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ABSTRACT

Although Sequential Recommender Systems (SRS) have been well developed to
capture temporal dynamics in user behavior, they face a critical gap in formal
performance guarantees under preference shifts. When preferences change, predic-
tions often become unreliable, undermining user trust and threatening long-term
platform success. To address this challenge, we introduce SURE (Shift-aware,
User-adaptive, Risk-controlled REcommendations), a dataset- and model-agnostic
framework that provides adaptive recommendation sets with formal coverage guar-
antees while remaining compact under preference shifts. Specifically, SURE (i)
ensures validity through a loss-based change-point mechanism that adaptively up-
dates calibration thresholds upon detecting preference shift, (ii) maintains compact
recommendation sets by stabilizing predictions with a Hedge-weighted ensemble
of bootstrapped experts, preventing validity from degenerating into impractically
large outputs, and (iii) guarantees robustness under non-stationarity by deriving
finite-sample bounds that ensure the ensemble’s expected set size remains close to
the best expert while controlling the utility-based risk in recommendation. Exten-
sive experiments across multiple datasets and base models validate the effectiveness
of the proposed framework, which aligns with our theoretical analysis.

1 INTRODUCTION

Sequential recommendation systems (SRS) learn temporal dependencies across user interaction
sequences to forecast future behavior, making them essential for platforms such as e-commerce,
streaming, and location-based services (Hussien et al., 2021; Chang et al., 2017; Rohilla et al., 2021).
Much research focuses on developing different architectures, e.g., SASRec (Kang & McAuley, 2018),
Caser (Tang & Wang, 2018), and FMLP-Rec (Zhou et al., 2022), which are trained on historical
interactions and then deployed with fixed parameters. In their canonical offline form, these models
are trained on historical interactions and then deployed with static parameters (Farzad & Bamshad,
2018; Chen et al., 2023), capturing temporal dynamics but remain brittle under preference shifts. As
a result, predictions may become unreliable. Periodic retraining can be costly and add latency (Shen
& Kurshan, 2023; Zhang et al., 2020), which is unacceptable in high-stakes recommender scenarios.

In recent years, some works have sought to mitigate this challenge by incorporating temporal posi-
tional encodings (Li et al., 2020) or segmenting user histories through causal variational frameworks
(Wang et al., 2023). However, these approaches still assume locally stable environments and cannot
fully adapt to abrupt preference shifts. Other works exploit future user interactions as oracle signals
during training (Xia et al., 2025). While promising, this strategy depends on information unavailable
in real-time prediction. Importantly, none of these methods provides statistical guarantees on perfor-
mance under evolving user behavior, a critical vulnerability that undermines the trustworthiness of
recommender systems.

As aresult, we are motivated to propose a fundamentally new approach: a model-agnostic recom-
mendation framework offering rigorous statistical guarantees for performance under non-stationary
user preferences. Specifically, our goal is to construct dynamic and compact prediction sets around
recommended items that adaptively adjust to evolving user behaviors and guarantee recommendation
performance with high confidence (e.g., 95%) over time.

The code and implementation details are available at https://anonymous.4open.science/t/SURE_-02D2
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While Conformal Prediction (CP) (Vovk et al., 2005; Angelopoulos & Bates, 2021) can offer a
principled approach to the above challenge, it cannot be naively applied due to the violation of the
exchangeability assumption and distribut shift in SRS. Fortunately, adaptive conformal approaches
exist to handle non-exchangeability (Xu & Xie, 2021). However, applying these frameworks to
sequential RS task presents unique challenges: 1) The current adaptive conformal prediction methods
(Xu et al., 2024) often rely on a fixed-size rolling window to update confidence sets, which, as
discussed by Zaffran et al. (2022), can only work well for stationary residuals. Whereas real-world
behaviours in sequential RS environments are highly non-stationary. A fixed window size implicitly
assumes a constant shift rate, causing delayed adaptation for fast-shifting users and unnecessary
fluctuations for stable ones. 2) Secondly, tight and stable (1 — «)-marginal coverage is attainable only
when each calibration window contains a sufficiently large and representative sample of residuals
(Gibbs & Candes, 2021; Zaffran et al., 2022; Angelopoulos et al., 2024). In sequential RS, however,
deep sequence models are trained on short and noisy interaction histories, which may result in
unstable model scores and heavy-tailed residual distributions. This instability eventually leads to
noisy threshold estimation and overly conservative prediction sets (Barber et al., 2021; Gupta et al.,
2019). This raises an important question: Can we design an uncertainty-aware prediction framework
that adapts to user-specific, non-stationary shift while (1) maintaining compact prediction sets even
under high uncertainty in model outputs, and (2) dispensing with a fixed-window hyperparameter yet
still guaranteeing (1 — «)- marginal coverage with at least (1 — §)-confidence?

To answer these challenges, we propose SURE (Shift-aware, User-adaptive, Risk-controlled
REcommendations), a model-agnostic framework that outputs dynamic recommendation sets adapt-
ing to user-specific preferences shifts while offering formal guarantees. Specifically, SURE improves
robustness by maintaining an ensemble of base recommenders, each trained on a different bootstrap
of user—item interactions with their prediction sets aggregated via Hedge weighting, which, while
maintaining validity, automatically favours experts producing compact recommendations. It also
employs segmentation-based recalibration that triggers localized threshold updates using a loss-based
metric instead of a fixed rolling window. Subsequently, we prove that SURE controls both prediction
set size via variance-controlled aggregation and utility-based risk at inference time through adaptive
threshold calibration under preference shifts. We illustarte the framework in Figure 1 in Appendix.

Our contributions are summarized as follows:

* Firstly, we formulate the sequential recommendation problem from the perspective of an
uncertainty-aware prediction task, and propose a reliable and adaptive framework- SURE,
which generates compact yet valid prediction sets with user-specified a-risk under non-
stationary preferences.

* We then develop Dynamically Adaptive Uncertainty-aware Optimization (DAUO), an effi-
cient Hedge-based ensemble optimization algorithm that jointly updates ensemble weights
and risk thresholds to balance prediction set compactness and risk coverage, thereby achiev-
ing the objectives of SURE.

* Technically, we introduce a scalar loss-based shift metric that combines a relative loss-
discrepancy and a concept-sensitive divergence to quantify user preference shift, thereby
enabling dynamic segmentation and localized threshold recalibration.

* Theoretically, we establish statistical guarantees for SURE. Specifically, we show that (1)
the expected size of the ensemble prediction set never exceeds the best individual model’s
size at that timestamp, up to a variance-controlled slack (Theorem 5.1); and (2) the expected
utility-based risk at inference stays within a provable margin of « with probability at least
1 — 4, even under shifting user preferences (Theorem 5.2).

* Empirically, we conduct extensive experiments using diverse recommendation base models
and benchmark datasets. We evaluate SURE against preference-aware recommender base-
lines in terms of recommendation performance and against conformal prediction methods
with respect to recommendation set compactness and coverage guarantees. The results, as
presented in Section 6, confirm the effectiveness and robustness of SURE, consistent with
its theoretical foundations.
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2 RELATED WORK

2.1 SEQUENTIAL RECOMMENDATION SYSTEMS (SRS)

SRS initially modeled item—to—item transitions with Markov chains (Rendle et al., 2010) or factoriza-
tion approaches Rendle et al. (2009) that accounted for short-range dependencies in user histories.
Deep learning models such as GRU4Rec (Hidasi et al., 2015), convolutional architectures, and
transformer-based methods (e.g., SASRec (Kang & McAuley, 2018), BERT4Rec (Sun et al., 2019))
extended this to capture long-term dependencies. However, while these models effectively learn tem-
poral dynamics, they often struggle to remain reliable when user preferences shift abruptly (Quadrana
et al., 2018; Pan et al., 2024). Recent works have sought to address non-stationarity or preference
shifts explicitly by disentangling user preferences through self-supervision (Ma et al., 2020), model-
ing temporal intervals in self-attention (Li et al., 2020), or separating stable and shifting preferences
via causal reasoning (Wang et al., 2023). A parallel line of work focuses on predictive uncertainty in
recommender systems. Coscrato & Bridge (2023); Xu et al. (2024) investigate fundamental limits
of top-N recommendation accuracy using information-theoretic bounds highlighting the increasing
importance of principled uncertainty modeling. Paliwal et al. (2024) propose Predictive Relevance
Uncertainty to estimate prediction reliability based on distance to training samples, while Cui et al.
(2024) develop a Bayesian deep collaborative filtering model coupled with an uncertainty-aware
ranking to improve trustworthiness in online physician recommendations. More recently, variational
and stochastic sequence models. Fan et al. (2021); Fang et al. (2020); Wang et al. (2022) have
explored uncertainty-aware sequential recommendation. However, these approaches, while powerful,
still lack finite-sample guarantees on recommendation quality under evolving preferences.

2.2 CONFORMAL PREDICTION

Conformal Prediction (CP) can quantify models’ uncertainty and can provide a finite sample guarantee
by creating distribution-free prediction sets that contain the true outcome with a user-specified
coverage probability (Vovk et al., 2005; Shafer & Vovk, 2008; Romano et al., 2019). Classical CP
(Angelopoulos & Bates, 2021) assumes exchangeability and uses a calibration split to choose a global
threshold; Some other methods like Inductive CP (Papadopoulos, 2008) consider the full dataset. To
remain valid under temporal shift, online (Angelopoulos et al., 2024; Wu et al., 2025) and adaptive
CP techniques (Gibbs & Candes, 2021; Zaffran et al., 2022; Xu et al., 2024; Liang et al., 2025)
have been developed that update calibration statistics on sliding windows or with an adaptive rate
of change in the global threshold. Some works have extended CP to recommender systems. Kagita
et al. (2022; 2023) extended top-N recommendation with conformal guarantees. However, these
approaches do not account for non-stationarity or change in user preferences in RS.

3 PRELIMINARIES

We first introduce the notations used in this paper. We consider m users and n items represented
by U = {ux},, and T = {4y }}_,. For brevity, we use u and 7 to denote a user and an item in
this paper. In a sequential recommendation setting, every user u has a chronological sequence of
interacted items, denoted as H,, = [i', %, ... 4l T ‘] where i! € 7 represents an item interacted with
by user u at time step ¢, and |T,,| denotes the length of the sequence for user u. The objective of the
SRS is, given the historical interaction sequence H,, for each user u predict the next item they are

likely to interact with. Specifically:
i = argmax M(i | Hu), €]
1€

where, M(i | H,) : T x H, — [0,1], denotes the underlying recommender model.

Given the dynamic nature of user preferences, however, there is no guarantee of the model’s perfor-
mance. This limitation motivates us to explore the creation of dynamic recommendation sets that
adapt with changing user preferences, which we discuss next.

