

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 JOINT GEOMETRY-APPEARANCE HUMAN RECON- STRUCTION IN A UNIFIED LATENT SPACE VIA BRIDGE DIFFUSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Reconstructing both the geometry and appearance of a digital human from a single image remains highly challenging. Existing approaches typically decouple geometry and appearance, employing separate models for each, which limits their ability to reconstruct digital humans in a unified manner. In this paper, we propose **JGA-LBD**, which formulates human reconstruction as a bridge diffusion task in a unified latent space, yielding a joint latent representation that encodes both geometry and appearance. We address the challenge of human reconstruction from heterogeneous conditions, i.e., depth maps and SMPL models estimated from RGB images. Directly combining heterogeneous modalities introduces substantial training difficulties. To overcome this, we unify all conditions into 3D Gaussian representation and compress them into a unified latent space using a sparse variational autoencoder. All diffusion learning is then conducted within this unified latent space, which markedly reduces optimization complexity. Our setting strikingly lends itself to bridge diffusion: the depth map can be regarded as a partial observation of the target latent code, enabling the model to focus solely on inferring the missing components. Finally, a decoding module reconstructs geometry and renders novel-view images from the latent representation. Experiments demonstrate that JGA-LBD outperforms state-of-the-art methods in both geometry and appearance, and generates plausible results on in-the-wild images.

1 INTRODUCTION

Reconstructing high-fidelity digital humans from single-view RGB images is a fundamental problem in computer vision, with wide applications in virtual reality, gaming, autonomous driving, , *etc.*. Despite recent advances, achieving accurate reconstruction of both human geometry and appearance from a single image remains highly challenging, due to complex body shapes, diverse clothing, and severe self-occlusions.

Existing methods for digital human reconstruction can be broadly grouped into implicit function-based (Saito et al., 2019; 2020; Zhang et al., 2023c; 2024b; Ho et al., 2024), explicit point-based (Tang et al., 2025b; Han et al., 2023; Zhuang et al., 2025), and image-generation-based approaches (Zhang et al., 2025; Li et al., 2025a). Implicit function methods (Saito et al., 2019; 2020; Zhang et al., 2023c; 2024b; Ho et al., 2024) extract pixel-aligned features, features from parametric human models such as SMPL, or other cues, and use MLPs to learn occupancy fields or SDFs for surface reconstruction. While effective for geometry, they often fail to produce accurate appearance because query points in 3D space rarely have exact color supervision; the closest surface point is typically used as a proxy, causing the model to learn an approximation rather than ground truth colors. Explicit point-based methods (Tang et al., 2025b; Han et al., 2023; Zhuang et al., 2025) represent humans with point clouds derived from RGB images, often via estimated depth maps. These approaches can reconstruct detailed geometry, but typically ignore appearance, or build appearance models on top of pre-reconstructed geometry or parametric models like SMPL, resulting in multi-stage pipelines that may produce inconsistencies. Image-generation-based methods (Zhang et al., 2025; Li et al., 2025a) leverage large generative models to synthesize multi-view images from a single input view, and then reconstruct geometry using techniques such as continuous remeshing (Palfinger, 2022). While promising, they also require multiple steps and are sensitive to artifacts in the synthesized views.

Existing methods either struggle with appearance, focus solely on geometry or rely on complex, multi-stage pipelines. In summary, existing methods either struggle with appearance, focus solely on geometry, or rely on complex multi-stage pipelines. These limitations highlight two key requirements that remain unmet: first, accurate ground-truth of both geometry and appearance supervision is necessary; second, a single-stage method capable of jointly reconstructing geometry and appearance is required. Recently, 3D Gaussian representation (Kerbl et al., 2023) has achieved remarkable success in digital human modeling (Zhuang et al., 2025; Zhang et al., 2025; Qiu et al., 2025). As an explicit representation, it naturally encodes both geometry and appearance, thereby effectively addressing the need for reliable ground-truth supervision in joint reconstruction. However, the second requirement remains open: high-resolution modeling—typically involving over 100k Gaussians—poses a major challenge, namely how to efficiently process and generate such large-scale representations. A natural solution is to compress 3D Gaussians into a compact latent space and perform generative modeling there, leveraging diffusion models’ strength in high-dimensional distribution learning. Yet, existing 3D diffusion approaches fall short: 3DShape2VecSet-based methods (Zhang et al., 2023a) only encode implicit fields and cannot capture appearance, while Trellis (Xiang et al., 2025) requires generating intermediate sparse structures before learning structured latents, preventing single-stage generation.

In this work, we present **JGA-LBD**, a bridge diffusion model that learns in a unified latent space and enables single-step reconstruction of high-resolution 3D Gaussians of digital humans. Specifically, we design a sparse VAE jointly trained with geometry and appearance supervision, which maps input 3D Gaussians into compact latent representations. To fully exploit the rich information embedded in images, we extract two complementary modalities—depth estimation and SMPL prediction—from the input. However, their inherent discrepancies make direct utilization challenging. To address this, we introduce a modality unification module that transforms both modalities into 3D Gaussian representations, which are subsequently compressed into the same latent space by the sparse VAE. This design ensures that all subsequent diffusion learning is carried out in a unified latent space, substantially reducing training complexity. Building on this unified latent design, we reveal that bridge diffusion offers an unexpectedly suitable framework for human reconstruction, since the depth-conditioned latent naturally corresponds to a partial observation of the target latent code. Rather than generating from noise, the bridge diffusion model only needs to complete the missing components, thereby significantly reducing the generative difficulty and improving the quality of the learned latent representations. Finally, the decoded 3D Gaussians from the latent code enables both geometry surface extraction and high-quality novel-view rendering via splatting-based rasterization. Extensive experiments on two benchmarks, together with evaluations on in-the-wild images, consistently demonstrate that JGA-LBD outperforms state-of-the-art methods in both quantitative accuracy and qualitative visual realism.

In summary, our contributions are:

- we design a sparse VAE that jointly compresses geometry and appearance of high-resolution 3D Gaussian representations into a compact latent code, overcoming prior methods that either focus solely on geometry or rely on additional sparse structural priors;
- we introduce a modality unification module that converts depth estimation and SMPL prediction into latent structural guidance through a sparse U-Net and an SMPL inpainter, ensuring consistent conditioning across heterogeneous modalities; and
- we adapt bridge latent diffusion to operate in the unified latent space, enabling efficient single-stage generation of complete latent codes, simultaneously modeling geometry and appearance.

2 RELATED WORK

Diffusion Models (Ho et al., 2020) have achieved remarkable success in generative modeling across diverse domains, including image synthesis, video generation, and audio processing. The core principle is to learn data distributions by gradually denoising Gaussian noise. While powerful, directly performing the diffusion process in pixel space is computationally expensive and often redundant. To address this, latent diffusion (Rombach et al., 2022) compresses the input into a compact latent space before applying the diffusion process, enabling efficient training while retaining high-quality generation. This paradigm has since become the standard for large-scale image and video diffusion models (Batifol et al., 2025; Peebles & Xie, 2023; Melnik et al., 2024).

108 A parallel line of work focuses on conditional diffusion, which aims to guide generation with aux-
 109 illiary inputs. Early approaches such as classifier guidance and classifier-free guidance (Dhariwal &
 110 Nichol, 2021; Ho & Salimans, 2021) inject conditional signals during the sampling process. Later
 111 methods, such as ControlNet (Zhang et al., 2023b), extend this idea by introducing trainable net-
 112 works that modulate intermediate features with external conditions, achieving fine-grained control-
 113 lability. Despite their effectiveness, these methods still initialize the diffusion process from Gaussian
 114 noise, which may limit their ability to fully exploit structured priors. Bridge diffusion models (Zhou
 115 et al., 2024b; Li et al., 2023) address this limitation by replacing the Gaussian prior with a condition-
 116 driven source distribution, offering a more natural and efficient way to incorporate external structure.
 117 Besides, there are some optimization-based methods, e.g., TeCH (Huang et al., 2024), Human-SGD
 118 (AlBahar et al., 2023), WonderHuman (Wang et al., 2025b) and GeneMAN (Wang et al., 2025a) can
 119 also tackle this task with good generalization ability. PSHuman (Li et al., 2025a) and MagicMan
 120 He et al. (2024) use diffusion models to generate multi-view images and reconstruct the 3D human
 121 with the generated multi-view images. Human-GIF (Hu et al., 2025) formulates the human recon-
 122 struction task as a single-view conditioned human diffusion generation task. In this work, we build
 123 upon this idea and adopt bridge diffusion to leverage structural priors extracted from depth, which
 124 provide strong guidance for the generative process.

