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Abstract

Despite the prevailing applications of foun-001
dation models, when adapted to downstream002
tasks, their performance sensitively varies with003
the distribution shift/gap between the pertain-004
ing task and the target task. Moreover, direct005
fine-tuning might be overfitting to limited target006
task data. In the realm of NLP, tasks are seman-007
tically related with shared skills and those gen-008
eral purposed ones usually have more available009
data than the highly specific and user-defined010
ones. In this paper, we mitigate the distribution011
shift in task adaptation by developing a smooth012
transfer learning curriculum, which, by fine-013
tuning the model along a path of intermediate014
tasks on a graph, progressively bridges the gap015
between the pretrained model and a target task016
with limited data. To this end, we formulate017
the curriculum learning as a graph search prob-018
lem and address its efficiency by a deep dive019
into accelerating the transferability estimation020
between tasks and two classical search algo-021
rithm applied to our problem, i.e., greedy best022
first search and Monte Carlo tree search. We023
evaluate our approach, i.e., “task-adaptation024
curriculum learning (TACL)” on two bench-025
mark settings with tasks drawn from GLUE.026
Extensive experiments on different target tasks027
demonstrate the effectiveness and advantages028
of TACL on more specific and data-deficient029
downstream tasks.030

1 Introduction031

Foundation models pretrained on large-scale cor-032

pora have shown substantial potential to generalize033

to downstream tasks with promising performance034

(Devlin et al., 2019). While simple fine-tuning035

these models on the target task data usually suffices036

to obtain a transfer learning from the pretrained037

task to the target task, the final performance heav-038

ily depends on the distribution shift between the039

two tasks and the amount of fine-tuning data avail-040

able for the target task, e.g., transfer learning may041

perform poorly under large distribution shift and 042

limited target task data. 043

Fortunately, many NLP tasks are semantically 044

related and their structures are shared so we may 045

fine-tune on an intermediate task before transition- 046

ing to the target task. This approach is valuable 047

because the intermediate task may encapsulate per- 048

tinent information for solving the target task, facili- 049

tating smoother training and aiding in the retention 050

of knowledge acquired from pretrained tasks. Rec- 051

ognizing the efficacy of utilizing relevant tasks, 052

our objective is to devise a method that guides the 053

model through a sequence of intermediate tasks. 054

This approach aims to establish a seamless transfer 055

pathway from pretraining tasks to the target task, 056

addressing issues related to overfitting and task 057

distribution shift. However, the search for the opti- 058

mal transfer curriculum presents a formidable chal- 059

lenge, characterized by a combinatorial optimiza- 060

tion problem. The impracticality of a brute-force 061

solution becomes evident as the sequence length 062

increases, leading to an exponential growth in the 063

number of possible task combinations. Further- 064

more, discerning the relative importance of each 065

task in the sequence to the target task is challenging. 066

Additionally, the dynamic nature of model param- 067

eters, altered after training on each task, makes it 068

hard to determine a sequence in an a priori manner. 069

To mitigate these challenges, we address the 070

problem by formulating it as searching for a path 071

on a graph of tasks, effectively connecting the pre- 072

trained task to the target task. This graph-based ap- 073

proach offers several advantages in tackling these 074

issues. Firstly, leveraging existing graph search 075

algorithms allows us to confine the search space, 076

thereby circumventing the need for a computation- 077

ally intensive brute-force solution. Secondly, the 078

flexibility of employing heuristic or non-heuristic 079

methods facilitates the estimation of the priority 080

of specific states within the graph. Lastly, the dy- 081

namic nature of graph search takes into account the 082
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Figure 1: Comparison of direct transfer learning (bottom) vs. task-adaptation curriculum learning (top).

