

000 001 **SURE: SHIFT-AWARE, USER-ADAPTIVE, RISK- 002 CONTROLLED RECOMMENDATIONS** 003 004

005 **Anonymous authors**
006 Paper under double-blind review
007
008
009

010 ABSTRACT 011

012 Although Sequential Recommender Systems (SRS) have been well developed to
013 capture temporal dynamics in user behavior, they face a critical gap in formal
014 performance guarantees under preference shifts. When preferences change, predic-
015 tions often become unreliable, undermining user trust and threatening long-term
016 platform success. To address this challenge, we introduce **SURE** (Shift-aware,
017 User-adaptive, Risk-controlled REcommendations), a dataset- and model-agnostic
018 framework that provides adaptive recommendation sets with formal coverage guar-
019 antees while remaining compact under preference shifts. Specifically, SURE (i)
020 ensures validity through a loss-based change-point mechanism that adaptively up-
021 dates calibration thresholds upon detecting preference shift, (ii) maintains compact
022 recommendation sets by stabilizing predictions with a Hedge-weighted ensemble
023 of bootstrapped experts, preventing validity from degenerating into impractically
024 large outputs, and (iii) guarantees robustness under non-stationarity by deriving
025 finite-sample bounds that ensure the ensemble’s expected set size remains close to
026 the best expert while controlling the utility-based risk in recommendation. Exten-
027 sive experiments across multiple datasets and base models validate the effectiveness
028 of the proposed framework, which aligns with our theoretical analysis.
029
030

031 1 INTRODUCTION 032

033 Sequential recommendation systems (SRS) learn temporal dependencies across user interaction
034 sequences to forecast future behavior, making them essential for platforms such as e-commerce,
035 streaming, and location-based services (Hussien et al., 2021; Chang et al., 2017; Rohilla et al., 2021).
036 Much research focuses on developing different architectures, e.g., SASRec (Kang & McAuley, 2018),
037 Caser (Tang & Wang, 2018), and FMLP-Rec (Zhou et al., 2022), which are trained on historical
038 interactions and then deployed with fixed parameters. In their canonical offline form, these models
039 are trained on historical interactions and then deployed with static parameters (Farzad & Bamshad,
040 2018; Chen et al., 2023), capturing temporal dynamics but remain brittle under preference shifts. As
041 a result, predictions may become unreliable. Periodic retraining can be costly and add latency (Shen
042 & Kurshan, 2023; Zhang et al., 2020), which is unacceptable in high-stakes recommender scenarios.
043

044 In recent years, some works have sought to mitigate this challenge by incorporating temporal posi-
045 tional encodings (Li et al., 2020) or segmenting user histories through causal variational frameworks
046 (Wang et al., 2023). However, these approaches still assume locally stable environments and cannot
047 fully adapt to abrupt preference shifts. Other works exploit future user interactions as oracle signals
048 during training (Xia et al., 2025). While promising, this strategy depends on information unavailable
049 in real-time prediction. Importantly, none of these methods provides statistical guarantees on per-
050 formance under evolving user behavior, a critical vulnerability that undermines the trustworthiness of
051 recommender systems.
052

053 As a result, we are motivated to propose a fundamentally new approach: a model-agnostic recom-
054 mendation framework offering rigorous statistical guarantees for performance under non-stationary
055 user preferences. Specifically, our goal is to construct dynamic and compact prediction sets around
056 recommended items that adaptively adjust to evolving user behaviors and guarantee recommendation
057 performance with high confidence (e.g., 95%) over time.
058

059 The code and implementation details are available at https://anonymous.4open.science/r/SURE_-02D2

While Conformal Prediction (CP) (Vovk et al., 2005; Angelopoulos & Bates, 2021) can offer a principled approach to the above challenge, it cannot be naively applied due to the violation of the exchangeability assumption and distribut shift in SRS. Fortunately, adaptive conformal approaches exist to handle non-exchangeability (Xu & Xie, 2021). However, applying these frameworks to sequential RS task presents unique challenges: 1) The current adaptive conformal prediction methods (Xu et al., 2024) often rely on a fixed-size rolling window to update confidence sets, which, as discussed by Zaffran et al. (2022), can only work well for stationary residuals. Whereas real-world behaviours in sequential RS environments are highly non-stationary. A fixed window size implicitly assumes a constant shift rate, causing delayed adaptation for fast-shifting users and unnecessary fluctuations for stable ones. 2) Secondly, tight and stable $(1 - \alpha)$ -marginal coverage is attainable only when each calibration window contains a sufficiently large and representative sample of residuals (Gibbs & Candes, 2021; Zaffran et al., 2022; Angelopoulos et al., 2024). In sequential RS, however, deep sequence models are trained on short and noisy interaction histories, which may result in unstable model scores and heavy-tailed residual distributions. This instability eventually leads to noisy threshold estimation and overly conservative prediction sets (Barber et al., 2021; Gupta et al., 2019). This raises an important question: Can we design an uncertainty-aware prediction framework that adapts to user-specific, non-stationary shift while (1) maintaining compact prediction sets even under high uncertainty in model outputs, and (2) dispensing with a fixed-window hyperparameter yet still guaranteeing $(1 - \alpha)$ - marginal coverage with at least $(1 - \delta)$ -confidence?

To answer these challenges, we propose **SURE** (Shift-aware, User-adaptive, Risk-controlled REcommendations), a model-agnostic framework that outputs dynamic recommendation sets adapting to user-specific preferences shifts while offering formal guarantees. Specifically, SURE improves robustness by maintaining an ensemble of base recommenders, each trained on a different bootstrap of user-item interactions with their prediction sets aggregated via Hedge weighting, which, while maintaining validity, automatically favours experts producing compact recommendations. It also employs segmentation-based recalibration that triggers localized threshold updates using a loss-based metric instead of a fixed rolling window. Subsequently, we prove that SURE controls both prediction set size via variance-controlled aggregation and utility-based risk at inference time through adaptive threshold calibration under preference shifts. We illustarte the framework in Figure 1 in *Appendix*.

Our contributions are summarized as follows:

- Firstly, we formulate the sequential recommendation problem from the perspective of an uncertainty-aware prediction task, and propose a reliable and adaptive framework- SURE, which generates compact yet valid prediction sets with user-specified α -risk under non-stationary preferences.
- We then develop Dynamically Adaptive Uncertainty-aware Optimization (DAUO), an efficient Hedge-based ensemble optimization algorithm that jointly updates ensemble weights and risk thresholds to balance prediction set compactness and risk coverage, thereby achieving the objectives of SURE.
- Technically, we introduce a scalar loss-based shift metric that combines a relative loss-discrepancy and a concept-sensitive divergence to quantify user preference shift, thereby enabling dynamic segmentation and localized threshold recalibration.
- Theoretically, we establish statistical guarantees for SURE. Specifically, we show that (1) the expected size of the ensemble prediction set never exceeds the best individual model's size at that timestamp, up to a variance-controlled slack (Theorem 5.1); and (2) the expected utility-based risk at inference stays within a provable margin of α with probability at least $1 - \delta$, even under shifting user preferences (Theorem 5.2).
- Empirically, we conduct extensive experiments using diverse recommendation base models and benchmark datasets. We evaluate SURE against preference-aware recommender baselines in terms of recommendation performance and against conformal prediction methods with respect to recommendation set compactness and coverage guarantees. The results, as presented in Section 6, confirm the effectiveness and robustness of SURE, consistent with its theoretical foundations.

108

2 RELATED WORK

109

110 2.1 SEQUENTIAL RECOMMENDATION SYSTEMS (SRS)

111 SRS initially modeled item-to-item transitions with Markov chains (Rendle et al., 2010) or factoriza-
 112 tion approaches Rendle et al. (2009) that accounted for short-range dependencies in user histories.
 113 Deep learning models such as GRU4Rec (Hidasi et al., 2015), convolutional architectures, and
 114 transformer-based methods (e.g., SASRec (Kang & McAuley, 2018), BERT4Rec (Sun et al., 2019))
 115 extended this to capture long-term dependencies. However, while these models effectively learn tem-
 116 poral dynamics, they often struggle to remain reliable when user preferences shift abruptly (Quadrana
 117 et al., 2018; Pan et al., 2024). Recent works have sought to address non-stationarity or preference
 118 shifts explicitly by disentangling user preferences through self-supervision (Ma et al., 2020), model-
 119 ing temporal intervals in self-attention (Li et al., 2020), or separating stable and shifting preferences
 120 via causal reasoning (Wang et al., 2023). A parallel line of work focuses on predictive uncertainty in
 121 recommender systems. Coscrato & Bridge (2023); Xu et al. (2024) investigate fundamental limits
 122 of top- N recommendation accuracy using information-theoretic bounds highlighting the increasing
 123 importance of principled uncertainty modeling. Paliwal et al. (2024) propose Predictive Relevance
 124 Uncertainty to estimate prediction reliability based on distance to training samples, while Cui et al.
 125 (2024) develop a Bayesian deep collaborative filtering model coupled with an uncertainty-aware
 126 ranking to improve trustworthiness in online physician recommendations. More recently, variational
 127 and stochastic sequence models. Fan et al. (2021); Fang et al. (2020); Wang et al. (2022) have
 128 explored uncertainty-aware sequential recommendation. However, these approaches, while powerful,
 129 still lack finite-sample guarantees on recommendation quality under evolving preferences.

130

131 2.2 CONFORMAL PREDICTION

132 Conformal Prediction (CP) can quantify models' uncertainty and can provide a finite sample guarantee
 133 by creating distribution-free prediction sets that contain the true outcome with a user-specified
 134 coverage probability (Vovk et al., 2005; Shafer & Vovk, 2008; Romano et al., 2019). Classical CP
 135 (Angelopoulos & Bates, 2021) assumes exchangeability and uses a calibration split to choose a global
 136 threshold; Some other methods like Inductive CP (Papadopoulos, 2008) consider the full dataset. To
 137 remain valid under temporal shift, online (Angelopoulos et al., 2024; Wu et al., 2025) and adaptive
 138 CP techniques (Gibbs & Candes, 2021; Zaffran et al., 2022; Xu et al., 2024; Liang et al., 2025)
 139 have been developed that update calibration statistics on sliding windows or with an adaptive rate
 140 of change in the global threshold. Some works have extended CP to recommender systems. Kagita
 141 et al. (2022; 2023) extended top- N recommendation with conformal guarantees. However, these
 142 approaches do not account for non-stationarity or change in user preferences in RS.

143

144 3 PRELIMINARIES

145 We first introduce the notations used in this paper. We consider m users and n items represented
 146 by $\mathcal{U} = \{u_k\}_{k=1}^m$, and $\mathcal{I} = \{i_k\}_{k=1}^n$. For brevity, we use u and i to denote a user and an item in
 147 this paper. In a sequential recommendation setting, every user u has a chronological sequence of
 148 interacted items, denoted as $\mathcal{H}_u = [i^1, i^2, \dots, i^{|T_u|}]$ where $i^t \in \mathcal{I}$ represents an item interacted with
 149 by user u at time step t , and $|T_u|$ denotes the length of the sequence for user u . The objective of the
 150 SRS is, given the historical interaction sequence \mathcal{H}_u for each user u predict the next item they are
 151 likely to interact with. Specifically:

$$i^{t+1} = \arg \max_{i \in \mathcal{I}} \mathcal{M}(i \mid \mathcal{H}_u), \quad (1)$$

152 where, $\mathcal{M}(i \mid \mathcal{H}_u) : \mathcal{I} \times \mathcal{H}_u \rightarrow [0, 1]$, denotes the underlying recommender model.

153 Given the dynamic nature of user preferences, however, there is no guarantee of the model's perfor-
 154 mance. This limitation motivates us to explore the creation of dynamic recommendation sets that
 155 adapt with changing user preferences, which we discuss next.

158

159 4 THE PROPOSED FRAMEWORK

160 In this section, we propose Shift-aware, User-adaptive, Risk-controlled REcommendations (SURE),
 161 a novel framework designed to provide compact recommendations that adapt to evolving user

162 preferences with theoretical performance guarantees in a sequential recommendation setting. We
 163 begin by defining the construction of the dynamic prediction set $\mathcal{C}^{t+1} \subseteq \mathcal{I}$ for a single underlying
 164 model, which is guided by a timestep-dependent threshold parameter $\lambda^t \in \Lambda \subset \mathbb{R}$. Specifically:

$$165 \quad 166 \quad \mathcal{C}_{\lambda^t}^{t+1}(\mathcal{H}_u) = \{i \in \mathcal{I} \mid \mathcal{M}(i \mid \mathcal{H}_u) \geq \lambda^t\}. \quad (2)$$

167 For brevity we will refer to $\mathcal{C}_{\lambda^t} := \mathcal{C}_{\lambda^t}^{t+1}(\mathcal{H}_u)$. Our goal is, given the user-defined error rate
 168 $\alpha \in [0, 1]$, for every timestamp, the recommendations created ensure:

$$169 \quad 170 \quad R(\mathcal{C}_{\lambda^t}) \leq \alpha. \quad (3)$$

171 The risk $R(\cdot)$ in Equation (3) is defined as:

$$172 \quad 173 \quad R(\mathcal{C}_{\lambda^t}) = \mathbb{E}_U[\mathcal{L}_u(\mathcal{C}_{\lambda^t})], \quad (4)$$

174 where $\mathcal{L}_u(\cdot)$ is the bounded user utility-based loss function defined as:

$$175 \quad 176 \quad \mathcal{L}_u(\mathcal{C}_{\lambda^t}) = 1 - U_{metric}(i_{rel}^{t+1}, \mathcal{C}_{\lambda^t}). \quad (5)$$

177 Here, $U_{metric}(\cdot)$ represents generalized recommendation metric (such as Recall or NDCG) that
 178 measures performance of recommendation set \mathcal{C}_{λ^t} for any user u given the relevant item i_{rel}^{t+1} .

179 The threshold λ^t in Equation (2) is learned from model scores, which are highly sensitive to the
 180 quality of the underlying recommender. When models are trained on sparse user histories, as is
 181 common in RS Bertin-Mahieux et al. (2011); Cho et al. (2011), the resulting scores can become
 182 unstable, often leading to heavy-tailed residual distributions, which in turn destabilize threshold
 183 estimation and might result in overly conservative prediction sets.

184 To address this, we propose using an ensemble of L base models:

$$186 \quad 187 \quad \mathbb{M} = \{\mathcal{M}^1, \mathcal{M}^2, \dots, \mathcal{M}^L\}, \quad (6)$$

188 where L is the number of models in the ensemble and each \mathcal{M}^ℓ is obtained, for example, by training
 189 on a bootstrap sample of the full user set \mathcal{U} , i.e., $\mathcal{U}^\ell \subseteq \mathcal{U}$.

190 Firstly, for each model \mathcal{M}^ℓ , we generate a prediction set $\mathcal{C}_\ell^{t+1} := \mathcal{C}_{\lambda_\ell^t}^{t+1}(\mathcal{H}_u)$, guided by its own
 191 threshold λ_ℓ^t and ensuring the per-model analogue of Equation (3) is satisfied. Next, we aggregate
 192 these sets, generated using $\lambda^t = \{\lambda_\ell^t\}_{\ell=1}^L$, into an ensemble-based recommendation. Specifically:

$$194 \quad 195 \quad \mathcal{C}_{\lambda^t}^{\text{agg}} = \mathcal{A}\left(\{\mathcal{C}_\ell^{t+1}\}_{\ell: u \in \mathcal{U}^\ell}, \mathbf{w}^t\right), \quad (7)$$

196 where $\mathcal{A}(\cdot, \mathbf{w}^t)$ is an aggregation operator that merges the individual set predictors \mathcal{C}_ℓ^{t+1} using a
 197 weight distribution $\mathbf{w}^t \in \Delta^L$, the $(L-1)$ -dimensional probability simplex (i.e., $\Delta^L = \{w \in \mathbb{R}^L : w_\ell^t \geq 0, \sum_{\ell=1}^L w_\ell^t = 1\}$), where each w_ℓ^t determines the contribution of model \mathcal{M}^ℓ at time t .

200 The aggregation operator $\mathcal{A}(\cdot, \mathbf{w}^t)$, following Gasparin & Ramdas (2024), is defined as:

$$202 \quad 203 \quad \mathcal{A}\left(\{\mathcal{C}_\ell^{t+1}\}_{\ell=1}^L, \mathbf{w}^t\right) = \left\{ i \in \mathcal{I} \mid \sum_{\ell=1}^L w_\ell^t \cdot \mathbf{1}(i \in \mathcal{C}_\ell^{t+1}) > \frac{1+k(t)}{2} \right\}. \quad (8)$$

206 Items i are included in the ensemble set if their total weighted support across base models exceeds
 207 the randomized threshold $\frac{1+k(t)}{2}$, where $k(t) \sim \text{Uniform}[0, 1]$ introduces mild stochasticity to
 208 discourage marginal inclusions. To favor models that produce efficient sets, we follow Freund &
 209 Schapire (1997) and adaptively update the weights $\{\mathbf{w}^t\}_{t=1}^T$ based on the cardinality of the prediction
 210 sets produced.

