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ABSTRACT

Recent works have widely adopted large language model pretraining for source
code, suggested source code-specific pretraining objectives and investigated the
applicability of various Transformer-based language model architectures for
source code. This work investigates another important aspect of such models,
namely the effect of different subtokenization options, and aims at identifying
most effective and length-efficient subtokenizations, taking into account code
specifics. We propose subtokenziation that reduces average length by 17% without
downstream performance drop, and show that a carefully chosen subtokenization
may improve quality by 0.5-2%, possibly with some length increase.

1 INTRODUCTION

With the inspiration from the success of large language model (LM) pretraining in natural language
processing (NLP), BERT-like models have been widely adopted for source code processing (Feng
et al., 2020; Kanade et al., 2020), as code has a similar discrete sequential structure to natural text.
Being trained on huge source code corpora in a self-supervised manner, large LMs often substan-
tially outperform domain-specific models developed purposely for applied tasks, especially in the
tasks with limited parallel / labelled data (Ahmad et al., 2021a). These tasks include fixing code
bugs, generating text from code and vice versa, or translating code between programming languages.

Recent works advanced large LM pretraining on source code in two main directions. First, various
model kinds were utilized for source code: CodeBERT (Feng et al., 2020) and CuBERT (Kanade
et al., 2020) rely on the classic encoder-only RoBERTa (Liu et al., 2019), CodeGPT (Lu et al.,
2021) uses decoder-only GPT (Radford & Narasimhan, 2018), PLBART (Ahmad et al., 2021a) is
based on the denoising sequence-to-sequence BART (Lewis et al., 2020) model, and CodeT5 (Wang
et al., 2021b) utilizes multitask sequence-to-sequence T5 (Raffel et al., 2020). Second, a range of
code-specific self-supervised pretraining tasks were proposed to enrich the classic masked language
modeling (MLM) objective, e. g. GraphCodeBERT (Guo et al., 2021) predicts data flow connections
during pretraining (one variable is computed from another variable), and CodeT5 (Wang et al.,
2021b) and DOBF (Roziere et al., 2021) use a variable naming objective.

This work is devoted to investigating one more important component, subtokenization, which is
usually not paid much attention when pretraining large LMs on source code. Modern LMs usually
preprocess sequences using open-vocabulary models such as Byte-pair encoding (BPE, Sennrich
et al., 2016) which split long tokens into smaller subtokens. Though this process is often referred
to as tokenization, we call it subtokenization, to underline its smaller granularity. Subtokenization
became a standard part of all widely-used LMs pretrained on natural text or code, because it ensures
the relatively high frequency of all subtokens (compared to the whitespace-separated tokenization,
which results in a large portion of out-of-vocabulary tokens), at the same time producing sequences
of reasonable length (compared to character-level tokenization). Though subtokenization was ini-
tially introduced for NLP, it is especially relevant for code, as programming languages usually permit
identifiers of unrestricted complexity, e. g. variable or function names (Chirkova & Troshin, 2021).

∗Work done while being at HSE University.
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BPE-50K

UnigramLM-10K (3-19% length increase)

Grouping punctuation without quality drop

F req Lists = [ [ 0 , 0 ] for i in range ( voc Sz ) ]

+0.5-2% quality

17% length reduction
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Grouping frequent combinations 40% length reduction
(sometimes quality drop)

Freq List s=[ [0,0] for_i_in_range (vo c S z )]

Figure 1: Example subtokenizations (all numbers compared to the commonly used BPE-50K).

Though subtokenization is often chosen with only superficial deliberation, it is one of the essential
model components which may affect both quality and prediction speed. First, an inaccurately chosen
subtokenization procedure may substantially increase sequence lengths and consequently slow down
prediction. As a simple example, the work on CodeT5 (Wang et al., 2021b) notices that using
BPE trained specifically on source code corpora makes sequences 30–45% shorter than using BPE
trained on natural text. Second, a line of recent research points at the positive effect of the carefully
chosen subtokenization procedure on the model’s performance in NLP. For example, Bostrom &
Durrett (2020) show that using a UnigramLM (Kudo, 2018) subtokenization algorithm instead of
BPE improves the quality of BERT-based question answering or textual entailment in English by
1%, and Ding et al. (2019) show that adjusting BPE vocabulary size in translation may produce
+4 BLEU. At the same time, for large LMs, the particular subtokenization procedure chosen at the
pretraining stage becomes an inseparable part of the model and must later be used in applied tasks.
This underlines the need for a careful choice of subtokenization options when pretraining large LMs.

