-
ery other task in the graph. Our objective is to find
an optimal intermediate training sequence denoted
as

s:=Pretrain > T, = Tp = - =T = T*

This sequence is path in G,, and connects the pre-
trained task to the target task, aiming to maximize
the performance of 7*.

For each task, we add a task-specific output layer
¢ to the pretrained model during training. This
presents a discrete bi-level optimization problem,
formulated as follows:

s = arg min Eout[fﬂ(s); qb*] (1)

" = arg(;nin Linlfo(s),6]- (2

Here fy(,) represents the function parameterized
by 6, determined by sequence s, Loy : F — Risa
functional of the encoder functions f : R® — R¥,
and £;, : F — R is a functional of the functions
representing the entire model f : R — R™.

To address this optimization problem, we would
explore the discrete space consisting of every possi-
ble sequence s of tasks. However, considering the
infinite nature of this space, a significant number
of states are not worth investigating. Therefore, the
strategic pruning of unhelpful branches becomes
imperative. To achieve this, we adopt the approach
of searching on a graph of tasks, dynamically eval-
uating the value of each sequence during the search
examining the current state of the model, specifi-
cally its parameters. This process can be conceptu-
alized as utilizing search algorithms to approximate
the outer level of the original optimization problem.
In essence, we seek to find the optimal sequence
of tasks s* through a search algorithm, operating
on the graph G,,, and simultaneously determine the
optimal ¢* that minimizes the inner loss function
Lin[fo,4)- This dynamic and iterative exploration
allows us to efficiently prune the solution space,
leading to a more effective and targeted approach

Pretrained task

Target Task

Figure 2: Example of a task-adaptation curriculum
(path) on the task graph, which bridges the pretrained
and target tasks by a sequence of intermediate tasks.

to solving the optimization challenge.

s* ~ SearchAlg( fg.4; Gn) 3)
gf)* = arg;nin ,Cin[fgj(ﬁ] (4)

4 Task-Adaptation Curriculum Learning

In the realm of task-adaptation curriculum learning,
our aim is to determine a sequence of adaptation
tasks that bridge the gap between the pretrained
task and the target task, with the ultimate goal of en-
hancing the performance on the target task. Framed
as a search problem, we introduce two straight-
forward yet effective methods: the greedy best
first search (GBFS) and Monte-Carlo tree search
(MCTS), both geared towards identifying the opti-
mal adaptation sequence.

4.1 Greedy Search of Task Curriculum

The concept of greedy search, a prevalent technique
in the field of search algorithms, involves making
the best possible decision at each step. This ap-
proach entails examining only the immediate fu-
ture and selecting the most favorable action. When
a problem exhibits an optimal substructure prop-
erty, the greedy algorithm tends to yield optimal
results. Due to its simplicity and efficiency, greedy
algorithms are frequently employed to solve opti-
mization problems.

In task-adaptation curriculum learning, the chal-
lenge is to select the subsequent adaptation task
after training on a given task. The objective is to
make decisions that collectively enhance the over-
all performance on the target task. In the case of



greedy best first search, we adopt a methodical ap-
proach by selecting the most promising task at each
step. This involves fine-tuning the model on each
auxiliary task, followed by training on the target
task. The validation accuracy on the target task
serves as a reward metric, representing the efficacy
of each task in aiding the target task. Other po-
tential metrics include validation loss, geometric
distance, or task embedding similarity. The chosen
task is the one that maximizes the estimation of the
target task performance. This process is elucidated
in detail in algorithm 1.

Algorithm 1 Greedy Best First Search

Require: [: Length of sequence
Require: {7,}: A set of n auxiliary tasks
Require: fy: Pretrained model
1 k<0
2: while £ <l do
3: for 7; € {7,} do
Train fp on 7;: 0; = 0 — aVeL(T;)
Compute heuristics on target task 7*
end for
T’ + task with the lowest heuristic
Train fgon 7': 0 < 0 — aVyeL(T")
9: k+—k+1
10: end while

® >R

4.2 Monte Carlo Tree Search of Task
Curriculum

Monte Carlo Tree Search (MCTS) proposed by
Coulom (2006) is a heuristic search algorithm de-
signed for decision processes, particularly in ap-
plications involving playing board games. In such
scenarios, MCTS is employed to solve the intri-
cate game tree by approximating the true game-
theoretic value of potential actions from the current
state. The algorithm achieves this by iteratively
constructing a partial search tree.