4 THE PROPOSED FRAMEWORK

In this section, we propose Shift-aware, User-adaptive, Risk-controlled REcommendations (SURE),
a novel framework designed to provide compact recommendations that adapt to evolving user
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preferences with theoretical performance guarantees in a sequential recommendation setting. We
begin by defining the construction of the dynamic prediction set C**! C T for a single underlying
model, which is guided by a timestep-dependent threshold parameter A € A C R. Specifically:

Cil'(Hy) = {i €T | M(i | Hu) = N} 2)
For brevity we will refer to Cy¢+ = Cf\'fl(Hu). Our goal is, given the user-defined error rate

a € [0, 1], for every timestamp, the recommendations created ensure:
R(Cy) < a. 3)

The risk R(.) in Equation (3) is defined as:

R(Cx) = Eu[Lu(Crr)], “4)

where £,(.) is the bounded user utility-based loss function defined as:
Lu(Cxi) =1 = Unetric(if ,Cxt). ®)

Here, U,etric(-) represents generalized recommendation metric (such as Recall or NDCG) that

measures performance of recommendation set Cy: for any user u given the relevant item i’} .

The threshold A in Equation (2) is learned from model scores, which are highly sensitive to the
quality of the underlying recommender. When models are trained on sparse user histories, as is
common in RS Bertin-Mabhieux et al. (2011); Cho et al. (2011), the resulting scores can become
unstable, often leading to heavy-tailed residual distributions, which in turn destabilize threshold
estimation and might result in overly conservative prediction sets.

To address this, we propose using an ensemble of L base models:

M — {Ml,M2,...,ML}, 6)
where L is the number of models in the ensemble and each M is obtained, for example, by training
on a bootstrap sample of the full user set U, i.e., U’ C U.

Firstly, for each model M, we generate a prediction set C; "' := C};*(H,), guided by its own
B 4

threshold A} and ensuring the per-model analogue of Equation (3) is satisfied. Next, we aggregate
these sets, generated using X' = {\}}}_,, into an ensemble-based recommendation. Specifically:

Ci%g = ‘A({C;+1}Z:ueuf’ Wt)’ (7)

where A(-, w') is an aggregation operator that merges the individual set predictors C;H using a
weight distribution w! € AL, the (L—1)-dimensional probability simplex (i.e., AL = {w € R :
wh >0, Zle w} = 1}), where each w! determines the contribution of model M* at time ¢.

The aggregation operator A(-, w?), following Gasparin & Ramdas (2024), is defined as:

2

A({eiy, vt = {z €1

L
S wh-1(ie ety > LEAD } ®)
=1

Items ¢ are included in the ensemble set if their total weighted support across base models exceeds
the randomized threshold l%k(t), where k(t) ~ Uniform]0, 1] introduces mild stochasticity to
discourage marginal inclusions. To favor models that produce efficient sets, we follow Freund &
Schapire (1997) and adaptively update the weights {w’}._, based on the cardinality of the prediction

sets produced.

Specifically, let s’ denote the cardinality of the prediction set produced by base model MY at time ¢,
ie., sh = |C}f+1| , and let the cumulative size up to time ¢ be S} = Zi:l sp. Then, for a learning

rate 7 > 0, we update the weights as:
witl — exp(—nsﬁ)
¢ T L )
Zj:l exp(—ﬂ5§)

) &)

bl

with w! = (%,...,
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Meanwhile, another tough challenge to tackle is the evolving user preferences. As user preferences
change, the model’s threshold \} learned over previous timestamps may fail to ensure Equation (3).
Hence, to maintain statistical validity and capture changes in user preferences, we introduce loss-
based shift metrics. For each base model M*, we quantify preference change via the loss discrepancy
distance (d}!?) and the concept-sensitive divergence (d5°") respectively.

To define Loss Discrepancy Distance (LDD), we draw inspiration from the HAH divergence definition
in Ben-David et al. (2010) by replacing its binary—disagreement indicator with a generalized bounded
predictive loss to measure the maximum discrepancy between a reference model and other models
across timepoints ¢ and ¢’ < t. Specifically:

+ e)

where L;(M?") denotes a generalized loss function (e.g. cross entropy) of model MY at time ¢, and
€ > 0 ensures stability. Similarly, to capture concept-sensitive divergence, we define a hazard-style
term that compares the model’s loss across ¢ and ¢’ to the sum of the least individual losses. Formally:

con / _ Lt(Me) + Lt’ (Ml) te
di**(t,1') = log (minMGM(Lt(M)) +minpen (Ly (M) + 6>

We then combine the relative loss-discrepancy and the concept-sensitive divergence into a single
scalar loss-based shift metric of preference change:

dy (e, t) = d(et) + dien (). (12)

dldd( t') = max
M’'eM, M’ #M?E

) (10)

(’ Li(M%) — Ly(M)
Ly(MF) = Ly(M') + €

(11)

To localize preference shifts, we embed dprCf in a Bayesian change-point model. At each timestamp

t, we place a posterior probability d1str1but10n pe(+) over candidate segment starts ¢/ € { c; k|
k=0,...,t— cg_l } as follows:

exp[~Bdy (e} k)] (t—cf Tt —k+ 1)

t—1 ?
t—c,

> expl-Bdl (el )] (-l =G+ 1)
j=0

13)

pe(cf = et +k|t)

where 8 > 0 tunes shift sensitivity and v > 0 controls the segment-length bias.

We pick the segment boundary for each model i.e. ¢/ = cé !+ arg maxy, pe (Ce + k| t) , set the

stable window W/ := [ ¢/, t] and then calculate the average risk of the window as follows:
Ry > BC/). (14)
‘W | TEW/}

Finally, to adaptively maintain statistical guarantees under detected user preference shift, calibration
threshold is updated as follows:

M=M= p(Rf - @), (15)

where p > 0 is a step size. The threshold ), 1 decreases when segment risk exceeds v, expanding

the prediction set to restore validity, and i 1ncreases when risk falls below «, thus achieving automatic
recalibration.

To this end, we complete modeling of proposed framework. To output user-wise dynamic prediction
sets, we instantiate it through DAUO ( Dynamically Adaptive Uncertainty-aware Optimization)
algorithm to learn parameters A} and weight vector w’. Algorithm is in Section A.3 Appendix.

Prediction Set Construction: At every interaction, the DAUO algorithm considers two adaptive
parameters: the current calibration threshold A} and the ensemble weight vector w’. When a user u
with history S, arrives, the algorithm first evaluates every base model M? to obtain the individual
prediction sets (Equation (2)). It then combines these sets through the weighted majority operator in
Equation (8), producing the aggregated recommendation. Since \} is updated adaptively to enforce
Equation (3) and the Hedge weights are penalized by set size, the resulting prediction set is not only
valid, i.e., controls risk at level o, but also simultaneously compact.
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5 THEORETICAL ANALYSIS

In the previous sections, we demonstrate how the DAUO algorithm dynamically learns the threshold
AL for an ensemble of trained models M? and updates it via empirical risk estimates over adaptive
windows, however, it remains to be seen whether this online calibration guarantees efficient and valid
predictions. In this section, we provide a theoretical analysis on (1) the provable upper bound on the
ensemble prediction set produced via weighted majority voting, and (2) the threshold A}, learned
from historical user interactions and estimated segmental risk R¢, ensures that the true expected risk
remains close to the desired threshold o with high probability 1 — 4.

Theorem 5.1 (Expected Aggregator Size). Let Cﬁt C T denote the prediction set produced by base
model M* at time t, and let s', := |C.|. Let \' = (M}, ..., A\L) denote the per-model thresholds such
that the ensemble set C3%% is formed by the randomized weighted majority rule k(t) ~ Uniform[0, 1]
with Hedge weights w' € A*. Assuming {* := arg miny s is the best expert at round t, the expected
size of the aggregated prediction set at time t + 1 satisfies:

E[IC3%¥]] < sf- + vV2InL vy + 3InL, (16)

where vy := Vart(sy/|Z|) € [0,1] is variance of normalized set sizes under Hedge distribution.

Proof. Proof with Lemma A.4.1 can be found in Section A.4.1 in Appendix. |
Remark 1. Theorem 5.1 shows that expected size of ensemble prediction set is no worse than that of
best base model at t, up to a variance-dependent slack. As base predictors begin to agree on coverage,
the variance v, diminishes, and the ensemble size approaches the best-case performance.

Theorem 5.2 (Expected Risk Control under User Preference Shifts). Let the DAUO algorithm run
over a horizon of length T'. Assume the Bayesian change-point detector raises N preference shifts
and let d; be the detection delay of the j-th shift so that Dy := Z;V:Tl dj. Let \XT' = (\F, ... \T)
denote the vector of per-model thresholds after round T, and let Cigfpg denote the ensemble prediction
set formed with those thresholds. Let L., (Cing) be the utility-based loss of user u under that ensemble.
Given a user batch of size |U| and a user-defined risk level «, then with probability at least 1 — 6, the
expected utility-based loss at time T + 1, using the final threshold AT, satisfies:

; log(4|U]) =~ Dr + 2log(1/9)
By [ L4 (C388)] < 2 . 17
u[ ()\T)}_Oé—F 20| + T (17
Proof. Proof with Lemmas A.4.2 to A.4.4 can be found in Section A.4.2 in Appendix. O

Remark 2. Theorem 5.2 ensures calibrated \T guarantees expected risk at time T + 1 remains close
to user-defined target o, with confidence. The bound captures both calibration uncertainty (which
decays with user batch size |U|) and change-adaptation error (which vanishes as cumulative delay
D becomes sublinear in T'). As both calibration and adaptation improve with scale, expected loss at
prediction time T + 1 converges to «, ensuring reliability even under non-stationary user preferences.

To sum up, the results establish that our framework, by adaptively calibrating threshold A, and
leveraging ensemble voting, guarantees control of both recommendation set size and utility-based
risk. Specifically, the set size remains competitive with best individual model (up to ensemble
variance), and expected loss at time 7+1 is provably bounded around the user-specified threshold a.