In this work, we conduct a deep study of subtokenization options for large LM pretraining on source
code, using PLBART as a testing ground. In addition to investigating general aspects, e. g. the
subtokenization algorithm and the vocabulary size, we study the ways of adapting subtokenization
to the specific properties of code, such as a large amount of punctuation marks and frequently-
used token combinations, a variety of complex identifiers, or relative similarity of programming
languages. We aim at choosing optimal subtokenization options that (a) lead to the best performance
or (b) minimize sequence lengths (and thus speed up the model) without downstream performance
drop. Our contributions are as follows - we show that for large LMs pretrained on source code:

• Grouping punctuation chars in single tokens reduces the average length by 17% without
downstream performance drop (we call this approach CodeBPE or CodeUnigramLM), and
permitting more complex composite tokens reduces lengths by 40%, sometimes with qual-
ity drop (Section 1);

• UnigramLM is generally preferable over BPE (Section 4);
• Smaller vocabularies may improve quality with 3–19% length increase (Section 5);
• Subtokenizers are well transferable between programming languages (Section 6);

Our length-efficient subtokenization procedure (see examples in Figure 1) compresses sequences by
17% without quality drop and our most effective subtokenization improves performance by 0.5–2%
significantly in three out of eight tasks and by one standard deviation in two other tasks.

2 METHODOLOGY AND EXPERIMENTAL SETUP

The existing works on large LMs for source code usually choose a particular subtokenization li-
brary, for example the same as in the base LM the work uses, and train the subtokenizer with
the vocabulary size of 30-50K on source code corpora used for pretraining. Often code is pre-
processed before subtokenization, e. g. by replacing \n with NEW_LINE, and split into tokens
on white-spaces and punctuation marks so that these tokens are further split into subtokens,
e. g. for i in range (vocSize) will be split into [‘for’, ‘i’, ‘in’, ‘range’, ‘(’,
‘vocSize’, ‘)’] even if for i in is generally a frequent combination. The latter principle
appears to be intuitively reasonable, since it ensures that subtokenization preserves syntactically
meaningful boundaries of tokens (Kanade et al., 2020). We refer to this principle as prohibiting
composite tokens. More details on subtokenization in different LMs for code are given in Section 7.
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We treat the described commonly-used approach as a baseline, and conduct a series of experiments,
each modifying the baseline subtokenization procedure in one dimension and pretraining PLBART
with the new subtokenization. The dimensions we vary are as follows: the allowed complexity
of composite tokens, the subtokenization algorithm, the vocabulary size, the set of languages the
subtokenizer is trained on, and the use of stochastic subtokenization. These dimensions are inspired
either by the specifics of source code or by the recent works on subtokenization in NLP.

Experimental setup. As our base model, we use PLBART (Ahmad et al., 2021a), since it comes
with the released pretraining code and data preprocessing routine under the MIT license. We use the
same model size, the pretraining dataset size and other hyperparameter settings, including finetuning
hyperparameters, as in PLBART1. In particular, we use an encoder-decoder Transformer architecture
with 6 layers in each part, with the model dimension of 768 and 12 heads (140M parameters).
The pretraining data consists of 230M Python functions, 470M Java functions (crawled through
BigQuery2) and 47M natural language (NL) descriptions (crawled from StackOverflow3), referred
to as sequences below. The BigQuery dataset consists of repositories with clear open-source license.
We pretrain all our PLBART models for 100k updates, as in the original paper.