A notable advantage of MCTS lies in its indepen-
dence from domain-specific knowledge, rendering
it applicable to a wide range of domains that can
be modeled using a tree structure. In the realm of
task-adaptation curriculum learning, the process
of determining the next task inherently involves
decision-making, akin to a growing tree structure.
Consequently, MCTS seamlessly aligns with our
framework for task-adaptation curriculum learning,
offering a versatile and domain-agnostic approach
to solving the intricate decision processes involved
in the selection of intermediate tasks. In this con-

text, the state represents the current model, a node
corresponds to a specific task, an action involves
training on the chosen task, and the reward is deter-
mined by the performance of the target task after
completing the adaptation sequence. A simulation
entails training the model on a sequence of tasks of
a specified length.

How the tree is built depends on how nodes in
the tree are selected. By framing the choice of a
child node as a multiarmed-bandit problem, we
employ the Upper Confidence Bound (UCB1) algo-
rithm to estimate the value of each child node. The
UCBI1 algorithm considers the expected reward as
approximated by Monte Carlo simulations, treating
these rewards as random variables with unknown
distributions. This approach ensures simplicity, ef-
ficiency, and a guaranteed closeness to the best
possible bound on the growth of regret. The selec-
tion of a child node is determined by the following
formula:

, QW) ,

v’ 1= argmax
!
v’ Echildren of v N(U )

2log N(v)
N(v')

-5

Here, N (v) is the number of times the current (par-
ent) node has been visited, N (v') is the number
of times the child has been visited, and ¢ > 0 is a
constant.

As aresult, we employ UCBI1 for the selection
process and implement a random policy for roll-
out. The performance of the target task, such as
validation accuracy or loss, is utilized to compute
the reward associated with a given sequence. As
the tree grows, we iteratively refine our estimates
of the value of choosing the next task. The entire
process is encapsulated in algorithm 2.

S Experiments

In our experimental investigations, we aim to ad-
dress the following questions pivotal to the effi-
cacy of our proposed task-adaptation curriculum
learning (TACL) methodology: (1) Can models
gain significant benefits from the adoption of task-
adaptation curriculum learning? (2) What are some
similarities and differences in the results produced
by GBFS and MCTS? (3) What are some possible
factors that could potentially influence the perfor-
mance of TACL?

To systematically tackle these questions, we de-
sign and execute experiments on two graphs: a
smaller graph comprising six tasks and a more ex-
tensive graph encompassing nine tasks. This exper-



imental setup allows us to evaluate the robustness
and scalability of our proposed approach under
varying parameter settings.

5.1 Experimental Setting

Throughout our experiments, we consistently em-
ploy the BERT model (Devlin et al., 2019), a
powerful language representation model. The ex-
perimentation is conducted on the nine datasets
from the General Language Understanding Eval-
uation (GLUE) benchmark (Wang et al., 2018),
which spans various linguistic tasks. These tasks
include sentiment analysis (SST-2; Socher et al.,
2013), Quora Question Pairs (QQP; Iyer et al.,
2017), paraphrase identification (MRPC; Dolan
and Brockett, 2005), semantic similarity (STS-
B; Cer et al., 2017), grammatical acceptability
judgments (CoLA, Warstadt et al., 2019), natural
language inference (NLI) with Multi-Genre NLI
(MNLI; Williams et al., 2018), SQuAD (Rajpurkar
et al., 2016) converted into Question-answering
NLI (QNLI; Wang et al., 2018), Recognizing Tex-
tual Entailment (RTE; Dagan et al., 2005), and
the Winograd Schema Challenge (Levesque et al.,
2012) recast as Winograd NLI (WNLI). The di-
verse nature of these datasets allows us to compre-
hensively evaluate the adaptability of our method
across various language understanding tasks.