6 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness of the proposed SURE framework.
Specifically, we design experiments to (1) validate whether the framework can achieve superior
performance in terms of recommendation metrics, i.e., Recall, NDCG and MRR when compared to
base models as well as preference-aware baselines, and (2) compare performance of the framework
with various static and adaptive conformal frameworks in terms of compactness of recommendation
set sizes and validity of coverage guarantees (3) analyze time efficiency of the proposed SURE
framework, (4) analyze the influence of hyperparameters, including key conformal parameters (c, 9)
as well as change-point detector settings (5, v) and ensemble size (L) on the framework’s performance
(Section A.7.3 in Appendix), (5) conduct an ablation study to disentangle the contributions of
components in the shift detector (Section A.7.4 in Appendix).
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6.1 DATASETS AND BASELINE MODELS

We conduct experiments on five publicly available datasets across diverse domains: (1) Book-Crossing
(book reviews) (Ziegler et al., 2005), (2) Last.fm (music streaming) (Bertin-Mahieux et al., 2011),
(3) Taobao (e-commerce) (Jingwei et al., 2020), (4) MovieLens (movie ratings) (Harper & Konstan,
2015), and (5) Gowalla (location-based social network) (Cho et al., 2011). We implement SURE on
four base recommendation models selected to represent diverse modeling paradigms: (1) NeuMF (He
et al., 2017) (generalized matrix factorization and MLP hybrid), (2) CASER (Tang & Wang, 2018)
(convolutional sequence embedding), (3) SASRec (Kang & McAuley, 2018) (self-attention-based
sequential modeling), and (4) FMLP-Rec (Zhou et al., 2022) (filter-enhanced feed-forward MLP-
based model). For evaluation, we consider both standard recommendation metrics, i.e., Recall, MRR,
and NDCQG, as well as uncertainty-aware objectives, including coverage guarantees and prediction set
size (compactness). On the recommendation metrics, we compare SURE against three preference-
aware recommendation models: (1) TiSASRec (Li et al., 2020), (2) CDR (Wang et al., 2023), and (3)
Oracle4Rec (Xia et al., 2025). For uncertainty-aware evaluation, we compare against three conformal
prediction methods: (1) standard Split Conformal (Vovk et al., 2005), where the threshold parameter
A remains fixed; (2) EnbPI (Xu & Xie, 2021), an ensemble estimator with fixed-window calibration;
and (3) Online Conformal (Angelopoulos et al., 2024), which uses decaying update rule for threshold
A?. Full implementation details and description of datasets, base models, and preference-aware &
conformal baselines for reproducibility are provided in Sections A.5 and A.6 in Appendix.

6.2 EXPERIMENTAL RESULTS
6.2.1 RESULTS COMPARED WITH BASE MODELS AND PREFERENCE-AWARE BASELINES

We evaluate SURE framework using four recommendation base models and against three user-
preference-aware baselines in terms of standard metrics (MRR, Recall, NDCG). To reflect practical
screen/latency constraints, the maximum recommendation set size is capped at 25 items per user. For
each backbone model and metric, we define a Model Ceiling @25 score as the maximum achievable
value under its own ranking when limited to 25 items, computed per-user (by taking the shortest prefix
containing the relevant item) and then averaged across users. Following prior conformal prediction
literature (Angelopoulos & Bates, 2021; Bates et al., 2021; Vovk et al., 2005), we set the error rate
« = 0.05 and confidence level § = 0.05, and aim to construct recommendation sets whose realized
metrics remain within « of their corresponding Model Ceiling@25with probability at least 1 — §. To
ensure fair comparison, all baselines are evaluated at the same average set size produced by SURE.
Results for BookCrossing and Last.fm are reported in Table 1, with additional results for MovieLens,
Gowalla, and Taobao in Section A.7.1 in Appendix. These results lead to following key observations:

* The proposed SURE framework controls risk within the predefined threshold o« = 0.05 with
high confidence and achieves performance close to the model-specific ceiling across all base
models. Consequently, it consistently outperforms all baselines on standard metrics (MRR,
Recall, NDCG) across datasets.

* The performance also depends on the base model. For example, the state-of-the-art se-
quential model FMLP-Rec + SURE consistently outperforms NeuMF + SURE by at least
> 12% on every metric for Book-Crossing and 15% on Last.fm datasets, underscoring the
importance of a strong baseline.

» The average set size learned by our SURE framework improves performance of baselines
and narrows the gap to their model-specific ceilings, as seen with FMLP-Rec model on
Last.fm dataset. However, they still underperform compared to SURE, since a single global
prediction size cannot be personalized to individual user satisfaction Kweon et al. (2024).

* While the user-preference aware models generally perform well compared to the baselines
across both the datasets, their reliance on temporal cues Li et al. (2020), cross-domain
transfer Wang et al. (2023), or future-interaction signals Xia et al. (2025) breaks down
under sparsity, domain shift, or real-time constraints. Our uncertainty-aware, shift-adaptive
framework doesn’t make any such assumption and stays robust in every condition.

Overall, the results demonstrate the data- and model-agnostic nature of SURE, achieving
superior performance across all metrics, models, and datasets.
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Table 1: Performance comparisons with base models ( NeuMF, CASER, SASRec and FMLP-Rec )
and user preference aware baselines ( TiSASRec, CDR and Oracle4Rec ) on Book-Crossing and
Last.fM Datasets using metrics ( MRR, Recall, NDCG ). For SURE, « and § are set empirically as
0.05, respectively. Bold indicates the best result, and underline indicates the second best.

Method Book-Crossing Last.fm

MRR 1 Recall T NDCG 1 MRR 1 Recall T NDCG 1

Model Ceiling @25(NeuMF) 0.322 0.603 0.329 0.379 0.751 0.393
NeuMF 0.246 0.502 0.276 0.306 0.685 0.335
NeuMF + SURE (Ours) 0.289 0.557 0.302 0.336 0.701 0.354
Model Ceiling@25(CASER) 0.369 0.631 0.373 0.412 0.803 0.434
CASER 0.294 0.568 0.302 0.345 0.745 0.367
CASER + SURE (Ours) 0.322 0.588 0.323 0.378 0.758 0.385
Model Ceiling@25(SASRec) 0.379 0.657 0.381 0.439 0.845 0.453
SASRec 0.327 0.556 0.329 0.369 0.766 0.389
SASRec + SURE (Ours) 0.341 0.608 0.355 0.392 0.799 0.422
Model Ceiling@25(FMLP-Rec) 0.381 0.673 0.392 0.453 0.869 0.475
FMLP-Rec 0.335 0.599 0.352 0.386 0.796 0.412
FMLP-Rec + SURE (Ours) 0.357 0.628 0.368 0.402 0.812 0.432

User Preference-Aware Models

TiSASRec 0.334 0.583 0.345 0.374 0.778 0.402
CDR 0.340 0.563 0.350 0.371 0.782 0.376
Oracle4Rec 0.345 0.603 0.353 0.390 0.798 0.422

6.2.2 RESULTS COMPARED TO CONFORMAL BASELINES

Next, we compare our method with conformal baselines in terms of coverage and set Size. We set
error rate o = (.10 and compare on the base recommender models: (1) NeuMF (He et al., 2017), (2)
CASER (Tang & Wang, 2018), (3) SASRec (Kang & McAuley, 2018) and (4) FMLP-Rec (Zhou
et al., 2022) against different conformal baselines i.e. (1) standard Split Conformal (Vovk et al.,
2005), (2) EnbPI (Xu & Xie, 2021), and (3) Online Conformal (Angelopoulos et al., 2024) at next
interaction. Each conformal baseline can be interpreted as an ablation of SURE: Split Conformal
freezes calibration threshold A learned and therefore omits online update in Equation 15. EnbPI
replaces our Bayesian change-point module with a fixed sliding window, ignoring distributional shifts
and the dynamic segmentation of Equation 13. Whereas Online Conformal updates \! at every step
using only most recent interaction, thereby discarding historical risk information that our cumulative
segment risk in Equation 14 utilizes. Table 2 depicts results on the Book-Crossing dataset, with
remaining results present in Section A.7.2 in Appendix. They lead to the following observations:

* Our SURE framework achieves the best coverage—size compactness balance. It achieves the
required coverage and ensures compact average set size on every base model, underscoring
its plug-and-play applicability.

* Split conformal provides compact recommendation sets, but the prediction sets are invalid
as the coverage value is around 0.82-0.83, well below the nominal 0.90, thereby revealing
the under-calibration under users’ preference shifts.

* EnbPI boosts coverage by ~0.03-0.04 compared to split conformal, but does so at the expense
of increased prediction set sizes. It highlights the importance of our Bayesian change point
detection module to detect the preference shift point.
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Table 2: Comparison in terms in terms of coverage and average prediction set size with conformal
baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders
(NeuMF, CASER, SASRec, and FMLP-Rec) using the Book-Crossing dataset. The error rate is set
as « = 0.10. Bold indicates the best result, underline indicates the second best.

Base Model Coverage 1 Set Size |

Split EnbPI Online SURE (Ours) Split EnbPI Online SURE (Ours)
NeuMF 0.821 0.849 0.875 0.901 44 43 46 46
CASER 0.826 0.858 0.879 0.902 44 45 45 44
SASRec 0.835 0.867 0.898 0.908 43 47 44 43
FMLP-Rec  0.835 0.873  0.901 0.910 43 47 45 42

* Online conformal narrows the gap as coverage climbs to 0.87-0.90, but remains less efficient
than SURE as average set size still exceeds SURE by 1—2 items. It highlights that on-the-fly
calibration alone is susceptible to fluctuations, leading to conservative prediction sets.

* Overall, results demonstrate SURE consistently ensures the best coverage—efficiency
trade-off on every baseline model that can ensure valid recommendation sets.

6.2.3 TIME EFFICIENCY ANALYSIS

We analyse the computational overhead introduced by SURE on top of the four backbone recom-
menders (NeuMF, CASER, SASRec, FMLP-Rec). All runs use a single NVIDIA A40 with batch
size 256, and each model is trained on 100 epochs. From Table 3, we observe across all five datasets
and four baselines, SURE adds at most 1.5 min of wall-clock time. This efficiency occurs because
the calibration loop is a single forward pass with simple threshold and change-point updates, with no
retraining of network weights. Consequently, the modest extra minute is negligible compared with
the performance gain we reported earlier in Table 1. These results confirm that SURE is equivalently
efficient and can be scaled to real-world applications.

Table 3: Total time (in minutes) required to train backbone models on five datasets, w and w/o
addition of SURE. The “w/ SURE” setting includes backbone training plus 50-step calibration. The
calibration parameters « and § are both set to 0.05.

