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ABSTRACT

Although Sequential Recommender Systems (SRS) have been well developed to
capture temporal dynamics in user behavior, they face a critical gap in formal
performance guarantees under preference shifts. When preferences change, predic-
tions often become unreliable, undermining user trust and threatening long-term
platform success. To address this challenge, we introduce SURE (Shift-aware,
User-adaptive, Risk-controlled REcommendations), a dataset- and model-agnostic
framework that provides adaptive recommendation sets with formal coverage guar-
antees while remaining compact under preference shifts. Specifically, SURE (i)
ensures validity through a loss-based change-point mechanism that adaptively up-
dates calibration thresholds upon detecting preference shift, (ii) maintains compact
recommendation sets by stabilizing predictions with a Hedge-weighted ensemble
of bootstrapped experts, preventing validity from degenerating into impractically
large outputs, and (iii) guarantees robustness under non-stationarity by deriving
finite-sample bounds that ensure the ensemble’s expected set size remains close to
the best expert while controlling the utility-based risk in recommendation. Exten-
sive experiments across multiple datasets and base models validate the effectiveness
of the proposed framework, which aligns with our theoretical analysis.

1 INTRODUCTION

Sequential recommendation systems (SRS) learn temporal dependencies across user interaction
sequences to forecast future behavior, making them essential for platforms such as e-commerce,
streaming, and location-based services (Hussien et al., 2021; Chang et al., 2017; Rohilla et al., 2021).
Much research focuses on developing different architectures, e.g., SASRec (Kang & McAuley, 2018),
Caser (Tang & Wang, 2018), and FMLP-Rec (Zhou et al., 2022), which are trained on historical
interactions and then deployed with fixed parameters. In their canonical offline form, these models
are trained on historical interactions and then deployed with static parameters (Farzad & Bamshad,
2018; Chen et al., 2023), capturing temporal dynamics but remain brittle under preference shifts. As
a result, predictions may become unreliable. Periodic retraining can be costly and add latency (Shen
& Kurshan, 2023; Zhang et al., 2020), which is unacceptable in high-stakes recommender scenarios.

In recent years, some works have sought to mitigate this challenge by incorporating temporal posi-
tional encodings (Li et al., 2020) or segmenting user histories through causal variational frameworks
(Wang et al., 2023). However, these approaches still assume locally stable environments and cannot
fully adapt to abrupt preference shifts. Other works exploit future user interactions as oracle signals
during training (Xia et al., 2025). While promising, this strategy depends on information unavailable
in real-time prediction. Importantly, none of these methods provides statistical guarantees on perfor-
mance under evolving user behavior, a critical vulnerability that undermines the trustworthiness of
recommender systems.

As a result, we are motivated to propose a fundamentally new approach: a model-agnostic recom-
mendation framework offering rigorous statistical guarantees for performance under non-stationary
user preferences. Specifically, our goal is to construct dynamic and compact prediction sets around
recommended items that adaptively adjust to evolving user behaviors and guarantee recommendation
performance with high confidence (e.g., 95%) over time.

The code and implementation details are available at https://anonymous.4open.science/r/SURE_-02D2
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While Conformal Prediction (CP) (Vovk et al., 2005; Angelopoulos & Bates, 2021) can offer a
principled approach to the above challenge, it cannot be naively applied due to the violation of the
exchangeability assumption and distribut shift in SRS. Fortunately, adaptive conformal approaches
exist to handle non-exchangeability (Xu & Xie, 2021). However, applying these frameworks to
sequential RS task presents unique challenges: 1) The current adaptive conformal prediction methods
(Xu et al., 2024) often rely on a fixed-size rolling window to update confidence sets, which, as
discussed by Zaffran et al. (2022), can only work well for stationary residuals. Whereas real-world
behaviours in sequential RS environments are highly non-stationary. A fixed window size implicitly
assumes a constant shift rate, causing delayed adaptation for fast-shifting users and unnecessary
fluctuations for stable ones. 2) Secondly, tight and stable (1−α)-marginal coverage is attainable only
when each calibration window contains a sufficiently large and representative sample of residuals
(Gibbs & Candes, 2021; Zaffran et al., 2022; Angelopoulos et al., 2024). In sequential RS, however,
deep sequence models are trained on short and noisy interaction histories, which may result in
unstable model scores and heavy-tailed residual distributions. This instability eventually leads to
noisy threshold estimation and overly conservative prediction sets (Barber et al., 2021; Gupta et al.,
2019). This raises an important question: Can we design an uncertainty-aware prediction framework
that adapts to user-specific, non-stationary shift while (1) maintaining compact prediction sets even
under high uncertainty in model outputs, and (2) dispensing with a fixed-window hyperparameter yet
still guaranteeing (1− α)- marginal coverage with at least (1− δ)-confidence?

To answer these challenges, we propose SURE (Shift-aware, User-adaptive, Risk-controlled
REcommendations), a model-agnostic framework that outputs dynamic recommendation sets adapt-
ing to user-specific preferences shifts while offering formal guarantees. Specifically, SURE improves
robustness by maintaining an ensemble of base recommenders, each trained on a different bootstrap
of user–item interactions with their prediction sets aggregated via Hedge weighting, which, while
maintaining validity, automatically favours experts producing compact recommendations. It also
employs segmentation-based recalibration that triggers localized threshold updates using a loss-based
metric instead of a fixed rolling window. Subsequently, we prove that SURE controls both prediction
set size via variance-controlled aggregation and utility-based risk at inference time through adaptive
threshold calibration under preference shifts. We illustarte the framework in Figure 1 in Appendix.

Our contributions are summarized as follows:

• Firstly, we formulate the sequential recommendation problem from the perspective of an
uncertainty-aware prediction task, and propose a reliable and adaptive framework- SURE,
which generates compact yet valid prediction sets with user-specified α-risk under non-
stationary preferences.

• We then develop Dynamically Adaptive Uncertainty-aware Optimization (DAUO), an effi-
cient Hedge-based ensemble optimization algorithm that jointly updates ensemble weights
and risk thresholds to balance prediction set compactness and risk coverage, thereby achiev-
ing the objectives of SURE.

• Technically, we introduce a scalar loss-based shift metric that combines a relative loss-
discrepancy and a concept-sensitive divergence to quantify user preference shift, thereby
enabling dynamic segmentation and localized threshold recalibration.

• Theoretically, we establish statistical guarantees for SURE. Specifically, we show that (1)
the expected size of the ensemble prediction set never exceeds the best individual model’s
size at that timestamp, up to a variance-controlled slack (Theorem 5.1); and (2) the expected
utility-based risk at inference stays within a provable margin of α with probability at least
1− δ, even under shifting user preferences (Theorem 5.2).

• Empirically, we conduct extensive experiments using diverse recommendation base models
and benchmark datasets. We evaluate SURE against preference-aware recommender base-
lines in terms of recommendation performance and against conformal prediction methods
with respect to recommendation set compactness and coverage guarantees. The results, as
presented in Section 6, confirm the effectiveness and robustness of SURE, consistent with
its theoretical foundations.
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2 RELATED WORK

2.1 SEQUENTIAL RECOMMENDATION SYSTEMS (SRS)

SRS initially modeled item–to–item transitions with Markov chains (Rendle et al., 2010) or factoriza-
tion approaches Rendle et al. (2009) that accounted for short-range dependencies in user histories.
Deep learning models such as GRU4Rec (Hidasi et al., 2015), convolutional architectures, and
transformer-based methods (e.g., SASRec (Kang & McAuley, 2018), BERT4Rec (Sun et al., 2019))
extended this to capture long-term dependencies. However, while these models effectively learn tem-
poral dynamics, they often struggle to remain reliable when user preferences shift abruptly (Quadrana
et al., 2018; Pan et al., 2024). Recent works have sought to address non-stationarity or preference
shifts explicitly by disentangling user preferences through self-supervision (Ma et al., 2020), model-
ing temporal intervals in self-attention (Li et al., 2020), or separating stable and shifting preferences
via causal reasoning (Wang et al., 2023). A parallel line of work focuses on predictive uncertainty in
recommender systems. Coscrato & Bridge (2023); Xu et al. (2024) investigate fundamental limits
of top-N recommendation accuracy using information-theoretic bounds highlighting the increasing
importance of principled uncertainty modeling. Paliwal et al. (2024) propose Predictive Relevance
Uncertainty to estimate prediction reliability based on distance to training samples, while Cui et al.
(2024) develop a Bayesian deep collaborative filtering model coupled with an uncertainty-aware
ranking to improve trustworthiness in online physician recommendations. More recently, variational
and stochastic sequence models. Fan et al. (2021); Fang et al. (2020); Wang et al. (2022) have
explored uncertainty-aware sequential recommendation. However, these approaches, while powerful,
still lack finite-sample guarantees on recommendation quality under evolving preferences.

2.2 CONFORMAL PREDICTION

Conformal Prediction (CP) can quantify models’ uncertainty and can provide a finite sample guarantee
by creating distribution-free prediction sets that contain the true outcome with a user-specified
coverage probability (Vovk et al., 2005; Shafer & Vovk, 2008; Romano et al., 2019). Classical CP
(Angelopoulos & Bates, 2021) assumes exchangeability and uses a calibration split to choose a global
threshold; Some other methods like Inductive CP (Papadopoulos, 2008) consider the full dataset. To
remain valid under temporal shift, online (Angelopoulos et al., 2024; Wu et al., 2025) and adaptive
CP techniques (Gibbs & Candes, 2021; Zaffran et al., 2022; Xu et al., 2024; Liang et al., 2025)
have been developed that update calibration statistics on sliding windows or with an adaptive rate
of change in the global threshold. Some works have extended CP to recommender systems. Kagita
et al. (2022; 2023) extended top-N recommendation with conformal guarantees. However, these
approaches do not account for non-stationarity or change in user preferences in RS.

3 PRELIMINARIES

We first introduce the notations used in this paper. We consider m users and n items represented
by U = {uk}mk=1, and I = {ik}nk=1. For brevity, we use u and i to denote a user and an item in
this paper. In a sequential recommendation setting, every user u has a chronological sequence of
interacted items, denoted asHu = [i1, i2, . . . , i|Tu|] where it ∈ I represents an item interacted with
by user u at time step t, and |Tu| denotes the length of the sequence for user u. The objective of the
SRS is, given the historical interaction sequence Hu for each user u predict the next item they are
likely to interact with. Specifically:

it+1 = argmax
i∈I
M(i | Hu), (1)

where,M(i | Hu) : I × Hu → [0, 1], denotes the underlying recommender model.
Given the dynamic nature of user preferences, however, there is no guarantee of the model’s perfor-
mance. This limitation motivates us to explore the creation of dynamic recommendation sets that
adapt with changing user preferences, which we discuss next.

4 THE PROPOSED FRAMEWORK

In this section, we propose Shift-aware, User-adaptive, Risk-controlled REcommendations (SURE),
a novel framework designed to provide compact recommendations that adapt to evolving user
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preferences with theoretical performance guarantees in a sequential recommendation setting. We
begin by defining the construction of the dynamic prediction set Ct+1 ⊆ I for a single underlying
model, which is guided by a timestep-dependent threshold parameter λt ∈ Λ ⊂ R. Specifically:

Ct+1
λt (Hu) =

{
i ∈ I

∣∣M(i | Hu) ≥ λt
}
. (2)

For brevity we will refer to Cλt := Ct+1
λt (Hu). Our goal is, given the user-defined error rate

α ∈ [0, 1], for every timestamp, the recommendations created ensure:

R(Cλt) ≤ α. (3)

The risk R(.) in Equation (3) is defined as:

R(Cλt) = EU [Lu(Cλt)], (4)

where Lu(.) is the bounded user utility-based loss function defined as:

Lu(Cλt) = 1 − Umetric

(
it+1
rel , Cλt

)
. (5)

Here, Umetric(·) represents generalized recommendation metric (such as Recall or NDCG) that
measures performance of recommendation set Cλt for any user u given the relevant item it+1

rel .