5.2 Baselines

Fine-tune: One of our baseline comparisons in-
volves the direct fine-tuning of the model, as this
serves as a standard approach and aligns with our
primary goal of enhancing the performance of fine-
tuning on the target task. Linear probing, another
common method, is not adopted as a baseline in
our study. The rationale behind this decision is
our pursuit of identifying better pretrained parame-
ters, whereas linear probing freezes the pretrained
parameters during training.

Random: In addition to direct fine-tuning, we in-
clude a random sequence of the same length as the
paths searched by our method as an additional base-
line. This comparison aims to evaluate whether our
method can effectively discover valuable informa-
tion regarding task transferability within the graph,
as opposed to a random exploration. This base-
line also provides insights into whether our method
achieves more significant improvements on the tar-
get task, showcasing its efficacy in leveraging the
structure of the task graph to enhance transfer learn-

Task Size Domain

SST-2 128  movie reviews
MRPC 128 news

MNLI 1024 misc.

QNLI 1024 Wikipedia

QQP 1024  social QA

RTE 2048 news, Wikipedia

Table 1: Tasks used in the small graph

ing.

5.3 Main results and analysis

Given that the test sets of GLUE datasets are not
publicly available, our reported performance met-
rics are based on the validation sets. We split some
samples from the training set to serve as a valida-
tion set during the course of our experiments. Re-
garding performance metrics, we report F1 scores
for QQP and MRPC, and accuracy scores for the
other tasks.

In terms of the training methodology, we use
a fresh optimizer for each phase of training. For
each task, we add only a single task-specific, ran-
domly initialized output layer to the pretrained
Transformer model. For all experiments, the loss
function is the cross-entropy error between the pre-
dicted and true class. The implementation is carried
out using Hugging Face’s transformers library and
PyTorch. While we follow the recommended hy-
perparameters by Devlin et al. (2019), we adjust the
batch size to suit our experimental requirements.

TACL on a graph of six tasks In this experi-
mental setup, we use six tasks from the GLUE
benchmark. Additionally, every task included in
this graph is considered a potential target task, al-
lowing for comprehensive exploration and evalu-
ation of the model’s adaptability across various
tasks. The core aim of our experiments is to eval-
uate the efficacy of Task-Adaptation Curriculum
Learning (TACL) in addressing challenges asso-
ciated with fine-tuning, particularly in situations
marked by limited training data. To achieve this,
we explore varying levels of data scarcity across
different tasks. In particular, we deliberately im-
pose an extremely scarce data regime in the SST-2
and MRPC tasks, where the size of the training set
is severely restricted to only 128 samples. In the
case of MNLI, QNLI, and QQP, we adopt a moder-
ately limited regime with a training set size of 1024
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Figure 3: Illustration of searching a curriculum path to QQP by greedy search vs. Monte Carlo tree search

samples. On the other hand, for the RTE task, the
dataset is characterized by a relatively larger size,
with 2048 samples in the training set. This diverse
range of data limitations enables us to systemati-
cally assess the adaptability and performance of our
proposed methodology across varying degrees of
data scarcity. In terms of training specifics, we fix
the maximum length of the sequence at four during
the experiments. When training on an intermediate
task within the sequence, we limit the training steps
rather than allowing the model to fully converge.
This strategy is employed to strike a balance be-
tween training efficiency and obtaining meaningful
insights from the intermediate tasks. In the context
of Monte Carlo Tree Search (MCTYS), simulations
can be computationally intensive as they involve
iterative fine-tuning of the model. To mitigate this,
we reduce the number of steps during simulation,
aiming for a more efficient approximation of the
true performance. Table 2 presents the results for
each task treated as the target task. Notably, these
results reflect the performance of a fully converged
model on the target task.