125 **3D Generative Models.** Generating 3D models is inherently more challenging than 2D image or
 126 video synthesis due to the diversity of 3D representations, which has led to two main research direc-
 127 tions: multi-view based generation and direct 3D representation generation. Multi-view approaches
 128 first synthesize multiple 2D views and then reconstruct 3D content. For example, Zero123 (Liu
 129 et al., 2023) employs Stable Diffusion to generate multi-view images, after which a NeRF is opti-
 130 mized—following the SJC formulation (Wang et al., 2023)—to fit these synthesized views, and
 131 meshes are extracted via marching cubes from the learned density field. Leveraging the higher effi-
 132 ciency of 3D Gaussian Splatting (3DGS) compared to NeRF, methods such as DreamGaussian (Tang
 133 et al., 2024b) and LGM (Tang et al., 2024a) use image diffusion to produce multi-view images and
 134 subsequently fit 3DGS, though they often struggle to deliver high-resolution meshes. In contrast,
 135 direct 3D generation methods bypass multi-view supervision. DiffGS (Zhou et al., 2024a) encodes a
 136 3DGS scene into a triplane latent and learns in latent space with DiT (Peebles & Xie, 2023); Crafts-
 137 Man3D (Li et al., 2025b) compacts shapes into vecsets (Zhang et al., 2023a) and trains DiT to learn
 138 an implicit field before extracting meshes at inference; and Trellis (Xiang et al., 2025) compresses
 139 3DGS with sparse CNNs to support multiple downstream representations but requires an additional
 140 stage to provide geometric cues (sparse structure) and cannot unify geometry and appearance within
 141 a single latent. In contrast, our framework jointly compacts geometry and appearance into a unified
 142 latent representation and employs bridge diffusion to learn it in a single stage.

143 **Implicit-based 3D Human Reconstruction.** PIFu (Saito et al., 2019) is a pioneering work that
 144 reconstructs colored 3D humans using pixel-aligned features. Subsequent methods enhance implicit
 145 representations with additional cues: SiTH (Ho et al., 2024) generates a back-view image via Con-
 146 trolNet and uses a skinned mesh to resolve 3D ambiguity; GTA (Zhang et al., 2023c) introduces a
 147 ViT-based encoder-decoder to reconstruct clothed avatars with tri-plane features; and SIFU (Zhang
 148 et al., 2024b) leverages SMPL-X-guided cross-attention and a diffusion-based texture refinement
 149 pipeline to improve robustness in the wild. Despite these advances, implicit approaches lack ground-
 150 truth color supervision—appearance is approximated from the nearest surface point—limiting their
 151 ability to model high-fidelity textures.

152 **3DGS-based 3D Human Reconstruction.** Recently, 3DGS has emerged as a powerful explicit rep-
 153 resentation for human reconstruction. IDOL (Zhuang et al., 2025) leverages a large-scale dataset
 154 and a transformer-based predictor to reconstruct animatable Gaussian avatars efficiently. MultiGo
 155 (Zhang et al., 2025) introduces multi-level geometry learning with skeleton, joint, and wrinkle
 156 refinement, while LHM (Qiu et al., 2025) employs a multimodal transformer to preserve fine clothing
 157 and facial details. Chen et al. (2025) proposed a generate-then-refine pipeline and an HGM module
 158 to generate high-quality human 3D Gaussian attributes. HumanSplat (Pan et al., 2024) uses a video
 159 diffusion model for generating human 3D Gaussian attributes within a universal Transformer frame-
 160 work. These methods demonstrate the strength of 3DGS in capturing both geometry and appearance,
 161 though challenges remain in compact representation learning and efficient generative modeling.

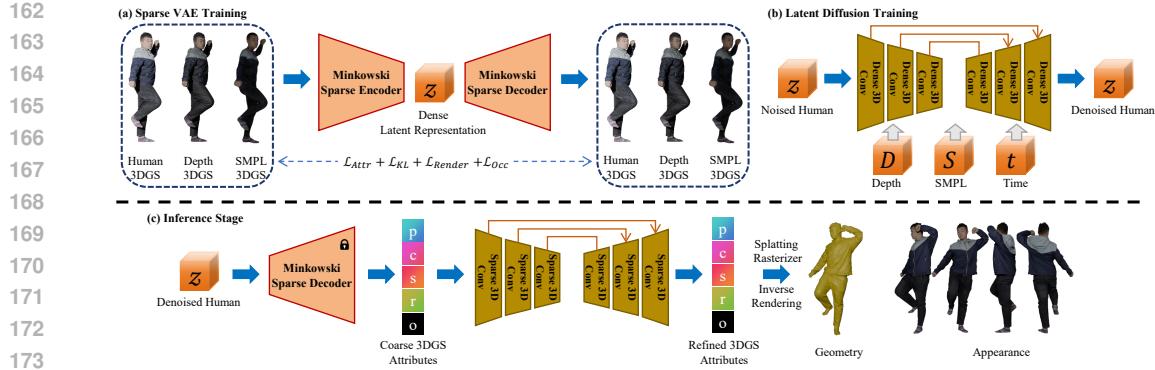


Figure 1: The pipeline of JGA-LBD. Given a single-view RGB image, depth and SMPL priors are converted into 3D Gaussians, which are compressed into latent codes by a sparse VAE. A bridge diffusion model generates latent codes conditioned on depth and SMPL priors, and the decoder refines them into a high-fidelity 3D Gaussian representation for surface reconstruction and novel-view rendering.

3 PROPOSED METHOD

JGA-LBD is a 3DGS-based method that reconstructs a 3D Gaussian representation $\mathcal{G} = \{G_1, \dots, G_n\}$ from a single-view RGB image, where each element $G_i = \{p_i, c_i, s_i, r_i, o_i\}$ encodes its corresponding 3D Gaussian attributes such as voxel grid p_i , color c_i , scale s_i , rotation r_i and opacity o_i . The resulting representation supports high-fidelity 3D surface reconstruction and novel-view appearance synthesis. To provide reliable supervision, we prepare ground-truth 3D Gaussians following the regularizations of (Tang et al., 2025a), with each scene containing about 130k~150k Gaussians. As illustrated in Fig. 1, JGA-LBD consists of four key modules: **(i)** a modality unification module to unify the depth maps and SMPL vertices into the same sparse 3D Gaussian format; **(ii)** a sparse VAE that compresses both human 3D Gaussians and the converted conditions into latent codes in a unified latent space; **(iii)** a bridge diffusion model that learns the distribution of latent human 3D Gaussians conditioned on structural priors; and **(iv)** a decoder that transforms the denoised latent code back to a 3D Gaussian representation, followed by refinement to improve its fidelity before surface reconstruction and novel-view rendering. In what follows, we will detail each module.

3.1 MODALITY UNIFICATION MODULE

From a single RGB image, both a depth map and a corresponding SMPL model can be obtained. The depth map can be projected into a partial point cloud using camera parameters, while the SMPL model provides a complete geometric prior. Although both exist in 3D space, they belong to distinct modalities: the point cloud encodes (x, y, z, r, g, b) values with appearance information, whereas the SMPL mesh contains only geometric vertices and faces. This discrepancy prevents them from being directly used as unified conditional inputs for supervision. To address this, both modalities are first transformed into a consistent 3D Gaussian representation, achieving modality unification.