evolving model parameters.083

To this end, we proposed the framework of task-084

adaptation curriculum learning, which involves085

finding a sequence of adaptation tasks that pro-086

gressively bridges the gap between the pretrained087

model and the target task by searching a transfer088

learning path on a graph of tasks. Specifically, we089

employ two classic search algorithms within this090

framework: greedy best-first search and Monte-091

Carlo tree search. We employ some approxima-092

tion methods to avoid intensive computation. Our093

approach is examined on two sets of NLP tasks.094

Through a meticulous analysis of the experimen-095

tal results, we find that task-adaptation curriculum096

learning emerges as a beneficial approach, partic-097

ularly in scenarios characterized by limited data098

availability. Furthermore, our findings underscore099

the scalability and flexibility of this framework,100

showcasing its adaptability to diverse task settings.101

2 Related Work102

The method that we propose in this paper addresses103

the general problem of task adaptation, which gen-104

erally refers to adapting a pre-trained model to105

a downstream task. Commonly employed prac-106

tices include fine-tuning directly and linear prob-107

ing. Others, such as task/domain-adaptive methods,108

consider the issue of catastrophic forgetting (Kirk-109

patrick et al., 2017), wherein models may forget110

knowledge from previous tasks after training on a111

new one, leading to negative transfer. DAPT (Gu-112

rurangan et al., 2020) tackles this by first tuning113

the pre-trained model on data related to the target114

domain or the target task itself, and then fine-tuning115

the adaptive-tuned model on the target task. Simi-116

larly, Dery et al. (2021) propose a multi-task frame-117

work to bridge the gap between pre-trained tasks118

and the end task by adaptively updating weights119

of auxiliary tasks. However, our method differs in 120

that it seeks to design an algorithm capable of au- 121

tomatically determining intermediate training task 122

sequences between pre-trained tasks and the target 123

task, eschewing a multi-task approach. 124

The concept of intermediate training is also per- 125

tinent to our work. In this paradigm, practitioners 126

typically designate one task as an intermediate step 127

between pre-trained tasks and the target task. Pre- 128

vious works in this domain leverage transferabil- 129

ity or similarity to identify intermediate tasks (Vu 130

et al., 2020). For instance, task embeddings for 131

transfer learning (Achille et al., 2019) consider the 132

Fisher information matrix of a model fine-tuned on 133

a task as the "task embedding," predicting inter-task 134

transferability by computing the cosine similarity 135

between the task embeddings of the source and tar- 136

get tasks. Notably, our approach diverges in that we 137

seek not just one intermediate task but a sequence 138

of adaptation tasks. 139

Our method also intersects with the concept 140

of curriculum learning, which involves ranking 141

the difficulty or priority of learning examples and 142

then proceeding with learning in such a sequence. 143

While traditional curriculum learning operates at 144

the data level, our focus in the realm of task adap- 145

tation learning is on task-level curriculum learning. 146

Noteworthy work by Pentina et al. (2015) employs 147

curriculum learning to sequentially solve multiple 148

tasks, demonstrating its superiority over joint task- 149

solving. Their aim, however, was to enhance the av- 150

erage performance across multiple tasks, whereas 151

our method specifically targets the performance 152

improvement of the target task. 153

3 Problem Formulation 154

The task is a pair of an objective function and a
dataset: T := {L,D}, where D consists of n sam-
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ples. Given a specific end-task T ∗, our aim is to
improve the performance on T ∗ by leveraging a
set of auxiliary tasks {Tn} := {T1, T2, T3, · · · Tn}.
A task graph, denoted as Gn, is a graph wherein
the nodes represent individual tasks, and the edges
symbolize the connections between these tasks.
Typically, we assume Gn to be a complete graph,
signifying that each task is directly connected to ev-
ery other task in the graph. Our objective is to find
an optimal intermediate training sequence denoted
as