The limitations imposed by the scarcity of data
make direct fine-tuning ineffective, resulting in sub-
optimal outcomes. Random sequences sometimes
exhibit slightly improved results, aligning with the
understanding that incorporating intermediate train-
ing tasks in data-limited scenarios can offer some
benefits. In contrast, our proposed methods demon-
strate significant success in enhancing the perfor-
mance of the target task across all tasks in the graph.
Notably, Monte Carlo Tree Search (MCTS) outper-
forms Greedy Best-First Search (GBFS) in most
tasks, indicating that the iterative nature of MCTS
likely contributes to its superior performance in
navigating the task graph and identifying more ef-

fective adaptation sequences. This observation un-
derscores the effectiveness of our task-adaptation
curriculum learning framework in comparison to
baseline methods.

TACL on a graph of nine tasks In the extension
of the previous experiment, we expanded the graph
to include three additional GLUE tasks (STS-B,
CoLA, WNLI), resulting in a total of nine tasks.
Unlike the previous experiment where all tasks
were treated as target tasks, in this case, we fo-
cused on observing the performance of our method
on three specific tasks: MRPC, QNLI, and RTE.
The experimental settings remained consistent with
the smaller graph experiment, ensuring a fair com-
parison.

The results of the experiments are presented
in figure 4. As indicated by the results, Task-
Adaptation Curriculum Learning (TACL) appears
to derive some benefits from a more diverse range
of available auxiliary tasks, with slightly improved
performance. Upon examining the new paths, it
is noteworthy that STS-B is often included in the
sequence of adaptation tasks. The Semantic Tex-
tual Similarity Benchmark involves sentence pairs
sourced from news headlines and other texts, anno-
tated with a score indicating the semantic similarity
between the two sentences on a scale from 1 to 5.
Given the nature of the STS-B task, which assesses
the general semantic knowledge of a model, we
can hypothesize that training on this task could be
beneficial for other downstream tasks. The univer-
sal knowledge acquired during the learning process
of STS-B may contribute to the model’s improved
adaptability and performance.

Analysis of paths and structures within the task
graph In addition to evaluating performance,



Methods SST-2 MRPC MNLI QNLI QQP RTE
Fine-tune 81.8 81.2 60.2 78.6 70.6 68.6
Random 74.0 80.1 62.1 77.8 71.7 70.1

GBFS 84.2 83.2 64.9 79.0 73.0 715
MCTS 85.0 83.1 64.2 79.9 73.6 72.8

Table 2: Target task performance (%) achieved by different transfer learning strategies on a small six-task’s graph.

B Fine-tune
s GBFS
s MCTS

MRPC QNLI RTE
Tasks

Figure 4: Performance scores (%) of three target tasks
achieved by GBFS/MCTS-searched curriculum learn-
ing on a nine-task graph. Scores refer to accuracy or
F1 score. MCTS-curriculum achieves the best perfor-
mance, while both MCTS and GBFS outperform direct
finetuning.
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Figure 5: Curricula for six different target tasks by
greedy best first search.

our investigation aims to determine whether our
method can uncover specific structures within the
graph that are relevant to the target task. Figure 5
depicts the paths discovered by Greedy Best-First
Search (GBFS) to all target tasks. Figure 6 demon-
strates some paths to QQP by Monte Carlo tree
search. While the paths are not entirely determin-
istic due to the choice of random seed, we are still
able to discover some important patterns and struc-
tures within the graph of tasks.

As shown in Figure 5, MNLI is the most fre-
quently chosen task in task sequences, and its place-
ment at the end of the sequence may be crucial
for the performance on the target task. Further-
more, MNLI tends to be associated with high-value
paths produced by MCTS, as illustrated in Figure 6.
Multi-Genre Natural Language Inference (MNLI)
is a large-scale entailment classification task. In
MNLI, given a pair of sentences, the objective is
to predict whether the second sentence entails, con-
tradicts, or is neutral with respect to the first one.
Based on these observations, we can formulate a
hypothesis that the model becomes more proficient
in processing and analyzing semantic information
after training on MNLI. The frequent inclusion of
MNLI suggests its importance in enhancing the
model’s ability to understand and reason about
semantic relationships between sentences. This
enhanced capability is expected to translate into
improved performance on target tasks.