For the partial point cloud, we first perform nearest-neighbor search to associate each point with its closest Gaussian in the target human 3D Gaussians, using these attributes as ground truth for supervision. A sparse U-Net based on Minkowski Engine (Choy et al., 2019) is then trained to map (r, g, b) values of the partial point cloud to 3D Gaussian attributes. For the SMPL mesh, we first project it onto the image plane, where only visible vertices receive color information, leaving occluded vertices uncolored. This partially observed mesh is then passed through another sparse Minkowski U-Net to predict complete 3D Gaussian attributes for all vertices, effectively generating 3D Gaussian representation. Note that the resulting colors are coarse and not intended as precise appearance supervision, this process primarily ensures that SMPL provides global structural guidance in a unified 3DGS format. By transforming heterogeneous modalities into 3D Gaussians, we obtain consistent and complementary conditional inputs for the diffusion process.

216 3.2 JOINT GEOMETRY-APPEARANCE COMPRESSION VAE
217

218 Voxel is a common 3D representation that is compatible with standard CNNs. However, accurately
219 representing a 3D object typically requires very high-resolution voxel grids (at least 512^3), which
220 is infeasible for training due to excessive GPU memory requirements. Inspired by latent diffusion
221 [Rombach et al. \(2022\)](#), we employ a sparse VAE to compress 3D Gaussians into a compact latent
222 representation, enabling efficient modeling with standard CNNs in a unified latent space.

223 Given the ground-truth human 3D Gaussian attributes \mathcal{G} , converted depth 3D Gaussian attributes \mathcal{D} ,
224 and SMPL 3D Gaussian attributes \mathcal{S} , our goal is to encode them into a unified latent representation
225 that jointly captures both geometry and appearance. Specifically, we build the sparse VAE with
226 Minkowski Engine ([Choy et al., 2019](#)). The encoder $E(\cdot)$ of the sparse VAE consists of several
227 resnet blocks, the output z of encoder $E(\cdot)$ serves as the ground truth for a diffusion model. To
228 avoid learning a high-variance latent space, we impose a slight KL-penalty \mathcal{L}_{KL} to z to make it
229 learn a latent with a standard normal distribution. The decoder $D(\cdot)$ is a key module in the sparse
230 VAE, as it should decode the denoised z of the diffusion model independently without any sparse
231 structure cues like Trellis ([Xiang et al., 2025](#)). Hence, we adopt the generative sparse transpose
232 convolution layers to build the decoder $D(\cdot)$, which [enables generating](#) of new coordinates that do
233 not need the cache coordinates from the encoder as in standard sparse transpose convolutions. It
234 starts from z and proceeds by progressively pruning excessive voxels with the occupancy loss \mathcal{L}_{Occ} ,
235 and finally reaching the resolution of \mathcal{G} after several layers. We use MSE loss to supervise the
236 reconstruction of 3D Gaussian attributes, however, the predicted voxel grid and the ground-truth
237 voxel grid are not strictly aligned and we cannot directly apply the MSE loss on the sparse tensors.
238 Converting sparse tensors into dense form introduces a vast number of non-active voxels (e.g., only
239 about 130k~150k active voxels out of 512^3), which seriously dilutes gradients and hinders effective
240 learning. Therefore, we compute the MSE loss only on the intersection of active voxels between the
241 prediction and the ground truth:

$$241 \mathcal{L}_{\text{Attr}} = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \|\mathbf{a}_p(i) - \mathbf{a}_g(i)\|_2^2, \quad (1)$$

242 where \mathcal{I} denotes the intersection of active voxel indices, and $\mathbf{a}_p(i)$, $\mathbf{a}_g(i)$ are the predicted and gt
243 3D Gaussian attributes (i.e., p, c, s, r, o) at location i . However, supervising only on the intersection
244 inevitably leaves certain regions unsupervised. To address this limitation, we introduce a loss
245 by rendering the predicted 3DGS into 2D images and enforcing consistency with the ground-truth
246 images. The rendering loss combines the L1 loss, SSIM loss and LPIPS loss:

$$247 \mathcal{L}_{\text{Render}} = \lambda_1 \|I_p - I_g\|_1 + \lambda_2 (1 - \text{SSIM}(I_p, I_g)) + \lambda_3 \text{LPIPS}(I_p, I_g), \quad (2)$$

248 where I_p and I_g denote the rendered and gt images, respectively, and $\lambda_1, \lambda_2, \lambda_3$ are balancing
249 weights. The overall training objective of the sparse VAE is:

$$250 \mathcal{L}_{\text{VAE}} = \lambda_4 \mathcal{L}_{\text{KL}} + \lambda_5 \mathcal{L}_{\text{Occ}} + \lambda_6 \mathcal{L}_{\text{Attr}} + \lambda_7 \mathcal{L}_{\text{Render}}, \quad (3)$$

251 where $\lambda_4, \lambda_5, \lambda_6, \lambda_7$ are balancing weights. The encoded results of \mathcal{G}, \mathcal{D} and \mathcal{S} are converted to
252 dense latent representations for the diffusion training, denoted as $\mathcal{G}_L, \mathcal{D}_L$ and \mathcal{S}_L respectively.

253 3.3 BRIDGE DIFFUSION IN UNIFIED LATENT SPACE
254

255 Diffusion models are typically designed to transport data distributions into a standard Gaussian prior.
256 However, in our setting, the depth-derived latent code \mathcal{D}_L can be regarded as a structural subset of
257 the full human Gaussian representation. Thus, instead of relying on diffusion models, we adopt the
258 more powerful bridge diffusion model ([Zhou et al., 2024b](#)), which learns a transport path between
259 two arbitrary distributions. Specifically, the goal is to translate from the structural prior distribution
260 $p_{\mathcal{D}_L}$ to the target distribution $p_{\mathcal{G}_L}$, while being conditioned on the SMPL prior \mathcal{S}_L .

261 Formally, a bridge diffusion process is represented by a sequence of time-indexed variables $\{x_t\}_{t=0}^T$.
262 Using Doob's h -transform ([Doob & Doob, 1984](#)), the conditional stochastic bridge can be expressed
263 as:

$$264 dx_t = f(x_t, t \mid \mathcal{S}_L) dt + g(t)^2 h(x_t, t, y, T \mid \mathcal{S}_L) dt + g(t) dw_t, \quad (4)$$

265 where [f\(x_t, t | S_L\)](#) is the drift term and [g\(t\)](#) is the diffusion coeff, $x_0 \sim p_{\mathcal{G}_L}(x \mid \mathcal{S}_L)$, $x_T = y$,
266 and $y \sim p_{\mathcal{D}_L}$. The term $h(x, t, y, T \mid \mathcal{S}_L) = \nabla_x \log p(x_T = y \mid x_t = x, \mathcal{S}_L)$ denotes the

270 Table 1: Quantitative comparisons of different methods on 2K2K and CustomHuman. The best
 271 results are highlighted in **bold**. \uparrow : the higher the better. \downarrow : the lower the better.