211 Specifically, let s_ℓ^t denote the cardinality of the prediction set produced by base model \mathcal{M}^ℓ at time t ,
 212 i.e., $s_\ell^t = |\mathcal{C}_\ell^{t+1}|$, and let the cumulative size up to time t be $S_\ell^t = \sum_{\tau=1}^t s_\ell^\tau$. Then, for a learning
 213 rate $\eta \geq 0$, we update the weights as:

$$214 \quad 215 \quad w_\ell^{t+1} = \frac{\exp(-\eta S_\ell^t)}{\sum_{j=1}^L \exp(-\eta S_j^t)}, \quad \text{with } \mathbf{w}^1 = \left(\frac{1}{L}, \dots, \frac{1}{L}\right). \quad (9)$$

Meanwhile, another tough challenge to tackle is the evolving user preferences. As user preferences change, the model's threshold λ_ℓ^t learned over previous timestamps may fail to ensure Equation (3). Hence, to maintain statistical validity and capture changes in user preferences, we introduce loss-based shift metrics. For each base model \mathcal{M}^ℓ , we quantify preference change via the loss discrepancy distance (d_ℓ^{ldd}) and the concept-sensitive divergence (d_ℓ^{con}) respectively.

To define Loss Discrepancy Distance (LDD), we draw inspiration from the $\mathcal{H}\Delta\mathcal{H}$ divergence definition in Ben-David et al. (2010) by replacing its binary-disagreement indicator with a generalized bounded predictive loss to measure the maximum discrepancy between a reference model and other models across timepoints t and $t' < t$. Specifically:

$$d_\ell^{\text{ldd}}(t, t') = \max_{\mathcal{M}' \in \mathbb{M}, \mathcal{M}' \neq \mathcal{M}^\ell} \left| \log \left(\left| \frac{L_t(\mathcal{M}^\ell) - L_t(\mathcal{M}')}{L_{t'}(\mathcal{M}^\ell) - L_{t'}(\mathcal{M}') + \epsilon} \right| + \epsilon \right) \right|, \quad (10)$$

where $L_t(\mathcal{M}^\ell)$ denotes a generalized loss function (e.g. cross entropy) of model \mathcal{M}^ℓ at time t , and $\epsilon > 0$ ensures stability. Similarly, to capture concept-sensitive divergence, we define a hazard-style term that compares the model's loss across t and t' to the sum of the least individual losses. Formally:

$$d_\ell^{\text{con}}(t, t') = \log \left(\frac{L_t(\mathcal{M}^\ell) + L_{t'}(\mathcal{M}^\ell) + \epsilon}{\min_{\mathcal{M} \in \mathbb{M}}(L_t(\mathcal{M})) + \min_{\mathcal{M} \in \mathbb{M}}(L_{t'}(\mathcal{M})) + \epsilon} \right). \quad (11)$$

We then combine the relative loss-discrepancy and the concept-sensitive divergence into a single scalar loss-based shift metric of preference change:

$$d_\ell^{\text{pref}}(t, t') = d_\ell^{\text{ldd}}(t, t') + d_\ell^{\text{con}}(t, t'). \quad (12)$$

To localize preference shifts, we embed d_ℓ^{pref} in a Bayesian change-point model. At each timestamp t , we place a posterior probability distribution $p_\ell(\cdot)$ over candidate segment starts $c_\ell^t \in \{c_\ell^{t-1} + k \mid k = 0, \dots, t - c_\ell^{t-1}\}$ as follows:

$$p_\ell(c_\ell^t = c_\ell^{t-1} + k \mid t) = \frac{\exp[-\beta d_\ell^{\text{pref}}(c_\ell^{t-1} + k, t)] (t - c_\ell^{t-1} - k + 1)^\gamma}{\sum_{j=0}^{t - c_\ell^{t-1}} \exp[-\beta d_\ell^{\text{pref}}(c_\ell^{t-1} + j, t)] (t - c_\ell^{t-1} - j + 1)^\gamma}, \quad (13)$$

where $\beta > 0$ tunes shift sensitivity and $\gamma \geq 0$ controls the segment-length bias.

We pick the segment boundary for each model i.e. $c_\ell^t = c_\ell^{t-1} + \arg \max_k p_\ell(c_\ell^{t-1} + k \mid t)$, set the stable window $\mathcal{W}_\ell^t := [c_\ell^t, t]$ and then calculate the average risk of the window as follows:

$$\bar{R}_\ell^t = \frac{1}{|\mathcal{W}_\ell^t|} \sum_{\tau \in \mathcal{W}_\ell^t} R(\mathcal{C}_\ell^\tau). \quad (14)$$

Finally, to adaptively maintain statistical guarantees under detected user preference shift, calibration threshold is updated as follows:

$$\lambda_\ell^{t+1} = \lambda_\ell^t - \rho(\bar{R}_\ell^t - \alpha), \quad (15)$$

where $\rho > 0$ is a step size. The threshold λ_ℓ^{t+1} decreases when segment risk exceeds α , expanding the prediction set to restore validity, and increases when risk falls below α , thus achieving automatic recalibration.

To this end, we complete modeling of proposed framework. To output user-wise dynamic prediction sets, we instantiate it through DAUO (Dynamically Adaptive Uncertainty-aware Optimization) algorithm to learn parameters λ_ℓ^t and weight vector \mathbf{w}^t . Algorithm is in Section A.3 Appendix.

Prediction Set Construction: At every interaction, the DAUO algorithm considers two adaptive parameters: the current calibration threshold λ_ℓ^t and the ensemble weight vector \mathbf{w}^t . When a user u with history S_u arrives, the algorithm first evaluates every base model \mathcal{M}^ℓ to obtain the individual prediction sets (Equation (2)). It then combines these sets through the weighted majority operator in Equation (8), producing the aggregated recommendation. Since λ_ℓ^t is updated adaptively to enforce Equation (3) and the Hedge weights are penalized by set size, the resulting prediction set is not only valid, i.e., controls risk at level α , but also simultaneously compact.

270

5 THEORETICAL ANALYSIS

271
 272 In the previous sections, we demonstrate how the DAUO algorithm dynamically learns the threshold
 273 λ_ℓ^t for an ensemble of trained models \mathcal{M}^ℓ and updates it via empirical risk estimates over adaptive
 274 windows, however, it remains to be seen whether this online calibration guarantees efficient and valid
 275 predictions. In this section, we provide a theoretical analysis on (1) the provable upper bound on the
 276 ensemble prediction set produced via weighted majority voting, and (2) the threshold λ_ℓ^t , learned
 277 from historical user interactions and estimated segmental risk \bar{R}_t^ℓ , ensures that the true expected risk
 278 remains close to the desired threshold α with high probability $1 - \delta$.

279 **Theorem 5.1** (Expected Aggregator Size). *Let $\mathcal{C}_{\lambda^t}^\ell \subseteq \mathcal{I}$ denote the prediction set produced by base
 280 model \mathcal{M}^ℓ at time t , and let $s_\ell^t := |\mathcal{C}_{\lambda^t}^\ell|$. Let $\lambda^t = (\lambda_1^t, \dots, \lambda_L^t)$ denote the per-model thresholds such
 281 that the ensemble set $\mathcal{C}_{\lambda^t}^{\text{agg}}$ is formed by the randomized weighted majority rule $k(t) \sim \text{Uniform}[0, 1]$
 282 with Hedge weights $\mathbf{w}^t \in \Delta^L$. Assuming $\ell^* := \arg \min_\ell s_\ell^t$ is the best expert at round t , the expected
 283 size of the aggregated prediction set at time $t + 1$ satisfies:*

$$284 \mathbb{E}_{k(t)}[|\mathcal{C}_{\lambda^t}^{\text{agg}}|] \leq s_{\ell^*}^t + \sqrt{2 \ln L} v_t + \frac{2}{3} \ln L, \quad (16)$$

285 where $v_t := \text{Var}_{\ell \sim \mathbf{w}^t}(s_\ell^t / |\mathcal{I}|) \in [0, 1]$ is variance of normalized set sizes under Hedge distribution.

286 *Proof.* Proof with Lemma A.4.1 can be found in Section A.4.1 in Appendix. \square

287 **Remark 1.** Theorem 5.1 shows that expected size of ensemble prediction set is no worse than that of
 288 best base model at t , up to a variance-dependent slack. As base predictors begin to agree on coverage,
 289 the variance v_t diminishes, and the ensemble size approaches the best-case performance.

290 **Theorem 5.2** (Expected Risk Control under User Preference Shifts). *Let the DAUO algorithm run
 291 over a horizon of length T . Assume the Bayesian change-point detector raises N_T preference shifts
 292 and let d_j be the detection delay of the j -th shift so that $D_T := \sum_{j=1}^{N_T} d_j$. Let $\lambda^T = (\lambda_1^T, \dots, \lambda_L^T)$
 293 denote the vector of per-model thresholds after round T , and let $\mathcal{C}_{\lambda^T}^{\text{agg}}$ denote the ensemble prediction
 294 set formed with those thresholds. Let $\mathcal{L}_u(\mathcal{C}_{\lambda^T}^{\text{agg}})$ be the utility-based loss of user u under that ensemble.
 295 Given a user batch of size $|\mathcal{U}|$ and a user-defined risk level α , then with probability at least $1 - \delta$, the
 296 expected utility-based loss at time $T + 1$, using the final threshold λ^T , satisfies:*

$$297 \mathbb{E}_{u \sim \mathcal{U}}[\mathcal{L}_u(\mathcal{C}_{\lambda^T}^{\text{agg}})] \leq \alpha + 2 \sqrt{\frac{\log(4|\mathcal{U}|)}{2|\mathcal{U}|}} + \frac{D_T + 2 \log(1/\delta)}{T}. \quad (17)$$

302 *Proof.* Proof with Lemmas A.4.2 to A.4.4 can be found in Section A.4.2 in Appendix. \square

303 **Remark 2.** Theorem 5.2 ensures calibrated λ^T guarantees expected risk at time $T + 1$ remains close
 304 to user-defined target α , with confidence. The bound captures both calibration uncertainty (which
 305 decays with user batch size $|\mathcal{U}|$) and change-adaptation error (which vanishes as cumulative delay
 306 D_T becomes sublinear in T). As both calibration and adaptation improve with scale, expected loss at
 307 prediction time $T + 1$ converges to α , ensuring reliability even under non-stationary user preferences.

308 To sum up, the results establish that our framework, by adaptively calibrating threshold λ_ℓ^t and
 309 leveraging ensemble voting, guarantees control of both recommendation set size and utility-based
 310 risk. Specifically, the set size remains competitive with best individual model (up to ensemble
 311 variance), and expected loss at time $T + 1$ is provably bounded around the user-specified threshold α .

313

6 EXPERIMENTS

315 In this section, we conduct experiments to evaluate the effectiveness of the proposed SURE framework.
 316 Specifically, we design experiments to (1) validate whether the framework can achieve superior
 317 performance in terms of recommendation metrics, i.e., Recall, NDCG and MRR when compared to
 318 base models as well as preference-aware baselines, and (2) compare performance of the framework
 319 with various static and adaptive conformal frameworks in terms of compactness of recommendation
 320 set sizes and validity of coverage guarantees (3) analyze time efficiency of the proposed SURE
 321 framework, (4) analyze the influence of hyperparameters, including key conformal parameters (α, δ)
 322 as well as change-point detector settings (β, γ) and ensemble size (L) on the framework's performance
 323 (Section A.7.3 in Appendix), (5) conduct an ablation study to disentangle the contributions of
 components in the shift detector (Section A.7.4 in Appendix).

324
325

6.1 DATASETS AND BASELINE MODELS

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

We conduct experiments on five publicly available datasets across diverse domains: (1) Book-Crossing (book reviews) (Ziegler et al., 2005), (2) Last.fm (music streaming) (Bertin-Mahieux et al., 2011), (3) Taobao (e-commerce) (Jingwei et al., 2020), (4) MovieLens (movie ratings) (Harper & Konstan, 2015), and (5) Gowalla (location-based social network) (Cho et al., 2011). We implement SURE on four base recommendation models selected to represent diverse modeling paradigms: (1) NeuMF (He et al., 2017) (generalized matrix factorization and MLP hybrid), (2) CASER (Tang & Wang, 2018) (convolutional sequence embedding), (3) SASRec (Kang & McAuley, 2018) (self-attention-based sequential modeling), and (4) FMLP-Rec (Zhou et al., 2022) (filter-enhanced feed-forward MLP-based model). For evaluation, we consider both standard recommendation metrics, i.e., Recall, MRR, and NDCG, as well as uncertainty-aware objectives, including coverage guarantees and prediction set size (compactness). On the recommendation metrics, we compare SURE against three preference-aware recommendation models: (1) TiSASRec (Li et al., 2020), (2) CDR (Wang et al., 2023), and (3) Oracle4Rec (Xia et al., 2025). For uncertainty-aware evaluation, we compare against three conformal prediction methods: (1) standard Split Conformal (Vovk et al., 2005), where the threshold parameter λ remains fixed; (2) EnbPI (Xu & Xie, 2021), an ensemble estimator with fixed-window calibration; and (3) Online Conformal (Angelopoulos et al., 2024), which uses decaying update rule for threshold λ^t . Full implementation details and description of datasets, base models, and preference-aware & conformal baselines for reproducibility are provided in Sections A.5 and A.6 in *Appendix*.

344
345

6.2 EXPERIMENTAL RESULTS

346
347

6.2.1 RESULTS COMPARED WITH BASE MODELS AND PREFERENCE-AWARE BASELINES

348
349
350
351
352
353
354
355
356
357
358

We evaluate SURE framework using four recommendation base models and against three user-preference-aware baselines in terms of standard metrics (MRR, Recall, NDCG). To reflect practical screen/latency constraints, the maximum recommendation set size is capped at 25 items per user. For each backbone model and metric, we define a *Model Ceiling*@25 score as the maximum achievable value under its own ranking when limited to 25 items, computed per-user (by taking the shortest prefix containing the relevant item) and then averaged across users. Following prior conformal prediction literature (Angelopoulos & Bates, 2021; Bates et al., 2021; Vovk et al., 2005), we set the error rate $\alpha = 0.05$ and confidence level $\delta = 0.05$, and aim to construct recommendation sets whose realized metrics remain within α of their corresponding Model Ceiling@25 with probability at least $1 - \delta$. To ensure fair comparison, all baselines are evaluated at the same average set size produced by SURE. Results for BookCrossing and Last.fm are reported in Table 1, with additional results for MovieLens, Gowalla, and Taobao in Section A.7.1 in *Appendix*. These results lead to following key observations:

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

- The proposed SURE framework controls risk within the predefined threshold $\alpha = 0.05$ with high confidence and achieves performance close to the model-specific ceiling across all base models. Consequently, it consistently outperforms all baselines on standard metrics (MRR, Recall, NDCG) across datasets.
- The performance also depends on the base model. For example, the state-of-the-art sequential model FMLP-Rec + SURE consistently outperforms NeuMF + SURE by at least $> 12\%$ on every metric for Book-Crossing and 15% on Last.fm datasets, underscoring the importance of a strong baseline.
- The average set size learned by our SURE framework improves performance of baselines and narrows the gap to their model-specific ceilings, as seen with FMLP-Rec model on Last.fm dataset. However, they still underperform compared to SURE, since a single global prediction size cannot be personalized to individual user satisfaction Kweon et al. (2024).
- While the user-preference aware models generally perform well compared to the baselines across both the datasets, their reliance on temporal cues Li et al. (2020), cross-domain transfer Wang et al. (2023), or future-interaction signals Xia et al. (2025) breaks down under sparsity, domain shift, or real-time constraints. Our uncertainty-aware, shift-adaptive framework doesn't make any such assumption and stays robust in every condition.
- Overall, the results demonstrate the data- and model-agnostic nature of SURE, achieving superior performance across all metrics, models, and datasets.

