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Abstract
Large Language Models (LLMs) face accuracy
and complex reasoning challenges in specialized
medical domains like orthopedics. We introduce
OrthoGraphRAG, a multi-level Graph Retrieval-
Augmented Generation (GraphRAG) framework,
to address these issues. OrthoGraphRAG con-
structs a novel multi-level knowledge graph
linking private clinical knowledge with pub-
lic UMLS data, building on recent medical
GraphRAG advancements. The framework re-
trieves query-entity-based subgraphs, augments
them with clinical note text, allowing an LLM
to synthesize informed responses from com-
bined graph and textual evidence. Evaluated on
real-world orthopedic clinic letters with diverse
query complexities, OrthoGraphRAG demon-
strated effectiveness, particularly in contextual
reasoning integrating private patient data with
broader medical knowledge. This multi-level
GraphRAG approach offers a promising path
to safer, more capable, and contextually aware
LLMs for specialized clinical applications. Our
code is released at: https://github.com/
venkateshtata/OrthoGraphRAG

1. Introduction
Large Language Models (LLMs), despite their natural
language prowess, face reasoning limitations in special-
ized, information-dense domains like orthopedics due to
restricted context windows and difficulty with extensive
knowledge bases (Chen et al., 2024; Gao et al., 2023). While
Retrieval-Augmented Generation (RAG) (Lewis et al., 2020)
and its counterpart, GraphRAG, provide external knowledge,
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broad medical applications can be overly complex. We intro-
duce OrthoGraphRAG, specializing these techniques for
orthopedic clinical decision-making. OrthoGraphRAG bal-
ances reduced query complexity with sophisticated knowl-
edge representation, vital for orthopedics which demands
factual accuracy and nuanced multi-source reasoning (Wu
et al., 2024b).

OrthoGraphRAG’s core is a multi-level GraphRAG frame-
work with a novel multi-layer knowledge graph (Figure 1).
This graph integrates private clinical knowledge from hos-
pital letters with public UMLS data (Bodenreider, 2004)
via cosine similarity-based entity linking (Wu et al., 2024b).
Evaluation on real-world orthopedic clinic letters across
diverse question categories (Information Retrieval, Explana-
tory Reasoning, Contextual Reasoning) showed high suc-
cess rates, particularly excelling in complex contextual rea-
soning that synergistically integrates private patient data
with broader medical knowledge.

Our contributions include: (1) the OrthoGraphRAG frame-
work and its multi-layer graph integrating private records
with public data (e.g., UMLS) for orthopedic retrieval; (2)
its graph-based retrieval and response generation process;
and (3) an expert-validated evaluation demonstrating supe-
rior capabilities in comparative analysis (Chen et al., 2024).
This approach offers a path towards safer, more capable,
and contextually accurate LLMs for specialized clinical
applications.

2. Related Work
Integrating external knowledge is vital for applying Large
Language Models (LLMs) in specialized domains like
healthcare. Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) initially addressed this by conditioning LLM
outputs on retrieved text. However, the complexity of med-
ical data often necessitates structured knowledge graphs
(KGs) to capture richer relational information beyond flat
text.

Consequently, Graph-based RAG (GraphRAG) techniques
emerged, leveraging KGs to improve LLM reasoning over
structured data, thereby enhancing contextual understanding,
factual accuracy, and explainability in medicine (Wu et al.,
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2024a). This field has seen rapid advancements, includ-
ing systems for evidence-based medical KG querying (e.g.,
MedGraphRAG (Wu et al., 2024a)) and methods integrating
diverse data sources like multimodal EHRs or specialized
guidelines (Kresevic et al., 2024; Ke et al., 2024; Neupane
et al., 2024)).

Existing GraphRAG systems are often broad or use single-
layer graphs. To address these limitations, OrthoGraphRAG
introduces a specialized multi-level GraphRAG architec-
ture for orthopedics. Inspired by (Wu et al., 2024a), it fea-
tures a distinct hierarchical KG integrating a Private Clinical
Knowledge Graph (PKG) from clinic letters with the public
UMLS (Bodenreider, 2004). This multi-level structure, com-
bined with a retrieval process that augments subgraphs with
textual evidence from original narratives, aims to enhance
factual precision and multi-source information synthesis in
this specialized domain.