Datasets
Model Training  Book-Crossing Taobao Lastfm MovieLens-1M Gowalla
Neump W0 SURE 28.3 402 185 152 203
w/ SURE 295 416 199 16.4 214
w/o SURE 423 604 295 25.9 32.6
CASER L SURE 438 618 309 274 33.9
w/o SURE 352 471 244 19.1 25.3
SASRec L SURE 36.5 484 258 204 267
wlo SURE 31.6 449 230 17.8 23.6
FMLP-Rec 0 SURE 32.9 464 245 19.1 25.0

7 CONCLUSION

This paper address important problem of evolving user preferences that undermine reliability of SRS.
To address it, it presents SURE framework, which generates user-specific, dynamic recommendations
that evolve with preference shift, guaranteeing performance while keeping them compact. SURE is
dataset and model agnostic and we validate its effectiveness through theoretical analysis and extensive
empirical studies. Since thresholds and ensemble weights are updated externally via a flexible utility
function U,,¢tric, the framework can also be made compatible to fairness or diversity objectives.
Together, it lays foundation for more reliable and trustworthy sequential recommender systems.
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To facilitate reproducibility, we provide the following resources. 1) Source code and datasets: An
anonymized implementation of our proposed framework, supporting codes and datasets are included
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A APPENDIX

A.1 SUMMARY OF NOTATIONS

To facilitate clarity, we provide a comprehensive summary of the key mathematical notations and
variables used throughout the SURE framework in Table 4.

A.2 ASSUMPTIONS

We state two mild assumptions that we use in Theorems 5.1 and 5.2.
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Table 4: Summary of Notations

Symbol Description

u,z7 Sets of users and items

u,1 Individual user and item

Ha, Interaction history for user u

ittt The true relevant next item at time ¢ + 1

L Total number of base models (experts) in the ensemble

M The ¢-th base recommender model (¢ € {1,...,L})

wt Ensemble weight vector at time ¢ (w' € AL)

st St Instantaneous and cumulative prediction set size for model ¢
AL Calibration threshold for model £ at time ¢

citt Prediction set generated by model ¢ using threshold A}

cass Final aggregated ensemble prediction set

« User-defined target error rate (risk level)

R(C) True risk of the prediction set

R} Average empirical risk over the current stable window W/
L) Utility-based Risk Loss (e.g., 1 — Recall), used for calibration
Ly(") Predictive Loss (e.g., Cross-Entropy), used for shift detection
et Loss-Based Preference Shift Metric

didd Loss Discrepancy Distance (LDD)

cf Start time of the current stable segment for model ¢

W) Current stable window [c/, ¢]

n Hedge learning rate for updating ensemble weights

B Shift sensitivity parameter for change-point detection

¥ Segment-length bias parameter for change-point detection

p Step size for the adaptive threshold update

Assumption A.1. For every base model M and any segment W produced by the change—point
detector, there exists a threshold N\ € A such that

R (Cﬁ?ﬁn ) < Q.

Equivalently, the mapping \ — R(CY) is continuous and attains all values in [0, 1] on the closed set
A.

This assumption ensures that for every timestamp in each segment, it is possible to achieve risk
control at level a by appropriately tuning A}. It guarantees the effectiveness of the update rule in
Eq. 15.

Assumption A.2. For each base model MY, let Wf = [c!, t| denote the segment window at

time t returned by the Bayesian change-point detector. We assume the per-user utility losses

{ Ly (Cf\;) } , are drawn from a common bounded distribution within each segment. In
¢ TEWYL, uel,

other words, the loss values within Wf are exchangeable and lie in [0, 1].

This assumption allows average window risk R} to serve as a faithful estimate of true segment risk.
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Data Flow —>» Weight Update Output C;;qg
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P

Figure 1: The SURE WorkFlow (one-step update). At each timestamp ¢, base experts produce
dynamic prediction sets {Cf\,, }_| using thresholds \%. These sets are aggregated with Hedge weights
4

w to form the ensemble recommendation Ci%g. Shift detection computes preference change scores
dgmf and triggers recalibration, updating thresholds A\Jt! <~ A\, — p(Rf — a), while Hedge updating

adjusts the weights w'*! based on set efficiency. The outputs (C;7%, \‘+1, wi™1) are then passed to
the next step, ensuring validity, compactness, and robustness over time.

A.3 ALGORITHM

This section we provide the pseudocode for the Dynamically Adaptive Uncertainty-aware Optimiza-
tion (DAUO) algorithm. The algorithm begins with an initial calibration phase where each base model
M is assigned a starting threshold A} and an equal ensemble weight. This initialization returns
updated \? which creates prediction sets (Eq. (2)) that ensure the empirical risk R(Cf\g ), estimated
via Eq. (4), falls below the user-defined margin (« — €). Then at each timestamp ¢, DAUO adapts both
the calibration threshold and ensemble weights in an online manner. For each base model M, the
algorithm first evaluates user preference shift by computing the divergence dlzref(cf, t) as per Eq. (12),

followed by the Bayesian posterior over candidate segment boundaries using Eq. (13). Here ¢/

represents all the timestamps after the last changepoint detected (where the framework predicted the
preference shift). The segment start is then updated by selecting the most likely boundary cf 41, and
the average risk R over the new segment window [c} ;, ¢] is computed via Eq. (14). The threshold
AL is then updated according to Eq. (15), which adjusts the confidence level based on segmental
risk deviation from «. After all models have updated their thresholds, the ensemble weight vector
w is revised via Eq. (9), giving higher weight to models producing more compact prediction sets.

At prediction time 7'+ 1, the calibrated thresholds S\IZT and final weights w’ are used to construct
individual model prediction sets via Eq. (2). These are then merged through the weighted majority
aggregation rule A(-, w’) in Eq. (8) to produce the final ensemble prediction C;gf (H.). The detailed
steps are presented in Algorithm 1.

A.4 PROOFS
A.4.1 THEOREM 1

Lemma A.4.1. Let for each base model M, the prediction set at round t is Cﬁt C I with s}, == |C§t |

Also, let w* = (wl,...,wt) € A and k(t) ~ Uniform|0, 1]. Given, the aggregated prediction set
is defined by Eq. (7), we have:

Exe [|CRF]] < B

t Here,A\' is equivalent to \5/|A|, where A is the set of candidate thresholds.
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Algorithm 1 Dynamically Adaptive Uncertainty-aware Optimization (DAUO)

1:

% [

11:
12:
13:
14:

15:
16:
17:
18:

19:
20:

21:
22:

23:
24
25:
26:

27:
28:
29:
30:
31:
32:

33:

Initialization:

Initialize thresholds A9 and ensemble weights w° = 11 for all base models £ = 1,...

Set user-defined parameters: target risk «, confidence 9, error tolerance e
Define utility-based loss as in Eq. (5)
Initialize per-model segment starts ¢ = 1

for each base model £ = 1,..., L do
Compute prediction set C{ using Eq. (2) with threshold \)
Compute empirical risk R(C?) using Eq. (4)
if R(CY) < a — ¢ then
continue
else
Update threshold: A9 < A9 — ANT
end if
end for

Calibration:
for each timestamp ¢t = 1,...,7 do
for each base model £ = 1,..., L do
Compute preference shift &' (¢, ™, t) using Eq. (12)
Compute posterior p,(ch = cj~' + k| t) using Eq. (13)
Update segment start:

)« arg max pe(ch=c M+ k|t

Compute window risk R} on [c!, t] using Eq. (14)
Update threshold using Eq. (15):

)\EH =\ —p(Ré —a)

end for

Update ensemble weights w ™! using Eq. (9)
end for .
Store final thresholds: A} < A7 and weights w’

Output at timestamp 7" + 1:
for each user u € U do

for each base model £ = 1,..., L do

Compute prediction set: C/ using Eq. (2) with threshold A
end for
Aggregate ensemble prediction sets using Eq. (8):
T L T
CsEE () = A ({CT ), w7)

end for

L
where hy ==Y, whsh.

Proof. For any item 7 € Z, the aggregated support on the item can be defined as:

L
wy(i) =Y w1 [i €] €0,1]
(=1

where () is the total weight of models that include item ¢ in the prediction set.
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By the definition of the aggregation rule, item i is included in the aggregated prediction set iff:

1+ k(t
() > %() (equivalently)

or equivalently
E(t) < 2w:(i) — 1

So the probability that item ¢ is in ensemble set is,

agg o5
kl?tr)[zec ]—]Etr)[k:()<2wt(z) 1]

Since k(t) ~ Uniform]0, 1], we know that

0 ifu<o
Prik(t) <ul=qu ifO<u<1 foranyrealu
1 ifu>1

Applying u := 2w, (i) — 1, then:

agg (1) —
kl:(’tr) [l S C } (2’(1),5(2) 1)+

with (2)4 := max{x,0}.
Now we know for all z € [0, 1],
2z — 1)y <z forx € (0,1]
ie,ifr <1 then(22-1)<0=(2z-1); =0
ifz> 1 then(2z —1); =2z -1
and 2z — 1) <z oz <1 [true]
Hence we can write
]Er) [i € C388] = (2w (i) — 1) 4 < wy ()
¢

Now computing the expected total size of ensemble set, we have:

By [[C3F]] = 2_ Pr [ € C3F] Z
1€L €T

From Eq. (i), and expanding w; (i), we get:
L
S ow(i) =3 wi-1ieCl]
i€T i€l (=1

Switching the summation order, we get:

L L
*ZMZZI ZEC)\f :Zwé~|Cf\t| :sz~sz:ht
=1 =1

i€L

Putting this all together, we get:

L
E) [[ChFE[] < hei= ) wis)
/=1

Hence Proved.

(i)

(iii)

(iv)

)

(vi)

(vii)

(viii)

(ix)

(69)

(xi)

(xii)

O

Remark Lemma A.4.1 shows that the expected size of the aggregated prediction set is no greater
than the surrogate size h;, which is a weighted average of base model set sizes. This means the
aggregation step does not inflate the prediction set and adapts to the ensemble’s diversity at time ¢.
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PROOF OF THEOREM 5.1

Proof. From Lemma 1, we already have:

L
Ep [[CRFE]] < he = wis)
(=1

Let
L
DT B L e
i 2 i

Now our goal is to bound hy in terms of the best expert’s size §,.. However, given the weights are

spread across all L models, we cannot directly bound hy. Taking inspiration from Cesa-Bianchi
& Lugosi (2006); De Rooij et al. (2014), we analyze it via an auxiliary quantity called mix loss.
Specifically, we decompose the Hedge average into two components: 1) mix loss that behaves like a
soft minimum, and 2) a mixability gap that measures how far the weighted average is from the mix
loss.