378 Table 1: Performance comparisons with base models (NeuMF, CASER, SASRec and FMLP-Rec)
 379 and user preference aware baselines (TiSASRec, CDR and Oracle4Rec) on **Book-Crossing and**
 380 **Last.fm Datasets** using metrics (MRR, Recall, NDCG). For SURE, α and δ are set empirically as
 381 0.05, respectively. Bold indicates the best result, and underline indicates the second best.
 382

Method	Book-Crossing			Last.fm		
	MRR \uparrow	Recall \uparrow	NDCG \uparrow	MRR \uparrow	Recall \uparrow	NDCG \uparrow
Model Ceiling@25(NeuMF)	0.322	0.603	0.329	0.379	0.751	0.393
NeuMF	0.246	0.502	0.276	0.306	0.685	0.335
NeuMF + SURE (Ours)	0.289	0.557	0.302	0.336	0.701	0.354
Model Ceiling@25(CASER)	0.369	0.631	0.373	0.412	0.803	0.434
CASER	0.294	0.568	0.302	0.345	0.745	0.367
CASER + SURE (Ours)	0.322	0.588	0.323	0.378	0.758	0.385
Model Ceiling@25(SASRec)	0.379	0.657	0.381	0.439	0.845	0.453
SASRec	0.327	0.556	0.329	0.369	0.766	0.389
SASRec + SURE (Ours)	0.341	<u>0.608</u>	<u>0.355</u>	<u>0.392</u>	<u>0.799</u>	<u>0.422</u>
Model Ceiling@25(FMLP-Rec)	0.381	0.673	0.392	0.453	0.869	0.475
FMLP-Rec	0.335	0.599	0.352	0.386	0.796	0.412
FMLP-Rec + SURE (Ours)	0.357	0.628	0.368	0.402	0.812	0.432
User Preference-Aware Models						
TiSASRec	0.334	0.583	0.345	0.374	0.778	0.402
CDR	0.340	0.563	0.350	0.371	0.782	0.376
Oracle4Rec	<u>0.345</u>	0.603	0.353	0.390	0.798	<u>0.422</u>

409 6.2.2 RESULTS COMPARED TO CONFORMAL BASELINES

410
 411 Next, we compare our method with conformal baselines in terms of coverage and set Size. We set
 412 error rate $\alpha = 0.10$ and compare on the base recommender models: (1) NeuMF (He et al., 2017), (2)
 413 CASER (Tang & Wang, 2018), (3) SASRec (Kang & McAuley, 2018) and (4) FMLP-Rec (Zhou
 414 et al., 2022) against different conformal baselines i.e. (1) standard Split Conformal (Vovk et al.,
 415 2005), (2) EnbPI (Xu & Xie, 2021), and (3) Online Conformal (Angelopoulos et al., 2024) at next
 416 interaction. Each conformal baseline can be interpreted as an ablation of SURE: *Split Conformal*
 417 freezes calibration threshold λ learned and therefore omits online update in Equation 15. *EnbPI*
 418 replaces our Bayesian change-point module with a fixed sliding window, ignoring distributional shifts
 419 and the dynamic segmentation of Equation 13. Whereas *Online Conformal* updates λ^t at every step
 420 using only most recent interaction, thereby discarding historical risk information that our cumulative
 421 segment risk in Equation 14 utilizes. Table 2 depicts results on the Book-Crossing dataset, with
 422 remaining results present in Section A.7.2 in *Appendix*. They lead to the following observations:
 423

- 424 • Our SURE framework achieves the best coverage–size compactness balance. It achieves the
 425 required coverage and ensures compact average set size on every base model, underscoring
 426 its plug-and-play applicability.
- 427 • Split conformal provides compact recommendation sets, but the prediction sets are invalid
 428 as the coverage value is around 0.82–0.83, well below the nominal 0.90, thereby revealing
 429 the under-calibration under users’ preference shifts.
- 430 • EnbPI boosts coverage by ~0.03–0.04 compared to split conformal, but does so at the expense
 431 of increased prediction set sizes. It highlights the importance of our Bayesian change point
 432 detection module to detect the preference shift point.

432
 433 Table 2: Comparison in terms in terms of coverage and average prediction set size with conformal
 434 baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders
 435 (NeuMF, CASER, SASRec, and FMLP-Rec) using the **Book-Crossing** dataset. The error rate is set
 436 as $\alpha = 0.10$. Bold indicates the best result, underline indicates the second best.

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	Coverage \uparrow				Set Size \downarrow			
	Split	EnbPI	Online	SURE (Ours)	Split	EnbPI	Online	SURE (Ours)
NeuMF	0.821	0.849	0.875	0.901	44	<u>43</u>	46	46
CASER	0.826	0.858	0.879	0.902	44	45	45	44
SASRec	0.835	0.867	0.898	<u>0.908</u>	<u>43</u>	47	44	<u>43</u>
FMLP-Rec	0.835	0.873	0.901	0.910	43	47	45	42

- Online conformal narrows the gap as coverage climbs to 0.87–0.90, but remains less efficient than SURE as average set size still exceeds SURE by 1–2 items. It highlights that on-the-fly calibration alone is susceptible to fluctuations, leading to conservative prediction sets.
- Overall, results demonstrate SURE consistently ensures the best coverage–efficiency trade-off on every baseline model that can ensure valid recommendation sets.

6.2.3 TIME EFFICIENCY ANALYSIS

We analyse the computational overhead introduced by SURE on top of the four backbone recommenders (NeuMF, CASER, SASRec, FMLP-Rec). All runs use a single NVIDIA A40 with batch size 256, and each model is trained on 100 epochs. From Table 3, we observe across all five datasets and four baselines, SURE adds at most 1.5 min of wall-clock time. This efficiency occurs because the calibration loop is a single forward pass with simple threshold and change-point updates, with no retraining of network weights. Consequently, the modest extra minute is negligible compared with the performance gain we reported earlier in Table 1. These results confirm that SURE is equivalently efficient and can be scaled to real-world applications.

Table 3: Total time (in minutes) required to train backbone models on five datasets, w and w/o addition of SURE. The “w/ SURE” setting includes backbone training plus 50-step calibration. The calibration parameters α and δ are both set to 0.05.

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	Model	Training	Datasets					
			Book-Crossing	Taobao	Last.fm	MovieLens-1M	Gowalla	
NeuMF	w/o SURE		28.3	40.2	18.5	15.2	20.3	
	w/ SURE		29.5	41.6	19.9	16.4	21.4	
CASER	w/o SURE		42.3	60.4	29.5	25.9	32.6	
	w/ SURE		43.8	61.8	30.9	27.4	33.9	
SASRec	w/o SURE		35.2	47.1	24.4	19.1	25.3	
	w/ SURE		36.5	48.4	25.8	20.4	26.7	
FMLP-Rec	w/o SURE		31.6	44.9	23.0	17.8	23.6	
	w/ SURE		32.9	46.4	24.5	19.1	25.0	

7 CONCLUSION

This paper address important problem of evolving user preferences that undermine reliability of SRS. To address it, it presents SURE framework, which generates user-specific, dynamic recommendations that evolve with preference shift, guaranteeing performance while keeping them compact. SURE is dataset and model agnostic and we validate its effectiveness through theoretical analysis and extensive empirical studies. Since thresholds and ensemble weights are updated externally via a flexible utility function U_{metric} , the framework can also be made compatible to fairness or diversity objectives. Together, it lays foundation for more reliable and trustworthy sequential recommender systems.

486 8 ETHICS STATEMENT
487488 All datasets used in the work are publicly available, and the code repository is anonymized; no
489 personal identifying information is involved. The study was conducted in accordance with guidelines
490 for responsible research and reproducible science.
491492 9 REPRODUCIBILITY STATEMENT
493494 To facilitate reproducibility, we provide the following resources. 1) Source code and datasets: An
495 anonymized implementation of our proposed framework, supporting codes and datasets are included
496 in the anonymous repository. https://anonymous.4open.science/r/SURE_-02D2 2) Proofs: Formal
497 statements and complete proofs underpinning our framework are provided in Section A.4 in the
498 Appendix. 3) Hyperparameters and Implementation Details: The detailed implementation details and
499 configurations are present in Section A.5 in the Appendix.
500501 REFERENCES
502

503 Anastasios Angelopoulos, Nikolas, Rina Barber, and Stephen Bates. Online conformal prediction
504 with decaying step sizes. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller,
505 Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International
506 Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp.
507 1616–1630. PMLR, 07 2024.

508 Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
509 distribution-free uncertainty quantification. *arXiv preprint arXiv:2107.07511*, 2021.

510 Rina Foygel Barber, Emmanuel J Candès, Aaditya Ramdas, and Ryan J Tibshirani. Predictive
511 inference with the jackknife+. *The Annals of Statistics*, 49(1):486–507, 2021.

512 Stephen Bates, Anastasios Angelopoulos, Lihua Lei, Jitendra Malik, and Michael Jordan. Distribution-
513 free, risk-controlling prediction sets. *Journal of the ACM (JACM)*, 68(6):1–34, 2021.

514 Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Vaughan.
515 A theory of learning from different domains. *Machine Learning*, 79:151–175, 05 2010. doi:
516 10.1007/s10994-009-5152-4.

517 Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million song
518 dataset. In *Proceedings of the 12th International Conference on Music Information Retrieval
(ISMIR 2011)*, 2011.

519 Nicolo Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games*. Cambridge university
520 press, 2006.

521 Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi Chang, Mark A Hasegawa-Johnson, and
522 Thomas S Huang. Streaming recommender systems. In *Proceedings of the 26th international
523 conference on world wide web*, pp. 381–389, 2017.

524 Xiaoqing Chen, Zhitao Li, Weike Pan, and Zhong Ming. A survey on multi-behavior sequential
525 recommendation. *arXiv preprint arXiv:2308.15701*, 2023.

526 Eunjoon Cho, Seth A. Myers, and Jure Leskovec. Friendship and mobility: user movement in location-
527 based social networks. In *Proceedings of the 17th ACM SIGKDD International Conference on
528 Knowledge Discovery and Data Mining*, KDD ’11. Association for Computing Machinery, 2011.

529 Victor Coscroat and Derek Bridge. Estimating and evaluating the uncertainty of rating predictions
530 and top-n recommendations in recommender systems. *ACM Trans. Recomm. Syst.*, 1(2), April
531 2023.

532 Fulai Cui, Shuo Yu, Yidong Chai, Yang Qian, Yuanchun Jiang, Yezheng Liu, Xiao Liu, and Jianxin
533 Li. A bayesian deep recommender system for uncertainty-aware online physician recommendation.
534 *Inf. Manage.*, November 2024.

540 Steven De Rooij, Tim Van Erven, Peter D Grünwald, and Wouter M Koolen. Follow the leader if you
 541 can, hedge if you must. *The Journal of Machine Learning Research*, 15(1):1281–1316, 2014.
 542

543 Jiaxin Deng, Wang Shiyao, Kuo Cai, Lejian Ren, Qigen Hu, Weifeng Ding, Qiang Luo, and Guorui
 544 Zhou. Onerec: Unifying retrieve and rank with generative recommender and iterative preference
 545 alignment, 02 2025.

546 Ziwei Fan, Zhiwei Liu, Shen Wang, Lei Zheng, and Philip S. Yu. Modeling sequences as distributions
 547 with uncertainty for sequential recommendation. In *Proceedings of the 30th ACM International
 548 Conference on Information & Knowledge Management (CIKM)*, 2021.

549

550 Hui Fang, Danning Zhang, Yiheng Shu, and Guibing Guo. Deep learning for sequential recommenda-
 551 tion: Algorithms, influential factors, and evaluations. *ACM Transactions on Information Systems
 552 (TOIS)*, 39(1):1–42, 2020.

553 Eskandanian Farzad and Mobasher Bamshad. Detecting changes in user preferences using hidden
 554 markov models for sequential recommendation tasks. *ArXiv*, abs/1810.00272, 2018.

555

556 Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
 557 application to boosting. *J. Comput. Syst. Sci.*, 55, August 1997.

558

559 Matteo Gasparin and Aaditya Ramdas. Conformal online model aggregation. *arXiv preprint
 560 arXiv:2403.15527*, 2024.

561

562 Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution shift. *Advances
 563 in Neural Information Processing Systems*, 34:1660–1672, 2021.

564

565 Chirag Gupta, Arun Kumar Kuchibhotla, and Aaditya Ramdas. Nested conformal prediction and
 566 quantile out-of-bag ensemble methods. *ArXiv*, abs/1910.10562, 2019.

567

568 Ruidong Han, Bin Yin, Shangyu Chen, He Jiang, Fei Jiang, Xiang Li, Chi Ma, Mincong Huang,
 569 Xiaoguang Li, Chunzhen Jing, Yueming Han, MengLei Zhou, Lei Yu, Chuan Liu, and Wei Lin.
 570 Mtgr: Industrial-scale generative recommendation framework in meituan. In *Proceedings of
 571 the 34th ACM International Conference on Information and Knowledge Management, CIKM
 '25*, pp. 5731–5738, New York, NY, USA, 2025. Association for Computing Machinery. ISBN
 9798400720406.

572

573 F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. *ACM Trans.
 574 Interact. Intell. Syst.*, 5(4), December 2015.

575

576 Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
 577 collaborative filtering. In *Proceedings of the 26th international conference on world wide web*,
 2017.

578

579 Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
 580 recommendations with recurrent neural networks. *arXiv preprint arXiv:1511.06939*, 2015.

581

582 Farah Tawfiq Abdul Hussien, Abdul Monem S Rahma, and Hala Bahjat Abdul Wahab. Recommen-
 583 dation systems for e-commerce systems an overview. In *Journal of Physics: Conference Series*,
 volume 1897, pp. 012024. IOP Publishing, 2021.

584

585 Zhuo Jingwei, Xu Ziru, Dai Wei, Zhu Han, Li Han, Xu Jian, and Gai Kun. Learning optimal tree
 586 models under beam search. In *International Conference on Machine Learning*, 2020.

587

588 Venkateswara Rao Kagita, Arun K Pujari, Vineet Padmanabhan, and Vikas Kumar. Inductive
 589 conformal recommender system. *Knowledge-Based Systems*, 250:109108, 2022.

590

591 Venkateswara Rao Kagita, Anshuman Singh, Vikas Kumar, Pavan Kalyan Reddy Neerudu, Arun K
 592 Pujari, and Rohit Kumar Bondugula. Conformal group recommender system. *arXiv preprint
 593 arXiv:2307.12034*, 2023.

594

595 Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In *2018 IEEE
 596 international conference on data mining (ICDM)*, pp. 197–206. IEEE, 2018.

594 Wonbin Kweon, SeongKu Kang, Sanghwan Jang, and Hwanjo Yu. Top-personalized-k recommenda-
 595 tion. In *Proceedings of the ACM Web Conference 2024*, pp. 3388–3399, 2024.
 596

597 Jiacheng Li, Yujie Wang, and Julian McAuley. Time interval aware self-attention for sequential
 598 recommendation. In *Proceedings of the 13th international conference on web search and data*
 599 *mining*, pp. 322–330, 2020.

600 Shuxin Liang, Yihan Xiao, Linglong Kong, and Wenlu Tang. Adaptive conformal prediction intervals
 601 for invariant learning. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge*
 602 *Discovery and Data Mining V.2*, KDD ’25, pp. 1695–1706, New York, NY, USA, 2025. Association
 603 for Computing Machinery. ISBN 9798400714542.
 604

605 Jianxin Ma, Chang Zhou, Hongxia Yang, Peng Cui, Xin Wang, and Wenwu Zhu. Disentangled self-
 606 supervision in sequential recommenders. In *Proceedings of the 26th ACM SIGKDD International*
 607 *Conference on Knowledge Discovery & Data Mining*, KDD ’20, pp. 483–491. Association for
 608 Computing Machinery, 2020.

609 Charul Paliwal, Anirban Majumder, and Sivaramakrishnan Kaveri. Predictive relevance uncertainty
 610 for recommendation systems. In *Proceedings of the ACM Web Conference 2024*, WWW ’24, pp.
 611 3900–3909, New York, NY, USA, 2024. Association for Computing Machinery.
 612

613 Liwei Pan, Weike Pan, Meiyang Wei, Hongzhi Yin, and Zhong Ming. A survey on sequential
 614 recommendation, 2024.

615 Harris Papadopoulos. Inductive conformal prediction: Theory and application to neural networks. In
 616 *Tools in artificial intelligence*. Citeseer, 2008.
 617

618 Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. Sequence-aware recommender systems.
 619 *ACM Comput. Surv.*, July 2018.

620 Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Keshavan, Trung Vu, Lukasz Heidt,
 621 Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost, Maciej Kula, Ed H. Chi, and Maheswaran
 622 Sathiamoorthy. Recommender systems with generative retrieval. In *Proceedings of the 37th*
 623 *International Conference on Neural Information Processing Systems*, NIPS ’23, Red Hook, NY,
 624 USA, 2023. Curran Associates Inc.
 625

626 Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
 627 personalized ranking from implicit feedback. In *Proceedings of the Twenty-Fifth Conference on*
 628 *Uncertainty in Artificial Intelligence*, UAI ’09, pp. 452–461. AUAI Press, 2009.

629 Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized markov
 630 chains for next-basket recommendation. In *Proceedings of the 19th International Conference on*
 631 *World Wide Web*, WWW ’10, pp. 811–820, New York, NY, USA, 2010. Association for Computing
 632 Machinery. ISBN 9781605587998.
 633

634 Vinita Rohilla, Saksham Arora, Priyansh Singh Nirwan, and Vaibhav Purohit. Recommendation
 635 system using location-based services. In *Proceedings of the International Conference on Innovative*
 636 *Computing & Communication (ICICC)*, 2021.

637 Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression. *Advances*
 638 *in neural information processing systems*, 32, 2019.
 639

640 Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning*
 641 *Research*, 9(3), 2008.

642 Hongda Shen and Eren Kurshan. Temporal knowledge distillation for time-sensitive financial services
 643 applications. *arXiv preprint arXiv:2312.16799*, 2023.
 644

645 Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential
 646 recommendation with bidirectional encoder representations from transformer. In *Proceedings of the*
 647 *28th ACM international conference on information and knowledge management*, pp. 1441–1450,
 2019.

648 Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence
 649 embedding. In *Proceedings of the Eleventh ACM International Conference on Web Search and*
 650 *Data Mining*, WSDM '18, pp. 565–573. Association for Computing Machinery, 2018.

651

652 Vladimir Vovk, Alex Gammerman, and Glenn Shafer. *Algorithmic Learning in a Random World*.
 653 Springer-Verlag, Berlin, Heidelberg, 2005. ISBN 0387001522.

654

655 Wenjie Wang, Xinyu Lin, Liuhui Wang, Fuli Feng, Yunshan Ma, and TatSeng Chua. Causal
 656 disentangled recommendation against user preference shifts. *ACM Trans. Inf. Syst.*, 42(1), August
 657 2023. ISSN 1046-8188.

658

659 Yu Wang, Hengrui Zhang, Zhiwei Liu, Liangwei Yang, and Philip S. Yu. Contrastvae: Contrastive
 660 variational autoencoder for sequential recommendation. In *Proceedings of the 31st ACM Interna-*
661 tional Conference on Information & Knowledge Management (CIKM), 2022.