s := Pretrain→ Ta → Tb → · · · → Ti → T ∗

This sequence is path in Gn and connects the pre-155

trained task to the target task, aiming to maximize156

the performance of T ∗.157

For each task, we add a task-specific output layer158

ϕ to the pretrained model during training. This159

presents a discrete bi-level optimization problem,160

formulated as follows:161

s∗ = argmin
s
Lout[fθ(s);ϕ

∗] (1)162

ϕ∗ = argmin
ϕ

Lin[fθ(s),ϕ]. (2)163

Here fθ(s) represents the function parameterized164

by θ, determined by sequence s, Lout : F → R is a165

functional of the encoder functions f : Rn → Rk,166

and Lin : F → R is a functional of the functions167

representing the entire model f : Rn → Rm.168

To address this optimization problem, we would169

explore the discrete space consisting of every possi-170

ble sequence s of tasks. However, considering the171

infinite nature of this space, a significant number172

of states are not worth investigating. Therefore, the173

strategic pruning of unhelpful branches becomes174

imperative. To achieve this, we adopt the approach175

of searching on a graph of tasks, dynamically eval-176

uating the value of each sequence during the search177

examining the current state of the model, specifi-178

cally its parameters. This process can be conceptu-179

alized as utilizing search algorithms to approximate180

the outer level of the original optimization problem.181

In essence, we seek to find the optimal sequence182

of tasks s∗ through a search algorithm, operating183

on the graph Gn, and simultaneously determine the184

optimal ϕ∗ that minimizes the inner loss function185

Lin[fθ,ϕ]. This dynamic and iterative exploration186

allows us to efficiently prune the solution space,187

leading to a more effective and targeted approach188

Figure 2: Example of a task-adaptation curriculum
(path) on the task graph, which bridges the pretrained
and target tasks by a sequence of intermediate tasks.

to solving the optimization challenge. 189

s∗ ≈ SearchAlg(fθ,ϕ;Gn) (3) 190

ϕ∗ = argmin
ϕ

Lin[fθ,ϕ] (4) 191

4 Task-Adaptation Curriculum Learning 192

In the realm of task-adaptation curriculum learning, 193

our aim is to determine a sequence of adaptation 194

tasks that bridge the gap between the pretrained 195

task and the target task, with the ultimate goal of en- 196

hancing the performance on the target task. Framed 197

as a search problem, we introduce two straight- 198

forward yet effective methods: the greedy best 199

first search (GBFS) and Monte-Carlo tree search 200

(MCTS), both geared towards identifying the opti- 201

mal adaptation sequence. 202

4.1 Greedy Search of Task Curriculum 203

The concept of greedy search, a prevalent technique 204

in the field of search algorithms, involves making 205

the best possible decision at each step. This ap- 206

proach entails examining only the immediate fu- 207

ture and selecting the most favorable action. When 208

a problem exhibits an optimal substructure prop- 209

erty, the greedy algorithm tends to yield optimal 210

results. Due to its simplicity and efficiency, greedy 211

algorithms are frequently employed to solve opti- 212

mization problems. 213

In task-adaptation curriculum learning, the chal- 214

lenge is to select the subsequent adaptation task 215

after training on a given task. The objective is to 216

make decisions that collectively enhance the over- 217

all performance on the target task. In the case of 218
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greedy best first search, we adopt a methodical ap-219

proach by selecting the most promising task at each220

step. This involves fine-tuning the model on each221

auxiliary task, followed by training on the target222

task. The validation accuracy on the target task223

serves as a reward metric, representing the efficacy224

of each task in aiding the target task. Other po-225

tential metrics include validation loss, geometric226

distance, or task embedding similarity. The chosen227

task is the one that maximizes the estimation of the228

target task performance. This process is elucidated229

in detail in algorithm 1.230

Algorithm 1 Greedy Best First Search

Require: l: Length of sequence
Require: {Tn}: A set of n auxiliary tasks
Require: fθ: Pretrained model

1: k ← 0
2: while k < l do
3: for Ti ∈ {Tn} do
4: Train fθ on Ti: θi = θ − α∇θL(Ti)
5: Compute heuristics on target task T ∗

6: end for
7: T ′ ← task with the lowest heuristic
8: Train fθ on T ′: θ ← θ − α∇θL(T ′)
9: k ← k + 1