The threshold λt in Equation (2) is learned from model scores, which are highly sensitive to the
quality of the underlying recommender. When models are trained on sparse user histories, as is
common in RS Bertin-Mahieux et al. (2011); Cho et al. (2011), the resulting scores can become
unstable, often leading to heavy-tailed residual distributions, which in turn destabilize threshold
estimation and might result in overly conservative prediction sets.

To address this, we propose using an ensemble of L base models:

M =
{
M1,M2, . . . ,ML

}
, (6)

where L is the number of models in the ensemble and eachMℓ is obtained, for example, by training
on a bootstrap sample of the full user set U , i.e., Uℓ ⊆ U .

Firstly, for each modelMℓ, we generate a prediction set Ct+1
ℓ := C t+1

λt
ℓ

(Hu), guided by its own
threshold λt

ℓ and ensuring the per-model analogue of Equation (3) is satisfied. Next, we aggregate
these sets, generated using λt = {λt

ℓ}Lℓ=1, into an ensemble-based recommendation. Specifically:

Caggλt = A
({
Ct+1
ℓ

}
ℓ :u∈Uℓ , w

t
)
, (7)

where A(·,wt) is an aggregation operator that merges the individual set predictors Ct+1
ℓ using a

weight distribution wt ∈ ∆L, the (L−1)-dimensional probability simplex (i.e., ∆L = {w ∈ RL :

wt
ℓ ≥ 0,

∑L
ℓ=1 w

t
ℓ = 1}), where each wt

ℓ determines the contribution of modelMℓ at time t.

The aggregation operator A(·,wt), following Gasparin & Ramdas (2024), is defined as:

A
({
Ct+1
ℓ

}L
ℓ=1

, wt
)
=

{
i ∈ I

∣∣∣∣∣
L∑

ℓ=1

wt
ℓ · 1

(
i ∈ Ct+1

ℓ

)
>

1 + k(t)

2

}
. (8)

Items i are included in the ensemble set if their total weighted support across base models exceeds
the randomized threshold 1+k(t)

2 , where k(t) ∼ Uniform[0, 1] introduces mild stochasticity to
discourage marginal inclusions. To favor models that produce efficient sets, we follow Freund &
Schapire (1997) and adaptively update the weights {wt}Tt=1 based on the cardinality of the prediction
sets produced.

Specifically, let stℓ denote the cardinality of the prediction set produced by base modelMℓ at time t,
i.e., stℓ =

∣∣Ct+1
ℓ

∣∣ , and let the cumulative size up to time t be St
ℓ =

∑t
τ=1 s

τ
ℓ . Then, for a learning

rate η ≥ 0, we update the weights as:

wt+1
ℓ =

exp(−ηSt
ℓ)∑L

j=1 exp(−ηSt
j)
, with w1 =

(
1
L , . . . ,

1
L

)
. (9)
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Meanwhile, another tough challenge to tackle is the evolving user preferences. As user preferences
change, the model’s threshold λt

ℓ learned over previous timestamps may fail to ensure Equation (3).
Hence, to maintain statistical validity and capture changes in user preferences, we introduce loss-
based shift metrics. For each base modelMℓ, we quantify preference change via the loss discrepancy
distance (dlddℓ ) and the concept-sensitive divergence (dconℓ ) respectively.

To define Loss Discrepancy Distance (LDD), we draw inspiration from theH∆H divergence definition
in Ben-David et al. (2010) by replacing its binary–disagreement indicator with a generalized bounded
predictive loss to measure the maximum discrepancy between a reference model and other models
across timepoints t and t′ < t. Specifically:

dlddℓ (t, t′) = max
M′∈M,M′ ̸=Mℓ

∣∣∣∣log(∣∣∣∣ Lt(Mℓ)− Lt(M′)

Lt′(Mℓ)− Lt′(M′) + ϵ

∣∣∣∣+ ϵ

)∣∣∣∣ , (10)

where Lt(Mℓ) denotes a generalized loss function (e.g. cross entropy) of modelMℓ at time t, and
ϵ > 0 ensures stability. Similarly, to capture concept-sensitive divergence, we define a hazard-style
term that compares the model’s loss across t and t′ to the sum of the least individual losses. Formally:

dconℓ (t, t′) = log

(
Lt(Mℓ) + Lt′(Mℓ) + ϵ

minM∈M(Lt(M)) + minM∈M (Lt′(M)) + ϵ

)
. (11)

We then combine the relative loss-discrepancy and the concept-sensitive divergence into a single
scalar loss-based shift metric of preference change:

dprefℓ (t, t′) = dlddℓ (t, t′) + dconℓ (t, t′). (12)

To localize preference shifts, we embed dprefℓ in a Bayesian change-point model. At each timestamp
t, we place a posterior probability distribution pℓ(·) over candidate segment starts c t

ℓ ∈ { c
t−1
ℓ + k |

k = 0, . . . , t− c t−1
ℓ } as follows:

pℓ
(
c t
ℓ = c t−1

ℓ + k
∣∣ t) = exp

[
−β dprefℓ (c t−1

ℓ + k, t)
]
(t− c t−1

ℓ − k + 1)γ

t−c t−1
ℓ∑

j=0

exp
[
−β dprefℓ (c t−1

ℓ + j, t)
]
(t− c t−1

ℓ − j + 1)γ

, (13)

where β > 0 tunes shift sensitivity and γ ≥ 0 controls the segment-length bias.

We pick the segment boundary for each model i.e. c t
ℓ = c t−1

ℓ + argmaxk pℓ
(
c t−1
ℓ + k | t

)
, set the

stable windowW t
ℓ := [ c t

ℓ , t ] and then calculate the average risk of the window as follows:

R̄ t
ℓ =

1

|W t
ℓ |
∑

τ∈W t
ℓ

R
(
C τ
ℓ

)
. (14)

Finally, to adaptively maintain statistical guarantees under detected user preference shift, calibration
threshold is updated as follows:

λ t+1
ℓ = λ t

ℓ − ρ
(
R̄ t

ℓ − α
)
, (15)

where ρ > 0 is a step size. The threshold λ t+1
ℓ decreases when segment risk exceeds α, expanding

the prediction set to restore validity, and increases when risk falls below α, thus achieving automatic
recalibration.

To this end, we complete modeling of proposed framework. To output user-wise dynamic prediction
sets, we instantiate it through DAUO ( Dynamically Adaptive Uncertainty-aware Optimization)
algorithm to learn parameters λt

l and weight vector wt. Algorithm is in Section A.3 Appendix.

Prediction Set Construction: At every interaction, the DAUO algorithm considers two adaptive
parameters: the current calibration threshold λt

ℓ and the ensemble weight vector wt. When a user u
with history Su arrives, the algorithm first evaluates every base modelMℓ to obtain the individual
prediction sets (Equation (2)). It then combines these sets through the weighted majority operator in
Equation (8), producing the aggregated recommendation. Since λt

ℓ is updated adaptively to enforce
Equation (3) and the Hedge weights are penalized by set size, the resulting prediction set is not only
valid, i.e., controls risk at level α, but also simultaneously compact.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 THEORETICAL ANALYSIS

In the previous sections, we demonstrate how the DAUO algorithm dynamically learns the threshold
λt
ℓ for an ensemble of trained modelsMℓ and updates it via empirical risk estimates over adaptive

windows, however, it remains to be seen whether this online calibration guarantees efficient and valid
predictions. In this section, we provide a theoretical analysis on (1) the provable upper bound on the
ensemble prediction set produced via weighted majority voting, and (2) the threshold λt

ℓ, learned
from historical user interactions and estimated segmental risk R̄ℓ

t , ensures that the true expected risk
remains close to the desired threshold α with high probability 1− δ.
Theorem 5.1 (Expected Aggregator Size). Let Cℓλt ⊆ I denote the prediction set produced by base
modelMℓ at time t, and let stℓ := |Cℓλt |. Let λt = (λt

1, . . . , λ
t
L) denote the per-model thresholds such

that the ensemble set Caggλt is formed by the randomized weighted majority rule k(t) ∼ Uniform[0, 1]

with Hedge weights wt∈∆L. Assuming ℓ∗ := argminℓ s
t
ℓ is the best expert at round t, the expected

size of the aggregated prediction set at time t+ 1 satisfies:

E k(t)

[
|Caggλt |

]
≤ stℓ∗ +

√
2 lnL vt + 2

3 lnL, (16)

where vt := Varℓ∼wt

(
stℓ/|I|

)
∈ [0, 1] is variance of normalized set sizes under Hedge distribution.

Proof. Proof with Lemma A.4.1 can be found in Section A.4.1 in Appendix. □
Remark 1. Theorem 5.1 shows that expected size of ensemble prediction set is no worse than that of
best base model at t, up to a variance-dependent slack. As base predictors begin to agree on coverage,
the variance vt diminishes, and the ensemble size approaches the best-case performance.
Theorem 5.2 (Expected Risk Control under User Preference Shifts). Let the DAUO algorithm run
over a horizon of length T . Assume the Bayesian change-point detector raises NT preference shifts
and let dj be the detection delay of the j-th shift so that DT :=

∑NT

j=1 dj . Let λT = (λT
1 , . . . , λ

T
L)

denote the vector of per-model thresholds after round T , and let Cagg
λT denote the ensemble prediction

set formed with those thresholds. Let Lu(CaggλT ) be the utility-based loss of user u under that ensemble.
Given a user batch of size |U| and a user-defined risk level α, then with probability at least 1− δ, the
expected utility-based loss at time T + 1, using the final threshold λT , satisfies:

Eu∼U
[
Lu(CaggλT )

]
≤ α+ 2

√
log(4|U|)

2|U|
+

DT + 2 log(1/δ)

T
. (17)

Proof. Proof with Lemmas A.4.2 to A.4.4 can be found in Section A.4.2 in Appendix. □
Remark 2. Theorem 5.2 ensures calibrated λT guarantees expected risk at time T +1 remains close
to user-defined target α, with confidence. The bound captures both calibration uncertainty (which
decays with user batch size |U|) and change-adaptation error (which vanishes as cumulative delay
DT becomes sublinear in T ). As both calibration and adaptation improve with scale, expected loss at
prediction time T +1 converges to α, ensuring reliability even under non-stationary user preferences.

To sum up, the results establish that our framework, by adaptively calibrating threshold λt
ℓ and

leveraging ensemble voting, guarantees control of both recommendation set size and utility-based
risk. Specifically, the set size remains competitive with best individual model (up to ensemble
variance), and expected loss at time T+1 is provably bounded around the user-specified threshold α.

6 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness of the proposed SURE framework.
Specifically, we design experiments to (1) validate whether the framework can achieve superior
performance in terms of recommendation metrics, i.e., Recall, NDCG and MRR when compared to
base models as well as preference-aware baselines, and (2) compare performance of the framework
with various static and adaptive conformal frameworks in terms of compactness of recommendation
set sizes and validity of coverage guarantees (3) analyze time efficiency of the proposed SURE
framework, (4) analyze the influence of hyperparameters, including key conformal parameters (α, δ)
as well as change-point detector settings (β, γ) and ensemble size (L) on the framework’s performance
(Section A.7.3 in Appendix), (5) conduct an ablation study to disentangle the contributions of
components in the shift detector (Section A.7.4 in Appendix).
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6.1 DATASETS AND BASELINE MODELS

We conduct experiments on five publicly available datasets across diverse domains: (1) Book-Crossing
(book reviews) (Ziegler et al., 2005), (2) Last.fm (music streaming) (Bertin-Mahieux et al., 2011),
(3) Taobao (e-commerce) (Jingwei et al., 2020), (4) MovieLens (movie ratings) (Harper & Konstan,
2015), and (5) Gowalla (location-based social network) (Cho et al., 2011). We implement SURE on
four base recommendation models selected to represent diverse modeling paradigms: (1) NeuMF (He
et al., 2017) (generalized matrix factorization and MLP hybrid), (2) CASER (Tang & Wang, 2018)
(convolutional sequence embedding), (3) SASRec (Kang & McAuley, 2018) (self-attention-based
sequential modeling), and (4) FMLP-Rec (Zhou et al., 2022) (filter-enhanced feed-forward MLP-
based model). For evaluation, we consider both standard recommendation metrics, i.e., Recall, MRR,
and NDCG, as well as uncertainty-aware objectives, including coverage guarantees and prediction set
size (compactness). On the recommendation metrics, we compare SURE against three preference-
aware recommendation models: (1) TiSASRec (Li et al., 2020), (2) CDR (Wang et al., 2023), and (3)
Oracle4Rec (Xia et al., 2025). For uncertainty-aware evaluation, we compare against three conformal
prediction methods: (1) standard Split Conformal (Vovk et al., 2005), where the threshold parameter
λ remains fixed; (2) EnbPI (Xu & Xie, 2021), an ensemble estimator with fixed-window calibration;
and (3) Online Conformal (Angelopoulos et al., 2024), which uses decaying update rule for threshold
λt. Full implementation details and description of datasets, base models, and preference-aware &
conformal baselines for reproducibility are provided in Sections A.5 and A.6 in Appendix.