3. Methodology
OrthoGraphRAG provides precise, context-aware orthope-
dic query responses using a multi-stage methodology: (1)
data acquisition/preparation; (2) multi-level KG construc-
tion (private clinical narratives, public ontologies); (3) a
KG-leveraging query processing and RAG pipeline; and
(4) comprehensive evaluation. Figure 1 details the graph
creation, while Figure 2 illustrates the query processing and
response generation workflow.

3.1. Data Corpus and Pre-processing

OrthoGraphRAG utilizes a dual-source data strategy for
clinical specificity and broad medical context:

• Private Clinical Data: Synthetic orthopedic clinic let-
ters, rich in patient-specific details (diagnostic histories,
treatments, outcomes), are pre-processed into coherent
text chunks (e.g., sentences/paragraphs). The private
clinical data comprises synthetic orthopedic clinic let-
ters. This approach was chosen to navigate the ethical
and privacy challenges associated with accessing real
patient records, while still ensuring the data is inspired
by and reflects real-world clinical scenarios. The scale
of this dataset is therefore a direct consequence of this
careful, privacy-preserving generation process. This
segmentation aids granular retrieval, efficient down-
stream processing, and forms the response evidence
base.

• Public Medical Knowledge: The Unified Medical
Language System (UMLS) (Bodenreider, 2004) com-
plements private data, serving as a standardized pub-
lic medical knowledge repository. UMLS provides
medical concepts, types, and relationships; its Metathe-

saurus is used for normalization/enrichment, and its
Semantic Network for orthopedic-relevant broader re-
lationships.

3.2. Multi-Level Knowledge Graph (KG) Construction

3.2.1. PRIVATE CLINICAL KNOWLEDGE GRAPH (PKG)
FORMULATION

From the corpus of M pre-processed (chunked) orthopedic
clinic letters, Dpriv = {C1, C2, . . . , CM}, an automated
knowledge extraction pipeline identifies entities and rela-
tionships for each chunk Ck ∈ Dpriv:

• Entity Extraction: An LLM, denoted LLMent doc

(specifically Llama3.3 70B), performs medical entity
recognition on each chunk Ck, identifying a set of
medical entities:

E
(k)
pkg = {e(k)1 , e

(k)
2 , . . . , e

(k)
Nk

}

Each entity e(k)i ∈ E
(k)
pkg is a tuple:

e
(k)
i = (namei, typei, spani)

representing the recognized entity string (namei), its
assigned orthopedic-relevant semantic type (typei, e.g.,
Symptom, Diagnosis, Treatment), and its tex-
tual position within Ck (spani).

• Relationship Extraction: Subsequently, an LLM,
LLMrel doc, extracts relationships R(k)

pkg between en-

tity pairs (e(k)i , e
(k)
j ) within the same chunk Ck. Each

relationship r ∈ R
(k)
pkg is represented as:

r = (e
(k)
i , rel typeij , e

(k)
j )

where rel typeij is a concise phrase describing their
connection (e.g., treated by, caused by).

The Private Clinical Knowledge Graph (PKG), denoted
GPKG = (EPKG, RPKG), aggregates these per-chunk en-
tities and relationships. Its components are defined as:

EPKG =
⋃
k

E
(k)
pkg and RPKG =

⋃
k

R
(k)
pkg.

For instance, an example relationship is:

Patient ID
123

HAS DIAGNOSIS−−−−−−−−−→
Degenerative OA

Right Knee

3.2.2. PUBLIC MEDICAL KNOWLEDGE INTEGRATION
(UMLS)

The public KG layer utilizes the Unified Medical Lan-
guage System (UMLS) (Bodenreider, 2004). We define
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Figure 1. Diagram of the OrthoGraphRAG multi-level graph creation process, from clinic letters to an integrated graph with UMLS.

GUMLS = (EUMLS , RUMLS) as a relevant UMLS subset,
where EUMLS includes Concept Unique Identifiers (CUIs)
with associated information (names, semantic types), and
RUMLS represents inter-concept relationships (e.g., hierar-
chical, associative).

3.2.3. INTER-GRAPH ENTITY LINKING AND
ENRICHMENT

This phase creates the multi-level KG (GML) by bridging
GPKG and GUMLS . Private entities epkg ∈ EPKG are
linked to canonical UMLS concepts eumls ∈ EUMLS if
the cosine similarity of their contextual embeddings, ϕ(e),
exceeds a threshold δlink:

L(epkg, eumls) = 1

(
ϕ(epkg) · ϕ(eumls)

∥ϕ(epkg)∥∥ϕ(eumls)∥
≥ δlink

)
3.3. Retrieval and Generation Process

The query processing pipeline (Figure 2) is Or-
thoGraphRAG’s operational core, designed to interpret
queries, retrieve relevant information, and synthesize clini-
cally meaningful responses.