We first define mix loss as: ;
1 st
mg = —— logz wh - e €
N =1
and mixability gap as:
(515 = ht — My = ht =mys + (St (ll)

To bound the mixability gap d;, we use Bernstein’s Cumulant Generating Function inequality:

Using (i) in (ii), we get:

L
R 1 .
0y = hy + 5 log Z wh - e (iii)
=1
Refactoring:
e—Tlx‘?z — e—ﬁ(xﬁ—ht) . e_niLt (i)
So,

at at _ 7 7 7 at _ 7
§ wh e M = E wh - (B*W(Se*ht) .e*nhz> — e M . E w} - e M(8—ht) v)
¢ ¢

¢
Plugging into log we get:

IOgZ wp - e = —nhy + log Z wp - o~ (Ei—hy) (vi)
¢ ¢

Putting Eq. (vi) in Eq. (iii), we get:

A o
0y = hy + — <—77ht + logz fwz . e_ﬁ(Sz—ht)>
" 14

N ~ 1 ot 7
=hy —hs + = longE e —he)
N ¢

Oy = 1 log Ey .yt {6_7’(52_;“)} (vii)
n

Now to bound §;, we use the Bernstein Cumulant Generating Function (CGF) as introduced in Cesa-
Bianchi & Lugosi (2006). We interpret §; € [0, 1] as a bounded random variable under distribution
¢ ~ wt, and apply the cumulant inequality.
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Specifically, since X := 8!,
E[X] =h, Var(X) =,

Now, defining moment generating function as:

d(1) = log Epy [e—n(X—E[X])}

(viii)

Applying the result from Cesa-Bianchi & Lugosi (2006) for n € (0, 1] and any X € [0, 1], we get:

m—p—1
log B [e—mX—E[xn} <770 Var(X)
n

Applying this ¢(n) into Eq. (vii) to Eq. (viii), we have:

And then applying the CGF bound we have:

1 [(e"—n—1 m—p—1
5t§n.(e:>vt:6n.vt

Using Taylor series, we know:

EEE
n = 1 — ., ..
e +n+ -+ 3] +

Simplifying, we get:

Next we need to bound the mix loss m;
Given (* := arg minycr; §%, we apply the classic log-sum-exp inequality:
For any real values x1,...,2p,

L
log Z e < — mein x¢+log L
=1

Applying this to our case, with z, := 13}, we get:

L
logZe”’g; < —néh. +log L
=1

As weight w* € AL, the weighted sum is less than or equal to the uniform sum, i.e.,

L L
At at
E wz . e*’lsz g g 677752
=1 (=1

Hence, we get:
L L

longE CeTmE < logz e M < —néh. +log L

/=1 {=1

Multiplying (xv) by —%, and applying a looser (but convenient) upper bound, we get:
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1 L
st

my := —— log E wh e e < 8+
=1

log L

(xvi)

From (xii) and (xvi), we get bounds for the mixability gap J; and mix loss m;. Putting the results

into Eq. (i), we get:

A . InL n n?
h, < t* N - L
t < Spe + " +(2+ 6 on

Now we find the best 7 that minimizes RHS in Eq. (xvii).
Let

2
Foyi= s (14

To minimize, we take derivative:

Setting f(n) = 0 and multiplying both sides by 72, we get:

1, 1, Ik
! Ty =

Since it is in cubic form, we approximate, getting:
¥
. 2InL
77 =
Ut

Putting the n* in Eq. (xvii), and approximating, we get:

. 2
h §,§§* + 21nL~vt+§lnL

Now we know:
hi=|Z|-h; and sb. =|Z|- L.

and
Ex [|C3]] < he

Hence, we get:

Evw [|C3F]] < s +V2In Lo + §1nL

Hence Proved.

(xvii)

(xviii)

(xix)

(xx)

O

+ If v; = 0, then all &% are equal, so he = 5%, and the bound holds exactly. In this case, the variance

penalty vanishes, and 7 can be set arbitrarily (e.g., n = 1).
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A.4.2 THEOREM 2

Lemma A.4.2. Let M" be a base predictor and U™ be a batch of users at time t, with n. = [US?.

= MG (u) | HE), where the scores

Assume for each user u € Z/lfal, we observe the score Z! ral

t,u

are sampled from a continuous distribution. Let \; be the empirical (1 — o/2)-quantile of the scores

{qu}u. Given the prediction set Cf\e and the utility-based loss L., (Cf\z) as defined in Eq. (4), then
’ t t

with probability at least 1 — ﬁ, over the calibration batch, the expected loss satisfies:

log (4/145™)

E. L. (Cf)] < 5+ T

Proof. Givenn = U™, let Z{,, ~ F for u € U™, where F' is a continuous cumulative distribution
function. We define the empirical CDF as:

F(z):=~ > 1{z{, <z}, (i)
ueUsa!

where n = [U?.

Let \{ denote the empirical (1 — a/2)-quantile of the scores {Z ,,}, so by construction:

P >1-3. (ii)

To control the deviation between F(-) and the true CDF F(-), we apply the Dvoret-
zky—Kiefer—Wolfowitz (DKW) inequality:

For any € > 0, we have:

Pr (sup ﬁ(z) — F(z)‘ > 5) < 2exp(—2¢2n). (iii)
z€R

To ensure failure probability at most %, we set:
2 exp(—2en) = L
2n’
Solving this gives:

[l o
2n

Using Eq. (iii), this gives a uniform deviation bound that holds with probability at least 1 — ﬁ

From the DKW result, we have the uniform deviation bound:

log(4n)

F(z)—F(2)| < o forall z € R. )

~ ‘

Now at z = \f, we get:

~ log(4 log(4 .
FO) > P /280 5y flostin) v

Hence, for a user sampled independently from the distribution, the score Zf’u ~ F', and the probability
that the true item is excluded from the prediction set is:

log (4
N og( n).

«
Pr(Z{,>\)=1-F(X)) < 3 o
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Given the utility definition from Eq. (4) in main pasper, £, (Cf\z) = 1 when the true item is excluded.

Thus, the expected utility loss for the user is:
1 e log(4n) 1
Eu[ﬁucz]< 1—— = —.
Cy)] = )\ 27V 2 )T

Forn > 1, i.e., at least 1 user in the calibration batch, Q%L <4/ logQ(j”). For simplicity, we absorb the
additive constant in the existing slack and simplify. Hence we get:

log(4n)

log(4n) _a log (4us™])
o 20U

Hence Proved. O

¢
A0
finite calibration batch, concentrates around the error level /2. As the calibration batch size n — oo,

Remark Lemma A.4.2 ensures that the utility-based loss of the prediction set C,, estimated from a

log(4n)

the slack term 5
n

— 0, the upper bound of expected loss achieves /2.

Lemma A.4.3. Given M as a base model, let the change-point detector define a stable segment
of timesteps WY = [ct, t], for which no user preference shift is detected. Let E(TZ) (C’ﬁe ) denote the

utility loss incurred by model M at time T € WY. Given the empirical segment risk R! as defined in
Eq. (14), and let F.- denote the filtration capturing all user histories, model predictions, and losses
observed up to time T, then for any € > 0, we have:

Pr (Rf —E [Rf | ]:cf—l} > 6) < exp (—22Wy]).

Proof. Let X define a random variable that captures the surprise at time 7 € WE ie.,
X, =LY _E [.df) | fT_l} : (i)

where L',g) (Cf\e ) is the observed loss, and the expectation is our best guess before time 7.

‘We now define the cumulative sum over X, as:

k
S, 1= Z X,, forkel[c 1. (ii)

—l
T=Cy¢

Now, the sequence {Sy} is a martingale with respect to the filtration Fy. Specifically:
E[Sk | Fr—1] = Sk-1. (iii)

This relation holds because:

S =51+ X = E[Sk | -Fk—l] = Sk_1+ E[Xk- | ]:k-—l}-

Now,
E[X) | Foo1] = E [c;; —E [c,g“ | fk,l] | f,H] (iv)

By linearity and the idempotence of conditional expectation, we directly get:

E[Lf | Fi1] — E[Lf | Fra] = 0. W)
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Hence X}, is a martingale difference, and {Sj} is a martingale.

Also, since L£(C5, ) € [0,1], its conditional expectation also lies in [0, 1], and therefore:

| Xk <1 ie., the increments are bounded.

Now, by Azuma-Hoeffding’s inequality, for any martingale with bounded increments | X| < 1, the
following holds: From Azuma—Hoeffding’s inequality, we now have:

Pr(S; > 6|Wf|) < exp (—262|Wf|) , (vi)

where € > 0, and [Wf| =t — ¢} + 1.

Now we relate S; to the definition of empirical risk. Given the definition of average risk over a
window, we have:

t
B[R Py =B |- 3 £hek) | Fua
4

_ i}z_t: E [ci (Ch) ‘ fcf,l} : (vii)

where w = [t — ¢} + 1| := [WYf|.

Using the tower property of conditional expectation, for any 7 > cf, we have:
E[Ct| Fyos| =B [E[£L ] Fri] ‘]—'cf_l}. (viii)
Now, given the expression for deviation from expected risk:
Rf - E[Rf ‘ 'Fcffl]a

expanding this gives:

1 1 o
— D Lo = D E[Lr[Fa].
‘r:cf T:cf

Continuing from the previous expression, we now write:

_ _ 14
Ri—E[R{| Fy | = — 3 (ct—EILL | Fra)). (i)

—al
T_Ct

Now applying the tower property again, and using the result from Eq. (iv), we observe:

L8~ [EIL | Froa] | Fyo| =B [Xr | Fy]. ®)

Putting Eq. (x) into Eq. (ix), we obtain:
1
E[R[—E[Ré}" ”:* IE{XT F } i
t t | cf —1 w Z[ I cf —1 (Xl)
Since we are bounding this deviation in probability, we retain the raw form:

t
_ _ 1
R{~E[R{| Fy] = o 3 X

T=cy

_ 5
=2

(xii)
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Now we finally substitute the result from Eq. (xii) into the Azuma—Hoeffding inequality Eq. (vi):

Pr (Rf ~E [Rf | ]-"Cg_l} > e) = Pr (i}* > e) (xiii)
=Pr(S; > ew) < exp (726210) . (xiv)

Hence, we finally obtain the main result:

Pr(Rf — B[R] | Foy_] > €) < exp (262 W)

Hence Proved. O

Remark Lemma A.4.3 justifies using the empirical average risk R as a reliable proxy for the true
conditional expectation and supports the adaptive threshold update rule in Eq. (15) of the framework.