6.2 EXPERIMENTAL RESULTS

6.2.1 RESULTS COMPARED WITH BASE MODELS AND PREFERENCE-AWARE BASELINES

We evaluate SURE framework using four recommendation base models and against three user-
preference-aware baselines in terms of standard metrics (MRR, Recall, NDCG). To reflect practical
screen/latency constraints, the maximum recommendation set size is capped at 25 items per user. For
each backbone model and metric, we define a Model Ceiling@25 score as the maximum achievable
value under its own ranking when limited to 25 items, computed per-user (by taking the shortest prefix
containing the relevant item) and then averaged across users. Following prior conformal prediction
literature (Angelopoulos & Bates, 2021; Bates et al., 2021; Vovk et al., 2005), we set the error rate
α = 0.05 and confidence level δ = 0.05, and aim to construct recommendation sets whose realized
metrics remain within α of their corresponding Model Ceiling@25with probability at least 1− δ. To
ensure fair comparison, all baselines are evaluated at the same average set size produced by SURE.
Results for BookCrossing and Last.fm are reported in Table 1, with additional results for MovieLens,
Gowalla, and Taobao in Section A.7.1 in Appendix. These results lead to following key observations:

• The proposed SURE framework controls risk within the predefined threshold α = 0.05 with
high confidence and achieves performance close to the model-specific ceiling across all base
models. Consequently, it consistently outperforms all baselines on standard metrics (MRR,
Recall, NDCG) across datasets.

• The performance also depends on the base model. For example, the state-of-the-art se-
quential model FMLP-Rec + SURE consistently outperforms NeuMF + SURE by at least
> 12% on every metric for Book-Crossing and 15% on Last.fm datasets, underscoring the
importance of a strong baseline.

• The average set size learned by our SURE framework improves performance of baselines
and narrows the gap to their model-specific ceilings, as seen with FMLP-Rec model on
Last.fm dataset. However, they still underperform compared to SURE, since a single global
prediction size cannot be personalized to individual user satisfaction Kweon et al. (2024).

• While the user-preference aware models generally perform well compared to the baselines
across both the datasets, their reliance on temporal cues Li et al. (2020), cross-domain
transfer Wang et al. (2023), or future-interaction signals Xia et al. (2025) breaks down
under sparsity, domain shift, or real-time constraints. Our uncertainty-aware, shift-adaptive
framework doesn’t make any such assumption and stays robust in every condition.

• Overall, the results demonstrate the data- and model-agnostic nature of SURE, achieving
superior performance across all metrics, models, and datasets.
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Table 1: Performance comparisons with base models ( NeuMF, CASER, SASRec and FMLP-Rec )
and user preference aware baselines ( TiSASRec, CDR and Oracle4Rec ) on Book-Crossing and
Last.fM Datasets using metrics ( MRR, Recall, NDCG ). For SURE, α and δ are set empirically as
0.05, respectively. Bold indicates the best result, and underline indicates the second best.

Method Book-Crossing Last.fm

MRR ↑ Recall ↑ NDCG ↑ MRR ↑ Recall ↑ NDCG ↑

Model Ceiling@25(NeuMF) 0.322 0.603 0.329 0.379 0.751 0.393

NeuMF 0.246 0.502 0.276 0.306 0.685 0.335
NeuMF + SURE (Ours) 0.289 0.557 0.302 0.336 0.701 0.354

Model Ceiling@25(CASER) 0.369 0.631 0.373 0.412 0.803 0.434

CASER 0.294 0.568 0.302 0.345 0.745 0.367
CASER + SURE (Ours) 0.322 0.588 0.323 0.378 0.758 0.385

Model Ceiling@25(SASRec) 0.379 0.657 0.381 0.439 0.845 0.453

SASRec 0.327 0.556 0.329 0.369 0.766 0.389
SASRec + SURE (Ours) 0.341 0.608 0.355 0.392 0.799 0.422

Model Ceiling@25(FMLP-Rec) 0.381 0.673 0.392 0.453 0.869 0.475

FMLP-Rec 0.335 0.599 0.352 0.386 0.796 0.412
FMLP-Rec + SURE (Ours) 0.357 0.628 0.368 0.402 0.812 0.432

User Preference-Aware Models

TiSASRec 0.334 0.583 0.345 0.374 0.778 0.402
CDR 0.340 0.563 0.350 0.371 0.782 0.376
Oracle4Rec 0.345 0.603 0.353 0.390 0.798 0.422

6.2.2 RESULTS COMPARED TO CONFORMAL BASELINES

Next, we compare our method with conformal baselines in terms of coverage and set Size. We set
error rate α = 0.10 and compare on the base recommender models: (1) NeuMF (He et al., 2017), (2)
CASER (Tang & Wang, 2018), (3) SASRec (Kang & McAuley, 2018) and (4) FMLP-Rec (Zhou
et al., 2022) against different conformal baselines i.e. (1) standard Split Conformal (Vovk et al.,
2005), (2) EnbPI (Xu & Xie, 2021), and (3) Online Conformal (Angelopoulos et al., 2024) at next
interaction. Each conformal baseline can be interpreted as an ablation of SURE: Split Conformal
freezes calibration threshold λ learned and therefore omits online update in Equation 15. EnbPI
replaces our Bayesian change-point module with a fixed sliding window, ignoring distributional shifts
and the dynamic segmentation of Equation 13. Whereas Online Conformal updates λt at every step
using only most recent interaction, thereby discarding historical risk information that our cumulative
segment risk in Equation 14 utilizes. Table 2 depicts results on the Book-Crossing dataset, with
remaining results present in Section A.7.2 in Appendix. They lead to the following observations:

• Our SURE framework achieves the best coverage–size compactness balance. It achieves the
required coverage and ensures compact average set size on every base model, underscoring
its plug-and-play applicability.

• Split conformal provides compact recommendation sets, but the prediction sets are invalid
as the coverage value is around 0.82–0.83, well below the nominal 0.90, thereby revealing
the under-calibration under users’ preference shifts.

• EnbPI boosts coverage by ~0.03-0.04 compared to split conformal, but does so at the expense
of increased prediction set sizes. It highlights the importance of our Bayesian change point
detection module to detect the preference shift point.
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Table 2: Comparison in terms in terms of coverage and average prediction set size with conformal
baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders
(NeuMF, CASER, SASRec, and FMLP-Rec) using the Book-Crossing dataset. The error rate is set
as α = 0.10. Bold indicates the best result, underline indicates the second best.

Base Model Coverage ↑ Set Size ↓

Split EnbPI Online SURE (Ours) Split EnbPI Online SURE (Ours)

NeuMF 0.821 0.849 0.875 0.901 44 43 46 46
CASER 0.826 0.858 0.879 0.902 44 45 45 44
SASRec 0.835 0.867 0.898 0.908 43 47 44 43
FMLP-Rec 0.835 0.873 0.901 0.910 43 47 45 42

• Online conformal narrows the gap as coverage climbs to 0.87–0.90, but remains less efficient
than SURE as average set size still exceeds SURE by 1−2 items. It highlights that on-the-fly
calibration alone is susceptible to fluctuations, leading to conservative prediction sets.

• Overall, results demonstrate SURE consistently ensures the best coverage–efficiency
trade-off on every baseline model that can ensure valid recommendation sets.

6.2.3 TIME EFFICIENCY ANALYSIS

We analyse the computational overhead introduced by SURE on top of the four backbone recom-
menders (NeuMF, CASER, SASRec, FMLP-Rec). All runs use a single NVIDIA A40 with batch
size 256, and each model is trained on 100 epochs. From Table 3, we observe across all five datasets
and four baselines, SURE adds at most 1.5 min of wall-clock time. This efficiency occurs because
the calibration loop is a single forward pass with simple threshold and change-point updates, with no
retraining of network weights. Consequently, the modest extra minute is negligible compared with
the performance gain we reported earlier in Table 1. These results confirm that SURE is equivalently
efficient and can be scaled to real-world applications.

Table 3: Total time (in minutes) required to train backbone models on five datasets, w and w/o
addition of SURE. The “w/ SURE” setting includes backbone training plus 50-step calibration. The
calibration parameters α and δ are both set to 0.05.

Datasets

Model Training Book-Crossing Taobao Last.fm MovieLens-1M Gowalla

NeuMF
w/o SURE 28.3 40.2 18.5 15.2 20.3
w/ SURE 29.5 41.6 19.9 16.4 21.4

CASER
w/o SURE 42.3 60.4 29.5 25.9 32.6
w/ SURE 43.8 61.8 30.9 27.4 33.9

SASRec
w/o SURE 35.2 47.1 24.4 19.1 25.3
w/ SURE 36.5 48.4 25.8 20.4 26.7

FMLP-Rec
w/o SURE 31.6 44.9 23.0 17.8 23.6
w/ SURE 32.9 46.4 24.5 19.1 25.0

7 CONCLUSION

This paper address important problem of evolving user preferences that undermine reliability of SRS.
To address it, it presents SURE framework, which generates user-specific, dynamic recommendations
that evolve with preference shift, guaranteeing performance while keeping them compact. SURE is
dataset and model agnostic and we validate its effectiveness through theoretical analysis and extensive
empirical studies. Since thresholds and ensemble weights are updated externally via a flexible utility
function Umetric, the framework can also be made compatible to fairness or diversity objectives.
Together, it lays foundation for more reliable and trustworthy sequential recommender systems.
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9 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide the following resources. 1) Source code and datasets: An
anonymized implementation of our proposed framework, supporting codes and datasets are included
in the anonymous repository. https://anonymous.4open.science/r/SURE_-02D2 2) Proofs: Formal
statements and complete proofs underpinning our framework are provided in Section A.4 in the
Appendix. 3) Hyperparameters and Implementation Details: The detailed implementation details and
configurations are present in Section A.5 in the Appendix.
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A APPENDIX

A.1 SUMMARY OF NOTATIONS

To facilitate clarity, we provide a comprehensive summary of the key mathematical notations and
variables used throughout the SURE framework in Table 4.

A.2 ASSUMPTIONS

We state two mild assumptions that we use in Theorems 5.1 and 5.2.
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Table 4: Summary of Notations

Symbol Description

U , I Sets of users and items
u, i Individual user and item
Hu Interaction history for user u
it+1
rel The true relevant next item at time t+ 1

L Total number of base models (experts) in the ensemble
Mℓ The ℓ-th base recommender model (ℓ ∈ {1, . . . , L})
wt Ensemble weight vector at time t (wt ∈ ∆L)
stℓ, S

t
ℓ Instantaneous and cumulative prediction set size for model ℓ

λt
ℓ Calibration threshold for model ℓ at time t

Ct+1
ℓ Prediction set generated by model ℓ using threshold λt

ℓ

Cagg Final aggregated ensemble prediction set
α User-defined target error rate (risk level)
R(C) True risk of the prediction set
R̄ t

ℓ Average empirical risk over the current stable windowW t
ℓ

Lu(·) Utility-based Risk Loss (e.g., 1− Recall), used for calibration
Lt(·) Predictive Loss (e.g., Cross-Entropy), used for shift detection
dprefℓ Loss-Based Preference Shift Metric
dlddℓ Loss Discrepancy Distance (LDD)
c t
ℓ Start time of the current stable segment for model ℓ
W t

ℓ Current stable window [c t
ℓ , t]

η Hedge learning rate for updating ensemble weights
β Shift sensitivity parameter for change-point detection
γ Segment-length bias parameter for change-point detection
ρ Step size for the adaptive threshold update

Assumption A.1. For every base modelMℓ and any segmentWℓ
t produced by the change–point

detector, there exists a threshold λmin
ℓ ∈ Λ such that

R
(
Cℓλmin

ℓ

)
≤ α.