Method \ Metric	2K2K						CustomHuman					
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	CD \downarrow	P2S \downarrow	Normal \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	CD \downarrow	P2S \downarrow	Normal \downarrow
GTA (NeurIPS 23)	24.15	0.921	0.080	1.156	1.114	2.127	28.86	0.920	0.088	1.249	1.123	2.552
SIFU (CVPR 24)	23.47	0.910	0.088	1.154	1.135	2.180	29.62	0.928	0.092	1.365	1.205	2.696
SITH (CVPR 24)	24.30	0.920	0.076	0.891	0.944	2.019	26.47	0.911	0.095	2.244	2.367	3.365
PSHuman (CVPR 25)	24.72	0.917	0.067	0.575	0.608	1.440	30.26	0.931	0.082	1.055	1.146	1.899
IDOL (CVPR 25)	27.18	0.929	0.076	1.095	1.138	2.454	31.02	0.934	0.076	1.119	1.188	2.416
Human3Diffusion (NeurIPS 24)	29.05	0.942	0.062	0.503	0.415	1.429	33.75	0.952	0.067	0.809	0.768	1.755
MultiGO (CVPR 25)	28.80	0.939	0.059	0.636	0.655	1.474	31.72	0.934	0.075	1.750	1.809	2.440
Trellis (CVPR 25)	25.47	0.927	0.069	0.771	0.743	1.929	31.33	0.934	0.069	1.202	1.219	2.370
JGA-LBD	30.16	0.946	0.055	0.489	0.507	1.202	33.44	0.957	0.061	0.674	0.670	1.469

280
 281 drift adjustment introduced by the h -transform to ensure that the process interpolates between the
 282 endpoints. Reversing this bridge process yields the conditional reverse SDE

$$dx_t = \left[f(x_t, t \mid \mathcal{S}_L) - g(t)^2 (U_\theta(x_t, t, y, T \mid \mathcal{S}_L) - h(x_t, t, y, T \mid \mathcal{S}_L)) \right] dt + g(t) d\bar{w}_t, \quad (5)$$

286 and the associated probability flow ODE

$$dx_t = \left[f(x_t, t \mid \mathcal{S}_L) - g(t)^2 \left(\frac{1}{2} U_\theta(x_t, t, y, T \mid \mathcal{S}_L) - h(x_t, t, y, T \mid \mathcal{S}_L) \right) \right] dt, \quad (6)$$

289 where U_θ denotes the neural network with parameters θ approximation of the bridge score function.
 290 To learn this score function, we adopt denoising bridge score matching, which minimizes the dis-
 291 crepancy between the predicted score and the closed-form conditional score of the Gaussian bridge:
 292

$$L(\theta) = \mathbb{E}_{x_t, x_0, x_T, t} \left[w(t) \|U_\theta(x_t, x_T, t \mid \mathcal{S}_L) - \nabla_{x_t} \log q(x_t \mid x_0, x_T, \mathcal{S}_L)\|^2 \right], \quad (7)$$

295 where $w(t)$ denotes a time-dependent weighting function that adjusts the relative importance of
 296 different diffusion steps during training.

297 **Remark.** We augment each grid of the dense latent representation with an occupancy value $\{0, 1\}$,
 298 allowing the bridge diffusion model to jointly learn both the latent features and their occupancy.
 299 During inference, the dense latent representation is converted into a sparse latent representation by
 300 retaining only the grids with predicted occupancy greater than 0.5.

302 3.4 DECODE MODULE

304 We compress the original sparse 3D Gaussian attributes of size $(512^3, 20)$ into a latent represen-
 305 tation of size $(64^3, 4)$ using a sparse VAE, significantly reducing GPU memory consumption and
 306 enabling feasible training. However, this aggressive compression inevitably leads to information
 307 loss, which is further exacerbated after the diffusion generation process. To alleviate this, following
 308 recent advances in large-scale 3D generative models (Xiang et al., 2025; Ren et al., 2024; Li et al.,
 309 2025b), we append a Minkowski Engine-based U-Net after the VAE decoder to refine the outputs
 310 of the diffusion model.

311 **Mesh Extraction.** For each reconstructed 3D Gaussians, we recover the human surface using its
 312 position attributes. Vertex normals are estimated via WNNC (Lin et al., 2024), and the surface is
 313 reconstructed with screened Poisson (Kazhdan & Hoppe, 2013). To further enhance geometric fi-
 314 delity, the reconstructed surface is refined using depth supervision: the surface is rendered into a
 315 depth map with PyTorch3D, and an L1 loss is computed against the predicted depth map.

316 **Novel View Synthesis.** For novel-view rendering, we adopt the standard 3D gaussian splatting
 317 pipeline, where the refined 3D Gaussians is rendered from arbitrary viewpoints using the corre-
 318 sponding camera parameters.

319 4 EXPERIMENTS

321 **Datasets.** We conduct experiments on Thuman2.1 (Yu et al., 2021), 2K2K (Han et al., 2023) and
 322 CustomHuman (Ho et al., 2023). Specifically, 1600 scans from Thuman2.1 are used as ground
 323 truth to prepare the ground truth 3D Gaussian attributes, which are used for training the sparse VAE
 and the bridge latent diffusion model. For evaluation, we use 25 scans from 2K2K and 40 scans

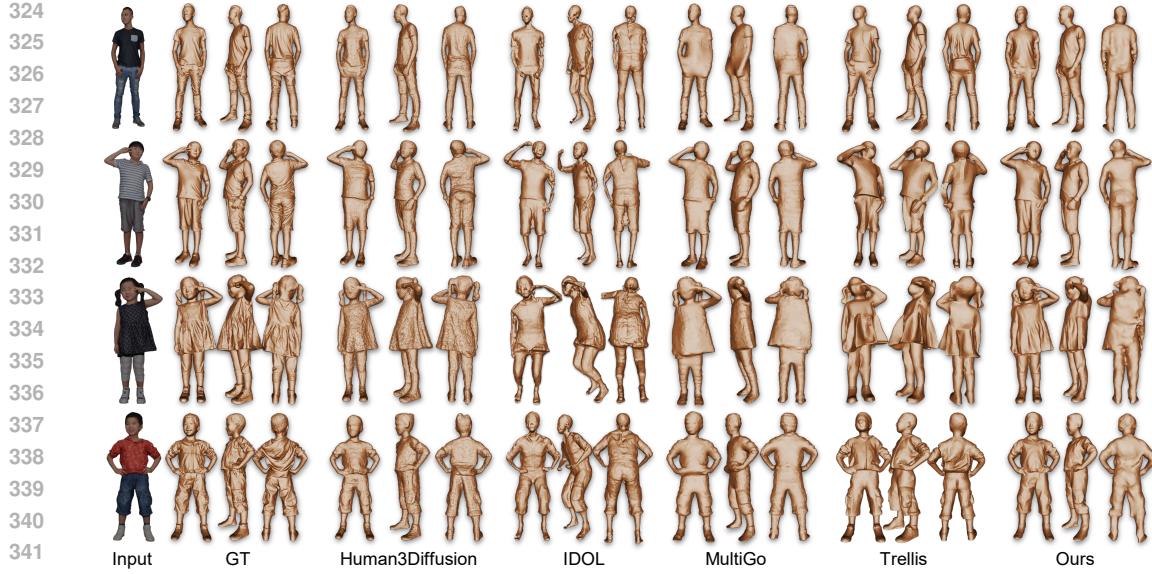


Figure 2: Geometry comparisons of our method against 3DGS-based methods, *i.e.*, Human3Diffusion, IDOL, MultiGo and Trellis. Zoom in for details.

Figure 3: Appearance comparisons of our method against 3DGS-based methods, *i.e.*, Human3Diffusion, IDOL, MultiGo and Trellis. Zoom in for details.

372 from CustomHuman. In addition, we assess the generalization ability of JGA-LBD on in-the-wild
373 images collected from the Internet.

374 **Evaluation metrics.** All 3DGS and mesh outputs are normalized to the cube $(-1, 1)$. For
375 appearance reconstruction, we report peak signal-to-noise ratio (PSNR), structural similarity index
376 (SSIM), and learned perceptual image patch similarity (LPIPS). For geometry reconstruction, we
377 evaluate Chamfer distance (CD), point-to-surface distance (P2S), and normal error.