10: end while

4.2 Monte Carlo Tree Search of Task231

Curriculum232

Monte Carlo Tree Search (MCTS) proposed by233

Coulom (2006) is a heuristic search algorithm de-234

signed for decision processes, particularly in ap-235

plications involving playing board games. In such236

scenarios, MCTS is employed to solve the intri-237

cate game tree by approximating the true game-238

theoretic value of potential actions from the current239

state. The algorithm achieves this by iteratively240

constructing a partial search tree.241

A notable advantage of MCTS lies in its indepen-242

dence from domain-specific knowledge, rendering243

it applicable to a wide range of domains that can244

be modeled using a tree structure. In the realm of245

task-adaptation curriculum learning, the process246

of determining the next task inherently involves247

decision-making, akin to a growing tree structure.248

Consequently, MCTS seamlessly aligns with our249

framework for task-adaptation curriculum learning,250

offering a versatile and domain-agnostic approach251

to solving the intricate decision processes involved252

in the selection of intermediate tasks. In this con-253

text, the state represents the current model, a node 254

corresponds to a specific task, an action involves 255

training on the chosen task, and the reward is deter- 256

mined by the performance of the target task after 257

completing the adaptation sequence. A simulation 258

entails training the model on a sequence of tasks of 259

a specified length. 260

How the tree is built depends on how nodes in 261

the tree are selected. By framing the choice of a 262

child node as a multiarmed-bandit problem, we 263

employ the Upper Confidence Bound (UCB1) algo- 264

rithm to estimate the value of each child node. The 265

UCB1 algorithm considers the expected reward as 266

approximated by Monte Carlo simulations, treating 267

these rewards as random variables with unknown 268

distributions. This approach ensures simplicity, ef- 269

ficiency, and a guaranteed closeness to the best 270

possible bound on the growth of regret. The selec- 271

tion of a child node is determined by the following 272

formula: 273

v′ := argmax
v′∈children of v

Q(v′)

N(v′)
+ c

√
2 logN(v)

N(v′)
. (5) 274

Here, N(v) is the number of times the current (par- 275

ent) node has been visited, N(v′) is the number 276

of times the child has been visited, and c > 0 is a 277

constant. 278

As a result, we employ UCB1 for the selection 279

process and implement a random policy for roll- 280

out. The performance of the target task, such as 281

validation accuracy or loss, is utilized to compute 282

the reward associated with a given sequence. As 283

the tree grows, we iteratively refine our estimates 284

of the value of choosing the next task. The entire 285

process is encapsulated in algorithm 2. 286

5 Experiments 287

In our experimental investigations, we aim to ad- 288

dress the following questions pivotal to the effi- 289

cacy of our proposed task-adaptation curriculum 290

learning (TACL) methodology: (1) Can models 291

gain significant benefits from the adoption of task- 292

adaptation curriculum learning? (2) What are some 293

similarities and differences in the results produced 294

by GBFS and MCTS? (3) What are some possible 295

factors that could potentially influence the perfor- 296

mance of TACL? 297

To systematically tackle these questions, we de- 298

sign and execute experiments on two graphs: a 299

smaller graph comprising six tasks and a more ex- 300

tensive graph encompassing nine tasks. This exper- 301
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imental setup allows us to evaluate the robustness302