Equivalently, the mapping λ 7→ R(Cℓλ) is continuous and attains all values in [0, 1] on the closed set
Λ.

This assumption ensures that for every timestamp in each segment, it is possible to achieve risk
control at level α by appropriately tuning λt

ℓ. It guarantees the effectiveness of the update rule in
Eq. 15.

Assumption A.2. For each base model Mℓ, let Wℓ
t = [cℓt, t] denote the segment window at

time t returned by the Bayesian change-point detector. We assume the per-user utility losses{
Lu

(
Cℓλτ

ℓ

)}
τ∈Wℓ

t , u∈Uτ

are drawn from a common bounded distribution within each segment. In

other words, the loss values withinWℓ
t are exchangeable and lie in [0, 1].

This assumption allows average window risk R̄ℓ
t to serve as a faithful estimate of true segment risk.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Output

Aggregation

Dynamic Predictions
Hedge

Updating

Data Flow Weight Update

Calibrate

Shift
Detection

Figure 1: The SURE WorkFlow (one-step update). At each timestamp t, base experts produce
dynamic prediction sets {Cℓλt

ℓ
}Lℓ=1 using thresholds λt

ℓ. These sets are aggregated with Hedge weights
wt to form the ensemble recommendation Caggλt . Shift detection computes preference change scores
dprefℓ and triggers recalibration, updating thresholds λt+1

ℓ ←λt
ℓ − ρ(R̄ℓ

t − α), while Hedge updating
adjusts the weights wt+1 based on set efficiency. The outputs (Caggλt , λt+1,wt+1) are then passed to
the next step, ensuring validity, compactness, and robustness over time.

A.3 ALGORITHM

This section we provide the pseudocode for the Dynamically Adaptive Uncertainty-aware Optimiza-
tion (DAUO) algorithm. The algorithm begins with an initial calibration phase where each base model
Mℓ is assigned a starting threshold λ0

ℓ and an equal ensemble weight. This initialization returns
updated λ0

ℓ which creates prediction sets (Eq. (2)) that ensure the empirical risk R̂(Cℓ
λ0
ℓ
), estimated

via Eq. (4), falls below the user-defined margin (α− ϵ). Then at each timestamp t, DAUO adapts both
the calibration threshold and ensemble weights in an online manner. For each base modelMℓ, the
algorithm first evaluates user preference shift by computing the divergence dpref

ℓ (cℓt, t) as per Eq. (12),
followed by the Bayesian posterior over candidate segment boundaries using Eq. (13). Here cℓt
represents all the timestamps after the last changepoint detected (where the framework predicted the
preference shift). The segment start is then updated by selecting the most likely boundary cℓt+1, and
the average risk R̄ℓ

t over the new segment window [cℓt+1, t] is computed via Eq. (14). The threshold
λt
ℓ is then updated according to Eq. (15), which adjusts the confidence level based on segmental

risk deviation from α. After all models have updated their thresholds, the ensemble weight vector
wt is revised via Eq. (9), giving higher weight to models producing more compact prediction sets.
At prediction time T+1, the calibrated thresholds λ̂T

ℓ and final weights wT are used to construct
individual model prediction sets via Eq. (2). These are then merged through the weighted majority
aggregation ruleA(·,wT ) in Eq. (8) to produce the final ensemble prediction Cagg

λ̂T
(Hu). The detailed

steps are presented in Algorithm 1.

A.4 PROOFS

A.4.1 THEOREM 1

Lemma A.4.1. Let for each base modelMℓ, the prediction set at round t is Cℓλt ⊂ I with stℓ :=
∣∣Cℓλt

∣∣.
Also, let wt = (wt

1, . . . , w
t
L) ∈ ∆L and k(t) ∼ Uniform[0, 1]. Given, the aggregated prediction set

is defined by Eq. (7), we have:
Ek(t)

[∣∣Caggλt

∣∣] ≤ ht

†Here,∆λ† is equivalent to λt
ℓ/|Λ|, where Λ is the set of candidate thresholds.
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Algorithm 1 Dynamically Adaptive Uncertainty-aware Optimization (DAUO)

1: Initialization:
2: Initialize thresholds λ0

ℓ and ensemble weights w0 = 1
L1 for all base models ℓ = 1, . . . , L

3: Set user-defined parameters: target risk α, confidence δ, error tolerance ϵ
4: Define utility-based loss as in Eq. (5)
5: Initialize per-model segment starts c0ℓ = 1

6: for each base model ℓ = 1, . . . , L do
7: Compute prediction set C0ℓ using Eq. (2) with threshold λ0

ℓ

8: Compute empirical risk R̂(C0ℓ ) using Eq. (4)
9: if R̂(C0ℓ ) ≤ α− ϵ then

10: continue
11: else
12: Update threshold: λ0

ℓ ← λ0
ℓ −∆λ†

13: end if
14: end for

15: Calibration:
16: for each timestamp t = 1, . . . , T do
17: for each base model ℓ = 1, . . . , L do
18: Compute preference shift dpref

ℓ (ct−1
ℓ , t) using Eq. (12)

19: Compute posterior pℓ(ctℓ = ct−1
ℓ + k | t) using Eq. (13)

20: Update segment start:

ctℓ ← argmax
k

pℓ(c
t
ℓ = ct−1

ℓ + k | t)

21: Compute window risk R̄t
ℓ on [ctℓ, t] using Eq. (14)

22: Update threshold using Eq. (15):

λt+1
ℓ = λt

ℓ − ρ
(
R̄t

ℓ − α
)

23: end for
24: Update ensemble weights wt+1 using Eq. (9)
25: end for
26: Store final thresholds: λ̂T

ℓ ← λT
ℓ and weights wT

27: Output at timestamp T + 1:
28: for each user u ∈ U do
29: for each base model ℓ = 1, . . . , L do
30: Compute prediction set: CTℓ using Eq. (2) with threshold λ̂T

ℓ
31: end for
32: Aggregate ensemble prediction sets using Eq. (8):

Cagg
λ̂T

(Hu) = A
({
CTℓ
}L
ℓ=1

, wT
)

33: end for

where ht :=
∑L

ℓ=1 w
t
ℓs

t
ℓ.

Proof. For any item i ∈ I, the aggregated support on the item can be defined as:

w̄t(i) =

L∑
ℓ=1

wt
ℓ · 1

[
i ∈ Cℓλt

]
∈ [0, 1] (i)

where w̄t(i) is the total weight of models that include item i in the prediction set.
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By the definition of the aggregation rule, item i is included in the aggregated prediction set iff:

w̄t(i) >
1 + k(t)

2
(equivalently) (ii)

or equivalently
k(t) < 2w̄t(i)− 1 (iii)

So the probability that item i is in ensemble set is,
Pr
k(t)

[
i ∈ Caggλt

]
= Pr

k(t)
[k(t) < 2w̄t(i)− 1] (iv)

Since k(t) ∼ Uniform[0, 1], we know that

Pr [k(t) < u] =


0 if u ≤ 0

u if 0 < u < 1

1 if u ≥ 1

for any real u (v)

Applying u := 2w̄t(i)− 1, then:

Pr
k(t)

[
i ∈ Caggλt

]
= (2w̄t(i)− 1)+ (vi)

with (x)+ := max{x, 0}.
Now we know for all x ∈ [0, 1],

(2x− 1)+ ≤ x for x ∈ (0, 1] (vii)

i.e., if x ≤ 1
2 , then (2x− 1) ≤ 0⇒ (2x− 1)+ = 0

if x ≥ 1
2 , then (2x− 1)+ = 2x− 1

and (2x− 1) ≤ x⇔ x ≤ 1 [true]

Hence we can write
Pr
k(t)

[
i ∈ Caggλt

]
= (2w̄t(i)− 1)+ ≤ w̄t(i) (viii)

Now computing the expected total size of ensemble set, we have:

Ek(t)

[∣∣Caggλt

∣∣] =∑
i∈I

Pr
k(t)

[
i ∈ Caggλt

]
≤
∑
i∈I

w̄t(i) (ix)

From Eq. (i), and expanding w̄t(i), we get:∑
i∈I

w̄t(i) =
∑
i∈I

L∑
ℓ=1

wt
ℓ · 1

[
i ∈ Cℓλt

]
(x)

Switching the summation order, we get:

=

L∑
ℓ=1

wt
ℓ

∑
i∈I

1
[
i ∈ Cℓλt

]
=

L∑
ℓ=1

wt
ℓ ·
∣∣Cℓλt

∣∣ = L∑
ℓ=1

wt
ℓ · stℓ = ht (xi)

Putting this all together, we get:

Ek(t)

[∣∣Caggλt

∣∣] ≤ ht :=

L∑
ℓ=1

wt
ℓs

t
ℓ (xii)

Hence Proved.

Remark Lemma A.4.1 shows that the expected size of the aggregated prediction set is no greater
than the surrogate size ht, which is a weighted average of base model set sizes. This means the
aggregation step does not inflate the prediction set and adapts to the ensemble’s diversity at time t.
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PROOF OF THEOREM 5.1

Proof. From Lemma 1, we already have:

Ek(t)

[∣∣Caggλt

∣∣] ≤ ht :=

L∑
ℓ=1

wt
ℓs

t
ℓ

Let

ŝtℓ :=
stℓ
|I|

, ĥt :=

L∑
ℓ=1

wt
ℓŝ

t
ℓ =

ht

|I|
⇒ ht = |I| · ĥt

Now our goal is to bound ĥt in terms of the best expert’s size ŝtℓ∗ . However, given the weights are
spread across all L models, we cannot directly bound ĥt. Taking inspiration from Cesa-Bianchi
& Lugosi (2006); De Rooij et al. (2014), we analyze it via an auxiliary quantity called mix loss.
Specifically, we decompose the Hedge average into two components: 1) mix loss that behaves like a
soft minimum, and 2) a mixability gap that measures how far the weighted average is from the mix
loss.

We first define mix loss as:

mt := −
1

η
log

L∑
ℓ=1

wt
ℓ · e−ηŝtℓ (i)

and mixability gap as:
δt := ĥt −mt ⇒ ĥt = mt + δt (ii)

To bound the mixability gap δt, we use Bernstein’s Cumulant Generating Function inequality:

Using (i) in (ii), we get:

δt = ĥt +
1

η
log

L∑
ℓ=1

wt
ℓ · e−ηŝtℓ (iii)

Refactoring:
e−ηŝtℓ = e−η(ŝtℓ−ĥt) · e−ηĥt (iv)

So, ∑
ℓ

wt
ℓ · e−ηŝtℓ =

∑
ℓ

wt
ℓ ·
(
e−η(ŝtℓ−ĥt) · e−ηĥt

)
= e−ηĥt ·

∑
ℓ

wt
ℓ · e−η(ŝtℓ−ĥt) (v)

Plugging into log we get:

log
∑
ℓ

wt
ℓ · e−ηŝtℓ = −ηĥt + log

∑
ℓ

wt
ℓ · e−η(ŝtℓ−ĥt) (vi)

Putting Eq. (vi) in Eq. (iii), we get:

δt = ĥt +
1

η

(
−ηĥt + log

∑
ℓ

wt
ℓ · e−η(ŝtℓ−ĥt)

)

= ĥt − ĥt +
1

η
log
∑
ℓ

wt
ℓ · e−η(ŝtℓ−ĥt)

δt =
1

η
logEℓ∼wt

[
e−η(ŝtℓ−ĥt)

]
(vii)

Now to bound δt, we use the Bernstein Cumulant Generating Function (CGF) as introduced in Cesa-
Bianchi & Lugosi (2006). We interpret ŝtℓ ∈ [0, 1] as a bounded random variable under distribution
ℓ ∼ wt, and apply the cumulant inequality.
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Specifically, since X := ŝtℓ,
E[X] = ĥt, Var(X) = vt

Now, defining moment generating function as:

ϕ(η) := logEℓ∼wt

[
e−η(X−E[X])

]
(viii)

Applying the result from Cesa-Bianchi & Lugosi (2006) for η ∈ (0, 1] and any X ∈ [0, 1], we get:

logE
[
e−η(X−E[X])

]
≤ eη − η − 1

η
·Var(X) (ix)

Applying this ϕ(η) into Eq. (vii) to Eq. (viii), we have:

δt =
1

η
· ϕ(η) (x)

And then applying the CGF bound we have:

δt ≤
1

η
·
(
eη − η − 1

η

)
vt =

eη − η − 1

η2
· vt (xi)

Using Taylor series, we know:

eη = 1 + η +
η2

2
+

η3

3!
+ . . .