5.4 Secondary Findings and Additional
Analyses

Influences of training steps in TACL In addi-
tion to the final results of Task-Adaptation Cur-
riculum Learning (TACL), our curiosity extends
to understanding the factors that may affect the
performance of TACL. Throughout the course of
experiments, we observe that the number of train-
ing steps on each task within the task sequence is
sometimes important in determining the final re-
sults. For a fixed sequence of tasks, varying the
number of training steps can lead to different out-
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Figure 6: Illustration of some possible task-curricula for
QQP (target task) by Monte Carlo tree search. Better
curricula with higher values are highlighted in red.
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Figure 7: Different number of training steps and its
impact on the performance of SST-2.

comes. As depicted in Figure 7, more training steps
may help the model in acquiring and preserving
more knowledge from the task, resulting in greater
improvements on the target task. This observation
emphasizes the importance of this hyperparameter
to the effectiveness of TACL.

Global property of TACL While our primary
objective is to enhance the model’s performance on
the target task, we also anticipate potential benefits
for the model on other tasks, even if they are not
the primary targets. After the completion of the
intermediate training sequence, we save the model
checkpoints and conduct fine-tuning on all tasks
that are not included in the searched sequence. As
illustrated in the figure 8, the model demonstrates
enhanced performance not only on the target task
but also on other tasks. This finding emphasizes
the efficacy of TACL not only in optimizing for
specific tasks but also in enhancing the overall
generalization capabilities of the model, indicating
that TACL can uncover important global structures
within the task graph.

QaQp

RTE SST2

—— Fine-tune
TaCL
MRPC

Figure 8: Comparison between direct finetuning and
TACL trained models evaluated on tasks not included
in the curriculum. SST-2 is the target task.

6 Conclusion

In summary, we have introduced the framework of
task-adaptation curriculum learning as a solution
to challenges associated with directly fine-tuning
pretrained models. Our approach offers several
advantages: it is both simple and flexible, allowing
for the incorporation of various search algorithms
on graphs. Furthermore, it serves as an extension
of intermediate training, leveraging a broader set
of tasks to enhance the model’s generalizability,
particularly in scenarios with limited data.

The adaptability provided by a sequence of tasks
may play a crucial role in addressing the disparity
between a pretrained model and a highly specific
downstream task. We believe that our methodol-
ogy contributes some insights to the realm of task
adaptation in Natural Language Processing (NLP).
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Algorithm 2 Monte Carlo Tree Search

Require: {7,}: A setof n auxiliary tasks
Require: fy: Current model

1: function MCTS(fy)

2: while within computation budget do
3 T, < TREEPOLICY(fy, null)
4 r < SIMULATE(T)

5 BACKUP(T;,7)

6: end while

7 return arg max, UCT(null, 0)
8: end function

9: function TREEPOLICY(fg,T)

10: while 7 is nonterminal do

11: if 7 not fully expanded then

12: choose an untried tasks 7’

13: add a new child 7" to T

14: Train fgonT": 0 + 0—aVyL(T")
15: return 7’

16: else

17: T < arg maxy UCT(T, ¢)

18: Train fyonT: 0 < 0 — aVeL(T)
19: end if

20: end while

21: return 7

22: end function
23: function SIMULATE(T)

24: while 7 is nonterminal do

25: choose 7’ randomly

26: Train fgon T 6 < 0 — aVyL(T)
27: T+ T

28: end while

29: Train fgon 7*: 0 < 6 — aVeL(T)
30: r < evaluate fy on T*

31: return r

32: end function
33: function BACKUP(T, )
34: while 7" # null do

35: N(T)+ N(T)+1
36: QIT)+ Q(T)+r
37: T < parent of T
38: end while

39: end function
40: function UCT(T,r)

Q) 2log N(2)
Ny T TN

42: end function

41: return
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