and scalability of our proposed approach under303

varying parameter settings.304

5.1 Experimental Setting305

Throughout our experiments, we consistently em-306

ploy the BERT model (Devlin et al., 2019), a307

powerful language representation model. The ex-308

perimentation is conducted on the nine datasets309

from the General Language Understanding Eval-310

uation (GLUE) benchmark (Wang et al., 2018),311

which spans various linguistic tasks. These tasks312

include sentiment analysis (SST-2; Socher et al.,313

2013), Quora Question Pairs (QQP; Iyer et al.,314

2017), paraphrase identification (MRPC; Dolan315

and Brockett, 2005), semantic similarity (STS-316

B; Cer et al., 2017), grammatical acceptability317

judgments (CoLA, Warstadt et al., 2019), natural318

language inference (NLI) with Multi-Genre NLI319

(MNLI; Williams et al., 2018), SQuAD (Rajpurkar320

et al., 2016) converted into Question-answering321

NLI (QNLI; Wang et al., 2018), Recognizing Tex-322

tual Entailment (RTE; Dagan et al., 2005), and323

the Winograd Schema Challenge (Levesque et al.,324

2012) recast as Winograd NLI (WNLI). The di-325

verse nature of these datasets allows us to compre-326

hensively evaluate the adaptability of our method327

across various language understanding tasks.328

5.2 Baselines329

Fine-tune: One of our baseline comparisons in-330

volves the direct fine-tuning of the model, as this331

serves as a standard approach and aligns with our332

primary goal of enhancing the performance of fine-333

tuning on the target task. Linear probing, another334

common method, is not adopted as a baseline in335

our study. The rationale behind this decision is336

our pursuit of identifying better pretrained parame-337

ters, whereas linear probing freezes the pretrained338

parameters during training.339

Random: In addition to direct fine-tuning, we in-340

clude a random sequence of the same length as the341

paths searched by our method as an additional base-342

line. This comparison aims to evaluate whether our343

method can effectively discover valuable informa-344

tion regarding task transferability within the graph,345

as opposed to a random exploration. This base-346

line also provides insights into whether our method347

achieves more significant improvements on the tar-348

get task, showcasing its efficacy in leveraging the349

structure of the task graph to enhance transfer learn-350

Task Size Domain

SST-2 128 movie reviews
MRPC 128 news
MNLI 1024 misc.
QNLI 1024 Wikipedia
QQP 1024 social QA
RTE 2048 news, Wikipedia

Table 1: Tasks used in the small graph

ing. 351

5.3 Main results and analysis 352

Given that the test sets of GLUE datasets are not 353

publicly available, our reported performance met- 354

rics are based on the validation sets. We split some 355

samples from the training set to serve as a valida- 356

tion set during the course of our experiments. Re- 357

garding performance metrics, we report F1 scores 358

for QQP and MRPC, and accuracy scores for the 359

other tasks. 360

In terms of the training methodology, we use 361

a fresh optimizer for each phase of training. For 362

each task, we add only a single task-specific, ran- 363

domly initialized output layer to the pretrained 364

Transformer model. For all experiments, the loss 365

function is the cross-entropy error between the pre- 366

dicted and true class. The implementation is carried 367

out using Hugging Face’s transformers library and 368

PyTorch. While we follow the recommended hy- 369

perparameters by Devlin et al. (2019), we adjust the 370

batch size to suit our experimental requirements. 371

TACL on a graph of six tasks In this experi- 372

mental setup, we use six tasks from the GLUE 373

benchmark. Additionally, every task included in 374

this graph is considered a potential target task, al- 375

lowing for comprehensive exploration and evalu- 376

ation of the model’s adaptability across various 377

tasks. The core aim of our experiments is to eval- 378

uate the efficacy of Task-Adaptation Curriculum 379

Learning (TACL) in addressing challenges asso- 380

ciated with fine-tuning, particularly in situations 381

marked by limited training data. To achieve this, 382

we explore varying levels of data scarcity across 383

different tasks. In particular, we deliberately im- 384

pose an extremely scarce data regime in the SST-2 385

and MRPC tasks, where the size of the training set 386

is severely restricted to only 128 samples. In the 387

case of MNLI, QNLI, and QQP, we adopt a moder- 388

ately limited regime with a training set size of 1024 389
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Figure 3: Illustration of searching a curriculum path to QQP by greedy search vs. Monte Carlo tree search