Simplifying, we get:

δt ≤
(
η

2
+

η2

6

)
vt (xii)

Next we need to bound the mix loss mt

Given ℓ∗ := argminℓ∈[L] ŝ
t
ℓ, we apply the classic log-sum-exp inequality:

For any real values x1, . . . , xL,

log

L∑
ℓ=1

e−xℓ ≤ −min
ℓ

xℓ + logL (xiii)

Applying this to our case, with xℓ := ηŝtℓ, we get:

log

L∑
ℓ=1

e−ηŝtℓ ≤ −ηŝtℓ∗ + logL (xiv)

As weight wt ∈ ∆L, the weighted sum is less than or equal to the uniform sum, i.e.,

L∑
ℓ=1

wt
ℓ · e−ηŝtℓ ≤

L∑
ℓ=1

e−ηŝtℓ

Hence, we get:

log

L∑
ℓ=1

wt
ℓ · e−ηŝtℓ ≤ log

L∑
ℓ=1

e−ηŝtℓ ≤ −ηŝtℓ∗ + logL (xv)

Multiplying (xv) by − 1
η , and applying a looser (but convenient) upper bound, we get:
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mt := −
1

η
log

L∑
ℓ=1

wt
ℓ · e−ηŝtℓ ≤ ŝtℓ∗ +

logL

η
(xvi)

From (xii) and (xvi), we get bounds for the mixability gap δt and mix loss mt. Putting the results
into Eq. (ii), we get:

ĥt ≤ ŝtℓ∗ +
lnL

η
+

(
η

2
+

η2

6

)
vt (xvii)

Now we find the best η that minimizes RHS in Eq. (xvii).

Let

f(η) :=
lnL

η
+

(
η

2
+

η2

6

)
vt

To minimize, we take derivative:

f ′(η) = − lnL

η2
+

(
1

2
+

η

3

)
vt (xviii)

Setting f ′(η) = 0 and multiplying both sides by η2, we get:

1

2
η2 +

1

3
η3 =

lnL

vt
(xix)

Since it is in cubic form, we approximate, getting:

η∗ =

√
2 lnL

vt

‡

Putting the η∗ in Eq. (xvii), and approximating, we get:

ĥt ≤ ŝtℓ∗ +
√

2 lnL · vt +
2

3
lnL (xx)

Now we know:

ht = |I| · ĥt and stℓ∗ = |I| · ŝtℓ∗

and

Ek(t)

[∣∣Caggλt

∣∣] ≤ ht

Hence, we get:

Ek(t)

[∣∣Caggλt

∣∣] ≤ stℓ∗ +
√
2 lnL · vt +

2

3
lnL

Hence Proved.

‡ If vt = 0, then all ŝtℓ are equal, so ĥt = ŝtℓ∗ , and the bound holds exactly. In this case, the variance
penalty vanishes, and η can be set arbitrarily (e.g., η = 1).
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A.4.2 THEOREM 2

Lemma A.4.2. LetMℓ be a base predictor and Ucal
t be a batch of users at time t, with n = |Ucal

t |.

Assume for each user u ∈ Ucal
t , we observe the score Zℓ

t,u :=Mℓ(it+1
rel (u) | Ht

u), where the scores
are sampled from a continuous distribution. Let λℓ

t be the empirical (1− α/2)-quantile of the scores
{Zℓ

t,u}u. Given the prediction set Cℓ
λℓ
t

and the utility-based loss Lu(Cℓλℓ
t
) as defined in Eq. (4), then

with probability at least 1− 1
2n , over the calibration batch, the expected loss satisfies:

Eu

[
Lu

(
Cℓλℓ

t

)]
≤ α

2
+

√
log(4|Ucal

t |)
2|Ucal

t |
.

Proof. Given n = |Ucal
t |, let Zℓ

t,u ∼ F for u ∈ Ucal
t , where F is a continuous cumulative distribution

function. We define the empirical CDF as:

F̂ (z) :=
1

n

∑
u∈Ucal

t

1
{
Zℓ
t,u ≤ z

}
, (i)

where n = |Ucal
t |.

Let λℓ
t denote the empirical (1− α/2)-quantile of the scores {Zℓ

t,u}, so by construction:

F̂ (λℓ
t) ≥ 1− α

2
. (ii)

To control the deviation between F̂ (·) and the true CDF F (·), we apply the Dvoret-
zky–Kiefer–Wolfowitz (DKW) inequality:

For any ε > 0, we have:

Pr

(
sup
z∈R

∣∣∣F̂ (z)− F (z)
∣∣∣ > ε

)
≤ 2 exp(−2ε2n). (iii)

To ensure failure probability at most 1
2n , we set:

2 exp(−2ε2n) = 1

2n
.

Solving this gives:

ε =

√
log(4n)

2n
. (iv)

Using Eq. (iii), this gives a uniform deviation bound that holds with probability at least 1− 1
2n .

From the DKW result, we have the uniform deviation bound:∣∣∣F̂ (z)− F (z)
∣∣∣ ≤√ log(4n)

2n
for all z ∈ R. (v)

Now at z = λℓ
t , we get:

F (λℓ
t) ≥ F̂ (λℓ

t)−
√

log(4n)

2n
≥ 1− α

2
−
√

log(4n)

2n
. (vi)

Hence, for a user sampled independently from the distribution, the score Zℓ
t,u ∼ F , and the probability

that the true item is excluded from the prediction set is:

Pr(Zℓ
t,u > λℓ

t) = 1− F (λℓ
t) ≤

α

2
+

√
log(4n)

2n
.
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Given the utility definition from Eq. (4) in main pasper, Lu(Cℓλℓ
t
) = 1 when the true item is excluded.

Thus, the expected utility loss for the user is:

Eu

[
Lu(Cℓλℓ

t
)
]
≤
(
1− 1

2n

)(
α

2
+

√
log(4n)

2n

)
+

1

2n
.

For n > 1, i.e., at least 1 user in the calibration batch, 1
2n ≤

√
log(4n)

2n . For simplicity, we absorb the
additive constant in the existing slack and simplify. Hence we get:

E
[
Lu(Cℓλℓ

t
)
]
≤ α

2
+

√
log(4n)

2n
.

E
[
Lu(Cℓλℓ

t
)
]
≤ α

2
+

√
log(4n)

2n
:=

α

2
+

√
log
(
4|U cal

t |
)

2|U cal
t |

.

Hence Proved.

Remark Lemma A.4.2 ensures that the utility-based loss of the prediction set Cℓ
λℓ
t
, estimated from a

finite calibration batch, concentrates around the error level α/2. As the calibration batch size n→∞,

the slack term
√

log(4n)
2n → 0, the upper bound of expected loss achieves α/2.

Lemma A.4.3. GivenMℓ as a base model, let the change-point detector define a stable segment
of timestepsWℓ

t = [cℓt, t], for which no user preference shift is detected. Let L(ℓ)
τ (Cℓλℓ

τ
) denote the

utility loss incurred by modelMℓ at time τ ∈ Wℓ
t . Given the empirical segment risk R̄ℓ

t as defined in
Eq. (14), and let Fτ denote the filtration capturing all user histories, model predictions, and losses
observed up to time τ , then for any ϵ > 0, we have:

Pr
(
R̄ℓ

t − E
[
R̄ℓ

t | Fcℓt−1

]
≥ ϵ
)
≤ exp

(
−2ϵ2|Wℓ

t |
)
.

Proof. Let Xτ define a random variable that captures the surprise at time τ ∈ Wℓ
t , i.e.,

Xτ := L(ℓ)
τ − E

[
L(ℓ)
τ | Fτ−1

]
, (i)

where L(ℓ)
τ (Cℓλℓ

τ
) is the observed loss, and the expectation is our best guess before time τ .

We now define the cumulative sum over Xτ as:

Sk :=

k∑
τ=cℓt

Xτ , for k ∈ [cℓt, t]. (ii)

Now, the sequence {Sk} is a martingale with respect to the filtration Fk. Specifically:

E[Sk | Fk−1] = Sk−1. (iii)

This relation holds because:

Sk = Sk−1 +Xk ⇒ E[Sk | Fk−1] = Sk−1 + E[Xk | Fk−1].

Now,
E[Xk | Fk−1] = E

[
Lℓ
k − E

[
L(ℓ)
k | Fk−1

]
| Fk−1

]
(iv)

By linearity and the idempotence of conditional expectation, we directly get:

E[Lℓ
k | Fk−1]− E[Lℓ

k | Fk−1] = 0. (v)
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Hence Xk is a martingale difference, and {Sk} is a martingale.

Also, since Lℓ
τ (Cℓλℓ

τ
) ∈ [0, 1], its conditional expectation also lies in [0, 1], and therefore:

|Xk| ≤ 1 i.e., the increments are bounded.

Now, by Azuma–Hoeffding’s inequality, for any martingale with bounded increments |Xk| ≤ 1, the
following holds: From Azuma–Hoeffding’s inequality, we now have:

Pr(St ≥ ϵ|Wℓ
t |) ≤ exp

(
−2ϵ2|Wℓ

t |
)
, (vi)

where ϵ > 0, and |Wℓ
t | = t− cℓt + 1.

Now we relate St to the definition of empirical risk. Given the definition of average risk over a
window, we have:

E
[
R̄ℓ

t | Fcℓt−1

]
= E

 1

w

t∑
τ=cℓt

Lℓ
τ (Cℓλℓ

τ
)

∣∣∣∣∣∣ Fcℓt−1


=

1

w

t∑
τ=cℓt

E
[
Lℓ
τ (Cℓλℓ

τ
)
∣∣∣ Fcℓt−1

]
, (vii)

where w = |t− cℓt + 1| := |Wℓ
t |.

Using the tower property of conditional expectation, for any τ ≥ cℓt , we have:

E
[
Lℓ
τ | Fcℓt−1

]
= E

[
E
[
Lℓ
τ | Fτ−1

] ∣∣∣ Fcℓt−1

]
. (viii)

Now, given the expression for deviation from expected risk:

R̄ℓ
t − E[R̄ℓ

t | Fcℓt−1],

expanding this gives:

1

w

t∑
τ=cℓt

Lℓ
τ −

1

w

t∑
τ=cℓt

E
[
Lℓ
τ | Fτ−1

]
.