Corollary A.4.1. Given the threshold update rule from Eq. (15) of the framework: /\2+1 =\ -
p (R@ — a) , then for any 6 € (0, 1), with probability at least 1 — 6, the deviation of the update
from the ideal update satisfies:

log(1/4)

<o S

ACFLE L\ ’ERf Fou - R .
|e ¢ | p |E[R; | cf—l] t 2‘th‘

Proof. From Lemma 2, with probability at least 1 — §, we have:
_ _ S _ _
R -E [Rf | fcu} =2t o Pr(R-E[RY] > €) <exp(—26w).
t w

‘We now want to choose ¢ such that:

exp (—2¢*w) =5 = 62=10g2(& S o=y ) (i)
w 2w

Using Eq. (i), we can conclude that with probability at least 1 — §:

o log(1/0
|Rf -~ EIRE | Fyi]| < %. (ii)

Now substituting Eq. (ii) into the threshold update in framework’s Eq. (15), and comparing with the
ideal update:

7 3o (B[R 7] =),

log(1/6)
=0\

Hence Proved. O

we conclude that:

NP = M| = p[BIRE | Foy_] - RS

Remark From Corollary A.4.1 we observe that the adaptive threshold update remains close to its
ideal value, even when using empirical segment risk. As the stable window length [/ | increases,

the deviation vanishes at a O(1/+/|Wf|) rate. This ensures the DAUO algorithm adapts reliably to
user preferences over time, with provable statistical stability.

Lemma A.4.4. Let M', ... ML be L base models. Assume that for each model MY, the calibrated
prediction set C5, satisfies the per-model miss probability bound: Pr (it'H (u) ¢ C.(Sh) ’ ]:t—l) <
4 £

rel
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B foralll=1,...,L,where 3 :=$ +¢, and ¢:= logééllz"”) . Let C35® denote the ensemble

prediction set formed by randomized weighted majority voting, using aggregation weights w' € AL,
the probability simplex.

Then the miss probability of the ensemble satisfies:
Pr (it (u) ¢ C38% | Fio1) < a+ 2e.

rel
Proof. For any user u, we define the miss indicator for model MY as:
My =1 {ith ) ¢ ¢ (SO) (i)
4
The ensemble predictor will fail if the true item receives insufficient support, i.e, the total weight of

models that include the item is less than % Equivalently, the total weight of models that miss the
item exceeds %

We formally define the total miss weight:
L
Z wh - My. (ii)
=1
Then the ensemble misses if the above is > % We wish to bound the probability of ensemble failure:

L
Pr (ZwE~M4 > 1 fH).

(=1

Applying Markov’s inequality:

E[X
Pr(X >a) < [ ],
a
we obtain:
L L
Pr (ng-Me >1 }‘t1> <2-E | wp- M, fH] . (iii)
=1 (=1

Now, by linearity of expectation, we have:

L
ZU}EMg

{=1

E

L L
fH] => wi-E[M| Fra] =Y wp-Pr(My=1|F1). (v
=1 (=1

By Lemma A.4.2, each model satisfies:

Pr(My=1|F—1) <p. W)
Therefore,
L L
ZwE.Pr(ML;:H}“t_l)Sﬁ.zwézﬁ, i)
(=1 (=1

Substituting result from Eq. (vi) to Eq. (iii) back, we get the final ensemble miss bound:

Pr (itf'(u) ¢ C38® | Fio1) <28 =+ 2e. (vii)

rel

Hence Proved. O

Remark Lemma A.4.4 shows that the ensemble miss probability remains bounded by o 4 2¢ and
preserves statistical validity despite possible correlation among predictors. As the calibration batch
size |U| — oo, the deviation ¢ — 0, and the ensemble risk converges to a.
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PROOF OF THEOREM 2

Proof. Letm := |U| and € := 4/ %. Let S C {1,...,T} denote the stable timestamps, where

no preference shift is detected, and let D := {1,...,T} \ S denote the detection delay rounds. Then,
we can say:

|S|=T - Dy, |D|=Dr.
From Lemmas A.4.2 and A.4.4, the expected loss satisfies:
E[L, (C33) | Fio1] < a+2e. (i)

For t € D, the DAUO algorithm may be out-of-calibration. We conservatively assume the worst-case
loss of 1 at each such round. There are Dr such rounds yielding:

Y E [ﬁﬂ < Dr. (ii)

teD
Now we handle the additional slack from DKW failures. At each round ¢ € [T'] and for each model
¢ € L], we calibrate the threshold using DKW. So there are T' x L calibration events.
Let Z; 4 € {0, 1} be the indicator that DKW calibration fails at round ¢ for model ¢.

Then the total number of failures is:
T L
K:=YY Zy,. (iii)

By Lemma A.4.2, each calibration failure has probability at most: p :=

DKW calibration failure has probability at most p = ﬁ,
expected number of failures is:
_TL

T 2m’

ﬁ. From Lemma 1, each
and there are T x L such events. Thus, the

p = E[K]

We want to control the tail deviation:

Pr(K > pu+y) <6

Using the Bernstein bound, we have:

2
Pr(K > p+y) <exp (Wyy/@) . (iv)

To satisfy this inequality with probability > 1 — §, we choose y to dominate both the average and tail
slack. Following standard practice, we set:

Y 1= max {u, 2log (%)} .
This guarantees:
2

Yy 1
S+ g - )

In realistic recommender settings, m > L, therefore:

TL
u:%§21og(%).

Thus we may safely choose:
y = 2log (%) .

With this value, we get the high-probability bound:

TL
KSM—&-yS%—I—Zlog(%). V)
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Divide inequality (v) by 7', we obtain:

5< TL +2log(1/5)'
T = 2mT T

Since 5. IL < 21og(1/6) (by assumption), we get:
K 2 log(l/é)

TS 7 o)
Now combine the bounds from (i), (ii), and (vi):
T — Dr T K
_ agg - - - . _
Z]E (c®)] < T (a+2e) + =1+ o
Substitute % < 21%(1/6) and simplifying we get:
D 2log(1
—ZE (C38)] <a+2e+ %g(/é). (vii)

Atround T + 1, the ensemble prediction set Cing

rounds 1 to 7.

is formed using the thresholds AT trained across

Assuming no additional change-point occurs at round 7" 4 1, a standard assumption in horizon-end
guarantees, the loss distribution is equivalent to a stable round. Thus, the same bound applies,
yielding:

log(4]U]) . Dr + 210g(1/5).

agg
Eu~u [ﬁu(c )] <a+2 2|Z/[| T

Hence Proved. O

A.5 IMPLEMENTATION DETAILS

In this section, we elaborate on the implementation details of the experiments conducted. The
experiments were conducted on NVIDIA A40 GPU. Firstly, all base recommender models, NCF[19],
CASER[39], SASRec[25], and FMLP-Rec[47] are trained for 100 epochs with a batch size of
256, a learning rate of 0.001, the Adam optimizer, and Binary Cross Entropy Loss (BCELoss).
These models are implemented following their respective public repositories. User preference-aware
baselines include TiSASRec[27], CDR[41], and Oracle4Rec[42]. TiSASRec extends SASRec with
time-aware attention and relation-based temporal encoding, trained for 200 epochs with a batch size
of 128. CDR employs a variational framework with domain-level disentanglement, trained for 200
epochs with a batch size of 512 and a learning rate of 0.0001. Oracle4Rec trains for 100 epochs
with a batch size of 256 using a Transformer-style architecture with GELU activations and dropout
regularization. These models retain their original optimization logic and regularization strategies.
We furthermore implement three conformal prediction baselines: Split Conformal[40], EnbPI[43],
and Online Conformal Prediction[1]. All conformal variants reuse the predicted score files from the
base models and calculate expected loss based on ranking-based loss functions (e.g., MRR, NDCG,
Recall). For Split Conformal, we determine the fixed prediction threshold via the (1 — «)-quantile of
the first calibration timestamp, with & = 0.1. For EnbPI, we use an ensemble of 10 bootstrapped
recommendation models, with predictions aggregated using the sample mean. Prediction set widths
were updated after each instance using a sliding window of the most recent 7' = 5 residuals. The
miscoverage level was set to o = 0.1, and expected loss was computed based on the same utility
metrics. For Online Conformal Prediction, we use a decaying step size update rule, with the threshold
updated after each instance. We set o« = 0.1 and used the same loss definitions as in other conformal
methods explained above. The initial threshold A\ was shared across all conformal variants and
our framework to ensure consistent initialization. Our proposed framework is implemented on
top of the base recommendation model outputs. We conduct a manual search over the contrasting
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hyperparameters in our Bayesian change-point module: the shift sensitivity 5 € {0.5,0.7,0.9,1.1}
and the segment-length bias v € {0,0.3,0.5,0.7,1,1.3,1.5,1.75,2}. Based on manual validation of
segment stability and calibration smoothness across datasets, we fixed 8 = 0.7 and v = 1.1. The
error tolerance value € is chosen based on the dataset size and the confidence value 4. The threshold
update step size 7 in Eq. (15) was set to 0.05 throughout. To ensure consistency and reproducibility,
we reused the predicted score files generated by the trained base models for all conformal baselines
and our framework.

A.5.1 UTILITY FUNCTION DEFINITIONS

The user utility function Umemp( el ,C At ), used in the loss formulation in Eq. (5) in main paper
quantifies how well the prediction set Cy: C Z captures the relevant item 4", under different evalua-
tion metrics. We define the following instantiations of U, ¢:;. based on standard recommendation
metrics:

Recall-based utility:
Urecall( Lrel 7C>\t) - ]I[ tl S CX‘]' (Vlll)

Lrel
This utility equals 1 if the relevant item is present in the prediction set and O otherwise.

MRR-based utility:

41
- +1 if ¢ S C)\t .
Umrr( Lrel >C>\t) = r(@ iel )’ el , (IX)
0, otherwise,
where 7 (1 i:ll) denotes the rank position of the relevant item within Cy¢, assuming items are ordered

by decreasing model score.
NDCG-based utility:

. 1
Undeg (2?&1 Cae) =

log, (r(i i:zl) +1)
which discounts the gain based on the rank of the relevant item in the prediction set.

I e Cxt], (x)

Lrel

These definitions are used across all calibration and evaluation steps to compute utility-based loss
values and coverage metrics.

A.6 DETAILED EXPERIMENTATION DETAILS

In the main paper, we introduced five different datasets to evaluate the effectiveness of our framework.
Below, we provide further details on the datasets, data-preprocessing, the base models, the user-
preference aware baselines, and the conformal baselines used for comparison.

A.6.1 DATASETS

* Book-Crossing[48]: a book-review dataset with explicit ratings and browsing logs.

Last.fm[6]: music-streaming listening histories dataset providing implicit feedback.

Taobao[22]: a large-scale e-commerce dataset with clicks, carts, and purchases attributes.
* MovieLens[18]: an explicit and implicit feedback dataset in the movie-rating domain.

Gowalla[10]: a location-based social-network checkins dataset for point-of-interest recom-
mendation.

All datasets are time-ordered, filtered using a 50-core strategy, and processed according to the data
preprocessing and splitting procedure described below.