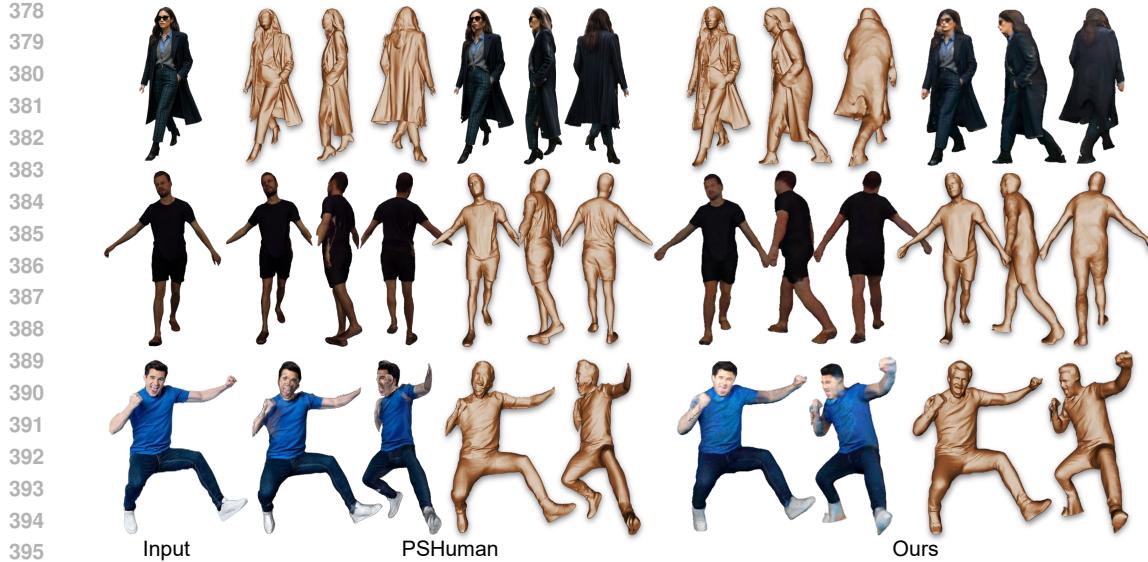


Figure 4: **Geometry and appearance comparisons of our method against PSHuman.** **Zoom in for details.**

4.1 COMPARISON WITH STATE-OF-THE-ART METHODS

We mainly compare our JGA-LBD with three representative 3DGS-based approaches. IDOL (Zhuang et al., 2025) leverages an explicit SMPL model as a geometry prior to guide 3D Gaussians generation. MultiGo (Zhang et al., 2025) generates a complete 3D Gaussian scene using a large model, while encoding SMPL as Fourier features to provide structural guidance. Trellis (Xiang et al., 2025) learns a compact latent space that jointly encodes both geometry and appearance for structured generative modeling with multiple stages. We further compare JGA-LBD with several recent mesh-based methods (Ho et al., 2024; Zhang et al., 2023c; 2024b; Li et al., 2025a). As shown in Table 1, JGA-LBD achieves the best performance across all metrics on both benchmark datasets.

Geometry Comparison. Human3Diffusion (Xue et al., 2024) produces **noticeably noisy geometry and fails to preserve fine frontal wrinkle details**. IDOL (Zhuang et al., 2025) heavily relies on the SMPL model without any refinement, and therefore, as shown in Figure 2, it often produces incorrect poses. Moreover, due to the strong regularization imposed by SMPL, it fails to handle loose clothing such as dresses (see the third case). Although MultiGo (Zhang et al., 2025) employs a wrinkle refinement network, its geometric reconstruction still lacks fine details. Moreover, as observed in the third and fourth cases in Figure 2, the reconstructed bodies exhibit a forward-leaning tendency. This indicates that, although MultiGo avoids the pose inaccuracies introduced by directly using SMPL, its 2D diffusion model is insufficient to correct pose errors in 3D space. Trellis (Xiang et al., 2025) suffers from low mesh resolution, which severely limits the reconstruction of fine details. In addition, the reconstructed poses are often inaccurate, with head rotations consistently misaligned with the input across all cases. In contrast, our JGA-LBD is able to reconstruct fine geometric details and handle loose clothing, while maintaining accurate overall human poses.

Appearance Comparison. Human3Diffusion (Xue et al., 2024) shows **many jagged artifacts in the rendered images, and it cannot recover texture details accurately**. IDOL (Zhuang et al., 2025) suffers from severe misalignment caused by wrong SMPL poses. As shown in the Figure. 3, it can only capture relatively simple color patterns and fails to represent fine-grained textures such as stripes in the second case. In addition, noticeable jagged artifacts can be observed along the edges. MultiGo (Zhang et al., 2025) performs well on the front side, but its back-side reconstructions remain poor. For example, in the second case it fails to recover the stripe patterns, and in the third case the back of the head incorrectly contains facial details instead of black hair. Beyond its failure to reconstruct fine details such as stripes, Trellis (Xiang et al., 2025) also suffers from severe geometry–appearance inconsistencies. For instance, in the second and third cases, the reconstructed arms are noticeably inconsistent with those shown in Figure. 2. In contrast, our JGA-LBD not only reconstructs fine details such as stripes and back-side wrinkles, but also maintains geometric consistency with the

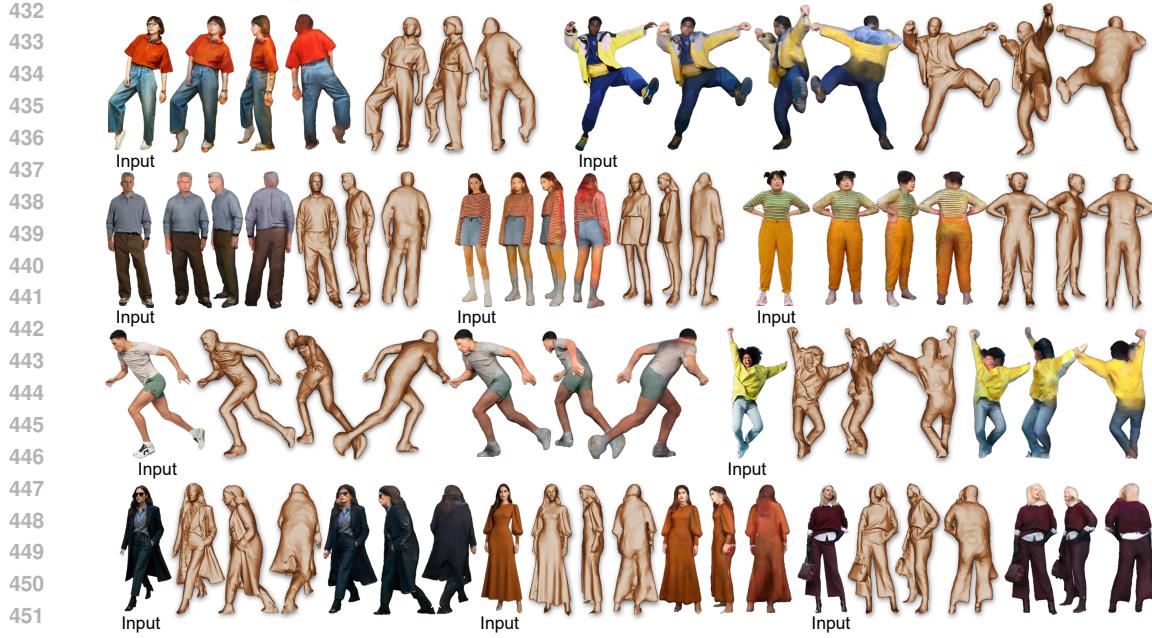


Figure 5: The reconstructed results of our JGA-LBD on in-the-wild images. Zoom in for details.

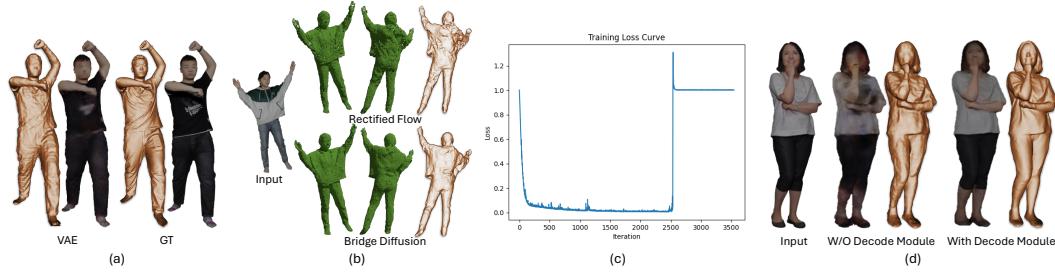


Figure 6: Ablation visual results. (a). The visualization comparison between VAE results and GT. (b). Comparison between rectified flow and bridge diffusion. (c). Training loss curve of image and SMPL feature level supervision. (d). Comparison between visual results without and with the decode module. Zoom in for details.

reference in Figure. 2.