3.4. Query Processing and Contextual Subgraph
Retrieval

Given a user’s natural language query (Q), LLMent query

(Llama3.3 70B) extracts key medical entities (EQ):

EQ = LLMent query(Q)

These entitiesEQ serve as entry points to the multi-level KG
(GML). With LLM assistance (LLMgraph query), a graph
query (QG) is constructed from EQ:

QG = ConstructGraphQuery(EQ)

Executing QG against GML retrieves a contextual subgraph
GS = (ES , RS):

GS = ExecuteGraphQuery(QG, GML)

GS includes query entities, their k-hop neighbors, and con-
necting relationships, forming the initial structured query
context.

3.5. Textual Evidence Augmentation and Response
Synthesis

Subgraph GS provides structured data, while original clin-
ical narratives (Dpriv) offer detailed context. Source text
chunks (C(es)) are retrieved for private entities in GS

(ES∩EPKG). Additionally, other text chunks (Ck ∈ Dpriv)
semantically similar to query Q and subgraph GS are iden-
tified. This selection uses embeddings (ψ) and a similarity
threshold (δtext), ensuring highly relevant retrieved text
(Drel):

Drel = {Ck ∈ Dpriv | sim(ψ(Ck), ψ(Q,GS)) ≥ δtext}
∪ {C(es) | es ∈ (ES ∩ EPKG)}

The retrieved subgraph GS and textual evidence Drel

form a comprehensive prompt Pfinal for a generator LLM
(LLMgen, Llama3.3 70B). LLMgen synthesizes this to pro-
duce a factually grounded, contextually appropriate answer
(A), connecting patient-specific details with broader medical
knowledge:

A = LLMgen(FormatPrompt(Q,GS , Drel))

4. Results
This section evaluates OrthoGraphRAG’s enhancement of
orthopedic clinical decision support, primarily its end-to-
end performance against baselines and ablated configura-
tions across diverse clinical question categories (Table 1).
The selection of key components like the entity linking
retriever is detailed in Section B.1.

4.1. OrthoGraphRAG System Performance

The core evaluation of OrthoGraphRAG assessed its ability
to answer clinical queries across Information Retrieval, Ex-
planatory Reasoning, and Contextual Reasoning categories,
benchmarking against leading LLMs and two ablated sys-
tem versions using Llama3.3 70B. Results are in Table 1.

Overall Performance: The full OrthoGraphRAG system
(Private Data and UMLS GraphRAG) achieved a
97.62% overall success rate, significantly outperforming
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Figure 2. OrthoGraphRAG workflow: An LLM extracts query entities, guiding an LLM-generated Cypher query for subgraph retrieval
from the multi-level KG. A final LLM then synthesizes this context into a natural language response.

Table 1. This table displays success rates, BLEU scores (n-gram overlap quality), and human feedback (expert contextual accuracy
assessment for contextual reasoning) across reasoning categories, with question counts (n) provided for each..

MODEL
INFORMATION RETRIEVAL

(N=40)
EXPLANATORY REASONING

(N=20)
CONTEXTUAL REASONING

(N=10)
OVERALL

(N=70)

SUCCESS (%) BLEU (%) SUCCESS (%) BLEU (%) DOMAIN EXPERT SCORE (%) SUCCESS (%)

LLAMA2-70B 76.32 2.26 55.00 9.78 50.00 67.77
LLAMA3.1-70B 92.11 3.80 85.00 17.60 83.33 88.41
DEEPSEEK-R1-70B 89.47 0.60 85.00 3.43 83.33 89.86
LLAMA3.2-VISION-90B 84.21 3.37 70.00 14.89 66.67 78.26
MISTRAL-LATEST 65.79 1.60 50.00 11.60 66.67 57.97
LLAMA3.1-8B 84.21 1.77 60.00 9.76 33.33 69.57

PRIVATE DATA GRAPH (LLAMA3.3 70B) 90.53 3.50 15.00 3.00 5.00 56.73
PRIVATE DATA GRAPHRAG (LLAMA3.3 70B) 100.00 4.20 97.00 19.50 17.00 87.29
OUR METHOD 100.00 4.50 100.00 20.50 83.33 97.62

standalone LLMs like DeepSeek-R1-70B (89.86%) and
demonstrating the benefit of its structured knowledge re-
trieval and augmentation. (Llama3.3 70B used for Or-
thoGraphRAG components).