662 Junxi Wu, Dongjian Hu, Yajie Bao, Shu-Tao Xia, and Changliang Zou. Error-quantified conformal
 663 inference for time series, 2025. URL <https://arxiv.org/abs/2502.00818>.

664

665 Jiafeng Xia, Dongsheng Li, Hansu Gu, Tun Lu, Peng Zhang, Li Shang, and Ning Gu. Oracle-
 666 guided dynamic user preference modeling for sequential recommendation. In *Proceedings of the*
667 Eighteenth ACM International Conference on Web Search and Data Mining, pp. 363–372, 2025.

668

669 Chen Xu and Yao Xie. Conformal prediction interval for dynamic time-series. In *International*
670 Conference on Machine Learning, pp. 11559–11569. PMLR, 2021.

671

672 En Xu, Kai Zhao, Zhiwen Yu, Ying Zhang, Bin Guo, and Lina Yao. Limits of predictability in top-n
 673 recommendation. *Inf. Process. Manage.*, 61(4), July 2024. ISSN 0306-4573.

674

675 Margaux Zaffran, Olivier Féron, Yannig Goude, Julie Josse, and Aymeric Dieuleveut. Adaptive
 676 conformal predictions for time series. In *International Conference on Machine Learning*, pp.
 25834–25866. PMLR, 2022.

677

678 Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao, Zhaojie Gong, Fangda
 679 Gu, Michael He, et al. Actions speak louder than words: Trillion-parameter sequential transducers
 680 for generative recommendations. *arXiv preprint arXiv:2402.17152*, 2024.

681

682 Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan Li, and Yongdong Zhang.
 683 How to retrain recommender system? a sequential meta-learning method. In *Proceedings of the*
684 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval,
 pp. 1479–1488, 2020.

685

686 Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. Filter-enhanced mlp is all you need for
 687 sequential recommendation. In *Proceedings of the ACM web conference 2022*, pp. 2388–2399,
 688 2022.

689

690 Cai-Nicolas Ziegler, Sean McNee, Joseph A. Konstan, and Georg Lausen. Improving recommendation
 691 lists through topic diversification. 01 2005.

692

693 **A APPENDIX**

694

695 **A.1 SUMMARY OF NOTATIONS**

696

697 To facilitate clarity, we provide a comprehensive summary of the key mathematical notations and
 698 variables used throughout the SURE framework in Table 4.

699

700 **A.2 ASSUMPTIONS**

701

We state two mild assumptions that we use in Theorems 5.1 and 5.2.

Table 4: Summary of Notations

Symbol	Description
\mathcal{U}, \mathcal{I}	Sets of users and items
u, i	Individual user and item
\mathcal{H}_u	Interaction history for user u
i_{rel}^{t+1}	The true relevant next item at time $t + 1$
L	Total number of base models (experts) in the ensemble
\mathcal{M}^ℓ	The ℓ -th base recommender model ($\ell \in \{1, \dots, L\}$)
\mathbf{w}^t	Ensemble weight vector at time t ($\mathbf{w}^t \in \Delta^L$)
s_ℓ^t, S_ℓ^t	Instantaneous and cumulative prediction set size for model ℓ
λ_ℓ^t	Calibration threshold for model ℓ at time t
\mathcal{C}_ℓ^{t+1}	Prediction set generated by model ℓ using threshold λ_ℓ^t
\mathcal{C}^{agg}	Final aggregated ensemble prediction set
α	User-defined target error rate (risk level)
$R(\mathcal{C})$	True risk of the prediction set
\bar{R}_ℓ^t	Average empirical risk over the current stable window \mathcal{W}_ℓ^t
$\mathcal{L}_u(\cdot)$	Utility-based Risk Loss (e.g., $1 - \text{Recall}$), used for calibration
$L_t(\cdot)$	Predictive Loss (e.g., Cross-Entropy), used for shift detection
d_ℓ^{pref}	Loss-Based Preference Shift Metric
d_ℓ^{ddd}	Loss Discrepancy Distance (LDD)
c_ℓ^t	Start time of the current stable segment for model ℓ
\mathcal{W}_ℓ^t	Current stable window $[c_\ell^t, t]$
η	Hedge learning rate for updating ensemble weights
β	Shift sensitivity parameter for change-point detection
γ	Segment-length bias parameter for change-point detection
ρ	Step size for the adaptive threshold update

Assumption A.1. For every base model \mathcal{M}^ℓ and any segment \mathcal{W}_t^ℓ produced by the change-point detector, there exists a threshold $\lambda_\ell^{\min} \in \Lambda$ such that

$$R(\mathcal{C}_{\lambda_\ell^{\min}}^\ell) \leq \alpha.$$

Equivalently, the mapping $\lambda \mapsto R(\mathcal{C}_\lambda^\ell)$ is continuous and attains all values in $[0, 1]$ on the closed set Λ .

This assumption ensures that for every timestamp in each segment, it is possible to achieve risk control at level α by appropriately tuning λ_ℓ^t . It guarantees the effectiveness of the update rule in Eq. 15.

Assumption A.2. For each base model \mathcal{M}^ℓ , let $\mathcal{W}_t^\ell = [c_t^\ell, t]$ denote the segment window at time t returned by the Bayesian change-point detector. We assume the per-user utility losses $\{\mathcal{L}_u(\mathcal{C}_{\lambda_\ell^\tau}^\ell)\}_{\tau \in \mathcal{W}_t^\ell, u \in \mathcal{U}_\tau}$ are drawn from a common bounded distribution within each segment. In other words, the loss values within \mathcal{W}_t^ℓ are exchangeable and lie in $[0, 1]$.

This assumption allows average window risk \bar{R}_t^ℓ to serve as a faithful estimate of true segment risk.



Figure 1: **The SURE Workflow (one-step update).** At each timestamp t , base experts produce dynamic prediction sets $\{\mathcal{C}_{\lambda_\ell^t}^\ell\}_{\ell=1}^L$ using thresholds λ_ℓ^t . These sets are aggregated with Hedge weights \mathbf{w}^t to form the ensemble recommendation $\mathcal{C}_{\lambda^t}^{agg}$. Shift detection computes preference change scores d_ℓ^{pref} and triggers recalibration, updating thresholds $\lambda_\ell^{t+1} \leftarrow \lambda_\ell^t - \rho(\bar{R}_t^\ell - \alpha)$, while Hedge updating adjusts the weights \mathbf{w}^{t+1} based on set efficiency. The outputs $(\mathcal{C}_{\lambda^t}^{agg}, \lambda^{t+1}, \mathbf{w}^{t+1})$ are then passed to the next step, ensuring validity, compactness, and robustness over time.

A.3 ALGORITHM

This section we provide the pseudocode for the *Dynamically Adaptive Uncertainty-aware Optimization (DAUO)* algorithm. The algorithm begins with an initial calibration phase where each base model \mathcal{M}^ℓ is assigned a starting threshold λ_ℓ^0 and an equal ensemble weight. This initialization returns updated λ_ℓ^0 which creates prediction sets (Eq. (2)) that ensure the empirical risk $\hat{R}(\mathcal{C}_{\lambda_\ell^0}^\ell)$, estimated via Eq. (4), falls below the user-defined margin $(\alpha - \epsilon)$. Then at each timestamp t , DAUO adapts both the calibration threshold and ensemble weights in an online manner. For each base model \mathcal{M}^ℓ , the algorithm first evaluates user preference shift by computing the divergence $d_\ell^{pref}(c_t^\ell, t)$ as per Eq. (12), followed by the Bayesian posterior over candidate segment boundaries using Eq. (13). Here c_t^ℓ represents all the timestamps after the last changepoint detected (where the framework predicted the preference shift). The segment start is then updated by selecting the most likely boundary c_{t+1}^ℓ , and the average risk \bar{R}_t^ℓ over the new segment window $[c_{t+1}^\ell, t]$ is computed via Eq. (14). The threshold λ_ℓ^t is then updated according to Eq. (15), which adjusts the confidence level based on segmental risk deviation from α . After all models have updated their thresholds, the ensemble weight vector \mathbf{w}^t is revised via Eq. (9), giving higher weight to models producing more compact prediction sets. At prediction time $T+1$, the calibrated thresholds $\hat{\lambda}_\ell^T$ and final weights \mathbf{w}^T are used to construct individual model prediction sets via Eq. (2). These are then merged through the weighted majority aggregation rule $\mathcal{A}(\cdot, \mathbf{w}^T)$ in Eq. (8) to produce the final ensemble prediction $\mathcal{C}_{\hat{\lambda}^T}^{agg}(\mathcal{H}_u)$. The detailed steps are presented in Algorithm 1.

A.4 PROOFS

A.4.1 THEOREM 1

Lemma A.4.1. *Let for each base model \mathcal{M}^ℓ , the prediction set at round t is $\mathcal{C}_{\lambda_\ell^t}^\ell \subset \mathcal{I}$ with $s_\ell^t := |\mathcal{C}_{\lambda_\ell^t}^\ell|$. Also, let $\mathbf{w}^t = (w_1^t, \dots, w_L^t) \in \Delta^L$ and $k(t) \sim \text{Uniform}[0, 1]$. Given, the aggregated prediction set is defined by Eq. (7), we have:*

$$\mathbb{E}_{k(t)} [|\mathcal{C}_{\lambda^t}^{agg}|] \leq h_t$$

† Here, $\Delta\lambda^\dagger$ is equivalent to $\lambda_\ell^t/|\Lambda|$, where Λ is the set of candidate thresholds.

Algorithm 1 Dynamically Adaptive Uncertainty-aware Optimization (DAUO)

```

810
811 1: Initialization:
812 2: Initialize thresholds  $\lambda_\ell^0$  and ensemble weights  $\mathbf{w}^0 = \frac{1}{L}\mathbf{1}$  for all base models  $\ell = 1, \dots, L$ 
813 3: Set user-defined parameters: target risk  $\alpha$ , confidence  $\delta$ , error tolerance  $\epsilon$ 
814 4: Define utility-based loss as in Eq. (5)
815 5: Initialize per-model segment starts  $c_\ell^0 = 1$ 
816
817 6: for each base model  $\ell = 1, \dots, L$  do
818 7:   Compute prediction set  $\mathcal{C}_\ell^0$  using Eq. (2) with threshold  $\lambda_\ell^0$ 
819 8:   Compute empirical risk  $\hat{R}(\mathcal{C}_\ell^0)$  using Eq. (4)
820 9:   if  $\hat{R}(\mathcal{C}_\ell^0) \leq \alpha - \epsilon$  then
821 10:    continue
822 11:   else
823 12:    Update threshold:  $\lambda_\ell^0 \leftarrow \lambda_\ell^0 - \Delta\lambda^\dagger$ 
824 13:   end if
825 14: end for
826
827 15: Calibration:
828 16: for each timestamp  $t = 1, \dots, T$  do
829 17:   for each base model  $\ell = 1, \dots, L$  do
830 18:     Compute preference shift  $d_\ell^{\text{pref}}(c_\ell^{t-1}, t)$  using Eq. (12)
831 19:     Compute posterior  $p_\ell(c_\ell^t = c_\ell^{t-1} + k \mid t)$  using Eq. (13)
832 20:     Update segment start:
833 21:       
$$c_\ell^t \leftarrow \arg \max_k p_\ell(c_\ell^t = c_\ell^{t-1} + k \mid t)$$

834
835 21:     Compute window risk  $\bar{R}_\ell^t$  on  $[c_\ell^t, t]$  using Eq. (14)
836 22:     Update threshold using Eq. (15):
837 23:       
$$\lambda_\ell^{t+1} = \lambda_\ell^t - \rho(\bar{R}_\ell^t - \alpha)$$

838
839 23: end for
840 24:     Update ensemble weights  $\mathbf{w}^{t+1}$  using Eq. (9)
841 25: end for
842 26: Store final thresholds:  $\hat{\lambda}_\ell^T \leftarrow \lambda_\ell^T$  and weights  $\mathbf{w}^T$ 
843
844 27: Output at timestamp  $T + 1$ :
845 28: for each user  $u \in \mathcal{U}$  do
846 29:   for each base model  $\ell = 1, \dots, L$  do
847 30:     Compute prediction set:  $\mathcal{C}_\ell^T$  using Eq. (2) with threshold  $\hat{\lambda}_\ell^T$ 
848 31:   end for
849 32:   Aggregate ensemble prediction sets using Eq. (8):
850 33:     
$$\mathcal{C}_{\hat{\lambda}^T}^{\text{agg}}(\mathcal{H}_u) = \mathcal{A}\left(\{\mathcal{C}_\ell^T\}_{\ell=1}^L, \mathbf{w}^T\right)$$

851
852 33: end for
853
854
855 where  $h_t := \sum_{\ell=1}^L w_\ell^t s_\ell^t$ .
856
857
858 Proof. For any item  $i \in \mathcal{I}$ , the aggregated support on the item can be defined as:
859
860 
$$\bar{w}_t(i) = \sum_{\ell=1}^L w_\ell^t \cdot \mathbf{1}[i \in \mathcal{C}_{\lambda_\ell^t}] \in [0, 1] \tag{i}$$

861
862
863 where  $\bar{w}_t(i)$  is the total weight of models that include item  $i$  in the prediction set.

```

864 By the definition of the aggregation rule, item i is included in the aggregated prediction set iff:
 865

$$866 \quad \bar{w}_t(i) > \frac{1 + k(t)}{2} \quad (\text{equivalently}) \quad (\text{ii})$$

867 or equivalently

$$868 \quad k(t) < 2\bar{w}_t(i) - 1 \quad (\text{iii})$$

870 So the probability that item i is in ensemble set is,

$$871 \quad \Pr_{k(t)}[i \in \mathcal{C}_{\lambda^t}^{\text{agg}}] = \Pr_{k(t)}[k(t) < 2\bar{w}_t(i) - 1] \quad (\text{iv})$$

873 Since $k(t) \sim \text{Uniform}[0, 1]$, we know that

$$875 \quad \Pr_{k(t)}[k(t) < u] = \begin{cases} 0 & \text{if } u \leq 0 \\ u & \text{if } 0 < u < 1 \\ 1 & \text{if } u \geq 1 \end{cases} \quad \text{for any real } u \quad (\text{v})$$

879 Applying $u := 2\bar{w}_t(i) - 1$, then:

$$880 \quad \Pr_{k(t)}[i \in \mathcal{C}_{\lambda^t}^{\text{agg}}] = (2\bar{w}_t(i) - 1)_+ \quad (\text{vi})$$

882 with $(x)_+ := \max\{x, 0\}$.

884 Now we know for all $x \in [0, 1]$,

$$885 \quad (2x - 1)_+ \leq x \quad \text{for } x \in (0, 1] \quad (\text{vii})$$

886 i.e., if $x \leq \frac{1}{2}$, then $(2x - 1) \leq 0 \Rightarrow (2x - 1)_+ = 0$

888 if $x \geq \frac{1}{2}$, then $(2x - 1)_+ = 2x - 1$

890 and $(2x - 1) \leq x \Leftrightarrow x \leq 1$ [true]

891 Hence we can write

$$892 \quad \Pr_{k(t)}[i \in \mathcal{C}_{\lambda^t}^{\text{agg}}] = (2\bar{w}_t(i) - 1)_+ \leq \bar{w}_t(i) \quad (\text{viii})$$

894 Now computing the expected total size of ensemble set, we have:

$$895 \quad \mathbf{E}_{k(t)}[|\mathcal{C}_{\lambda^t}^{\text{agg}}|] = \sum_{i \in \mathcal{I}} \Pr_{k(t)}[i \in \mathcal{C}_{\lambda^t}^{\text{agg}}] \leq \sum_{i \in \mathcal{I}} \bar{w}_t(i) \quad (\text{ix})$$

898 From Eq. (i), and expanding $\bar{w}_t(i)$, we get:

$$900 \quad \sum_{i \in \mathcal{I}} \bar{w}_t(i) = \sum_{i \in \mathcal{I}} \sum_{\ell=1}^L w_{\ell}^t \cdot \mathbf{1}[i \in \mathcal{C}_{\lambda^t}^{\ell}] \quad (\text{x})$$

902 Switching the summation order, we get:

$$904 \quad = \sum_{\ell=1}^L w_{\ell}^t \sum_{i \in \mathcal{I}} \mathbf{1}[i \in \mathcal{C}_{\lambda^t}^{\ell}] = \sum_{\ell=1}^L w_{\ell}^t \cdot |\mathcal{C}_{\lambda^t}^{\ell}| = \sum_{\ell=1}^L w_{\ell}^t \cdot s_{\ell}^t = h_t \quad (\text{xi})$$

907 Putting this all together, we get:

$$909 \quad \mathbf{E}_{k(t)}[|\mathcal{C}_{\lambda^t}^{\text{agg}}|] \leq h_t := \sum_{\ell=1}^L w_{\ell}^t s_{\ell}^t \quad (\text{xii})$$

912 Hence Proved. □

916 **Remark** Lemma A.4.1 shows that the expected size of the aggregated prediction set is no greater
 917 than the surrogate size h_t , which is a weighted average of base model set sizes. This means the
 918 aggregation step does not inflate the prediction set and adapts to the ensemble's diversity at time t .