A.6.2 SAMPLING AND DATA SPLITTING

* Negative sampling. Following the common experimentation strategy in recommendation
frameworks, we select 50 non-interacted items per user at every time-stamp through negative
sampling for training, validation, and testing.

28



Under review as a conference paper at ICLR 2026

* Data Splitting. Inspired by the sliding-window evaluation, we partition each dataset
into five contiguous time-ordered batches Bi, ..., By to capture potential shifts in user
preferences over time. Within a batch, the first 80% of interactions are used to train the
model. The next 20% are used to calibrate the conformal threshold A}, and weight parameters
wt, while for the final interaction, the previously learned threshold and weight parameters
are frozen and the framework is evaluated. The final results presented represent the average
over all batches.

Multiple trials: To account for variability in sampling, we repeat the experiments over
20 independent trials. For each trial, random negative samples were drawn for training,
validation, and testing. The results were averaged across all the trials.

A.6.3 BASE RECOMMENDATION MODELS

‘We build our framework on top of four representative recommendation backbones, each capturing
different modeling paradigms:

¢ Neural Collaborative Filtering (NCF)[19]: Involves combination of GMF (Generalized
Matrix Factorization) with 8-dimensional embeddings and MLP using layers [64, 32, 16]
with ReLU and dropout; combined with a prediction layer over concatenated representations.

* Caser[39]: A convolutional sequence model using vertical and horizontal filters with varying
receptive fields over a fixed-length user interaction sequence. Configured with embedding
dimension d = 50, sequence length L = 5, number of horizontal and vertical filters n;, = 16,
n, = 4, followed by a fully connected layer and dropout (p = 0.5).

* SASRec[25]: A Transformer-style sequential recommender with 2 self-attention blocks, 1
attention head, hidden size of 50, max sequence length of 50, and dropout rate of 0.5. Layer
normalization, residual connections, and position encoding are used to model sequential
dependencies.

* FMLP-Rec[47]: A Filter-Enhanced MLP model replacing attention heads with learned
convolutional filters. Configured with hidden size of 64, 2 filter-enhanced encoder layers,
2 attention heads, dropout = 0.5, and GELU activation. Position embeddings and layer
normalization are applied on top of the input sequence.

A.6.4 PREFERENCE-AWARE RECOMMENDATION MODELS

To capture evolving user preferences and temporal context, we additionally incorporate three special-
ized preference-aware baselines:

* TiSASRec:[27] A time-aware sequential recommender model that extends SASRec by
incorporating absolute and relative time information into the attention mechanism. We use 2
attention blocks, 1 attention head, and a hidden dimension of 50, along with a time matrix
span of 256 and dropout rate of 0.2.

* CDR (Causal Debiasing Recommendation):[41] A user-centric causal recommendation
model that disentangles user preferences across multiple training environments by learning
group-invariant representations. We configure the MLP encoder as [100, 20|, preference
encoder as [100, 200], with latent variables all set to dimension 2. Dropout is set to 0.5 and
batch norm is enabled.

* Oracle4Rec:[42] A a 5-layer Transformer-style encoder with hidden size 128, 2 attention
heads, GELU activation, and dropout of 0.5. It learns forward-looking user preferences by
leveraging future interactions as oracle guidance. It employs two parallel encoders with
shared embeddings: a Past Information Encoder and a Future Information Encoder, each
comprising a noise filtering module, a causal self-attention module, and an interaction
prediction layer.

A.6.5 CONFORMAL PREDICTION BASELINES

We implemented three conformal prediction baselines and adapted them for recommendation tasks
using ranking-based losses based on recommendation metrics(Recall, MRR, and NDCG). For each
method, we used calibrated scores and constructed dynamic prediction sets over time.
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» Split Conformal Prediction: A simple offline baseline where a global threshold A is
computed and fixed during calibration and inference. Prediction sets are constructed by
thresholding sorted item scores per user. This method serves as a non-adaptive control with
no online feedback or user preference modeling.

* Ensemble Batch Prediction Interval (EnbPI): A time series conformal approach adapted
for sequential recommendation task, uses a chosen sliding window of size 5 and a shift size
s=1 for full online behavior. An ensemble of 10 base models is used, and the prediction
sets are constructed by aggregating top items across models using a mean-based ensemble
score. The threshold ) is updated after each interaction using decayed step size based on
loss deviations.

* Online Conformal: A fully online adaptive approach that dynamically recalibrates the
threshold A based on user-specific risk feedback. After each interaction, the conformal
predictor computes the empirical loss based on the utility metric and updates A using a
gradient-based rule with decay. Like EnbPI, prediction sets are constructed using sorted
calibrated scores, but don’t use model ensembling.

A.7 ADDITIONAL EXPERIMENTS

A.7.1 RESULTS COMPARED WITH BASE MODELS AND PREFERENCE-AWARE BASELINES
(CONT.)

We extend the analysis provided in the main paper, where we evaluate the SURE framework using
four recommendation base models and against three user-preference-aware baselines in terms of
recommendation metrics (i.e., MRR, Recall, NDCG). We present the results of the experimentations
conducted on Taobao, MovieLens and Gowalla Datasets in Tables 5 and 6. These tables support
the key findings: the SURE framework consistently controls risk within the predefined threshold
a = 0.05 with high confidence across all the base models, and as a result, it consistently outperforms
all baselines on different performance metrics (MRR, Recall, NDCG) across datasets. This further
validates the dataset-agnostic nature of our framework.

A.7.2 RESULTS COMPARED TO CONFORMAL BASELINES (CONT.)

Next, we continue our analysis comparing our framework with different conformal baselines in
terms of coverage and set size. We conduct the experiments on Last.fM (Table 7), Taobao (Table 8),
MovieLens (Table 9) and Gowalla (Table 10) datasets respectively and compare the results on base
recommender models. The results reaffirm the main paper observations that our framework can
ensure the best coverage—efficiency trade-off on every base model across datasets, ensuring valid
recommendation sets.

A.7.3 PARAMETER ANALYSIS

We analyze the influence of error rate «, confidence parameter §, change-point detector parameters
(8,7), and the number of experts L on the recommendation sets generated by the SURE framework.

We first evaluate the impact of error rate «, varying in [0.05,0.07,0.10,0.12, 0.15], on performance
and the average prediction set sizes under fixed confidence thresholds § = 0.05 using the Book-
Crossing dataset. As shown in Figure 2, as the error rate « increases, the performance across different
metrics (MRR, Recall, NDCG) as well as the average set size across all models decreases. This
decreasing trend demonstrates the framework’s ability to generate valid prediction sets that adapt to
the error rate a.

We further evaluate the effect of varying confidence § € [0.05,0.10,0.15, 0.20, 0.25] on performance
and average set sizes under fixed risk thresholds (o = 0.07) using the Last.fm dataset in Figure 3. In
general, all the models show a decreasing trend, validating the effectiveness of the framework. This is
because relaxing confidence in risk constraints makes predictions less conservative, thereby reducing
the number of items included in the recommendation set. Interestingly, performance and set sizes
show a smaller decline for § compared to «, since d controls only the confidence with which the risk
constraint must hold i.e., the probability mass in the extreme tail, whereas « sets the risk level itself.

We also perform a grid study of the change-point parameters /3 (shift sensitivity) and ~y (segment-
length prior) on Book-Crossing dataset while holding all other settings fixed. Table 11 reports average
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Table 5: Performance comparisons with base models ( NeuMF, CASER, SASRec and FMLP-Rec )
and user preference aware baselines ( TiSASRec, CDR and Oracle4Rec ) on Taobao and MovieLens
Datasets using metrics ( MRR, Recall, NDCG ). For SURE, « and § are set empirically as 0.05,
respectively. Bold indicates the best result, and underline indicates the second best.

Method Taobao MovieLens
MRR 1 Recall T NDCG 1 MRR 1 Recall T NDCG 1
Model Ceiling @25(NeuMF) 0.336 0.625 0.349 0.392 0.784 0.415
NeuMF 0.275 0.556 0.289 0.342 0.721 0.358
NeuMF + SURE (Ours) 0.292 0.587 0.298 0.356 0.739 0.368
Model Ceiling@25(CASER) 0.381 0.645 0.391 0.434 0.831 0.445
CASER 0.320 0.589 0.338 0.381 0.775 0.389
CASER + SURE (Ours) 0.343 0.612 0.350 0.391 0.798 0.395
Model Ceiling@25(SASRec) 0.395 0.663 0.408 0.458 0.854 0.469
SASRec 0.337 0.605 0.338 0.395 0.795 0.405
SASRec + SURE (Ours) 0.353 0.625 0.359 0.413 0.807 0.423
Model Ceiling@25(FMLP-Rec) 0.412 0.685 0.421 0.474 0.886 0.493
FMLP-Rec 0.363 0.612 0.361 0.405 0.811 0.415
FMLP-Rec + SURE (Ours) 0.373 0.649 0.385 0.435 0.851 0.454
User Preference-Aware Models

TiSASRec 0.348 0.610 0.353 0.402 0.802 0.412
CDR 0.339 0.609 0.351 0.399 0.795 0.405
Oracle4Rec 0.363 0.615 0.363 0.411 0.835 0.419

set size / coverage. We observe a consistent trade-off: larger /5 or smaller v makes the detector more
responsive, yielding slightly larger sets with improved coverage; the reverse favors tighter sets but
risks transient under-coverage. In practice, we set 5=0.7, y=1.1 as a balanced choice across datasets.
Finally, we vary the number of bootstrapped experts L € {5, 10,20} and observe that SURE’s set
size and coverage are stable (Table 12). This empirical insensitivity is consistent with Theorem 5.1,
which implies only a O(v/In L) growth term in the ensemble set size bound.

Overall, this parameter analysis guides real-world applications in balancing performance and recom-
mendation set compactness with confidence guarantees.
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Figure 2: Performance analysis on the Book-Crossing dataset for varying a €

0.05,0.07,0.10,0.12,0.15 with fixed § = 0.05, shown in terms of recommendation metrics and

prediction set size.
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Table 6: Performance comparisons with base models ( NeuMF, CASER, SASRec and FMLP-Rec )
and user preference aware baselines ( TiSASRec, CDR and Oracle4Rec ) on Gowalla using metrics (
MRR, Recall, NDCG ). For SURE, « and ¢ are set empirically as 0.05, respectively. Bold indicates
the best result, and underline indicates the second best.