Comparison with PSHuman (Li et al., 2025a). We also compare our JGA-LBD with the recently popular PSHuman. As shown in Fig. 4, PSHuman frequently suffers from missing body parts. PSHuman also struggles with handling the relative positions of the legs in the first example. In the second example, it also fails to preserve facial details, producing noticeably degraded results. In contrast, our method effectively avoids these issues.

Overall, both quantitative metrics and qualitative comparisons demonstrate that our JGA-LBD consistently outperforms state-of-the-art methods. We further conducted experiments on in-the-wild images with challenging poses, as shown in Fig. 5, where JGA-LBD successfully reconstructs plausible appearances and detailed 3D surfaces. More visual results are shown in Fig. A1 in Appendix.

4.2 ABLATION STUDIES

Visual Results of Sparse VAE. To evaluate the effectiveness of the sparse VAE, we conduct experiments on reconstructing human 3D Gaussian representations directly from the compressed latent space. Specifically, the input 3D Gaussians are compressed from $(512^3, 20)$ into a latent tensor of size $(64^3, 4)$, and subsequently decoded to recover 3D Gaussian attributes. As shown in Fig. 6 (a), the sparse VAE is able to preserve the overall geometry and coarse appearance of the human

486
487
488 Table 2: Ablation studies on 2K2K.
489
490
491
492

Method	Metric	PSNR↑	SSIM↑	LPIPS↓	CD↓	P2S↓	Normal↓
Rectified Flow		28.32	0.931	0.074	0.568	0.535	1.436
Feature Condition		Fail	Fail	Fail	Fail	Fail	Fail
w/o Decode Module		27.68	0.931	0.073	0.498	0.497	1.287
EcoDepth + PIXIE		30.01	0.944	0.059	0.536	0.544	1.288
DepthAnything + PyMAF		29.51	0.943	0.059	0.540	0.543	1.367
Full Model		30.16	0.946	0.055	0.489	0.507	1.202

493
494
495 body, demonstrating that the latent space effectively encodes both structural and visual information.
496 However, fine-grained details such as sharp geometric boundaries and high-frequency textures are
497 noticeably degraded due to the high compression ratio. This observation motivates the introduction
498 of a decode module after the VAE decoder to enhance reconstruction fidelity.

499 **Effectiveness of Bridge Diffusion.** We further compare the bridge diffusion employed in our work
500 with the popular rectified flow method (Liu et al., 2022), the quantitative results are shown in Table
501 2. The visual results in Fig. 6 (b) show that rectified flow tends to generate 3D Gaussians with
502 many holes, and the reconstructed back surfaces are heavily corrupted by noise. This observation
503 highlights the advantage of bridge diffusion: since the starting depth is already part of the complete
504 3D Gaussians, bridge diffusion does not need to allocate excessive capacity to the visible front side
505 but instead focuses on learning the missing regions. As a result, our strategy of adopting bridge
506 diffusion achieves superior reconstruction quality.

507 **Necessity of Structural Prior.** We further validate the necessity of introducing structural priors.
508 Following GaussianCube (Zhang et al., 2024a), we extract image features using DINOv2 (Oquab
509 et al., 2023) and SMPL features using Point-M2AE (Zhang et al., 2022), and employ both features
510 to supervise the training process of bridge diffusion model. However, the training often fails to
511 converge: as shown in Fig. 6 (c), the loss decreases at the beginning but suddenly rises after several
512 epochs, eventually leading to divergence. We attribute this to the modality gap between images and
513 SMPL, which makes it difficult for the model to learn meaningful representations when directly us-
514 ing such heterogeneous features. This observation underscores the importance of our unified latent
515 space, where features from different modalities are mapped into a shared representation, substan-
516 tially reducing training difficulty and improving stability.

517 **Necessity of Decode Module.** Due to the aggressive compression ratio of the VAE, inevitable infor-
518 mation loss is introduced. In addition, the diffusion model itself cannot achieve perfectly error-free
519 reconstruction, and such residual errors further amplify the loss caused by compression, making it
520 difficult to capture and recover high-frequency details. To address this issue, we introduce a decod-
521 ing module after the diffusion model to refine and enhance the generated results. As shown in Table
522 2, the decode module brings significant improvement on both appearance and geometry metrics.
523 Fig. 6 (d), we can also observe enhanced details in both appearance and geometry. Moreover, it is
524 worth noting that even without the additional decode module, the results already achieve the best
525 performance in terms of geometry and deliver appearance reconstruction that remains competitive
526 with state-of-the-art methods. [To quantify the effect of different depth estimation methods, we compare two depth estimators—Depth Anything V2](#) (Yang et al., 2024) (RMSE 0.014 on 2K2K) and [EcoDepth](#) (Patni et al., 2024) (0.016)—and observe that better depth leads to consistently better re-
527 construction performance (Table 2). We also evaluate different SMPL regressors (i.e., PIXIE (Feng
528 et al., 2021) vs. PyMAF (Zhang et al., 2021)) and find that they produce comparable results with
529 minor variations.

530 5 CONCLUSION

531
532 In this work, we have presented JGA-LBD, a framework that reconstructs both geometry and ap-
533 pearance of a human in a single generation step. Experimental results demonstrate that our method
534 achieves superior performance in both geometry and appearance reconstruction compared to state-
535 of-the-art methods. Unlike existing methods that decouple geometry and appearance, JGA-LBD
536 performs joint modeling, thereby ensuring better consistency between geometry and appearance.

537 In future work, we will exploit a more powerful sparse VAE capable of capturing high-frequency de-
538 tails and explore diffusion architectures that eliminate the need for an additional refinement decoder,
539 further improving both efficiency and reconstruction quality.

540 STATEMENT

541
542 ETHICS STATEMENT
543544 We adhere to the ICLR Code of Ethics in this research. The datasets used are publicly available with
545 no inclusion of private, sensitive, or proprietary data involving human subjects.546
547 REPRODUCIBILITY STATEMENT
548549 Our work prioritizes reproducibility. All code for data pre-processing, model training, and evaluation
550 will be made publicly available. The datasets used are all publicly accessible, and we have cited
551 their corresponding literature in the paper. The experiments were run on a server with an Intel Xeon
552 4309Y CPU and 4 NVIDIA RTX A6000 GPU, using PyTorch 2.2, CUDA 12.553
554 STATEMENT ON AI USE
555556 We used an LLM, i.e., ChatGPT, solely for grammar polishing of the manuscript. All LLM outputs
557 were manually verified for accuracy, and no content was directly adopted without validation. The
558 authors bear full responsibility for all content.559 REFERENCES
560561 Badour AlBahar, Shunsuke Saito, Hung-Yu Tseng, Changil Kim, Johannes Kopf, and Jia-Bin
562 Huang. Single-image 3d human digitization with shape-guided diffusion. In *SIGGRAPH Asia*
563 *2023 Conference Papers*, pp. 1–11, 2023.564 Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dock-
565 horn, Jack English, Zion English, Patrick Esser, Sumith Kulal, et al. Flux. 1 kontext: Flow match-
566 ing for in-context image generation and editing in latent space. *arXiv e-prints*, pp. arXiv–2506,
567 2025.568 Jinnan Chen, Chen Li, Jianfeng Zhang, Lingting Zhu, Buzhen Huang, Hanlin Chen, and Gim Hee
569 Lee. Generalizable human gaussians from single-view image. 2025.570 Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
571 convolutional neural networks. In *CVPR*, pp. 3075–3084, 2019.572 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *NeurIPS*,
573 34:8780–8794, 2021.574 Joseph L Doob and JI Doob. *Classical potential theory and its probabilistic counterpart*, volume
575 262. Springer, 1984.576 Yao Feng, Vasileios Choutas, Timo Bolkart, Dimitrios Tzionas, and Michael J Black. Collaborative
577 regression of expressive bodies using moderation. In *3DV*, pp. 792–804, 2021.578 Sang-Hun Han, Min-Gyu Park, Ju Hong Yoon, Ju-Mi Kang, Young-Jae Park, and Hae-Gon Jeon.
579 High-fidelity 3d human digitization from single 2k resolution images. In *CVPR*, pp. 12869–
580 12879, 2023.581 Xu He, Xiaoyu Li, Di Kang, Jiangnan Ye, Chaopeng Zhang, Liyang Chen, Xiangjun Gao, Han
582 Zhang, Zhiyong Wu, and Haolin Zhuang. Magicman: Generative novel view synthesis of humans
583 with 3d-aware diffusion and iterative refinement. *arXiv preprint arXiv:2408.14211*, 2024.584 Hsuan-I Ho, Lixin Xue, Jie Song, and Otmar Hilliges. Learning locally editable virtual humans. In
585 *CVPR*, pp. 21024–21035, 2023.586 I Ho, Jie Song, Otmar Hilliges, et al. Sith: Single-view textured human reconstruction with image-
587 conditioned diffusion. In *CVPR*, pp. 538–549, 2024.588
589 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *NeurIPS*, 2021.