918 **PROOF OF THEOREM 5.1**
919920 *Proof.* From Lemma 1, we already have:

921
$$\mathbf{E}_{k(t)} [|\mathcal{C}_{\lambda^t}^{\text{agg}}|] \leq h_t := \sum_{\ell=1}^L w_\ell^t s_\ell^t$$

923
924

925 Let

926
$$\hat{s}_\ell^t := \frac{s_\ell^t}{|\mathcal{I}|}, \quad \hat{h}_t := \sum_{\ell=1}^L w_\ell^t \hat{s}_\ell^t = \frac{h_t}{|\mathcal{I}|} \Rightarrow h_t = |\mathcal{I}| \cdot \hat{h}_t$$

927
928

929 Now our goal is to bound \hat{h}_t in terms of the best expert's size $\hat{s}_{\ell^*}^t$. However, given the weights are
930 spread across all L models, we cannot directly bound \hat{h}_t . Taking inspiration from Cesa-Bianchi
931 & Lugosi (2006); De Rooij et al. (2014), we analyze it via an auxiliary quantity called mix loss.
932 Specifically, we decompose the Hedge average into two components: 1) mix loss that behaves like a
933 soft minimum, and 2) a mixability gap that measures how far the weighted average is from the mix
934 loss.
935

936 We first define mix loss as:

937
$$m_t := -\frac{1}{\eta} \log \sum_{\ell=1}^L w_\ell^t \cdot e^{-\eta \hat{s}_\ell^t} \quad (\text{i})$$

938
939

940 and mixability gap as:

941
$$\delta_t := \hat{h}_t - m_t \Rightarrow \hat{h}_t = m_t + \delta_t \quad (\text{ii})$$

942

943 To bound the mixability gap δ_t , we use Bernstein's Cumulant Generating Function inequality:

944 Using (i) in (ii), we get:

945
$$\delta_t = \hat{h}_t + \frac{1}{\eta} \log \sum_{\ell=1}^L w_\ell^t \cdot e^{-\eta \hat{s}_\ell^t} \quad (\text{iii})$$

946
947

948 Refactoring:

949
$$e^{-\eta \hat{s}_\ell^t} = e^{-\eta(\hat{s}_\ell^t - \hat{h}_t)} \cdot e^{-\eta \hat{h}_t} \quad (\text{iv})$$

950

951 So,

952
$$\sum_{\ell} w_\ell^t \cdot e^{-\eta \hat{s}_\ell^t} = \sum_{\ell} w_\ell^t \cdot (e^{-\eta(\hat{s}_\ell^t - \hat{h}_t)} \cdot e^{-\eta \hat{h}_t}) = e^{-\eta \hat{h}_t} \cdot \sum_{\ell} w_\ell^t \cdot e^{-\eta(\hat{s}_\ell^t - \hat{h}_t)} \quad (\text{v})$$

953
954

955 Plugging into log we get:

956
$$\log \sum_{\ell} w_\ell^t \cdot e^{-\eta \hat{s}_\ell^t} = -\eta \hat{h}_t + \log \sum_{\ell} w_\ell^t \cdot e^{-\eta(\hat{s}_\ell^t - \hat{h}_t)} \quad (\text{vi})$$

957
958

959 Putting Eq. (vi) in Eq. (iii), we get:

960
$$\begin{aligned} \delta_t &= \hat{h}_t + \frac{1}{\eta} \left(-\eta \hat{h}_t + \log \sum_{\ell} w_\ell^t \cdot e^{-\eta(\hat{s}_\ell^t - \hat{h}_t)} \right) \\ &= \hat{h}_t - \hat{h}_t + \frac{1}{\eta} \log \sum_{\ell} w_\ell^t \cdot e^{-\eta(\hat{s}_\ell^t - \hat{h}_t)} \\ &= \frac{1}{\eta} \log \mathbf{E}_{\ell \sim w^t} [e^{-\eta(\hat{s}_\ell^t - \hat{h}_t)}] \end{aligned} \quad (\text{vii})$$

961
962
963
964
965
966
967
968
969

970 Now to bound δ_t , we use the Bernstein Cumulant Generating Function (CGF) as introduced in Cesa-
971 Bianchi & Lugosi (2006). We interpret $\hat{s}_\ell^t \in [0, 1]$ as a bounded random variable under distribution
972 $\ell \sim w^t$, and apply the cumulant inequality.

972 Specifically, since $X := \hat{s}_\ell^t$,

$$973 \quad \mathbf{E}[X] = \hat{h}_t, \quad \text{Var}(X) = v_t$$

975 Now, defining moment generating function as:

$$977 \quad \phi(\eta) := \log \mathbf{E}_{\ell \sim w^t} \left[e^{-\eta(X - \mathbf{E}[X])} \right] \quad (\text{viii})$$

979 Applying the result from Cesa-Bianchi & Lugosi (2006) for $\eta \in (0, 1]$ and any $X \in [0, 1]$, we get:

$$982 \quad \log \mathbf{E} \left[e^{-\eta(X - \mathbf{E}[X])} \right] \leq \frac{e^\eta - \eta - 1}{\eta} \cdot \text{Var}(X) \quad (\text{ix})$$

984 Applying this $\phi(\eta)$ into Eq. (vii) to Eq. (viii), we have:

$$986 \quad \delta_t = \frac{1}{\eta} \cdot \phi(\eta) \quad (\text{x})$$

988 And then applying the CGF bound we have:

$$990 \quad \delta_t \leq \frac{1}{\eta} \cdot \left(\frac{e^\eta - \eta - 1}{\eta} \right) v_t = \frac{e^\eta - \eta - 1}{\eta^2} \cdot v_t \quad (\text{xi})$$

993 Using Taylor series, we know:

$$995 \quad e^\eta = 1 + \eta + \frac{\eta^2}{2} + \frac{\eta^3}{3!} + \dots$$

998 Simplifying, we get:

$$999 \quad \delta_t \leq \left(\frac{\eta}{2} + \frac{\eta^2}{6} \right) v_t \quad (\text{xii})$$

1002 Next we need to bound the mix loss m_t

1004 Given $\ell^* := \arg \min_{\ell \in [L]} \hat{s}_\ell^t$, we apply the classic log-sum-exp inequality:

1005 For any real values x_1, \dots, x_L ,

$$1007 \quad \log \sum_{\ell=1}^L e^{-x_\ell} \leq -\min_\ell x_\ell + \log L \quad (\text{xiii})$$

1010 Applying this to our case, with $x_\ell := \eta \hat{s}_\ell^t$, we get:

$$1012 \quad \log \sum_{\ell=1}^L e^{-\eta \hat{s}_\ell^t} \leq -\eta \hat{s}_{\ell^*}^t + \log L \quad (\text{xiv})$$

1016 As weight $\mathbf{w}^t \in \Delta^L$, the weighted sum is less than or equal to the uniform sum, i.e.,

$$1018 \quad \sum_{\ell=1}^L w_\ell^t \cdot e^{-\eta \hat{s}_\ell^t} \leq \sum_{\ell=1}^L e^{-\eta \hat{s}_\ell^t}$$

1021 Hence, we get:

$$1023 \quad \log \sum_{\ell=1}^L w_\ell^t \cdot e^{-\eta \hat{s}_\ell^t} \leq \log \sum_{\ell=1}^L e^{-\eta \hat{s}_\ell^t} \leq -\eta \hat{s}_{\ell^*}^t + \log L \quad (\text{xv})$$

1025 Multiplying (xv) by $-\frac{1}{\eta}$, and applying a looser (but convenient) upper bound, we get:

1026

1027

1028

1029

1030

1031 From (xii) and (xvi), we get bounds for the mixability gap δ_t and mix loss m_t . Putting the results
 1032 into Eq. (ii), we get:

1033

1034

1035

1036

1037

Now we find the best η that minimizes RHS in Eq. (xvii).

1038

Let

1039

1040

1041

1042

1043

$$f(\eta) := \frac{\ln L}{\eta} + \left(\frac{\eta}{2} + \frac{\eta^2}{6} \right) v_t$$

To minimize, we take derivative:

1044

1045

1046

1047

1048

$$f'(\eta) = -\frac{\ln L}{\eta^2} + \left(\frac{1}{2} + \frac{\eta}{3} \right) v_t$$

Setting $f'(\eta) = 0$ and multiplying both sides by η^2 , we get:

1049

1050

1051

1052

1053

$$\frac{1}{2}\eta^2 + \frac{1}{3}\eta^3 = \frac{\ln L}{v_t}$$

Since it is in cubic form, we approximate, getting:

1054

1055

1056

1057

$$\eta^* = \sqrt{\frac{2 \ln L}{v_t}}^{\frac{1}{3}}$$

Putting the η^* in Eq. (xvii), and approximating, we get:

1058

1059

1060

1061

1062

1063

Now we know:

1064

1065

$$h_t = |\mathcal{I}| \cdot \hat{h}_t \quad \text{and} \quad s_{\ell^*}^t = |\mathcal{I}| \cdot \hat{s}_{\ell^*}^t$$

1066

and

1067

1068

$$\mathbf{E}_{k(t)} [|\mathcal{C}_{\lambda^t}^{\text{agg}}|] \leq h_t$$

1069

1070

Hence, we get:

1071

1072

1073

1074

$$\mathbf{E}_{k(t)} [|\mathcal{C}_{\lambda^t}^{\text{agg}}|] \leq s_{\ell^*}^t + \sqrt{2 \ln L \cdot v_t} + \frac{2}{3} \ln L$$

Hence Proved. □

1075

1076

1077

1078

1079 \ddagger If $v_t = 0$, then all \hat{s}_{ℓ}^t are equal, so $\hat{h}_t = \hat{s}_{\ell^*}^t$, and the bound holds exactly. In this case, the variance
 penalty vanishes, and η can be set arbitrarily (e.g., $\eta = 1$).

1080 A.4.2 THEOREM 2
10811082 **Lemma A.4.2.** Let \mathcal{M}^ℓ be a base predictor and $\mathcal{U}_t^{\text{cal}}$ be a batch of users at time t , with $n = |\mathcal{U}_t^{\text{cal}}|$.1083 Assume for each user $u \in \mathcal{U}_t^{\text{cal}}$, we observe the score $Z_{t,u}^\ell := \mathcal{M}^\ell(i_{\text{rel}}^{t+1}(u) \mid \mathcal{H}_u^t)$, where the scores
1084 are sampled from a continuous distribution. Let λ_t^ℓ be the empirical $(1 - \alpha/2)$ -quantile of the scores
1085 $\{Z_{t,u}^\ell\}_u$. Given the prediction set $\mathcal{C}_{\lambda_t^\ell}^\ell$ and the utility-based loss $\mathcal{L}_u(\mathcal{C}_{\lambda_t^\ell}^\ell)$ as defined in Eq. (4), then
1086 with probability at least $1 - \frac{1}{2n}$, over the calibration batch, the expected loss satisfies:
1087

1088
$$\mathbb{E}_u \left[\mathcal{L}_u \left(\mathcal{C}_{\lambda_t^\ell}^\ell \right) \right] \leq \frac{\alpha}{2} + \sqrt{\frac{\log(4|\mathcal{U}_t^{\text{cal}}|)}{2|\mathcal{U}_t^{\text{cal}}|}}.$$

1089
1090

1091
1092 *Proof.* Given $n = |\mathcal{U}_t^{\text{cal}}|$, let $Z_{t,u}^\ell \sim F$ for $u \in \mathcal{U}_t^{\text{cal}}$, where F is a continuous cumulative distribution
1093 function. We define the empirical CDF as:
1094

1095
$$\widehat{F}(z) := \frac{1}{n} \sum_{u \in \mathcal{U}_t^{\text{cal}}} \mathbf{1} \{ Z_{t,u}^\ell \leq z \}, \quad (\text{i})$$

1096
1097

1098 where $n = |\mathcal{U}_t^{\text{cal}}|$.1099 Let λ_t^ℓ denote the empirical $(1 - \alpha/2)$ -quantile of the scores $\{Z_{t,u}^\ell\}$, so by construction:
1100

1101
$$\widehat{F}(\lambda_t^\ell) \geq 1 - \frac{\alpha}{2}. \quad (\text{ii})$$

1102

1103 To control the deviation between $\widehat{F}(\cdot)$ and the true CDF $F(\cdot)$, we apply the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality:
1104
11051106 For any $\varepsilon > 0$, we have:
1107

1108
$$\Pr \left(\sup_{z \in \mathbb{R}} \left| \widehat{F}(z) - F(z) \right| > \varepsilon \right) \leq 2 \exp(-2\varepsilon^2 n). \quad (\text{iii})$$

1109
1110

1111 To ensure failure probability at most $\frac{1}{2n}$, we set:
1112

1113
$$2 \exp(-2\varepsilon^2 n) = \frac{1}{2n}.$$

1114

1115 Solving this gives:
1116

1117
$$\varepsilon = \sqrt{\frac{\log(4n)}{2n}}. \quad (\text{iv})$$

1118

1119 Using Eq. (iii), this gives a uniform deviation bound that holds with probability at least $1 - \frac{1}{2n}$.
11201121 From the DKW result, we have the uniform deviation bound:
1122

1123
$$\left| \widehat{F}(z) - F(z) \right| \leq \sqrt{\frac{\log(4n)}{2n}} \quad \text{for all } z \in \mathbb{R}. \quad (\text{v})$$

1124

1125 Now at $z = \lambda_t^\ell$, we get:
1126

1127
$$F(\lambda_t^\ell) \geq \widehat{F}(\lambda_t^\ell) - \sqrt{\frac{\log(4n)}{2n}} \geq 1 - \frac{\alpha}{2} - \sqrt{\frac{\log(4n)}{2n}}. \quad (\text{vi})$$

1128
1129

1130 Hence, for a user sampled independently from the distribution, the score $Z_{t,u}^\ell \sim F$, and the probability
1131 that the true item is excluded from the prediction set is:
1132

1133
$$\Pr(Z_{t,u}^\ell > \lambda_t^\ell) = 1 - F(\lambda_t^\ell) \leq \frac{\alpha}{2} + \sqrt{\frac{\log(4n)}{2n}}.$$

Given the utility definition from Eq. (4) in main pasper, $\mathcal{L}_u(\mathcal{C}_{\lambda_t^\ell}) = 1$ when the true item is excluded.

Thus, the expected utility loss for the user is:

$$\mathbb{E}_u \left[\mathcal{L}_u(\mathcal{C}_{\lambda_t^\ell}) \right] \leq \left(1 - \frac{1}{2n} \right) \left(\frac{\alpha}{2} + \sqrt{\frac{\log(4n)}{2n}} \right) + \frac{1}{2n}.$$

For $n > 1$, i.e., at least 1 user in the calibration batch, $\frac{1}{2n} \leq \sqrt{\frac{\log(4n)}{2n}}$. For simplicity, we absorb the additive constant in the existing slack and simplify. Hence we get:

$$\mathbb{E} \left[\mathcal{L}_u(\mathcal{C}_{\lambda_t^\ell}) \right] \leq \frac{\alpha}{2} + \sqrt{\frac{\log(4n)}{2n}}.$$

$$\boxed{\mathbb{E} \left[\mathcal{L}_u(\mathcal{C}_{\lambda_t^\ell}) \right] \leq \frac{\alpha}{2} + \sqrt{\frac{\log(4n)}{2n}} := \frac{\alpha}{2} + \sqrt{\frac{\log(4|\mathcal{U}_t^{\text{cal}}|)}{2|\mathcal{U}_t^{\text{cal}}|}}}.$$

Hence Proved. \square

Remark Lemma A.4.2 ensures that the utility-based loss of the prediction set $\mathcal{C}_{\lambda_t^\ell}$, estimated from a finite calibration batch, concentrates around the error level $\alpha/2$. As the calibration batch size $n \rightarrow \infty$, the slack term $\sqrt{\frac{\log(4n)}{2n}} \rightarrow 0$, the upper bound of expected loss achieves $\alpha/2$.

Lemma A.4.3. *Given \mathcal{M}^ℓ as a base model, let the change-point detector define a stable segment of timesteps $\mathcal{W}_t^\ell = [c_t^\ell, t]$, for which no user preference shift is detected. Let $\mathcal{L}_\tau^{(\ell)}(\mathcal{C}_{\lambda_\tau^\ell})$ denote the utility loss incurred by model \mathcal{M}^ℓ at time $\tau \in \mathcal{W}_t^\ell$. Given the empirical segment risk \bar{R}_t^ℓ as defined in Eq. (14), and let \mathcal{F}_τ denote the filtration capturing all user histories, model predictions, and losses observed up to time τ , then for any $\epsilon > 0$, we have:*

$$\Pr \left(\bar{R}_t^\ell - \mathbb{E} \left[\bar{R}_t^\ell \mid \mathcal{F}_{c_t^\ell-1} \right] \geq \epsilon \right) \leq \exp(-2\epsilon^2 |\mathcal{W}_t^\ell|).$$

Proof. Let X_τ define a random variable that captures the surprise at time $\tau \in \mathcal{W}_t^\ell$, i.e.,

$$X_\tau := \mathcal{L}_\tau^{(\ell)} - \mathbb{E} \left[\mathcal{L}_\tau^{(\ell)} \mid \mathcal{F}_{\tau-1} \right], \quad (\text{ii})$$

where $\mathcal{L}_\tau^{(\ell)}(\mathcal{C}_{\lambda_\tau^\ell})$ is the observed loss, and the expectation is our best guess before time τ .