Method Gowalla

MRR 1 Recall T NDCG 1

Model Ceiling @25(NeuMF) 0.327 0.618 0.334
NeuMF 0.286 0.565 0.289
NeuMF + SURE (Ours) 0.291 0.577 0.309
Model Ceiling@25(CASER) 0.376 0.643 0.384
CASER 0.322 0.589 0.336
CASER + SURE (Ours) 0.334 0.602 0.343
Model Ceiling@25(SASRec) 0.385 0.667 0.394
SASRec 0.332 0.599 0.349
SASRec + SURE (Ours) 0.344 0.612 0.359
Model Ceiling@25(FMLP-Rec) 0.406 0.679 0.413
FMLP-Rec 0.342 0.605 0.355
FMLP-Rec + SURE (Ours) 0.359 0.632 0.364

User Preference-Aware Models

TiSASRec 0.339 0.601 0.350
CDR 0.333 0.595 0.349
Oracle4Rec 0.343 0.609 0.360

Table 7: Comparison in terms in terms of coverage and average prediction set size with conformal
baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders
(NeuMF, CASER, SASRec, and FMLP-Rec) using the Last.fM dataset. The error rate is set as
« = 0.10. Bold indicates the best result, underline indicates the second best.

Base Model Coverage 1 Set Size |

Split  EnbPI Online SURE (Ours) Split EnbPI Online SURE (Ours)
NeuMF 0.833 0.858 0.881 0.901 41 42 42 43
CASER 0.835 0.868 0.884 0.903 40 42 43 41
SASRec 0.849 0.870 0.889 0.905 40 41 42 40
FMLP-Rec  0.855 0.873 0.899 0.907 40 40 40 39

Table 8: Comparison in terms in terms of coverage and average prediction set size with conformal
baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders
(NeuMF, CASER, SASRec, and FMLP-Rec) using the Taobao dataset. The error rate is set as
« = 0.10. Bold indicates the best result, underline indicates the second best.

Base Model Coverage 1 Set Size |

Split  EnbPI Online SURE (Ours) Split EnbPI Online SURE (Ours)
NeuMF 0.828 0.859 0.880 0.901 42 43 44 44
CASER 0.835 0.862 0.881 0.903 42 43 42 42
SASRec 0.836 0.871  0.900 0.909 41 42 42 41
FMLP-Rec  0.838 0.879 0.901 0.911 41 41 41 40
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Table 9: Comparison in terms in terms of coverage and average prediction set size with conformal
baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders
(NeuMF, CASER, SASRec, and FMLP-Rec) using the MovieLens dataset. The error rate is set as
«a = 0.10. Bold indicates the best result, underline indicates the second best.

Base Model Coverage 1 Set Size |

Split EnbPI Online SURE (Ours) Split EnbPI Online SURE (Ours)
NeuMF 0.851 0.859 0.862 0.901 39 40 40 39
CASER 0.861 0.878 0.872 0.901 39 40 40 38
SASRec 0.867 0.881 0.891 0.902 38 38 39 36
FMLP-Rec  0.871 0.889 0.901 0.901 38 37 38 35

Table 10: Comparison in terms in terms of coverage and average prediction set size with conformal
baselines (Split Conformal, EnbPI and Online Conformal) evaluated on four base recommenders
(NeuMF, CASER, SASRec, and FMLP-Rec) using the Gowalla dataset. The error rate is set as
« = 0.10. Bold indicates the best result, underline indicates the second best.

Base Model Coverage 1 Set Size |

Split  EnbPI Online SURE (Ours) Split EnbPI Online SURE (Ours)
NeuMF 0.829 0.851 0.871 0.901 43 43 44 44
CASER 0.831 0.860 0.883 0.902 43 42 44 43
SASRec 0.837 0.870 0.895 0.901 43 42 43 42
FMLP-Rec  0.842 0.875 0.900 0.905 42 47 43 41
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Figure 3: Performance analysis on the Last.fm dataset for varying § € 0.05,0.1, 00.15,0.20, 0.255
with fixed o = 0.07, shown in terms of recommendation metrics and prediction set size.

A.7.4 ABLATION STUDY

To evaluate the effect of the two detection components in SURE, we perform an ablation study
by selectively removing each loss-based shift term. We follow the same experimental protocol as
described in Section A.6.2, with the error rate fixed at « = 0.1 and confidence level 6 = 0.05. We
report results on the Book-Crossing dataset with the SASRec backbone, and analyze the performance
in terms of a) validity: measured as realized coverage against the error rate, b) compactness: measured
in terms of the average set size, and c) robustness: which is measured in terms of the recommendation
set volatility across the time stamps. We define the robustness parameter y as:

1 e acs,
X = a; )
T-1 ; |C3%8,

where A denotes the difference between consecutive aggregated prediction sets.

We consider he following cases: (1) w/o di'4, where only the concept-sensitive divergence dy°™ is
retained; and (2) w/o d.,, where only the loss discrepency distance djqq is retained. The results are
denoted in Table 13. The results lead to following key observations:
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Table 11: Set size (left) and coverage (right) for different v and 5 on Book-Crossing Dataset.

vl /B— 0.5 0.7 1.0

0.9 44.6/0920 45.6/0924 46.5/0.930
1.1 42.1/0.895 42.8/0.908 43.5/0.912
13 41270889 42.2/0.892 43.1/0.901

Table 12: Robustness to ensemble size L. on Book-Crossing Dataset (set size / coverage).

L 5 10 20
set size / coverage  42.5/0.906 42.9/0.908 43.5/0.908

* Firstly, removing d}!¢ substantially reduces validity. The coverage drops below the target
a. As aresult, the framework tries to compensate by inflating the prediction sets. This is
because, without the loss-discrepancy term, the detector becomes insensitive to uniform in-
creases in difficulty across models. In such cases, shifts that affect all experts simultaneously
go undetected, and calibration lags behind, leading to systematic under-coverage.

* Secondly, removing d;°" primarily degrades robustness. Although coverage remains close
to the target and the average set size looks competitive, the volatility x nearly doubles. This
indicates unstable calibration as the threshold A fluctuates sharply in response to transient
expert disagreements, even when the underlying distribution is relatively stable. In practice,
this results in inconsistent recommendation sets from one time step to the next, potentially
harming user trust.

* Finally, the full SURE framework, by jointly utilizing both the loss-discrepancy and the
concept-sensitive terms, balances the strengths of each detector. The loss-discrepancy
term guards against systematic difficulty shifts, while the concept-sensitive term dampens
volatility caused by transient expert fluctuations. Their combination ensures that coverage
stays close to the nominal target (validity), prediction sets remain as small as possible
without sacrificing risk guarantees (efficiency), and threshold updates evolve smoothly over
time (robustness).

These results show that each component is complementary and addresses a distinct failure mode,
and together they form a balanced and reliable detector of preference shifts. Hence, both signals are
indispensable for achieving stable uncertainty-aware recommendations under non-stationary user
behavior.

A.8 INTUITION OF ADAPTIVE DYNAMICS IN SURE

To provide an intuitive understanding of the SURE framework’s adaptive capability, we visualize
the internal dynamics of the DAUO algorithm during a user session based on interactions from the
Taobao dataset, designed to illustrate a sequence of preference shifts. Figure 4 describes how the
three key variables evolve: the rolling risk, the calibration threshold (\), and the prediction set size.

Figure 4 illustrates the clear causal sequence of the adaptation loop. Initially, stable user behavior
allows for a high threshold (A ~ 0.62) and compact set size. A sudden preference shift degrades the
ranking quality, causing a risk spike. The DAUO update rule (Eq. 15) counters this by lowering A
(Middle Panel), which accordingly expands the prediction set (Bottom Panel) to restore coverage.
Notably, the set size stabilizes at a higher level rather than returning to baseline because the underlying
backbone model remains frozen. SURE correctly identifies that the frozen model is now less accurate
for the new user preference and permanently maintains a larger safety margin to ensure continued
risk control.

A.9 DISCUSSION

Our framework SURE reframes sequential recommendation as an uncertainty-aware prediction set
problem that (1) hedges an ensemble of bootstrapped recommenders through Hedge weighting with
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Table 13: Ablation of detection components on Book-Crossing Dataset

Variant  Coverage T Avgsetsize | Volatility x |

SURE 0.908 42238 0.12
wilo did 0.872 44.7 0.10
wlo d5° 0.907 43.1 0.23

adaptive conformal thresholds, (2) detects user-specific preference shifts without any heuristically
chosen window lengths utilizing a Bayesian changepoint detection model, and (3) provides sample
guarantees that both the expected set size and the utility-based risk stay near-optimal under non-
stationary preferences. Our claims are empirically supported as SURE consistently outperforms base
recommender models and preference-aware recommender baselines on various recommendation
metrics while maintaining tight and valid (1 — «) coverage across five public datasets. It does so
without adding any significant training time, hence it can be expanded to recent popular generative
models (Rajput et al., 2023; Zhai et al., 2024; Deng et al., 2025; Han et al., 2025). It is also
robust in addressing broader concerns raised in the recommendations. Because thresholds and
ensemble weights are updated externally with respect to a platform-defined utility function Uetric,
the framework can incorporate fairness- or diversity-aware objectives directly. For example, U, ctric
can be defined to penalize concentration or unsafe content, or combined with exposure caps and pre-
filters; the coverage guarantees then hold with respect to this modified U, ¢¢ric, requiring no change
to the theory. This flexibility ensures resilience to issues such as filter bubbles or echo chambers.
Different fairness definitions across user groups is also supported by the mechanism. Since thresholds
and Hedge weights are updated externally, calibration can be performed separately for groups (e.g.,
by demographics, region, or activity level). Replacing || with |U4,]| yields valid guarantees for each
group independently, preserving equitable coverage across heterogeneous populations. Users in
smaller or sparser cohorts may see slightly larger average set sizes due to finite-sample slack, but
validity is preserved as shown in Theorem 5.1 and Theorem 5.2.

SURE does face the finite-sample effect. While the smaller calibration size continues ensuring the
validity in a dynamic environment, it may lead to more conservative prediction sets as shown in our
theoretical results. Also, as commonly seen in conformal strategies, SURE can only be as good as
the confidence scores it calibrates. If a backbone recommender produces poorly ranked logits with
poorly calibrated backbones (NeuMF), SURE’s sets are ~15% larger than with stronger models
(FMLP-Rec). We aim to address these challenges in future work. Overall, our work bridges the
gap between sequential recommender systems’ lack of reliability in adaptive environments with
changing user preferences, which is a pragmatic step towards inspiring future research in trustworthy
recommendation systems.
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Figure 4: Dynamic Adaptation of SURE under Preference Shift. (Top) The rolling risk spikes
above the target o = 0.10, indicating preference shifts. (Middle) The calibration threshold \? reacts
immediately by lowering (Eq. 15) to loosen constraints. (Bottom) The prediction set size accordingly
increases, confirming the framework’s ability to actively detect and correct for preference shift in
real-time.
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