594 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *NeurIPS*, 33: 595
6840–6851, 2020.

596

597 Shoukang Hu, Takuya Narihira, Kazumi Fukuda, Ryosuke Sawata, Takashi Shibuya, and Yuki
598 Mitsufuji. Humangif: Single-view human diffusion with generative prior. *arXiv preprint*
599 *arXiv:2502.12080*, 2025.

600 Yangyi Huang, Hongwei Yi, Yuliang Xiu, Tingting Liao, Jiaxiang Tang, Deng Cai, and Justus Thies.
601 Tech: Text-guided reconstruction of lifelike clothed humans. In *3DV*, pp. 1531–1542. IEEE, 2024.

602

603 Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. *ACM TOG*, 32(3): 604
1–13, 2013.

605 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat- 606
ting for real-time radiance field rendering. *ACM TOG*, 42(4):139–1, 2023.

607

608 Bo Li, Kaitao Xue, Bin Liu, and Yu-Kun Lai. Bbdm: Image-to-image translation with brownian 609
bridge diffusion models. In *CVPR*, pp. 1952–1961, 2023.

610 Peng Li, Wangguandong Zheng, Yuan Liu, Tao Yu, Yangguang Li, Xingqun Qi, Xiaowei Chi, Siyu
611 Xia, Yan-Pei Cao, Wei Xue, et al. Pshuman: Photorealistic single-image 3d human reconstruction
612 using cross-scale multiview diffusion and explicit remeshing. In *CVPR*, pp. 16008–16018, 2025a.

613 Weiyu Li, Jiarui Liu, Hongyu Yan, Rui Chen, Yixun Liang, Xuelin Chen, Ping Tan, and Xiaoxiao
614 Long. Craftsman3d: High-fidelity mesh generation with 3d native generation and interactive
615 geometry refiner. *CVPR*, 2025b.

616

617 Siyou Lin, Zuoqiang Shi, and Yebin Liu. Fast and globally consistent normal orientation based on
618 the winding number normal consistency. *ACM TOG*, 43(6):1–19, 2024.

619

620 Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
621 Zero-1-to-3: Zero-shot one image to 3d object. In *ICCV*, pp. 9298–9309, 2023.

622

623 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. *ICLR*, 2022.

624

625 Andrew Melnik, Michal Ljubljjanac, Cong Lu, Qi Yan, Weiming Ren, and Helge Ritter. Video
626 diffusion models: A survey. *arXiv preprint arXiv:2405.03150*, 2024.

627

628 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
629 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

630

631 Werner Palfinger. Continuous remeshing for inverse rendering. *Computer Animation and Virtual
Worlds*, 33(5):e2101, 2022.

632

633 Panwang Pan, Zhuo Su, Chenguo Lin, Zhen Fan, Yongjie Zhang, Zeming Li, Tingting Shen, Yadong
634 Mu, and Yebin Liu. Humansplat: Generalizable single-image human gaussian splatting with
635 structure priors. *NeurIPS*, 37:74383–74410, 2024.

636

637 Suraj Patni, Aradhya Agarwal, and Chetan Arora. ECoDepth: Effective conditioning of diffusion
models for monocular depth estimation. In *CVPR*, pp. 28285–28295, 2024.

638

639 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, pp. 4195–
4205, 2023.

640

641 Lingteng Qiu, Xiaodong Gu, Peihao Li, Qi Zuo, Weichao Shen, Junfei Zhang, Kejie Qiu, Weihao
642 Yuan, Guanying Chen, Zilong Dong, et al. Lhm: Large animatable human reconstruction model
643 from a single image in seconds. *ICCV*, 2025.

644

645 Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and Francis Williams. Xcube:
646 Large-scale 3d generative modeling using sparse voxel hierarchies. In *CVPR*, 2024.

647

648 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In *CVPR*, pp. 10684–10695, 2022.

648 Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa, and Hao Li.
 649 Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization. In *ICCV*, pp.
 650 2304–2314, 2019.

651 Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul Joo. Pifuhd: Multi-level pixel-aligned
 652 implicit function for high-resolution 3d human digitization. In *CVPR*, pp. 84–93, 2020.

653 Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. Lgm:
 654 Large multi-view gaussian model for high-resolution 3d content creation. In *ECCV*, pp. 1–18,
 655 2024a.

656 Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
 657 gaussian splatting for efficient 3d content creation. *ICLR*, 2024b.

658 Yingzhi Tang, Qijian Zhang, and Junhui Hou. Hugdiffusion: Generalizable single-image human
 659 rendering via 3d gaussian diffusion. *IEEE TVCG*, 2025a.

660 Yingzhi Tang, Qijian Zhang, Yebin Liu, and Junhui Hou. Human as points: Explicit point-based 3d
 661 human reconstruction from single-view rgb images. *IEEE TPAMI*, 2025b.

662 Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jacobian
 663 chaining: Lifting pretrained 2d diffusion models for 3d generation. In *CVPR*, pp. 12619–12629,
 664 2023.

665 Wentao Wang, Hang Ye, Fangzhou Hong, Xue Yang, Jianfu Zhang, Yizhou Wang, Ziwei Liu, and
 666 Liang Pan. Geneman: Generalizable single-image 3d human reconstruction from multi-source
 667 human data. 2025a.

668 Zilong Wang, Zhiyang Dou, Yuan Liu, Cheng Lin, Xiao Dong, Yunhui Guo, Chenxu Zhang, Xin
 669 Li, Wenping Wang, and Xiaohu Guo. Wonderhuman: Hallucinating unseen parts in dynamic 3d
 670 human reconstruction. *arXiv preprint arXiv:2502.01045*, 2025b.

671 Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen, Xin
 672 Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation. In *CVPR*,
 673 pp. 21469–21480, 2025.

674 Yuxuan Xue, Xianghui Xie, Riccardo Marin, and Gerard Pons-Moll. Human 3diffusion: Realistic
 675 avatar creation via explicit 3d consistent diffusion models. In *NeurIPS*, 2024.

676 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
 677 Zhao. Depth anything v2. *NeurIPS*, 37:21875–21911, 2024.

678 Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qionghai Dai, and Yebin Liu. Function4d:
 679 Real-time human volumetric capture from very sparse consumer rgbd sensors. In *CVPR*, pp.
 680 5746–5756, 2021.

681 Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape
 682 representation for neural fields and generative diffusion models. *ACM TOG*, 42(4):1–16, 2023a.