Continuing from the previous expression, we now write:

R̄ℓ
t − E

[
R̄ℓ

t | Fcℓt−1

]
=

1

w

t∑
τ=cℓt

(
Lℓ
τ − E[Lℓ

τ | Fτ−1]
)
. (ix)

Now applying the tower property again, and using the result from Eq. (iv), we observe:

Lℓ
τ − E

[
E[Lℓ

τ | Fτ−1] | Fcℓt−1

]
= E

[
Xτ | Fcℓt−1

]
. (x)

Putting Eq. (x) into Eq. (ix), we obtain:

E
[
R̄ℓ

t − E
[
R̄ℓ

t | Fcℓt−1

]]
=

1

w

t∑
τ=cℓt

E
[
Xτ | Fcℓt−1

]
. (xi)

Since we are bounding this deviation in probability, we retain the raw form:

R̄ℓ
t − E

[
R̄ℓ

t | Fcℓt−1

]
=

1

w

t∑
τ=cℓt

Xτ =
St

w
. (xii)
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Now we finally substitute the result from Eq. (xii) into the Azuma–Hoeffding inequality Eq. (vi):

Pr
(
R̄ℓ

t − E
[
R̄ℓ

t | Fcℓt−1

]
≥ ϵ
)
= Pr

(
St

w
≥ ϵ

)
(xiii)

= Pr (St ≥ ϵw) ≤ exp
(
−2ϵ2w

)
. (xiv)

Hence, we finally obtain the main result:

Pr
(
R̄ℓ

t − E[R̄ℓ
t | Fcℓt−1] ≥ ϵ

)
≤ exp

(
−2ϵ2 · |Wℓ

t |
)

Hence Proved.

Remark Lemma A.4.3 justifies using the empirical average risk R̄ℓ
t as a reliable proxy for the true

conditional expectation and supports the adaptive threshold update rule in Eq. (15) of the framework.
Corollary A.4.1. Given the threshold update rule from Eq. (15) of the framework: λt+1

ℓ = λt
ℓ −

ρ
(
R̄

(ℓ)
t − α

)
, then for any δ ∈ (0, 1), with probability at least 1 − δ, the deviation of the update

from the ideal update satisfies:

∣∣λt+1∗
ℓ − λt+1

ℓ

∣∣ := ρ
∣∣∣E[R̄ℓ

t | Fcℓt−1]− R̄ℓ
t

∣∣∣ ≤ ρ ·

√
log(1/δ)

2|Wℓ
t |

.

Proof. From Lemma 2, with probability at least 1− δ, we have:

R̄ℓ
t − E

[
R̄ℓ

t | Fcℓt−1

]
=

St

w
⇒ Pr

(
R̄ℓ

t − E[R̄ℓ
t ] ≥ ϵ

)
≤ exp

(
−2ϵ2w

)
.

We now want to choose ϵ such that:

exp
(
−2ϵ2w

)
= δ ⇒ ϵ2 =

log(1/δ)

2w
⇒ ϵ =

√
log(1/δ)

2w
(i)

Using Eq. (i), we can conclude that with probability at least 1− δ:∣∣∣R̄ℓ
t − E[R̄ℓ

t | Fcℓt−1]
∣∣∣ ≤√ log(1/δ)

2w
. (ii)

Now substituting Eq. (ii) into the threshold update in framework’s Eq. (15), and comparing with the
ideal update:

λt+1∗
ℓ := λt

ℓ − ρ
(
E
[
R̄ℓ

t | Fcℓt−1

]
− α

)
,

we conclude that:

∣∣λt+1∗
ℓ − λt+1

ℓ

∣∣ := ρ
∣∣∣E[R̄ℓ

t | Fcℓt−1]− R̄ℓ
t

∣∣∣ ≤ ρ ·

√
log(1/δ)

2|Wℓ
t |

.

Hence Proved.

Remark From Corollary A.4.1 we observe that the adaptive threshold update remains close to its
ideal value, even when using empirical segment risk. As the stable window length |Wℓ

t | increases,
the deviation vanishes at a O(1/

√
|Wℓ

t |) rate. This ensures the DAUO algorithm adapts reliably to
user preferences over time, with provable statistical stability.

Lemma A.4.4. LetM1, . . . ,ML be L base models. Assume that for each modelMℓ, the calibrated
prediction set Cℓλt

ℓ
satisfies the per-model miss probability bound: Pr

(
it+1
rel (u) /∈ Cℓλt

ℓ
(St

u)
∣∣∣ Ft−1

)
≤
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β for all ℓ = 1, . . . , L, where β := α
2 + ε, and ε :=

√
log(4|U|)

2|U| . Let Caggλt denote the ensemble

prediction set formed by randomized weighted majority voting, using aggregation weights wt ∈ ∆L,
the probability simplex.

Then the miss probability of the ensemble satisfies:

Pr
(
it+1
rel (u) /∈ Caggλt

∣∣ Ft−1

)
≤ α+ 2ε.

Proof. For any user u, we define the miss indicator for modelMℓ as:

Mℓ := 1
{
it+1
rel (u) /∈ C(ℓ)

λt
ℓ
(S(t)

u )
}
. (i)

The ensemble predictor will fail if the true item receives insufficient support, i.e, the total weight of
models that include the item is less than 1

2 . Equivalently, the total weight of models that miss the
item exceeds 1

2 .

We formally define the total miss weight:

L∑
ℓ=1

wt
ℓ ·Mℓ. (ii)

Then the ensemble misses if the above is ≥ 1
2 . We wish to bound the probability of ensemble failure:

Pr

(
L∑

ℓ=1

wt
ℓ ·Mℓ ≥ 1

2

∣∣∣∣∣ Ft−1

)
.

Applying Markov’s inequality:

Pr(X ≥ a) ≤ E[X]

a
,

we obtain:

Pr

(
L∑

ℓ=1

wt
ℓ ·Mℓ ≥ 1

2

∣∣∣∣∣ Ft−1

)
≤ 2 · E

[
L∑

ℓ=1

wt
ℓ ·Mℓ

∣∣∣∣∣ Ft−1

]
. (iii)

Now, by linearity of expectation, we have:

E

[
L∑

ℓ=1

wt
ℓMℓ

∣∣∣∣∣ Ft−1

]
=

L∑
ℓ=1

wt
ℓ · E [Mℓ | Ft−1] =

L∑
ℓ=1

wt
ℓ · Pr(Mℓ = 1 | Ft−1). (iv)

By Lemma A.4.2, each model satisfies:

Pr(Mℓ = 1 | Ft−1) ≤ β. (v)

Therefore,
L∑

ℓ=1

wt
ℓ · Pr(Mℓ = 1 | Ft−1) ≤ β ·

L∑
ℓ=1

wt
ℓ = β. (vi)

Substituting result from Eq. (vi) to Eq. (iii) back, we get the final ensemble miss bound:

Pr
(
it+1
rel (u) /∈ Caggλt

∣∣ Ft−1

)
≤ 2β = α+ 2ε. (vii)

Hence Proved.

Remark Lemma A.4.4 shows that the ensemble miss probability remains bounded by α + 2ε and
preserves statistical validity despite possible correlation among predictors. As the calibration batch
size |U| → ∞, the deviation ε→ 0, and the ensemble risk converges to α.
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PROOF OF THEOREM 2

Proof. Let m := |U| and ε :=
√

log(4m)
2m . Let S ⊆ {1, . . . , T} denote the stable timestamps, where

no preference shift is detected, and let D := {1, . . . , T} \ S denote the detection delay rounds. Then,
we can say:

|S| = T −DT , |D| = DT .

From Lemmas A.4.2 and A.4.4 , the expected loss satisfies:

E
[
Lu

(
Caggλt

) ∣∣Ft−1

]
≤ α+ 2ε. (i)

For t ∈ D, the DAUO algorithm may be out-of-calibration. We conservatively assume the worst-case
loss of 1 at each such round. There are DT such rounds yielding:∑

t∈D
E
[
L(t)
u

]
≤ DT . (ii)

Now we handle the additional slack from DKW failures. At each round t ∈ [T ] and for each model
ℓ ∈ [L], we calibrate the threshold using DKW. So there are T × L calibration events.

Let Zt,ℓ ∈ {0, 1} be the indicator that DKW calibration fails at round t for model ℓ.

Then the total number of failures is:

K :=

T∑
t=1

L∑
ℓ=1

Zt,ℓ. (iii)

By Lemma A.4.2, each calibration failure has probability at most: p := 1
2m . From Lemma 1, each

DKW calibration failure has probability at most p = 1
2m , and there are T × L such events. Thus, the

expected number of failures is:

µ := E[K] =
TL

2m
.

We want to control the tail deviation:

Pr(K ≥ µ+ y) ≤ δ.

Using the Bernstein bound, we have:

Pr(K ≥ µ+ y) ≤ exp

(
−y2

2(µ+ y/3)

)
. (iv)

To satisfy this inequality with probability ≥ 1− δ, we choose y to dominate both the average and tail
slack. Following standard practice, we set:

y := max
{
µ, 2 log

(
1
δ

)}
.

This guarantees:
y2

2(µ+ y/3)
≥ log

(
1
δ

)
.

In realistic recommender settings, m≫ L, therefore:

µ =
TL

2m
≤ 2 log

(
1
δ

)
.

Thus we may safely choose:
y = 2 log

(
1
δ

)
.

With this value, we get the high-probability bound:

K ≤ µ+ y ≤ TL

2m
+ 2 log

(
1
δ

)
. (v)
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Divide inequality (v) by T , we obtain:

K

T
≤ TL

2mT
+

2 log(1/δ)

T
.

Since TL
2m ≤ 2 log(1/δ) (by assumption), we get:

K

T
≤ 2 log(1/δ)

T
. (vi)

Now combine the bounds from (i), (ii), and (vi):

1

T

T∑
t=1

E
[
Lu

(
Caggλt

)]
≤ T −DT

T
(α+ 2ε) +

DT

T
· 1 + K

T
.

Substitute K
T ≤

2 log(1/δ)
T and simplifying we get:

1

T

T∑
t=1

E
[
Lu

(
Caggλt

)]
≤ α+ 2ε+

DT + 2 log(1/δ)

T
. (vii)

At round T + 1, the ensemble prediction set Cagg
λT is formed using the thresholds λT trained across

rounds 1 to T .

Assuming no additional change-point occurs at round T + 1, a standard assumption in horizon-end
guarantees, the loss distribution is equivalent to a stable round. Thus, the same bound applies,
yielding:

Eu∼U
[
Lu(CaggλT )

]
≤ α+ 2

√
log(4|U|)

2|U|
+

DT + 2 log(1/δ)

T
.

Hence Proved.

A.5 IMPLEMENTATION DETAILS

In this section, we elaborate on the implementation details of the experiments conducted. The
experiments were conducted on NVIDIA A40 GPU. Firstly, all base recommender models, NCF[19],
CASER[39], SASRec[25], and FMLP-Rec[47] are trained for 100 epochs with a batch size of
256, a learning rate of 0.001, the Adam optimizer, and Binary Cross Entropy Loss (BCELoss).
These models are implemented following their respective public repositories. User preference-aware
baselines include TiSASRec[27], CDR[41], and Oracle4Rec[42]. TiSASRec extends SASRec with
time-aware attention and relation-based temporal encoding, trained for 200 epochs with a batch size
of 128. CDR employs a variational framework with domain-level disentanglement, trained for 200
epochs with a batch size of 512 and a learning rate of 0.0001. Oracle4Rec trains for 100 epochs
with a batch size of 256 using a Transformer-style architecture with GELU activations and dropout
regularization. These models retain their original optimization logic and regularization strategies.
We furthermore implement three conformal prediction baselines: Split Conformal[40], EnbPI[43],
and Online Conformal Prediction[1]. All conformal variants reuse the predicted score files from the
base models and calculate expected loss based on ranking-based loss functions (e.g., MRR, NDCG,
Recall). For Split Conformal, we determine the fixed prediction threshold via the (1− α)-quantile of
the first calibration timestamp, with α = 0.1. For EnbPI, we use an ensemble of 10 bootstrapped
recommendation models, with predictions aggregated using the sample mean. Prediction set widths
were updated after each instance using a sliding window of the most recent T = 5 residuals. The
miscoverage level was set to α = 0.1, and expected loss was computed based on the same utility
metrics. For Online Conformal Prediction, we use a decaying step size update rule, with the threshold
updated after each instance. We set α = 0.1 and used the same loss definitions as in other conformal
methods explained above. The initial threshold λ0 was shared across all conformal variants and
our framework to ensure consistent initialization. Our proposed framework is implemented on
top of the base recommendation model outputs. We conduct a manual search over the contrasting
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hyperparameters in our Bayesian change-point module: the shift sensitivity β ∈ {0.5, 0.7, 0.9, 1.1}
and the segment-length bias γ ∈ {0, 0.3, 0.5, 0.7, 1, 1.3, 1.5, 1.75, 2}. Based on manual validation of
segment stability and calibration smoothness across datasets, we fixed β = 0.7 and γ = 1.1. The
error tolerance value ϵ is chosen based on the dataset size and the confidence value δ. The threshold
update step size η in Eq. (15) was set to 0.05 throughout. To ensure consistency and reproducibility,
we reused the predicted score files generated by the trained base models for all conformal baselines
and our framework.