Performance by Question Category:

• Information Retrieval (n=40): Full OrthoGraphRAG
and its Private Data GraphRAG variant both
achieved 100.00% success with top BLEU scores
(4.50% and 4.20%, respectively). The non-RAG
Private Data Graph version was less successful
(90.53%), highlighting RAG’s value for text segment
retrieval.

• Explanatory Reasoning (n=20): Full Or-
thoGraphRAG again achieved 100.00% success
(BLEU 20.50%), followed by Private Data
GraphRAG (97.00% success, 19.50% BLEU).
The graph-only version performed poorly (15.00%
success), underscoring RAG’s importance for detailed
explanations.

Evaluation of Contextual Reasoning: For this category,
Domain Expert Scores were prioritized over BLEU to bet-
ter capture clinical accuracy and nuanced understanding in
complex inferential tasks.

These results robustly demonstrate that OrthoGraphRAG’s
multi-level knowledge graph and GraphRAG pipeline sig-
nificantly improve LLM performance on complex clinical
queries, especially for contextual reasoning requiring inte-
gration of patient-specific and general medical knowledge.

5. Conclusion
This paper introduced OrthoGraphRAG, a novel multi-level
Graph Retrieval-Augmented Generation framework, to en-
hance LLM utility in orthopedics by tackling accuracy and
complex reasoning challenges. OrthoGraphRAG constructs
a multi-layer knowledge graph from private clinic letters
and public UMLS data, coupled with a robust retrieval and
generation pipeline.

Our key contributions include the framework design, the
retrieval process, and expert evaluation, demonstrating Or-
thoGraphRAG’s superior ability to answer complex clinical
queries, especially those requiring deep contextual reason-
ing, compared to baseline models. This work signifies a
promising step towards developing safer, more capable, and
contextually-aware LLMs for specialized clinical decision
support, aiming to improve patient care through more so-
phisticated AI tools.
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A. Detailed Analysis of Contextual Reasoning Example
The clinical query and subsequent detailed analysis presented in this appendix are based on a synthetic example. This
example was carefully constructed in collaboration with a medical orthopedic expert to realistically represent the complexities
encountered in clinical practice and to effectively illustrate the framework’s capabilities.

This appendix provides a detailed step-by-step analysis of how the OrthoGraphRAG framework processes a complex clinical
query requiring contextual reasoning and differential diagnosis. The example illustrates the synergy between the Private
Clinical Knowledge Graph (PKG), Retrieval-Augmented Generation (RAG) from clinic letters, and the public UMLS
knowledge graph.

A.1 Scenario: Input Query and System Output

The following input question was posed to OrthoGraphRAG, followed by the system’s generated response.

INPUT QUESTION

Alex Riley with hospital number 80572391 presented with
paraesthesia predominantly in the distribution of the median
nerve, with a positive Tinel’s sign at the wrist. Using
his symptom localisation and neurophysiological findings,
explain why Carpal Tunnel Syndrome was diagnosed over
Cubital Tunnel Syndrome.

ORTHOGRAPHRAG GENERATED ANSWER

Based on the provided context, Alex Riley’s symptoms and
medical history suggest that he is experiencing numbness and
tingling sensations (paraesthesia) primarily in the thumb,
index, middle, and ring fingers. These are classic signs
of median nerve compression.

The Phalen’s test was positive at both wrists indicating a
possible compression of the median nerve. Furthermore,
Tinel’s sign was also positive when tapping over the
cubital tunnel on both arms suggesting irritation or
damage to the ulnar nerve as well.

However, given that Alex Riley’s symptoms predominantly
involve the thumb, index, and middle fingers (which are
innervated by the median nerve) rather than the little
finger (innervated by the ulnar nerve), Carpal Tunnel
Syndrome is a more likely diagnosis.

Carpal Tunnel Syndrome occurs when the median nerve, which
runs from the forearm into the palm of the hand through a
small space in the wrist (carpal tunnel), is compressed or
pinched. This compression can cause numbness, tingling,
and weakness in the hand, particularly in the areas
served by the median nerve.

In contrast, Cubital Tunnel Syndrome involves compression
of the ulnar nerve at the elbow, leading to symptoms
primarily affecting the little finger and ring finger.
While Alex Riley does have a positive Tinel’s sign over
the cubital tunnel, suggesting possible ulnar nerve
irritation, his primary symptom distribution aligns more
closely with median nerve involvement.