samples. On the other hand, for the RTE task, the390

dataset is characterized by a relatively larger size,391

with 2048 samples in the training set. This diverse392

range of data limitations enables us to systemati-393

cally assess the adaptability and performance of our394

proposed methodology across varying degrees of395

data scarcity. In terms of training specifics, we fix396

the maximum length of the sequence at four during397

the experiments. When training on an intermediate398

task within the sequence, we limit the training steps399

rather than allowing the model to fully converge.400

This strategy is employed to strike a balance be-401

tween training efficiency and obtaining meaningful402

insights from the intermediate tasks. In the context403

of Monte Carlo Tree Search (MCTS), simulations404

can be computationally intensive as they involve405

iterative fine-tuning of the model. To mitigate this,406

we reduce the number of steps during simulation,407

aiming for a more efficient approximation of the408

true performance. Table 2 presents the results for409

each task treated as the target task. Notably, these410

results reflect the performance of a fully converged411

model on the target task.412

The limitations imposed by the scarcity of data413

make direct fine-tuning ineffective, resulting in sub-414

optimal outcomes. Random sequences sometimes415

exhibit slightly improved results, aligning with the416

understanding that incorporating intermediate train-417

ing tasks in data-limited scenarios can offer some418

benefits. In contrast, our proposed methods demon-419

strate significant success in enhancing the perfor-420

mance of the target task across all tasks in the graph.421

Notably, Monte Carlo Tree Search (MCTS) outper-422

forms Greedy Best-First Search (GBFS) in most423

tasks, indicating that the iterative nature of MCTS424

likely contributes to its superior performance in425

navigating the task graph and identifying more ef-426

fective adaptation sequences. This observation un- 427

derscores the effectiveness of our task-adaptation 428

curriculum learning framework in comparison to 429

baseline methods. 430

TACL on a graph of nine tasks In the extension 431

of the previous experiment, we expanded the graph 432

to include three additional GLUE tasks (STS-B, 433

CoLA, WNLI), resulting in a total of nine tasks. 434

Unlike the previous experiment where all tasks 435

were treated as target tasks, in this case, we fo- 436

cused on observing the performance of our method 437

on three specific tasks: MRPC, QNLI, and RTE. 438

The experimental settings remained consistent with 439

the smaller graph experiment, ensuring a fair com- 440

parison. 441

The results of the experiments are presented 442

in figure 4. As indicated by the results, Task- 443

Adaptation Curriculum Learning (TACL) appears 444

to derive some benefits from a more diverse range 445

of available auxiliary tasks, with slightly improved 446

performance. Upon examining the new paths, it 447

is noteworthy that STS-B is often included in the 448

sequence of adaptation tasks. The Semantic Tex- 449

tual Similarity Benchmark involves sentence pairs 450

sourced from news headlines and other texts, anno- 451

tated with a score indicating the semantic similarity 452

between the two sentences on a scale from 1 to 5. 453

Given the nature of the STS-B task, which assesses 454

the general semantic knowledge of a model, we 455

can hypothesize that training on this task could be 456

beneficial for other downstream tasks. The univer- 457

sal knowledge acquired during the learning process 458

of STS-B may contribute to the model’s improved 459

adaptability and performance. 460

Analysis of paths and structures within the task 461

graph In addition to evaluating performance, 462
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Methods SST-2 MRPC MNLI QNLI QQP RTE

Fine-tune 81.8 81.2 60.2 78.6 70.6 68.6
Random 74.0 80.1 62.1 77.8 71.7 70.1
GBFS 84.2 83.2 64.9 79.0 73.0 71.5
MCTS 85.0 83.1 64.2 79.9 73.6 72.8

Table 2: Target task performance (%) achieved by different transfer learning strategies on a small six-task’s graph.

Figure 4: Performance scores (%) of three target tasks
achieved by GBFS/MCTS-searched curriculum learn-
ing on a nine-task graph. Scores refer to accuracy or
F1 score. MCTS-curriculum achieves the best perfor-
mance, while both MCTS and GBFS outperform direct
finetuning.

Figure 5: Curricula for six different target tasks by
greedy best first search.