We now define the cumulative sum over X_τ as:

$$S_k := \sum_{\tau=c_t^\ell}^k X_\tau, \quad \text{for } k \in [c_t^\ell, t]. \quad (\text{ii})$$

Now, the sequence $\{S_k\}$ is a martingale with respect to the filtration \mathcal{F}_k . Specifically:

$$\mathbb{E}[S_k \mid \mathcal{F}_{k-1}] = S_{k-1}. \quad (\text{iii})$$

This relation holds because:

$$S_k = S_{k-1} + X_k \quad \Rightarrow \quad \mathbb{E}[S_k \mid \mathcal{F}_{k-1}] = S_{k-1} + \mathbb{E}[X_k \mid \mathcal{F}_{k-1}].$$

Now,

$$\mathbb{E}[X_k \mid \mathcal{F}_{k-1}] = \mathbb{E} \left[\mathcal{L}_k^\ell - \mathbb{E} \left[\mathcal{L}_k^{(\ell)} \mid \mathcal{F}_{k-1} \right] \mid \mathcal{F}_{k-1} \right] \quad (\text{iv})$$

By linearity and the idempotence of conditional expectation, we directly get:

$$\mathbb{E}[L_k^\ell \mid \mathcal{F}_{k-1}] - \mathbb{E}[L_k^\ell \mid \mathcal{F}_{k-1}] = 0. \quad (\text{v})$$

1188

Hence X_k is a martingale difference, and $\{S_k\}$ is a martingale.

1189

Also, since $\mathcal{L}_\tau^\ell(\mathcal{C}_{\lambda_\tau^\ell}) \in [0, 1]$, its conditional expectation also lies in $[0, 1]$, and therefore:

1190

$$|X_k| \leq 1 \quad \text{i.e., the increments are bounded.}$$

1191

1192

Now, by Azuma–Hoeffding’s inequality, for any martingale with bounded increments $|X_k| \leq 1$, the following holds: From Azuma–Hoeffding’s inequality, we now have:

1193

1194

1195

$$\Pr(S_t \geq \epsilon |\mathcal{W}_t^\ell|) \leq \exp(-2\epsilon^2 |\mathcal{W}_t^\ell|), \quad (\text{vi})$$

1196

1197

where $\epsilon > 0$, and $|\mathcal{W}_t^\ell| = t - c_t^\ell + 1$.

1198

1199

1200

Now we relate S_t to the definition of empirical risk. Given the definition of average risk over a window, we have:

1201

1202

1203

1204

1205

1206

1207

$$\begin{aligned} \mathbb{E}[\bar{R}_t^\ell | \mathcal{F}_{c_t^\ell-1}] &= \mathbb{E}\left[\frac{1}{w} \sum_{\tau=c_t^\ell}^t \mathcal{L}_\tau^\ell(\mathcal{C}_{\lambda_\tau^\ell}) \mid \mathcal{F}_{c_t^\ell-1}\right] \\ &= \frac{1}{w} \sum_{\tau=c_t^\ell}^t \mathbb{E}[\mathcal{L}_\tau^\ell(\mathcal{C}_{\lambda_\tau^\ell}) \mid \mathcal{F}_{c_t^\ell-1}], \end{aligned} \quad (\text{vii})$$

1208

1209

where $w = |t - c_t^\ell + 1| := |\mathcal{W}_t^\ell|$.

1210

Using the tower property of conditional expectation, for any $\tau \geq c_t^\ell$, we have:

1211

1212

1213

$$\mathbb{E}[\mathcal{L}_\tau^\ell \mid \mathcal{F}_{c_t^\ell-1}] = \mathbb{E}[\mathbb{E}[\mathcal{L}_\tau^\ell \mid \mathcal{F}_{\tau-1}] \mid \mathcal{F}_{c_t^\ell-1}]. \quad (\text{viii})$$

1214

Now, given the expression for deviation from expected risk:

1215

1216

1217

expanding this gives:

1218

1219

1220

1221

1222

$$\frac{1}{w} \sum_{\tau=c_t^\ell}^t \mathcal{L}_\tau^\ell - \frac{1}{w} \sum_{\tau=c_t^\ell}^t \mathbb{E}[\mathcal{L}_\tau^\ell \mid \mathcal{F}_{\tau-1}].$$

1223

Continuing from the previous expression, we now write:

1224

1225

1226

1227

$$\bar{R}_t^\ell - \mathbb{E}[\bar{R}_t^\ell \mid \mathcal{F}_{c_t^\ell-1}] = \frac{1}{w} \sum_{\tau=c_t^\ell}^t (\mathcal{L}_\tau^\ell - \mathbb{E}[\mathcal{L}_\tau^\ell \mid \mathcal{F}_{\tau-1}]). \quad (\text{ix})$$

1228

1229

Now applying the tower property again, and using the result from Eq. (iv), we observe:

1230

1231

1232

$$\mathcal{L}_\tau^\ell - \mathbb{E}[\mathbb{E}[\mathcal{L}_\tau^\ell \mid \mathcal{F}_{\tau-1}] \mid \mathcal{F}_{c_t^\ell-1}] = \mathbb{E}[X_\tau \mid \mathcal{F}_{c_t^\ell-1}]. \quad (\text{x})$$

1233

Putting Eq. (x) into Eq. (ix), we obtain:

1234

1235

1236

1237

$$\mathbb{E}[\bar{R}_t^\ell - \mathbb{E}[\bar{R}_t^\ell \mid \mathcal{F}_{c_t^\ell-1}]] = \frac{1}{w} \sum_{\tau=c_t^\ell}^t \mathbb{E}[X_\tau \mid \mathcal{F}_{c_t^\ell-1}]. \quad (\text{xi})$$

1238

1239

Since we are bounding this deviation in probability, we retain the raw form:

1240

1241

$$\bar{R}_t^\ell - \mathbb{E}[\bar{R}_t^\ell \mid \mathcal{F}_{c_t^\ell-1}] = \frac{1}{w} \sum_{\tau=c_t^\ell}^t X_\tau = \frac{S_t}{w}. \quad (\text{xii})$$

1242 Now we finally substitute the result from Eq. (xii) into the Azuma–Hoeffding inequality Eq. (vi):
 1243

$$\Pr \left(\bar{R}_t^\ell - \mathbb{E} \left[\bar{R}_t^\ell \mid \mathcal{F}_{c_t^\ell-1} \right] \geq \epsilon \right) = \Pr \left(\frac{S_t}{w} \geq \epsilon \right) \quad (\text{xiii})$$

$$= \Pr (S_t \geq \epsilon w) \leq \exp (-2\epsilon^2 w). \quad (\text{xiv})$$

1248 Hence, we finally obtain the main result:
 1249

$$\boxed{\Pr \left(\bar{R}_t^\ell - \mathbb{E}[\bar{R}_t^\ell \mid \mathcal{F}_{c_t^\ell-1}] \geq \epsilon \right) \leq \exp (-2\epsilon^2 \cdot |\mathcal{W}_t^\ell|)}$$

1253 Hence Proved. □
 1254

1255 **Remark** Lemma A.4.3 justifies using the empirical average risk \bar{R}_t^ℓ as a reliable proxy for the true
 1256 conditional expectation and supports the adaptive threshold update rule in Eq. (15) of the framework.
 1257

1258 **Corollary A.4.1.** *Given the threshold update rule from Eq. (15) of the framework: $\lambda_\ell^{t+1} = \lambda_\ell^t -$
 1259 $\rho (\bar{R}_t^\ell - \alpha)$, then for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, the deviation of the update
 1260 from the ideal update satisfies:*

$$1262 \quad |\lambda_\ell^{t+1*} - \lambda_\ell^{t+1}| := \rho \left| \mathbb{E}[\bar{R}_t^\ell \mid \mathcal{F}_{c_t^\ell-1}] - \bar{R}_t^\ell \right| \leq \rho \cdot \sqrt{\frac{\log(1/\delta)}{2|\mathcal{W}_t^\ell|}}.$$

1265 *Proof.* From Lemma 2, with probability at least $1 - \delta$, we have:
 1266

$$1267 \quad \bar{R}_t^\ell - \mathbb{E} \left[\bar{R}_t^\ell \mid \mathcal{F}_{c_t^\ell-1} \right] = \frac{S_t}{w} \quad \Rightarrow \quad \Pr \left(\bar{R}_t^\ell - \mathbb{E}[\bar{R}_t^\ell] \geq \epsilon \right) \leq \exp (-2\epsilon^2 w).$$

1269 We now want to choose ϵ such that:
 1270

$$1271 \quad \exp (-2\epsilon^2 w) = \delta \quad \Rightarrow \quad \epsilon^2 = \frac{\log(1/\delta)}{2w} \quad \Rightarrow \quad \epsilon = \sqrt{\frac{\log(1/\delta)}{2w}} \quad (\text{i})$$

1274 Using Eq. (i), we can conclude that with probability at least $1 - \delta$:
 1275

$$1276 \quad \left| \bar{R}_t^\ell - \mathbb{E}[\bar{R}_t^\ell \mid \mathcal{F}_{c_t^\ell-1}] \right| \leq \sqrt{\frac{\log(1/\delta)}{2w}}. \quad (\text{ii})$$

1278 Now substituting Eq. (ii) into the threshold update in framework's Eq. (15), and comparing with the
 1279 ideal update:
 1280

$$1281 \quad \lambda_\ell^{t+1*} := \lambda_\ell^t - \rho \left(\mathbb{E} \left[\bar{R}_t^\ell \mid \mathcal{F}_{c_t^\ell-1} \right] - \alpha \right),$$

1282 we conclude that:
 1283

$$1284 \quad \boxed{|\lambda_\ell^{t+1*} - \lambda_\ell^{t+1}| := \rho \left| \mathbb{E}[\bar{R}_t^\ell \mid \mathcal{F}_{c_t^\ell-1}] - \bar{R}_t^\ell \right| \leq \rho \cdot \sqrt{\frac{\log(1/\delta)}{2|\mathcal{W}_t^\ell|}}}.$$

1288 Hence Proved. □
 1289

1290 **Remark** From Corollary A.4.1 we observe that the adaptive threshold update remains close to its
 1291 ideal value, even when using empirical segment risk. As the stable window length $|\mathcal{W}_t^\ell|$ increases,
 1292 the deviation vanishes at a $O(1/\sqrt{|\mathcal{W}_t^\ell|})$ rate. This ensures the DAUO algorithm adapts reliably to
 1293 user preferences over time, with provable statistical stability.

1294 **Lemma A.4.4.** *Let $\mathcal{M}^1, \dots, \mathcal{M}^L$ be L base models. Assume that for each model \mathcal{M}^ℓ , the calibrated
 1295 prediction set $\mathcal{C}_{\lambda_\ell^t}^\ell$ satisfies the per-model miss probability bound: $\Pr \left(i_{\text{rel}}^{t+1}(u) \notin \mathcal{C}_{\lambda_\ell^t}^\ell(S_u^t) \mid \mathcal{F}_{t-1} \right) \leq$*

1296 β for all $\ell = 1, \dots, L$, where $\beta := \frac{\alpha}{2} + \varepsilon$, and $\varepsilon := \sqrt{\frac{\log(4|\mathcal{U}|)}{2|\mathcal{U}|}}$. Let $\mathcal{C}_{\lambda^t}^{\text{agg}}$ denote the ensemble
 1297 prediction set formed by randomized weighted majority voting, using aggregation weights $\mathbf{w}^t \in \Delta^L$,
 1298 the probability simplex.
 1299

1300 Then the miss probability of the ensemble satisfies:

$$1301 \Pr(i_{\text{rel}}^{t+1}(u) \notin \mathcal{C}_{\lambda^t}^{\text{agg}} \mid \mathcal{F}_{t-1}) \leq \alpha + 2\varepsilon.$$

1303 *Proof.* For any user u , we define the miss indicator for model \mathcal{M}^ℓ as:

$$1305 M_\ell := \mathbf{1} \left\{ i_{\text{rel}}^{t+1}(u) \notin \mathcal{C}_{\lambda_\ell^t}^{(\ell)}(S_u^{(t)}) \right\}. \quad (i)$$

1308 The ensemble predictor will fail if the true item receives insufficient support, i.e, the total weight of
 1309 models that include the item is less than $\frac{1}{2}$. Equivalently, the total weight of models that miss the
 1310 item exceeds $\frac{1}{2}$.

1311 We formally define the total miss weight:

$$1313 \sum_{\ell=1}^L w_\ell^t \cdot M_\ell. \quad (ii)$$

1316 Then the ensemble misses if the above is $\geq \frac{1}{2}$. We wish to bound the probability of ensemble failure:

$$1318 \Pr \left(\sum_{\ell=1}^L w_\ell^t \cdot M_\ell \geq \frac{1}{2} \mid \mathcal{F}_{t-1} \right).$$

1322 Applying Markov's inequality:

$$1323 \Pr(X \geq a) \leq \frac{\mathbb{E}[X]}{a},$$

1325 we obtain:

$$1326 \Pr \left(\sum_{\ell=1}^L w_\ell^t \cdot M_\ell \geq \frac{1}{2} \mid \mathcal{F}_{t-1} \right) \leq 2 \cdot \mathbb{E} \left[\sum_{\ell=1}^L w_\ell^t \cdot M_\ell \mid \mathcal{F}_{t-1} \right]. \quad (iii)$$

1329 Now, by linearity of expectation, we have:

$$1330 \mathbb{E} \left[\sum_{\ell=1}^L w_\ell^t M_\ell \mid \mathcal{F}_{t-1} \right] = \sum_{\ell=1}^L w_\ell^t \cdot \mathbb{E}[M_\ell \mid \mathcal{F}_{t-1}] = \sum_{\ell=1}^L w_\ell^t \cdot \Pr(M_\ell = 1 \mid \mathcal{F}_{t-1}). \quad (iv)$$

1334 By Lemma A.4.2, each model satisfies:

$$1335 \Pr(M_\ell = 1 \mid \mathcal{F}_{t-1}) \leq \beta. \quad (v)$$

1338 Therefore,

$$1339 \sum_{\ell=1}^L w_\ell^t \cdot \Pr(M_\ell = 1 \mid \mathcal{F}_{t-1}) \leq \beta \cdot \sum_{\ell=1}^L w_\ell^t = \beta. \quad (vi)$$

1341 Substituting result from Eq. (vi) to Eq. (iii) back, we get the final ensemble miss bound:

$$1343 \boxed{\Pr(i_{\text{rel}}^{t+1}(u) \notin \mathcal{C}_{\lambda^t}^{\text{agg}} \mid \mathcal{F}_{t-1}) \leq 2\beta = \alpha + 2\varepsilon.} \quad (vii)$$

1346 Hence Proved. □

1347 **Remark** Lemma A.4.4 shows that the ensemble miss probability remains bounded by $\alpha + 2\varepsilon$ and
 1348 preserves statistical validity despite possible correlation among predictors. As the calibration batch
 1349 size $|\mathcal{U}| \rightarrow \infty$, the deviation $\varepsilon \rightarrow 0$, and the ensemble risk converges to α .

1350 **PROOF OF THEOREM 2**
1351

1352 *Proof.* Let $m := |\mathcal{U}|$ and $\varepsilon := \sqrt{\frac{\log(4m)}{2m}}$. Let $\mathcal{S} \subseteq \{1, \dots, T\}$ denote the stable timestamps, where
1353 no preference shift is detected, and let $\mathcal{D} := \{1, \dots, T\} \setminus \mathcal{S}$ denote the detection delay rounds. Then,
1354 we can say:

$$1355 \quad |\mathcal{S}| = T - D_T, \quad |\mathcal{D}| = D_T.$$

1356 From Lemmas A.4.2 and A.4.4, the expected loss satisfies:

$$1357 \quad \mathbb{E} [\mathcal{L}_u(\mathcal{C}_{\lambda^t}^{\text{agg}}) \mid \mathcal{F}_{t-1}] \leq \alpha + 2\varepsilon. \quad (\text{i})$$

1360 For $t \in \mathcal{D}$, the DAUO algorithm may be out-of-calibration. We conservatively assume the worst-case
1361 loss of 1 at each such round. There are D_T such rounds yielding:

$$1362 \quad \sum_{t \in \mathcal{D}} \mathbb{E} [\mathcal{L}_u^{(t)}] \leq D_T. \quad (\text{ii})$$

1363 Now we handle the additional slack from DKW failures. At each round $t \in [T]$ and for each model
1364 $\ell \in [L]$, we calibrate the threshold using DKW. So there are $T \times L$ calibration events.