Therefore, based on the symptom localization (thumb, index,
middle fingers) and neurophysiological findings (positive
Phalen’s test at both wrists), Carpal Tunnel Syndrome is
diagnosed over Cubital Tunnel Syndrome in this case.
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Further diagnostic testing, such as Nerve Conduction
Studies mentioned in the plan, will help confirm the
diagnosis and guide treatment.

A.2 Step-by-Step Analysis of OrthoGraphRAG’s Response Generation

The generation of the above answer involves several key stages:

A.2.1 QUERY DECOMPOSITION AND INITIAL ENTITY RECOGNITION

The system first processes the input query to identify key medical entities and the core clinical question.

• Recognized Entities from Query: Alex Riley (patient identifier), hospital number 80572391 (pa-
tient identifier), paraesthesia, median nerve distribution, positive Tinel’s sign at the
wrist.

• Semantic Interpretation: The system identifies the task as a request for a differential diagnosis explanation, specifically
to differentiate Carpal Tunnel Syndrome from Cubital Tunnel Syndrome based on the provided patient
findings.

A.2.2 RETRIEVAL FROM PRIVATE CLINICAL DATA (PKG AND RAG)

The identified entities serve as entry points into the multi-level knowledge graph, prioritizing the private clinical data related
to the patient.

• Private Clinical Knowledge Graph (PKG) Access: Entities like Alex Riley and his hospital number are used to
access the patient’s structured data within the PKG. This graph might contain nodes for the patient, their diagnosed con-
ditions, recorded symptoms, and procedures. The query entities paraesthesia, median nerve, and Tinel’s
sign at wrist are mapped to corresponding concepts linked to this patient in the PKG.

• Retrieval-Augmented Generation (RAG) from Clinic Letters: Concurrently, the RAG component retrieves relevant
text chunks from Alex Riley’s unstructured clinic letters. This is crucial for details not explicitly structured in the PKG
or for elaborating on PKG nodes.

• Key Patient-Specific Evidence Retrieved and Integrated:

– Symptom Elaboration: The phrase ‘paraesthesia predominantly in the distribution of the median nerve’ from the
query is enriched by RAG to include specific finger involvement: ‘primarily in the thumb, index, middle, and ring
fingers’. This level of detail is often found in narrative text.

– Confirmation of Query-Mentioned Findings: The ‘positive Tinel’s sign at the wrist’ is confirmed.
– Discovery of Additional Clinical Findings (not in query):

* ‘The Phalen’s test was positive at both wrists...’. This is a significant finding for median nerve compression,
likely retrieved by RAG.

* ‘Tinel’s sign was also positive when tapping over the cubital tunnel on both arms...’. This finding suggests
potential ulnar nerve involvement and is critical for a comprehensive differential diagnosis.

– Contextual Information for Future Management: The mention of ‘Nerve Conduction Studies mentioned in the
plan’ is retrieved, adding context about the diagnostic pathway.

A.2.3 INTEGRATION OF PUBLIC MEDICAL KNOWLEDGE (UMLS GRAPH)

To provide broader medical context and standardized definitions, entities and concepts from the private data are linked to the
UMLS graph.

• Terminological Grounding and Definitions:

– Paraesthesia→ UMLS provides the definition: ‘numbness and tingling sensations’.

• Anatomical Knowledge:
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– Median nerve
UMLS: innervates−−−−−−−−−→ ‘thumb, index, middle fingers, and the lateral aspect of the ring finger’.

– Ulnar nerve
UMLS: innervates−−−−−−−−−→ ‘little finger, and the medial aspect of the ring finger’.

• Disease Definitions and Pathophysiology:

– Carpal Tunnel Syndrome→ UMLS describes it as ‘compression of the median nerve... through a small
space in the wrist (carpal tunnel)... caus[ing] numbness, tingling, and weakness in the hand, particularly in the
areas served by the median nerve.’

– Cubital Tunnel Syndrome→ UMLS describes it as ‘compression of the ulnar nerve at the elbow, leading
to symptoms primarily affecting the little finger and ring finger.’

• Clinical Test Significance:

– Positive Phalen’s test→ UMLS links this as indicative of ‘median nerve compression’.
– Positive Tinel’s sign at wrist→ UMLS links this to ‘median nerve irritation’ at the carpal tunnel.
– Positive Tinel’s sign at cubital tunnel→ UMLS links this to ‘ulnar nerve irritation’ at the

elbow.