683 Bowen Zhang, Yiji Cheng, Jiaolong Yang, Chunyu Wang, Feng Zhao, Yansong Tang, Dong Chen,
 684 and Baining Guo. Gaussiancube: A structured and explicit radiance representation for 3d gener-
 685 ative modeling. In *NeurIPS*, 2024a.

686 Gangjian Zhang, Nanjie Yao, Shunsi Zhang, Hanfeng Zhao, Guoliang Pang, Jian Shu, and Hao
 687 Wang. Multigo: Towards multi-level geometry learning for monocular 3d textured human recon-
 688 struction. In *CVPR*, pp. 338–347, 2025.

689 Hongwen Zhang, Yating Tian, Xinchi Zhou, Wanli Ouyang, Yebin Liu, Limin Wang, and Zhenan
 690 Sun. Pymaf: 3d human pose and shape regression with pyramidal mesh alignment feedback
 691 loop** supplementary material. 2021.

692 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 693 diffusion models. In *ICCV*, pp. 3836–3847, 2023b.

702 Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang, Bin Zhao, Dong Wang, Yu Qiao, and Hong-
703 sheng Li. Point-m2ae: multi-scale masked autoencoders for hierarchical point cloud pre-training.
704 *NeurIPS*, 35:27061–27074, 2022.

705 Zechuan Zhang, Li Sun, Zongxin Yang, Ling Chen, and Yi Yang. Global-correlated 3d-decoupling
706 transformer for clothed avatar reconstruction. In *NeurIPS*, 2023c.

708 Zechuan Zhang, Zongxin Yang, and Yi Yang. Sifu: Side-view conditioned implicit function for
709 real-world usable clothed human reconstruction. In *CVPR*, pp. 9936–9947, 2024b.

710 Junsheng Zhou, Weiqi Zhang, and Yu-Shen Liu. Diffgs: Functional gaussian splatting diffusion. In
711 *NeurIPS*, 2024a.

713 Linqi Zhou, Aaron Lou, Samar Khanna, and Stefano Ermon. Denoising diffusion bridge models.
714 *ICLR*, 2024b.

716 Yiyu Zhuang, Jiaxi Lv, Hao Wen, Qing Shuai, Ailing Zeng, Hao Zhu, Shifeng Chen, Yujiu Yang,
717 Xun Cao, and Wei Liu. Idol: Instant photorealistic 3d human creation from a single image. In
718 *CVPR*, pp. 26308–26319, June 2025.

719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Figure A1: More visual results. Zoom in for details.

A APPENDIX

A.1 IMPLEMENTATION DETAILS.

The sparse VAE was trained using Minkowski Engine 0.5.4 with a batch size of 8 for 200,000 iterations. The Adam optimizer was employed with a learning rate of 0.00035. The loss weights $\lambda_1 \sim \lambda_7$ were set as 0.8, 0.2, 0.1, 5×10^{-7} , 1, 1, 1, respectively. (To improve training stability, $\mathcal{L}_{\text{Attr}}$ and $\mathcal{L}_{\text{Render}}$ were introduced only after 10,000 iterations.) For bridge diffusion, both training and inference followed the original DDBM setting (Zhou et al., 2024b), where the parameters CHURN_STEP_RATIO and GUIDANCE were set to 0.1 and 1, respectively. The batch size was set to 16, and the number of training iterations was 100,000. The Adam optimizer was employed with a learning rate of 0.00035. Depth Anything V2 (Yang et al., 2024) was adopted as the backbone for depth estimation and PIXIE (Feng et al., 2021) was selected to predict the SMPL models. **The sparse 3D UNet was trained with a batch size of 8 for 40,000 iterations. The Adam optimizer was employed with a learning rate of 0.00035.** All training and testing were conducted on a server equipped with four NVIDIA A6000 GPUs.

The parameter counts of the sparse VAE, bridge-diffusion 3D U-Net, and sparse U-Net are 9.04M, 229.76M, and 36.99M, respectively. The training times for these models are 2 days, 4 days, and 1 day, respectively. The GPU memory cost for these models are 40 GB, 4×45 GB, and 30 GB, respectively. The inference time for a single sample is approximately 2 minutes.

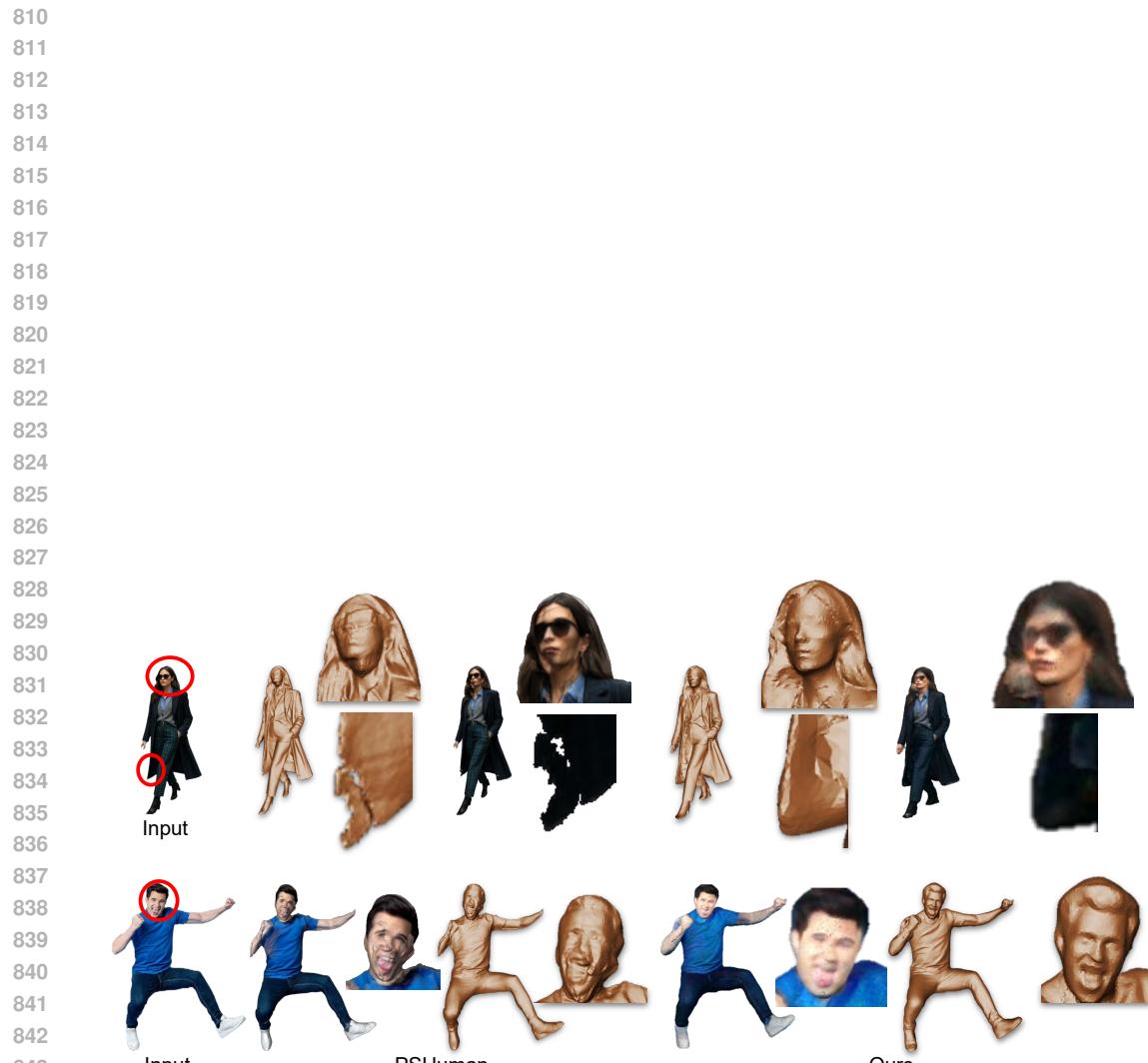


Figure A2: Comparisons of geometric and appearance details between our method and PSHuman.
Zoom in for details.