1365 Let $Z_{t,\ell} \in \{0, 1\}$ be the indicator that DKW calibration fails at round t for model ℓ .

1366 Then the total number of failures is:

$$1367 \quad K := \sum_{t=1}^T \sum_{\ell=1}^L Z_{t,\ell}. \quad (\text{iii})$$

1368 By Lemma A.4.2, each calibration failure has probability at most: $p := \frac{1}{2m}$. From Lemma 1, each
1369 DKW calibration failure has probability at most $p = \frac{1}{2m}$, and there are $T \times L$ such events. Thus, the
1370 expected number of failures is:

$$1371 \quad \mu := \mathbb{E}[K] = \frac{TL}{2m}.$$

1372 We want to control the tail deviation:

$$1373 \quad \Pr(K \geq \mu + y) \leq \delta.$$

1374 Using the Bernstein bound, we have:

$$1375 \quad \Pr(K \geq \mu + y) \leq \exp\left(\frac{-y^2}{2(\mu + y/3)}\right). \quad (\text{iv})$$

1376 To satisfy this inequality with probability $\geq 1 - \delta$, we choose y to dominate both the average and tail
1377 slack. Following standard practice, we set:

$$1378 \quad y := \max\{\mu, 2 \log\left(\frac{1}{\delta}\right)\}.$$

1379 This guarantees:

$$1380 \quad \frac{y^2}{2(\mu + y/3)} \geq \log\left(\frac{1}{\delta}\right).$$

1381 In realistic recommender settings, $m \gg L$, therefore:

$$1382 \quad \mu = \frac{TL}{2m} \leq 2 \log\left(\frac{1}{\delta}\right).$$

1383 Thus we may safely choose:

$$1384 \quad y = 2 \log\left(\frac{1}{\delta}\right).$$

1385 With this value, we get the high-probability bound:

$$1386 \quad K \leq \mu + y \leq \frac{TL}{2m} + 2 \log\left(\frac{1}{\delta}\right). \quad (\text{v})$$

1404 Divide inequality (v) by T , we obtain:
 1405

$$\frac{K}{T} \leq \frac{TL}{2mT} + \frac{2\log(1/\delta)}{T}.$$

1406 Since $\frac{TL}{2m} \leq 2\log(1/\delta)$ (by assumption), we get:
 1407

$$\frac{K}{T} \leq \frac{2\log(1/\delta)}{T}. \quad (vi)$$

1408 Now combine the bounds from (i), (ii), and (vi):
 1409

$$\frac{1}{T} \sum_{t=1}^T \mathbb{E} [\mathcal{L}_u (\mathcal{C}_{\lambda^t}^{\text{agg}})] \leq \frac{T - D_T}{T} (\alpha + 2\varepsilon) + \frac{D_T}{T} \cdot 1 + \frac{K}{T}.$$

1410 Substitute $\frac{K}{T} \leq \frac{2\log(1/\delta)}{T}$ and simplifying we get:
 1411

$$\frac{1}{T} \sum_{t=1}^T \mathbb{E} [\mathcal{L}_u (\mathcal{C}_{\lambda^t}^{\text{agg}})] \leq \alpha + 2\varepsilon + \frac{D_T + 2\log(1/\delta)}{T}. \quad (vii)$$

1412 At round $T + 1$, the ensemble prediction set $\mathcal{C}_{\lambda^T}^{\text{agg}}$ is formed using the thresholds λ^T trained across
 1413 rounds 1 to T .
 1414

1415 Assuming no additional change-point occurs at round $T + 1$, a standard assumption in horizon-end
 1416 guarantees, the loss distribution is equivalent to a stable round. Thus, the same bound applies,
 1417 yielding:
 1418

$$\mathbb{E}_{u \sim \mathcal{U}} [\mathcal{L}_u (\mathcal{C}_{\lambda^T}^{\text{agg}})] \leq \alpha + 2 \sqrt{\frac{\log(4|\mathcal{U}|)}{2|\mathcal{U}|}} + \frac{D_T + 2\log(1/\delta)}{T}.$$

1419 Hence Proved. □
 1420

1421 A.5 IMPLEMENTATION DETAILS

1422 In this section, we elaborate on the implementation details of the experiments conducted. The
 1423 experiments were conducted on NVIDIA A40 GPU. Firstly, all base recommender models, NCF[19],
 1424 CASER[39], SASRec[25], and FMLP-Rec[47] are trained for 100 epochs with a batch size of
 1425 256, a learning rate of 0.001, the Adam optimizer, and Binary Cross Entropy Loss (BCELoss).
 1426 These models are implemented following their respective public repositories. User preference-aware
 1427 baselines include TiSASRec[27], CDR[41], and Oracle4Rec[42]. TiSASRec extends SASRec with
 1428 time-aware attention and relation-based temporal encoding, trained for 200 epochs with a batch size
 1429 of 128. CDR employs a variational framework with domain-level disentanglement, trained for 200
 1430 epochs with a batch size of 512 and a learning rate of 0.0001. Oracle4Rec trains for 100 epochs
 1431 with a batch size of 256 using a Transformer-style architecture with GELU activations and dropout
 1432 regularization. These models retain their original optimization logic and regularization strategies.
 1433 We furthermore implement three conformal prediction baselines: Split Conformal[40], EnbPI[43],
 1434 and Online Conformal Prediction[1]. All conformal variants reuse the predicted score files from the
 1435 base models and calculate expected loss based on ranking-based loss functions (e.g., MRR, NDCG,
 1436 Recall). For Split Conformal, we determine the fixed prediction threshold via the $(1 - \alpha)$ -quantile of
 1437 the first calibration timestamp, with $\alpha = 0.1$. For EnbPI, we use an ensemble of 10 bootstrapped
 1438 recommendation models, with predictions aggregated using the sample mean. Prediction set widths
 1439 were updated after each instance using a sliding window of the most recent $T = 5$ residuals. The
 1440 miscoverage level was set to $\alpha = 0.1$, and expected loss was computed based on the same utility
 1441 metrics. For Online Conformal Prediction, we use a decaying step size update rule, with the threshold
 1442 updated after each instance. We set $\alpha = 0.1$ and used the same loss definitions as in other conformal
 1443 methods explained above. The initial threshold λ^0 was shared across all conformal variants and
 1444 our framework to ensure consistent initialization. Our proposed framework is implemented on
 1445 top of the base recommendation model outputs. We conduct a manual search over the contrasting
 1446

hyperparameters in our Bayesian change-point module: the shift sensitivity $\beta \in \{0.5, 0.7, 0.9, 1.1\}$ and the segment-length bias $\gamma \in \{0, 0.3, 0.5, 0.7, 1, 1.3, 1.5, 1.75, 2\}$. Based on manual validation of segment stability and calibration smoothness across datasets, we fixed $\beta = 0.7$ and $\gamma = 1.1$. The error tolerance value ϵ is chosen based on the dataset size and the confidence value δ . The threshold update step size η in Eq. (15) was set to 0.05 throughout. To ensure consistency and reproducibility, we reused the predicted score files generated by the trained base models for all conformal baselines and our framework.

A.5.1 UTILITY FUNCTION DEFINITIONS

The user utility function $U_{metric}(i_{rel}^{t+1}, \mathcal{C}_{\lambda^t})$, used in the loss formulation in Eq. (5) in main paper quantifies how well the prediction set $\mathcal{C}_{\lambda^t} \subseteq \mathcal{I}$ captures the relevant item i_{rel}^{t+1} under different evaluation metrics. We define the following instantiations of U_{metric} based on standard recommendation metrics:

Recall-based utility:

$$U_{recall}(i_{rel}^{t+1}, \mathcal{C}_{\lambda^t}) = \mathbb{I}[i_{rel}^{t+1} \in \mathcal{C}_{\lambda^t}]. \quad (\text{viii})$$

This utility equals 1 if the relevant item is present in the prediction set and 0 otherwise.

MRR-based utility:

$$U_{mrr}(i_{rel}^{t+1}, \mathcal{C}_{\lambda^t}) = \begin{cases} \frac{1}{r(i_{rel}^{t+1})}, & \text{if } i_{rel}^{t+1} \in \mathcal{C}_{\lambda^t}, \\ 0, & \text{otherwise,} \end{cases} \quad (\text{ix})$$

where $r(i_{rel}^{t+1})$ denotes the rank position of the relevant item within \mathcal{C}_{λ^t} , assuming items are ordered by decreasing model score.

NDCG-based utility:

$$U_{ndcg}(i_{rel}^{t+1}, \mathcal{C}_{\lambda^t}) = \frac{1}{\log_2(r(i_{rel}^{t+1}) + 1)} \cdot \mathbb{I}[i_{rel}^{t+1} \in \mathcal{C}_{\lambda^t}], \quad (\text{x})$$

which discounts the gain based on the rank of the relevant item in the prediction set.

These definitions are used across all calibration and evaluation steps to compute utility-based loss values and coverage metrics.

A.6 DETAILED EXPERIMENTATION DETAILS

In the main paper, we introduced five different datasets to evaluate the effectiveness of our framework. Below, we provide further details on the datasets, data-preprocessing, the base models, the user-preference aware baselines, and the conformal baselines used for comparison.

A.6.1 DATASETS

- **Book-Crossing**[48]: a book-review dataset with explicit ratings and browsing logs.
- **Last.fm**[6]: music-streaming listening histories dataset providing implicit feedback.
- **Taobao**[22]: a large-scale e-commerce dataset with clicks, carts, and purchases attributes.
- **MovieLens**[18]: an explicit and implicit feedback dataset in the movie-rating domain.
- **Gowalla**[10]: a location-based social-network checkins dataset for point-of-interest recommendation.

All datasets are time-ordered, filtered using a 50-core strategy, and processed according to the data preprocessing and splitting procedure described below.

A.6.2 SAMPLING AND DATA SPLITTING

- **Negative sampling.** Following the common experimentation strategy in recommendation frameworks, we select 50 non-interacted items per user at every time-stamp through negative sampling for training, validation, and testing.

1512 • **Data Splitting.** Inspired by the sliding-window evaluation, we partition each dataset
 1513 1514 into five contiguous time-ordered batches B_1, \dots, B_5 to capture potential shifts in user
 1515 1516 preferences over time. Within a batch, the first 80% of interactions are used to train the
 1517 1518 model. The next 20% are used to calibrate the conformal threshold λ_ℓ^t and weight parameters
 1519 1520 \mathbf{w}^t , while for the final interaction, the previously learned threshold and weight parameters
 1521 1522 are frozen and the framework is evaluated. The final results presented represent the average
 1523 1524 over all batches.
 1525 • **Multiple trials:** To account for variability in sampling, we repeat the experiments over
 1526 1527 20 independent trials. For each trial, random negative samples were drawn for training,
 1528 1529 validation, and testing. The results were averaged across all the trials.

A.6.3 BASE RECOMMENDATION MODELS

We build our framework on top of four representative recommendation backbones, each capturing different modeling paradigms:

1527 • **Neural Collaborative Filtering (NCF)[19]:** Involves combination of GMF (Generalized
 1528 1529 Matrix Factorization) with 8-dimensional embeddings and MLP using layers [64, 32, 16]
 1530 1531 with ReLU and dropout; combined with a prediction layer over concatenated representations.
 1532 • **Caser[39]:** A convolutional sequence model using vertical and horizontal filters with varying
 1533 1534 receptive fields over a fixed-length user interaction sequence. Configured with embedding
 1535 1536 dimension $d = 50$, sequence length $L = 5$, number of horizontal and vertical filters $n_h = 16$,
 1537 $n_v = 4$, followed by a fully connected layer and dropout ($p = 0.5$).
 1538 • **SASRec[25]:** A Transformer-style sequential recommender with 2 self-attention blocks, 1
 1539 1540 attention head, hidden size of 50, max sequence length of 50, and dropout rate of 0.5. Layer
 1541 1542 normalization, residual connections, and position encoding are used to model sequential
 1543 1544 dependencies.
 1545 • **FMLP-Rec[47]:** A Filter-Enhanced MLP model replacing attention heads with learned
 1546 1547 convolutional filters. Configured with hidden size of 64, 2 filter-enhanced encoder layers,
 1548 1549 2 attention heads, dropout = 0.5, and GELU activation. Position embeddings and layer
 1549 1550 normalization are applied on top of the input sequence.

A.6.4 PREFERENCE-AWARE RECOMMENDATION MODELS

To capture evolving user preferences and temporal context, we additionally incorporate three specialized preference-aware baselines:

1547 • **TiSASRec:[27]** A time-aware sequential recommender model that extends SASRec by
 1548 1549 incorporating absolute and relative time information into the attention mechanism. We use 2
 1550 1551 attention blocks, 1 attention head, and a hidden dimension of 50, along with a time matrix
 1552 1553 span of 256 and dropout rate of 0.2.
 1554 • **CDR (Causal Debiasing Recommendation):[41]** A user-centric causal recommendation
 1555 1556 model that disentangles user preferences across multiple training environments by learning
 1557 1558 group-invariant representations. We configure the MLP encoder as [100, 20], preference
 1559 1560 encoder as [100, 200], with latent variables all set to dimension 2. Dropout is set to 0.5 and
 1561 1562 batch norm is enabled.
 1563 • **Oracle4Rec:[42]** A 5-layer Transformer-style encoder with hidden size 128, 2 attention
 1564 1565 heads, GELU activation, and dropout of 0.5. It learns forward-looking user preferences by
 1566 1567 leveraging future interactions as oracle guidance. It employs two parallel encoders with
 1568 1569 shared embeddings: a Past Information Encoder and a Future Information Encoder, each
 1569 1570 comprising a noise filtering module, a causal self-attention module, and an interaction
 1571 1572 prediction layer.

A.6.5 CONFORMAL PREDICTION BASELINES

We implemented three conformal prediction baselines and adapted them for recommendation tasks using ranking-based losses based on recommendation metrics (Recall, MRR, and NDCG). For each method, we used calibrated scores and constructed dynamic prediction sets over time.

- 1566 • **Split Conformal Prediction:** A simple offline baseline where a global threshold λ is
1567 computed and fixed during calibration and inference. Prediction sets are constructed by
1568 thresholding sorted item scores per user. This method serves as a non-adaptive control with
1569 no online feedback or user preference modeling.
- 1570 • **Ensemble Batch Prediction Interval (EnbPI):** A time series conformal approach adapted
1571 for sequential recommendation task, uses a chosen sliding window of size 5 and a shift size
1572 $s=1$ for full online behavior. An ensemble of 10 base models is used, and the prediction
1573 sets are constructed by aggregating top items across models using a mean-based ensemble
1574 score. The threshold λ is updated after each interaction using decayed step size based on
1575 loss deviations.
- 1576 • **Online Conformal:** A fully online adaptive approach that dynamically recalibrates the
1577 threshold λ based on user-specific risk feedback. After each interaction, the conformal
1578 predictor computes the empirical loss based on the utility metric and updates λ^t using a
1579 gradient-based rule with decay. Like EnbPI, prediction sets are constructed using sorted
1580 calibrated scores, but don't use model ensembling.

1581 A.7 ADDITIONAL EXPERIMENTS

1582 A.7.1 RESULTS COMPARED WITH BASE MODELS AND PREFERENCE-AWARE BASELINES 1583 (CONT.)

1584 We extend the analysis provided in the main paper, where we evaluate the SURE framework using
1585 four recommendation base models and against three user-preference-aware baselines in terms of
1586 recommendation metrics (i.e., MRR, Recall, NDCG). We present the results of the experimentations
1587 conducted on Taobao, MovieLens and Gowalla Datasets in Tables 5 and 6. These tables support
1588 the key findings: the SURE framework consistently controls risk within the predefined threshold
1589 $\alpha = 0.05$ with high confidence across all the base models, and as a result, it consistently outperforms
1590 all baselines on different performance metrics (MRR, Recall, NDCG) across datasets. This further
1591 validates the dataset-agnostic nature of our framework.

1592 A.7.2 RESULTS COMPARED TO CONFORMAL BASELINES (CONT.)

1593 Next, we continue our analysis comparing our framework with different conformal baselines in
1594 terms of coverage and set size. We conduct the experiments on Last.fM (Table 7), Taobao (Table 8),
1595 MovieLens (Table 9) and Gowalla (Table 10) datasets respectively and compare the results on base
1596 recommender models. The results reaffirm the main paper observations that our framework can
1597 ensure the best coverage-efficiency trade-off on every base model across datasets, ensuring valid
1598 recommendation sets.

1599 A.7.3 PARAMETER ANALYSIS

1600 We analyze the influence of error rate α , confidence parameter δ , change-point detector parameters
1601 (β, γ), and the number of experts L on the recommendation sets generated by the SURE framework.

1602 We first evaluate the impact of error rate α , varying in $[0.05, 0.07, 0.10, 0.12, 0.15]$, on performance
1603 and the average prediction set sizes under fixed confidence thresholds $\delta = 0.05$ using the Book-
1604 Crossing dataset. As shown in Figure 2, as the error rate α increases, the performance across different
1605 metrics (MRR, Recall, NDCG) as well as the average set size across all models decreases. This
1606 decreasing trend demonstrates the framework's ability to generate valid prediction sets that adapt to
1607 the error rate α .

1608 We further evaluate the effect of varying confidence $\delta \in [0.05, 0.10, 0.15, 0.20, 0.25]$ on performance
1609 and average set sizes under fixed risk thresholds ($\alpha = 0.07$) using the Last.fm dataset in Figure 3. In
1610 general, all the models show a decreasing trend, validating the effectiveness of the framework. This is
1611 because relaxing confidence in risk constraints makes predictions less conservative, thereby reducing
1612 the number of items included in the recommendation set. Interestingly, performance and set sizes
1613 show a smaller decline for δ compared to α , since δ controls only the confidence with which the risk
1614 constraint must hold i.e., the probability mass in the extreme tail, whereas α sets the risk level itself.