our investigation aims to determine whether our 463

method can uncover specific structures within the 464

graph that are relevant to the target task. Figure 5 465

depicts the paths discovered by Greedy Best-First 466

Search (GBFS) to all target tasks. Figure 6 demon- 467

strates some paths to QQP by Monte Carlo tree 468

search. While the paths are not entirely determin- 469

istic due to the choice of random seed, we are still 470

able to discover some important patterns and struc- 471

tures within the graph of tasks. 472

As shown in Figure 5, MNLI is the most fre- 473

quently chosen task in task sequences, and its place- 474

ment at the end of the sequence may be crucial 475

for the performance on the target task. Further- 476

more, MNLI tends to be associated with high-value 477

paths produced by MCTS, as illustrated in Figure 6. 478

Multi-Genre Natural Language Inference (MNLI) 479

is a large-scale entailment classification task. In 480

MNLI, given a pair of sentences, the objective is 481

to predict whether the second sentence entails, con- 482

tradicts, or is neutral with respect to the first one. 483

Based on these observations, we can formulate a 484

hypothesis that the model becomes more proficient 485

in processing and analyzing semantic information 486

after training on MNLI. The frequent inclusion of 487

MNLI suggests its importance in enhancing the 488

model’s ability to understand and reason about 489

semantic relationships between sentences. This 490

enhanced capability is expected to translate into 491

improved performance on target tasks. 492

5.4 Secondary Findings and Additional 493

Analyses 494

Influences of training steps in TACL In addi- 495

tion to the final results of Task-Adaptation Cur- 496

riculum Learning (TACL), our curiosity extends 497

to understanding the factors that may affect the 498

performance of TACL. Throughout the course of 499

experiments, we observe that the number of train- 500

ing steps on each task within the task sequence is 501

sometimes important in determining the final re- 502

sults. For a fixed sequence of tasks, varying the 503

number of training steps can lead to different out- 504
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Figure 6: Illustration of some possible task-curricula for
QQP (target task) by Monte Carlo tree search. Better
curricula with higher values are highlighted in red.

Figure 7: Different number of training steps and its
impact on the performance of SST-2.

comes. As depicted in Figure 7, more training steps505

may help the model in acquiring and preserving506

more knowledge from the task, resulting in greater507

improvements on the target task. This observation508

emphasizes the importance of this hyperparameter509

to the effectiveness of TACL.510

Global property of TACL While our primary511

objective is to enhance the model’s performance on512

the target task, we also anticipate potential benefits513

for the model on other tasks, even if they are not514

the primary targets. After the completion of the515

intermediate training sequence, we save the model516

checkpoints and conduct fine-tuning on all tasks517

that are not included in the searched sequence. As518

illustrated in the figure 8, the model demonstrates519

enhanced performance not only on the target task520

but also on other tasks. This finding emphasizes521

the efficacy of TACL not only in optimizing for522

specific tasks but also in enhancing the overall523

generalization capabilities of the model, indicating524

that TACL can uncover important global structures525

within the task graph.526

Figure 8: Comparison between direct finetuning and
TACL trained models evaluated on tasks not included
in the curriculum. SST-2 is the target task.

6 Conclusion 527

In summary, we have introduced the framework of 528

task-adaptation curriculum learning as a solution 529

to challenges associated with directly fine-tuning 530

pretrained models. Our approach offers several 531

advantages: it is both simple and flexible, allowing 532

for the incorporation of various search algorithms 533

on graphs. Furthermore, it serves as an extension 534

of intermediate training, leveraging a broader set 535

of tasks to enhance the model’s generalizability, 536

particularly in scenarios with limited data. 537

The adaptability provided by a sequence of tasks 538

may play a crucial role in addressing the disparity 539

between a pretrained model and a highly specific 540

downstream task. We believe that our methodol- 541

ogy contributes some insights to the realm of task 542

adaptation in Natural Language Processing (NLP). 543
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Algorithm 2 Monte Carlo Tree Search

Require: {Tn}: A set of n auxiliary tasks
Require: fθ: Current model

1: function MCTS(fθ)
2: while within computation budget do
3: Tl ← TREEPOLICY(fθ, null)
4: r ← SIMULATE(T )
5: BACKUP(Tl, r)
6: end while
7: return argmaxT UCT(null, 0)
8: end function
9: function TREEPOLICY(fθ, T )

10: while T is nonterminal do
11: if T not fully expanded then
12: choose an untried tasks T ′

13: add a new child T ′ to T
14: Train fθ on T ′: θ ← θ−α∇θL(T ′)
15: return T ′

16: else
17: T ← argmaxT UCT(T , c)
18: Train fθ on T : θ ← θ − α∇θL(T )
19: end if
20: end while
21: return T
22: end function
23: function SIMULATE(T )
24: while T is nonterminal do
25: choose T ′ randomly
26: Train fθ on T : θ ← θ − α∇θL(T )
27: T ← T ′

28: end while
29: Train fθ on T ∗: θ ← θ − α∇θL(T )
30: r ← evaluate fθ on T ∗

31: return r
32: end function
33: function BACKUP(T , r)
34: while T ≠ null do
35: N(T )← N(T ) + 1
36: Q(T )← Q(T ) + r
37: T ← parent of T
38: end while
39: end function
40: function UCT(T , r)

41: return Q(v′)
N(v′) + c

√
2 logN(v)
N(v′)

42: end function
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