A.2.4 INFORMATION SYNTHESIS AND DEDUCTIVE REASONING BY THE GENERATOR LLM

The generator LLM (Llama3.3 70B in this framework) receives the query, the retrieved subgraph from the multi-level
knowledge graph (PKG + UMLS links), and the relevant text chunks from RAG. It then synthesizes this information:

• Evidence Consolidation: The LLM first consolidates all findings for Alex Riley: paraesthesia in median nerve
distribution (thumb, index, middle, ring fingers), positive Tinel’s at the wrist, positive Phalen’s test, AND positive
Tinel’s at the cubital tunnel.

• Weighing Conflicting or Complex Evidence: The system acknowledges the Tinel’s sign at the cubital tunnel which
might suggest ulnar nerve issues. However, it correctly prioritizes the ‘predominant’ nature of the symptoms aligning
with median nerve distribution, as specified in the patient’s detailed RAG-retrieved information.

• Differential Reasoning Logic:

1. The primary symptoms (‘thumb, index, middle fingers’) are mapped to median nerve innervation (via UMLS).
2. Phalen’s test and Tinel’s at the wrist strongly support median nerve pathology at the wrist (Carpal Tunnel

Syndrome, via UMLS).
3. The symptoms are less consistent with primary ulnar nerve pathology, despite a positive Tinel’s at the cubital

tunnel, because the main sensory disturbance is in the median nerve territory.
4. The LLM uses the definitions and characteristics of Carpal Tunnel Syndrome and Cubital Tunnel Syndrome from

UMLS to frame the explanation.

• Formulating the Explanation: The LLM constructs an argument that explains why Carpal Tunnel Syndrome is the
more likely diagnosis by contrasting the evidence for both conditions and highlighting the stronger support for median
nerve compression at the wrist.

A.2.5 GROUNDING AND GENERATION OF THE FINAL ANSWER STRUCTURE

The final textual answer is generated with clear grounding to the synthesized information.

• Introduction: Acknowledges the patient and the nature of symptoms.

• Presentation of Findings: Lists all relevant positive findings, including those from RAG not present in the initial
query.

• Core Reasoning: Explicitly states the importance of symptom localization (median vs. ulnar nerve distribution).

• Explanation of Conditions: Defines both Carpal Tunnel Syndrome and Cubital Tunnel Syndrome, drawing on UMLS
knowledge.
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• Comparative Analysis: Directly addresses why Carpal Tunnel Syndrome is favored despite some indication of
potential ulnar nerve irritation.

• Conclusion and Outlook: Summarizes the diagnostic reasoning and mentions further confirmatory tests (Nerve
Conduction Studies, as retrieved by RAG).

B. Supplementary Results
B.1. Entity Linking Retriever Selection

Effective inter-graph entity linking is crucial for OrthoGraphRAG (Gallego et al., 2024). We selected SapBERT as our
embedding model after benchmarking biomedical language models on public datasets (MedMentions, NCBI Disease),
where SapBERT demonstrated superior performance. This choice provides a strong foundation for our multi-level KG
construction. Detailed benchmarking results are in Appendix B.1, Table 2.

The following table presents the detailed performance comparison for the entity linking retriever selection, as discussed in
the main paper.

Table 2. Performance comparison of different model configurations on biomedical entity linking tasks. MRR = Mean Reciprocal Rank;
Acc@k = Accuracy at rank k. Best results are highlighted in bold. Datasets: MedMentions (352,496 mentions) and NCBI Disease (713
mentions).

MODEL CONFIGURATION MEDMENTIONS NCBI DISEASE

ACC@1 ACC@5 MRR ACC@1 ACC@5 MRR

BASE MODEL (PUBMEDBERT FT) 0.4304 0.5939 0.5000 0.5806 0.6732 0.6114
SAPBERT FINE-TUNING (SAPBERT) 0.5047 0.7525 0.6076 0.8597 0.9790 0.9101

Improvement +0.0743 +0.1586 +0.1076 +0.2791 +0.3058 +0.2987

BASELINE (BERT-BASE) 0.4291 0.5829 0.4934 0.5540 0.6157 0.5828
ALT. DOMAIN ADPT. (BIOBERT) 0.3938 0.5667 0.4676 0.5891 0.6606 0.6171
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