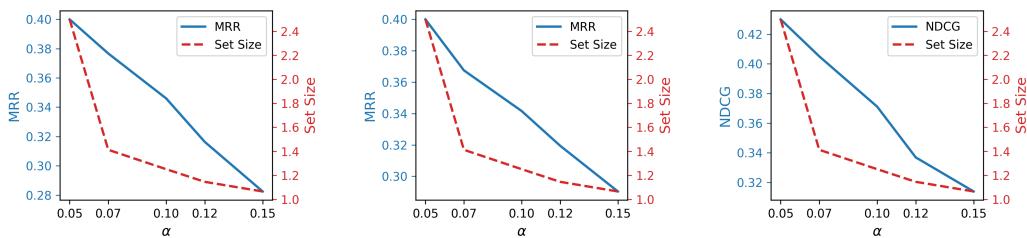
1615 We also perform a grid study of the change-point parameters β (shift sensitivity) and γ (segment-
1616 length prior) on Book-Crossing dataset while holding all other settings fixed. Table 11 reports average

1620 Table 5: Performance comparisons with base models (NeuMF, CASER, SASRec and FMLP-Rec)
1621 and user preference aware baselines (TiSASRec, CDR and Oracle4Rec) on **Taobao** and **MovieLens**
1622 **Datasets** using metrics (MRR, Recall, NDCG). For SURE, α and δ are set empirically as 0.05,
1623 respectively. Bold indicates the best result, and underline indicates the second best.

Method	Taobao			MovieLens		
	MRR \uparrow	Recall \uparrow	NDCG \uparrow	MRR \uparrow	Recall \uparrow	NDCG \uparrow
Model Ceiling@25(NeuMF)	0.336	0.625	0.349	0.392	0.784	0.415
NeuMF	0.275	0.556	0.289	0.342	0.721	0.358
NeuMF + SURE (Ours)	0.292	0.587	0.298	0.356	0.739	0.368
Model Ceiling@25(CASER)	0.381	0.645	0.391	0.434	0.831	0.445
CASER	0.320	0.589	0.338	0.381	0.775	0.389
CASER + SURE (Ours)	0.343	0.612	0.350	0.391	0.798	0.395
Model Ceiling@25(SASRec)	0.395	0.663	0.408	0.458	0.854	0.469
SASRec	0.337	0.605	0.338	0.395	0.795	0.405
SASRec + SURE (Ours)	0.353	<u>0.625</u>	0.359	<u>0.413</u>	0.807	<u>0.423</u>
Model Ceiling@25(FMLP-Rec)	0.412	0.685	0.421	0.474	0.886	0.493
FMLP-Rec	<u>0.363</u>	0.612	0.361	0.405	0.811	0.415
FMLP-Rec + SURE (Ours)	0.373	0.649	0.385	0.435	0.851	0.454
User Preference-Aware Models						
TiSASRec	0.348	0.610	0.353	0.402	0.802	0.412
CDR	0.339	0.609	0.351	0.399	0.795	0.405
Oracle4Rec	<u>0.363</u>	0.615	<u>0.363</u>	0.411	<u>0.835</u>	0.419

1651 set size / coverage. We observe a consistent trade-off: larger β or smaller γ makes the detector more
1652 responsive, yielding slightly larger sets with improved coverage; the reverse favors tighter sets but
1653 risks transient under-coverage. In practice, we set $\beta=0.7$, $\gamma=1.1$ as a balanced choice across datasets.
1654 Finally, we vary the number of bootstrapped experts $L \in \{5, 10, 20\}$ and observe that SURE’s set
1655 size and coverage are stable (Table 12). This empirical insensitivity is consistent with Theorem 5.1,
1656 which implies only a $\mathcal{O}(\sqrt{\ln L})$ growth term in the ensemble set size bound.

1657 Overall, this parameter analysis guides real-world applications in balancing performance and recom-
1658 mendation set compactness with confidence guarantees.



1670 Figure 2: Performance analysis on the **Book-Crossing** dataset for varying $\alpha \in$
1671 $0.05, 0.07, 0.10, 0.12, 0.15$ with fixed $\delta = 0.05$, shown in terms of recommendation metrics and
1672 prediction set size.

1674 Table 6: Performance comparisons with base models (NeuMF, CASER, SASRec and FMLP-Rec)
 1675 and user preference aware baselines (TiSASRec, CDR and Oracle4Rec) on **Gowalla** using metrics (
 1676 MRR, Recall, NDCG). For SURE, α and δ are set empirically as 0.05, respectively. Bold indicates
 1677 the best result, and underline indicates the second best.

Method	Gowalla		
	MRR \uparrow	Recall \uparrow	NDCG \uparrow
Model Ceiling@25(NetMF)	0.327	0.618	0.334
NetMF	0.286	0.565	0.289
NetMF + SURE (Ours)	0.291	0.577	0.309
Model Ceiling@25(CASER)	0.376	0.643	0.384
CASER	0.322	0.589	0.336
CASER + SURE (Ours)	0.334	0.602	0.343
Model Ceiling@25(SASRec)	0.385	0.667	0.394
SASRec	0.332	0.599	0.349
SASRec + SURE (Ours)	<u>0.344</u>	<u>0.612</u>	0.359
Model Ceiling@25(FMLP-Rec)	0.406	0.679	0.413
FMLP-Rec	0.342	0.605	0.355
FMLP-Rec + SURE (Ours)	0.359	0.632	0.364
User Preference-Aware Models			
TiSASRec	0.339	0.601	0.350
CDR	0.333	0.595	0.349
Oracle4Rec	0.343	0.609	<u>0.360</u>

1701 Table 7: Comparison in terms in terms of coverage and average prediction set size with conformal
 1702 baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders
 1703 (NeuMF, CASER, SASRec, and FMLP-Rec) using the **Last.fM** dataset. The error rate is set as
 1704 $\alpha = 0.10$. Bold indicates the best result, underline indicates the second best.

Base Model	Coverage \uparrow				Set Size \downarrow			
	Split	EnbPI	Online	SURE (Ours)	Split	EnbPI	Online	SURE (Ours)
NeuMF	0.833	0.858	0.881	0.901	41	42	42	43
CASER	0.835	0.868	0.884	0.903	<u>40</u>	42	43	41
SASRec	0.849	0.870	0.889	<u>0.905</u>	<u>40</u>	41	42	<u>40</u>
FMLP-Rec	0.855	0.873	0.899	0.907	<u>40</u>	<u>40</u>	<u>40</u>	39

1714 Table 8: Comparison in terms in terms of coverage and average prediction set size with conformal
 1715 baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders
 1716 (NeuMF, CASER, SASRec, and FMLP-Rec) using the **Taobao** dataset. The error rate is set as
 1717 $\alpha = 0.10$. Bold indicates the best result, underline indicates the second best.

Base Model	Coverage \uparrow				Set Size \downarrow			
	Split	EnbPI	Online	SURE (Ours)	Split	EnbPI	Online	SURE (Ours)
NeuMF	0.828	0.859	0.880	0.901	42	43	44	44
CASER	0.835	0.862	0.881	0.903	42	43	42	42
SASRec	0.836	0.871	0.900	<u>0.909</u>	<u>41</u>	42	42	<u>41</u>
FMLP-Rec	0.838	0.879	0.901	0.911	<u>41</u>	<u>41</u>	<u>41</u>	40

Table 9: Comparison in terms in terms of coverage and average prediction set size with conformal baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders (NeuMF, CASER, SASRec, and FMLP-Rec) using the **MovieLens** dataset. The error rate is set as $\alpha = 0.10$. Bold indicates the best result, underline indicates the second best.

Base Model	Coverage ↑				Set Size ↓			
	Split	EnbPI	Online	SURE (Ours)	Split	EnbPI	Online	SURE (Ours)
NeuMF	0.851	0.859	0.862	<u>0.901</u>	39	40	40	39
CASER	0.861	0.878	0.872	<u>0.901</u>	39	40	40	38
SASRec	0.867	0.881	0.891	0.902	38	38	39	<u>36</u>
FMLP-Rec	0.871	0.889	<u>0.901</u>	<u>0.901</u>	38	37	38	35

Table 10: Comparison in terms in terms of coverage and average prediction set size with conformal baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders (NeuMF, CASER, SASRec, and FMLP-Rec) using the **Gowalla** dataset. The error rate is set as $\alpha = 0.10$. Bold indicates the best result, underline indicates the second best.

Base Model	Coverage ↑				Set Size ↓			
	Split	EnbPI	Online	SURE (Ours)	Split	EnbPI	Online	SURE (Ours)
NeuMF	0.829	0.851	0.871	0.901	43	43	44	44
CASER	0.831	0.860	0.883	<u>0.902</u>	43	<u>42</u>	44	43
SASRec	0.837	0.870	0.895	0.901	43	<u>42</u>	43	<u>42</u>
FMLP-Rec	0.842	0.875	0.900	0.905	<u>42</u>	47	43	41

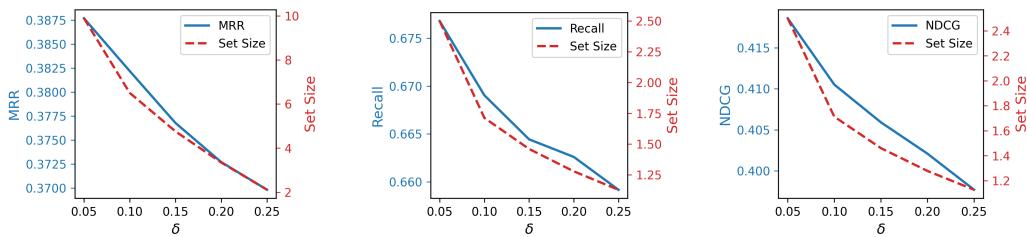


Figure 3: Performance analysis on the **Last.fm** dataset for varying $\delta \in \{0.05, 0.1, 0.15, 0.2, 0.25\}$ with fixed $\alpha = 0.07$, shown in terms of recommendation metrics and prediction set size.

A.7.4 ABLATION STUDY

To evaluate the effect of the two detection components in SURE, we perform an ablation study by selectively removing each loss-based shift term. We follow the same experimental protocol as described in Section A.6.2, with the error rate fixed at $\alpha = 0.1$ and confidence level $\delta = 0.05$. We report results on the Book-Crossing dataset with the SASRec backbone, and analyze the performance in terms of a) *validity*: measured as realized coverage against the error rate, b) *compactness*: measured in terms of the average set size, and c) *robustness*: which is measured in terms of the recommendation set volatility across the time stamps. We define the robustness parameter χ as:

$$\chi = \frac{1}{T-1} \sum_{t=2}^T \frac{|\mathcal{C}_{\lambda_t}^{\text{agg}} \Delta \mathcal{C}_{\lambda_{t-1}}^{\text{agg}}|}{|\mathcal{C}_{\lambda_{t-1}}^{\text{agg}}|},$$

where Δ denotes the difference between consecutive aggregated prediction sets.

We consider the following cases: (1) **w/o** d_{ℓ}^{ldd} , where only the concept-sensitive divergence d_{ℓ}^{con} is retained; and (2) **w/o** d_{con} , where only the loss discrepancy distance d_{ldd} is retained. The results are denoted in Table 13. The results lead to following key observations:

1782 Table 11: Set size (left) and coverage (right) for different γ and β on **Book-Crossing** Dataset.
1783

$\gamma \downarrow / \beta \rightarrow$	0.5	0.7	1.0
0.9	44.6 / 0.920	45.6 / 0.924	46.5 / 0.930
1.1	42.1 / 0.895	42.8 / 0.908	43.5 / 0.912
1.3	41.2 / 0.889	42.2 / 0.892	43.1 / 0.901

1789 Table 12: Robustness to ensemble size L on **Book-Crossing** Dataset (set size / coverage).
1790

L	5	10	20
set size / coverage	42.5 / 0.906	42.9 / 0.908	43.5 / 0.908

- 1795 • Firstly, removing d_ℓ^{ldd} substantially reduces validity. The coverage drops below the target
1796 α . As a result, the framework tries to compensate by inflating the prediction sets. This is
1797 because, without the loss-discrepancy term, the detector becomes insensitive to uniform in-
1798 creases in difficulty across models. In such cases, shifts that affect all experts simultaneously
1799 go undetected, and calibration lags behind, leading to systematic under-coverage.
- 1800 • Secondly, removing d_ℓ^{con} primarily degrades robustness. Although coverage remains close
1801 to the target and the average set size looks competitive, the volatility χ nearly doubles. This
1802 indicates unstable calibration as the threshold λ fluctuates sharply in response to transient
1803 expert disagreements, even when the underlying distribution is relatively stable. In practice,
1804 this results in inconsistent recommendation sets from one time step to the next, potentially
1805 harming user trust.
- 1806 • Finally, the full SURE framework, by jointly utilizing both the loss-discrepancy and the
1807 concept-sensitive terms, balances the strengths of each detector. The loss-discrepancy
1808 term guards against systematic difficulty shifts, while the concept-sensitive term dampens
1809 volatility caused by transient expert fluctuations. Their combination ensures that coverage
1810 stays close to the nominal target (validity), prediction sets remain as small as possible
1811 without sacrificing risk guarantees (efficiency), and threshold updates evolve smoothly over
1812 time (robustness).

1813 These results show that each component is complementary and addresses a distinct failure mode,
1814 and together they form a balanced and reliable detector of preference shifts. Hence, both signals are
1815 indispensable for achieving stable uncertainty-aware recommendations under non-stationary user
1816 behavior.

1818 A.8 INTUITION OF ADAPTIVE DYNAMICS IN SURE

1820 To provide an intuitive understanding of the SURE framework’s adaptive capability, we visualize
1821 the internal dynamics of the DAUO algorithm during a user session based on interactions from the
1822 Taobao dataset, designed to illustrate a sequence of preference shifts. Figure 4 describes how the
1823 three key variables evolve: the rolling risk, the calibration threshold (λ), and the prediction set size.

1824 Figure 4 illustrates the clear causal sequence of the adaptation loop. Initially, stable user behavior
1825 allows for a high threshold ($\lambda \approx 0.62$) and compact set size. A sudden preference shift degrades the
1826 ranking quality, causing a risk spike. The DAUO update rule (Eq. 15) counters this by lowering λ
1827 (Middle Panel), which accordingly expands the prediction set (Bottom Panel) to restore coverage.
1828 Notably, the set size stabilizes at a higher level rather than returning to baseline because the underlying
1829 backbone model remains frozen. SURE correctly identifies that the frozen model is now less accurate
1830 for the new user preference and permanently maintains a larger safety margin to ensure continued
1831 risk control.

1832 A.9 DISCUSSION

1833 Our framework SURE reframes sequential recommendation as an uncertainty-aware prediction set
1834 problem that (1) hedges an ensemble of bootstrapped recommenders through Hedge weighting with

Table 13: Ablation of detection components on **Book-Crossing** Dataset

Variant	Coverage \uparrow	Avg set size \downarrow	Volatility $\chi \downarrow$
SURE	0.908	42.8	0.12
w/o d_ℓ^{ldd}	0.872	44.7	0.10
w/o d_ℓ^{con}	0.907	43.1	0.23

adaptive conformal thresholds, (2) detects user-specific preference shifts without any heuristically chosen window lengths utilizing a Bayesian changepoint detection model, and (3) provides sample guarantees that both the expected set size and the utility-based risk stay near-optimal under non-stationary preferences. Our claims are empirically supported as SURE consistently outperforms base recommender models and preference-aware recommender baselines on various recommendation metrics while maintaining tight and valid $(1 - \alpha)$ coverage across five public datasets. **It does so without adding any significant training time, hence it can be expanded to recent popular generative models** (Rajput et al., 2023; Zhai et al., 2024; Deng et al., 2025; Han et al., 2025). It is also robust in addressing broader concerns raised in the recommendations. Because thresholds and ensemble weights are updated externally with respect to a platform-defined utility function U_{metric} , the framework can incorporate fairness- or diversity-aware objectives directly. For example, U_{metric} can be defined to penalize concentration or unsafe content, or combined with exposure caps and pre-filters; the coverage guarantees then hold with respect to this modified U_{metric} , requiring no change to the theory. This flexibility ensures resilience to issues such as filter bubbles or echo chambers. Different fairness definitions across user groups is also supported by the mechanism. Since thresholds and Hedge weights are updated externally, calibration can be performed separately for groups (e.g., by demographics, region, or activity level). Replacing $|\mathcal{U}|$ with $|\mathcal{U}_g|$ yields valid guarantees for each group independently, preserving equitable coverage across heterogeneous populations. Users in smaller or sparser cohorts may see slightly larger average set sizes due to finite-sample slack, but validity is preserved as shown in Theorem 5.1 and Theorem 5.2.

SURE does face the finite-sample effect. While the smaller calibration size continues ensuring the validity in a dynamic environment, it may lead to more conservative prediction sets as shown in our theoretical results. Also, as commonly seen in conformal strategies, SURE can only be as good as the confidence scores it calibrates. If a backbone recommender produces poorly ranked logits with poorly calibrated backbones (NeuMF), SURE’s sets are $\sim 15\%$ larger than with stronger models (FMLP-Rec). We aim to address these challenges in future work. Overall, our work bridges the gap between sequential recommender systems’ lack of reliability in adaptive environments with changing user preferences, which is a pragmatic step towards inspiring future research in trustworthy recommendation systems.



Figure 4: **Dynamic Adaptation of SURE under Preference Shift.** (Top) The **rolling risk** spikes above the target $\alpha = 0.10$, indicating preference shifts. (Middle) The **calibration threshold** λ^t reacts immediately by lowering (Eq. 15) to loosen constraints. (Bottom) The **prediction set size** accordingly increases, confirming the framework's ability to actively detect and correct for preference shift in real-time.