A.5.1 UTILITY FUNCTION DEFINITIONS

The user utility function Umetric(i
t+1
rel , Cλt), used in the loss formulation in Eq. (5) in main paper

quantifies how well the prediction set Cλt ⊆ I captures the relevant item it+1
rel under different evalua-

tion metrics. We define the following instantiations of Umetric based on standard recommendation
metrics:

Recall-based utility:
Urecall(i

t+1
rel , Cλt) = I[it+1

rel ∈ Cλt ]. (viii)
This utility equals 1 if the relevant item is present in the prediction set and 0 otherwise.

MRR-based utility:

Umrr(i
t+1
rel , Cλt) =

{
1

r(it+1
rel )

, if it+1
rel ∈ Cλt ,

0, otherwise,
(ix)

where r(it+1
rel ) denotes the rank position of the relevant item within Cλt , assuming items are ordered

by decreasing model score.

NDCG-based utility:

Undcg(i
t+1
rel , Cλt) =

1

log2(r(i
t+1
rel ) + 1)

· I[it+1
rel ∈ Cλt ], (x)

which discounts the gain based on the rank of the relevant item in the prediction set.

These definitions are used across all calibration and evaluation steps to compute utility-based loss
values and coverage metrics.

A.6 DETAILED EXPERIMENTATION DETAILS

In the main paper, we introduced five different datasets to evaluate the effectiveness of our framework.
Below, we provide further details on the datasets, data-preprocessing, the base models, the user-
preference aware baselines, and the conformal baselines used for comparison.

A.6.1 DATASETS

• Book-Crossing[48]: a book-review dataset with explicit ratings and browsing logs.
• Last.fm[6]: music-streaming listening histories dataset providing implicit feedback.
• Taobao[22]: a large-scale e-commerce dataset with clicks, carts, and purchases attributes.
• MovieLens[18]: an explicit and implicit feedback dataset in the movie-rating domain.
• Gowalla[10]: a location-based social-network checkins dataset for point-of-interest recom-

mendation.

All datasets are time-ordered, filtered using a 50-core strategy, and processed according to the data
preprocessing and splitting procedure described below.

A.6.2 SAMPLING AND DATA SPLITTING

• Negative sampling. Following the common experimentation strategy in recommendation
frameworks, we select 50 non-interacted items per user at every time-stamp through negative
sampling for training, validation, and testing.
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• Data Splitting. Inspired by the sliding-window evaluation, we partition each dataset
into five contiguous time-ordered batches B1, . . . , B5 to capture potential shifts in user
preferences over time. Within a batch, the first 80% of interactions are used to train the
model. The next 20% are used to calibrate the conformal threshold λt

ℓ and weight parameters
wt, while for the final interaction, the previously learned threshold and weight parameters
are frozen and the framework is evaluated. The final results presented represent the average
over all batches.

• Multiple trials: To account for variability in sampling, we repeat the experiments over
20 independent trials. For each trial, random negative samples were drawn for training,
validation, and testing. The results were averaged across all the trials.

A.6.3 BASE RECOMMENDATION MODELS

We build our framework on top of four representative recommendation backbones, each capturing
different modeling paradigms:

• Neural Collaborative Filtering (NCF)[19]: Involves combination of GMF (Generalized
Matrix Factorization) with 8-dimensional embeddings and MLP using layers [64, 32, 16]
with ReLU and dropout; combined with a prediction layer over concatenated representations.

• Caser[39]: A convolutional sequence model using vertical and horizontal filters with varying
receptive fields over a fixed-length user interaction sequence. Configured with embedding
dimension d = 50, sequence length L = 5, number of horizontal and vertical filters nh = 16,
nv = 4, followed by a fully connected layer and dropout (p = 0.5).

• SASRec[25]: A Transformer-style sequential recommender with 2 self-attention blocks, 1
attention head, hidden size of 50, max sequence length of 50, and dropout rate of 0.5. Layer
normalization, residual connections, and position encoding are used to model sequential
dependencies.

• FMLP-Rec[47]: A Filter-Enhanced MLP model replacing attention heads with learned
convolutional filters. Configured with hidden size of 64, 2 filter-enhanced encoder layers,
2 attention heads, dropout = 0.5, and GELU activation. Position embeddings and layer
normalization are applied on top of the input sequence.

A.6.4 PREFERENCE-AWARE RECOMMENDATION MODELS

To capture evolving user preferences and temporal context, we additionally incorporate three special-
ized preference-aware baselines:

• TiSASRec:[27] A time-aware sequential recommender model that extends SASRec by
incorporating absolute and relative time information into the attention mechanism. We use 2
attention blocks, 1 attention head, and a hidden dimension of 50, along with a time matrix
span of 256 and dropout rate of 0.2.

• CDR (Causal Debiasing Recommendation):[41] A user-centric causal recommendation
model that disentangles user preferences across multiple training environments by learning
group-invariant representations. We configure the MLP encoder as [100, 20], preference
encoder as [100, 200], with latent variables all set to dimension 2. Dropout is set to 0.5 and
batch norm is enabled.

• Oracle4Rec:[42] A a 5-layer Transformer-style encoder with hidden size 128, 2 attention
heads, GELU activation, and dropout of 0.5. It learns forward-looking user preferences by
leveraging future interactions as oracle guidance. It employs two parallel encoders with
shared embeddings: a Past Information Encoder and a Future Information Encoder, each
comprising a noise filtering module, a causal self-attention module, and an interaction
prediction layer.

A.6.5 CONFORMAL PREDICTION BASELINES

We implemented three conformal prediction baselines and adapted them for recommendation tasks
using ranking-based losses based on recommendation metrics(Recall, MRR, and NDCG). For each
method, we used calibrated scores and constructed dynamic prediction sets over time.
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• Split Conformal Prediction: A simple offline baseline where a global threshold λ is
computed and fixed during calibration and inference. Prediction sets are constructed by
thresholding sorted item scores per user. This method serves as a non-adaptive control with
no online feedback or user preference modeling.

• Ensemble Batch Prediction Interval (EnbPI): A time series conformal approach adapted
for sequential recommendation task, uses a chosen sliding window of size 5 and a shift size
s=1 for full online behavior. An ensemble of 10 base models is used, and the prediction
sets are constructed by aggregating top items across models using a mean-based ensemble
score. The threshold λ is updated after each interaction using decayed step size based on
loss deviations.

• Online Conformal: A fully online adaptive approach that dynamically recalibrates the
threshold λ based on user-specific risk feedback. After each interaction, the conformal
predictor computes the empirical loss based on the utility metric and updates λt using a
gradient-based rule with decay. Like EnbPI, prediction sets are constructed using sorted
calibrated scores, but don’t use model ensembling.

A.7 ADDITIONAL EXPERIMENTS

A.7.1 RESULTS COMPARED WITH BASE MODELS AND PREFERENCE-AWARE BASELINES
(CONT.)

We extend the analysis provided in the main paper, where we evaluate the SURE framework using
four recommendation base models and against three user-preference-aware baselines in terms of
recommendation metrics (i.e., MRR, Recall, NDCG). We present the results of the experimentations
conducted on Taobao, MovieLens and Gowalla Datasets in Tables 5 and 6. These tables support
the key findings: the SURE framework consistently controls risk within the predefined threshold
α = 0.05 with high confidence across all the base models, and as a result, it consistently outperforms
all baselines on different performance metrics (MRR, Recall, NDCG) across datasets. This further
validates the dataset-agnostic nature of our framework.

A.7.2 RESULTS COMPARED TO CONFORMAL BASELINES (CONT.)

Next, we continue our analysis comparing our framework with different conformal baselines in
terms of coverage and set size. We conduct the experiments on Last.fM (Table 7), Taobao (Table 8),
MovieLens (Table 9) and Gowalla (Table 10) datasets respectively and compare the results on base
recommender models. The results reaffirm the main paper observations that our framework can
ensure the best coverage–efficiency trade-off on every base model across datasets, ensuring valid
recommendation sets.

A.7.3 PARAMETER ANALYSIS

We analyze the influence of error rate α, confidence parameter δ, change-point detector parameters
(β, γ), and the number of experts L on the recommendation sets generated by the SURE framework.

We first evaluate the impact of error rate α, varying in [0.05, 0.07, 0.10, 0.12, 0.15], on performance
and the average prediction set sizes under fixed confidence thresholds δ = 0.05 using the Book-
Crossing dataset. As shown in Figure 2, as the error rate α increases, the performance across different
metrics (MRR, Recall, NDCG) as well as the average set size across all models decreases. This
decreasing trend demonstrates the framework’s ability to generate valid prediction sets that adapt to
the error rate α.

We further evaluate the effect of varying confidence δ ∈ [0.05, 0.10, 0.15, 0.20, 0.25] on performance
and average set sizes under fixed risk thresholds (α = 0.07) using the Last.fm dataset in Figure 3. In
general, all the models show a decreasing trend, validating the effectiveness of the framework. This is
because relaxing confidence in risk constraints makes predictions less conservative, thereby reducing
the number of items included in the recommendation set. Interestingly, performance and set sizes
show a smaller decline for δ compared to α, since δ controls only the confidence with which the risk
constraint must hold i.e., the probability mass in the extreme tail, whereas α sets the risk level itself.

We also perform a grid study of the change-point parameters β (shift sensitivity) and γ (segment-
length prior) on Book-Crossing dataset while holding all other settings fixed. Table 11 reports average
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Table 5: Performance comparisons with base models ( NeuMF, CASER, SASRec and FMLP-Rec )
and user preference aware baselines ( TiSASRec, CDR and Oracle4Rec ) on Taobao and MovieLens
Datasets using metrics ( MRR, Recall, NDCG ). For SURE, α and δ are set empirically as 0.05,
respectively. Bold indicates the best result, and underline indicates the second best.

Method Taobao MovieLens

MRR ↑ Recall ↑ NDCG ↑ MRR ↑ Recall ↑ NDCG ↑

Model Ceiling@25(NeuMF) 0.336 0.625 0.349 0.392 0.784 0.415

NeuMF 0.275 0.556 0.289 0.342 0.721 0.358
NeuMF + SURE (Ours) 0.292 0.587 0.298 0.356 0.739 0.368

Model Ceiling@25(CASER) 0.381 0.645 0.391 0.434 0.831 0.445

CASER 0.320 0.589 0.338 0.381 0.775 0.389
CASER + SURE (Ours) 0.343 0.612 0.350 0.391 0.798 0.395

Model Ceiling@25(SASRec) 0.395 0.663 0.408 0.458 0.854 0.469

SASRec 0.337 0.605 0.338 0.395 0.795 0.405
SASRec + SURE (Ours) 0.353 0.625 0.359 0.413 0.807 0.423

Model Ceiling@25(FMLP-Rec) 0.412 0.685 0.421 0.474 0.886 0.493

FMLP-Rec 0.363 0.612 0.361 0.405 0.811 0.415
FMLP-Rec + SURE (Ours) 0.373 0.649 0.385 0.435 0.851 0.454

User Preference-Aware Models

TiSASRec 0.348 0.610 0.353 0.402 0.802 0.412
CDR 0.339 0.609 0.351 0.399 0.795 0.405
Oracle4Rec 0.363 0.615 0.363 0.411 0.835 0.419

set size / coverage. We observe a consistent trade-off: larger β or smaller γ makes the detector more
responsive, yielding slightly larger sets with improved coverage; the reverse favors tighter sets but
risks transient under-coverage. In practice, we set β=0.7, γ=1.1 as a balanced choice across datasets.
Finally, we vary the number of bootstrapped experts L ∈ {5, 10, 20} and observe that SURE’s set
size and coverage are stable (Table 12). This empirical insensitivity is consistent with Theorem 5.1,
which implies only a O(

√
lnL) growth term in the ensemble set size bound.

Overall, this parameter analysis guides real-world applications in balancing performance and recom-
mendation set compactness with confidence guarantees.

Figure 2: Performance analysis on the Book-Crossing dataset for varying α ∈
0.05, 0.07, 0.10, 0.12, 0.15 with fixed δ = 0.05, shown in terms of recommendation metrics and
prediction set size.
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Table 6: Performance comparisons with base models ( NeuMF, CASER, SASRec and FMLP-Rec )
and user preference aware baselines ( TiSASRec, CDR and Oracle4Rec ) on Gowalla using metrics (
MRR, Recall, NDCG ). For SURE, α and δ are set empirically as 0.05, respectively. Bold indicates
the best result, and underline indicates the second best.

Method Gowalla

MRR ↑ Recall ↑ NDCG ↑

Model Ceiling@25(NeuMF) 0.327 0.618 0.334
NeuMF 0.286 0.565 0.289
NeuMF + SURE (Ours) 0.291 0.577 0.309

Model Ceiling@25(CASER) 0.376 0.643 0.384
CASER 0.322 0.589 0.336
CASER + SURE (Ours) 0.334 0.602 0.343

Model Ceiling@25(SASRec) 0.385 0.667 0.394
SASRec 0.332 0.599 0.349
SASRec + SURE (Ours) 0.344 0.612 0.359

Model Ceiling@25(FMLP-Rec) 0.406 0.679 0.413
FMLP-Rec 0.342 0.605 0.355
FMLP-Rec + SURE (Ours) 0.359 0.632 0.364

User Preference-Aware Models

TiSASRec 0.339 0.601 0.350
CDR 0.333 0.595 0.349
Oracle4Rec 0.343 0.609 0.360

Table 7: Comparison in terms in terms of coverage and average prediction set size with conformal
baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders
(NeuMF, CASER, SASRec, and FMLP-Rec) using the Last.fM dataset. The error rate is set as
α = 0.10. Bold indicates the best result, underline indicates the second best.

Base Model Coverage ↑ Set Size ↓

Split EnbPI Online SURE (Ours) Split EnbPI Online SURE (Ours)

NeuMF 0.833 0.858 0.881 0.901 41 42 42 43
CASER 0.835 0.868 0.884 0.903 40 42 43 41
SASRec 0.849 0.870 0.889 0.905 40 41 42 40
FMLP-Rec 0.855 0.873 0.899 0.907 40 40 40 39

Table 8: Comparison in terms in terms of coverage and average prediction set size with conformal
baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders
(NeuMF, CASER, SASRec, and FMLP-Rec) using the Taobao dataset. The error rate is set as
α = 0.10. Bold indicates the best result, underline indicates the second best.

Base Model Coverage ↑ Set Size ↓

Split EnbPI Online SURE (Ours) Split EnbPI Online SURE (Ours)

NeuMF 0.828 0.859 0.880 0.901 42 43 44 44
CASER 0.835 0.862 0.881 0.903 42 43 42 42
SASRec 0.836 0.871 0.900 0.909 41 42 42 41
FMLP-Rec 0.838 0.879 0.901 0.911 41 41 41 40
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Table 9: Comparison in terms in terms of coverage and average prediction set size with conformal
baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders
(NeuMF, CASER, SASRec, and FMLP-Rec) using the MovieLens dataset. The error rate is set as
α = 0.10. Bold indicates the best result, underline indicates the second best.

Base Model Coverage ↑ Set Size ↓

Split EnbPI Online SURE (Ours) Split EnbPI Online SURE (Ours)

NeuMF 0.851 0.859 0.862 0.901 39 40 40 39
CASER 0.861 0.878 0.872 0.901 39 40 40 38
SASRec 0.867 0.881 0.891 0.902 38 38 39 36
FMLP-Rec 0.871 0.889 0.901 0.901 38 37 38 35

Table 10: Comparison in terms in terms of coverage and average prediction set size with conformal
baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders
(NeuMF, CASER, SASRec, and FMLP-Rec) using the Gowalla dataset. The error rate is set as
α = 0.10. Bold indicates the best result, underline indicates the second best.

Base Model Coverage ↑ Set Size ↓

Split EnbPI Online SURE (Ours) Split EnbPI Online SURE (Ours)

NeuMF 0.829 0.851 0.871 0.901 43 43 44 44
CASER 0.831 0.860 0.883 0.902 43 42 44 43
SASRec 0.837 0.870 0.895 0.901 43 42 43 42
FMLP-Rec 0.842 0.875 0.900 0.905 42 47 43 41

Figure 3: Performance analysis on the Last.fm dataset for varying δ ∈ 0.05, 0.1, 00.15, 0.20, 0.255
with fixed α = 0.07, shown in terms of recommendation metrics and prediction set size.

A.7.4 ABLATION STUDY

To evaluate the effect of the two detection components in SURE, we perform an ablation study
by selectively removing each loss-based shift term. We follow the same experimental protocol as
described in Section A.6.2, with the error rate fixed at α = 0.1 and confidence level δ = 0.05. We
report results on the Book-Crossing dataset with the SASRec backbone, and analyze the performance
in terms of a) validity: measured as realized coverage against the error rate, b) compactness: measured
in terms of the average set size, and c) robustness: which is measured in terms of the recommendation
set volatility across the time stamps. We define the robustness parameter χ as:

χ =
1

T − 1

T∑
t=2

∣∣Caggλt ∆ Caggλt−1

∣∣∣∣Caggλt−1

∣∣ ,

where ∆ denotes the difference between consecutive aggregated prediction sets.

We consider he following cases: (1) w/o dlddℓ , where only the concept-sensitive divergence dconℓ is
retained; and (2) w/o dcon, where only the loss discrepency distance dldd is retained. The results are
denoted in Table 13. The results lead to following key observations:
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Table 11: Set size (left) and coverage (right) for different γ and β on Book-Crossing Dataset.

γ ↓ / β → 0.5 0.7 1.0

0.9 44.6 / 0.920 45.6 / 0.924 46.5 / 0.930
1.1 42.1 / 0.895 42.8 / 0.908 43.5 / 0.912
1.3 41.2 / 0.889 42.2 / 0.892 43.1 / 0.901

Table 12: Robustness to ensemble size L on Book-Crossing Dataset (set size / coverage).

L 5 10 20

set size / coverage 42.5 / 0.906 42.9 / 0.908 43.5 / 0.908

• Firstly, removing dlddℓ substantially reduces validity. The coverage drops below the target
α. As a result, the framework tries to compensate by inflating the prediction sets. This is
because, without the loss-discrepancy term, the detector becomes insensitive to uniform in-
creases in difficulty across models. In such cases, shifts that affect all experts simultaneously
go undetected, and calibration lags behind, leading to systematic under-coverage.

• Secondly, removing dconℓ primarily degrades robustness. Although coverage remains close
to the target and the average set size looks competitive, the volatility χ nearly doubles. This
indicates unstable calibration as the threshold λ fluctuates sharply in response to transient
expert disagreements, even when the underlying distribution is relatively stable. In practice,
this results in inconsistent recommendation sets from one time step to the next, potentially
harming user trust.

• Finally, the full SURE framework, by jointly utilizing both the loss-discrepancy and the
concept-sensitive terms, balances the strengths of each detector. The loss-discrepancy
term guards against systematic difficulty shifts, while the concept-sensitive term dampens
volatility caused by transient expert fluctuations. Their combination ensures that coverage
stays close to the nominal target (validity), prediction sets remain as small as possible
without sacrificing risk guarantees (efficiency), and threshold updates evolve smoothly over
time (robustness).

These results show that each component is complementary and addresses a distinct failure mode,
and together they form a balanced and reliable detector of preference shifts. Hence, both signals are
indispensable for achieving stable uncertainty-aware recommendations under non-stationary user
behavior.

A.8 INTUITION OF ADAPTIVE DYNAMICS IN SURE

To provide an intuitive understanding of the SURE framework’s adaptive capability, we visualize
the internal dynamics of the DAUO algorithm during a user session based on interactions from the
Taobao dataset, designed to illustrate a sequence of preference shifts. Figure 4 describes how the
three key variables evolve: the rolling risk, the calibration threshold (λ), and the prediction set size.

Figure 4 illustrates the clear causal sequence of the adaptation loop. Initially, stable user behavior
allows for a high threshold (λ ≈ 0.62) and compact set size. A sudden preference shift degrades the
ranking quality, causing a risk spike. The DAUO update rule (Eq. 15) counters this by lowering λ
(Middle Panel), which accordingly expands the prediction set (Bottom Panel) to restore coverage.
Notably, the set size stabilizes at a higher level rather than returning to baseline because the underlying
backbone model remains frozen. SURE correctly identifies that the frozen model is now less accurate
for the new user preference and permanently maintains a larger safety margin to ensure continued
risk control.

A.9 DISCUSSION

Our framework SURE reframes sequential recommendation as an uncertainty-aware prediction set
problem that (1) hedges an ensemble of bootstrapped recommenders through Hedge weighting with

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 13: Ablation of detection components on Book-Crossing Dataset

Variant Coverage ↑ Avg set size ↓ Volatility χ ↓
SURE 0.908 42.8 0.12
w/o dldd

ℓ 0.872 44.7 0.10
w/o dcon

ℓ 0.907 43.1 0.23

adaptive conformal thresholds, (2) detects user-specific preference shifts without any heuristically
chosen window lengths utilizing a Bayesian changepoint detection model, and (3) provides sample
guarantees that both the expected set size and the utility-based risk stay near-optimal under non-
stationary preferences. Our claims are empirically supported as SURE consistently outperforms base
recommender models and preference-aware recommender baselines on various recommendation
metrics while maintaining tight and valid (1 − α) coverage across five public datasets. It does so
without adding any significant training time, hence it can be expanded to recent popular generative
models (Rajput et al., 2023; Zhai et al., 2024; Deng et al., 2025; Han et al., 2025). It is also
robust in addressing broader concerns raised in the recommendations. Because thresholds and
ensemble weights are updated externally with respect to a platform-defined utility function Umetric,
the framework can incorporate fairness- or diversity-aware objectives directly. For example, Umetric

can be defined to penalize concentration or unsafe content, or combined with exposure caps and pre-
filters; the coverage guarantees then hold with respect to this modified Umetric, requiring no change
to the theory. This flexibility ensures resilience to issues such as filter bubbles or echo chambers.
Different fairness definitions across user groups is also supported by the mechanism. Since thresholds
and Hedge weights are updated externally, calibration can be performed separately for groups (e.g.,
by demographics, region, or activity level). Replacing |U| with |Ug| yields valid guarantees for each
group independently, preserving equitable coverage across heterogeneous populations. Users in
smaller or sparser cohorts may see slightly larger average set sizes due to finite-sample slack, but
validity is preserved as shown in Theorem 5.1 and Theorem 5.2.

SURE does face the finite-sample effect. While the smaller calibration size continues ensuring the
validity in a dynamic environment, it may lead to more conservative prediction sets as shown in our
theoretical results. Also, as commonly seen in conformal strategies, SURE can only be as good as
the confidence scores it calibrates. If a backbone recommender produces poorly ranked logits with
poorly calibrated backbones (NeuMF), SURE’s sets are ∼15% larger than with stronger models
(FMLP-Rec). We aim to address these challenges in future work. Overall, our work bridges the
gap between sequential recommender systems’ lack of reliability in adaptive environments with
changing user preferences, which is a pragmatic step towards inspiring future research in trustworthy
recommendation systems.
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Figure 4: Dynamic Adaptation of SURE under Preference Shift. (Top) The rolling risk spikes
above the target α = 0.10, indicating preference shifts. (Middle) The calibration threshold λt reacts
immediately by lowering (Eq. 15) to loosen constraints. (Bottom) The prediction set size accordingly
increases, confirming the framework’s ability to actively detect and correct for preference shift in
real-time.
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