As applied tasks, we consider three tasks from the PLBART paper: code generation (generating a
Java function based on an NL description; CONCODE (Iyer et al., 2018) dataset, CodeBLEU (Ren
et al., 2020) metric), code summarization (generating an NL description for a Python or Java func-
tion; CodeSearchNet (Husain et al., 2020) dataset, BLEU metric), code clone detection (classifying
whether two Java functions implement the same functionality; BigCloneBench dataset (Svajlenko
& Roy, 2015); F1 metric), and one additional task of code translation (translating code from Python
to Java and vice versa; AVATAR dataset (Ahmad et al., 2021b)). Here we consider original data
with the CodeBLEU metric (Code Translation-1) and the smaller version of data with tests and
the Computational Accuracy metric – which portion of generated functions passed all tests (Code
Translation-2). We chose tasks so that we have both code generative and discriminative tasks and
that datasets are either in Python or Java.

We clip all sequences by 510 subtokens, except summarization where we clip by 250 subtokens
following Ahmad et al. (2021a). Such clipping remains the majority of sequences unclipped in all
subtokenizations: 96-99.1% in the pretraining data, 93–99% in translation, 88–100% in generation,
76–93% in summarization, and 37–80% in clone detection. In the main text we report average
lengths computed on the randomly chosen subset of pretraining data before clipping, Appendix A
reports length statistics for downstream data with similar trends as observed for the pretraining
data. We only clip sequences passed to neural networks and use unclipped target sequences when
computing metrics.

Baseline subtokenization. Following Ahmad et al. (2021a), we use a SentencePiece (Kudo &
Richardson, 2018) library, which is a one of the most widely used solutions for subtokenization. We
train subtokenizers on 10M functions and NL descriptions randomly selected from the pretraining
data (different from the random subset on which we measure average lengths). Though Ahmad et al.
(2021a) use BPE subtokenization algorithm, our baseline subtokenization uses another algorithm,
UnigramLM, because it was shown to be quantitatively and qualitatively more suitable for pretrain-
ing in NLP than BPE (Bostrom & Durrett, 2020). We also perform their comparison for code in
Section 4. We set the vocabulary size to 50K (the commonly used size for large LMs of code) and
character coverage to 99.99% (enough to cover English chars and punctuation).

We also use PLBART’s preprocessing which includes removing comments and docstrings, replacing
\n, indents and dedents in Python with NEW_LINE, INDENT and DEDENT tokens as they are a
part of the language syntax, and removing formatting in Java as it does not affect the language
syntax. Our baseline subtokenizer follows the commonly used strategy of prohibiting composite
tokens described above. The only exception we make is that we allow underscores _ inside tokens,
because they do not represent a syntax unit, as other punctuation chars do.

1https://github.com/wasiahmad/PLBART
2https://console.cloud.google.com/marketplace/details/github/

github-repos
3https://archive.org/download/stackexchange
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Table 1: Different levels of allowed composite tokens complexity considered in the paper. Green
emphasizes tokens which could not be obtained in the previous level, and gray emphasises the re-
maining tokens that could not be obtained in Level 0. Levels list allowed merges, but what particular
merges to perform is chosen by the tokenizer.

Lev. Description Example
0 Whitespaces in the middle of tokens are

prohibited and each punctuation char is
treated as a separate token (except ‘_’)

[‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]’, ‘)’,
‘:’, ‘NEW_LINE’, ‘INDENT’, ‘print’, ‘(’, ‘i’, ‘)’, ‘NEW_LINE’,
‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘]’, ‘)’]

1 Similar to Level 0, but tokens consisting
of several punctuation chars are allowed

[‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’,
‘] ) :’, ‘NEW˙LINE INDENT’, ‘print’, ‘(’, ‘i’, ‘) NEW˙LINE’,
‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘] )’]

2 Similar to Level 1, but dots are allowed in
tokens

[‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.shape’, ‘[’, ‘1’, ‘] ) :’,
‘NEW˙LINE INDENT’, ‘print’, ‘(’, ‘i’, ‘) NEW˙LINE’,
‘print’, ‘(’, ‘df’, ‘.columns’, ‘[’, ‘i’, ‘] )’]

3 Whitespaces and single punctuation chars
allowed in tokens, except NEW_LINE

[‘for i in range’, ‘( df’, ‘. shape [ 1’, ‘] ) :’, ‘NEW˙LINE INDENT’,
‘print’, ‘( i’, ‘) NEW˙LINE’, ‘print’, ‘( df’, ‘. column’, ‘s [ i’,
‘] )’]

4 Composite tokens of arbitrary complexity
are allowed

[‘for i in range’, ‘( df’, ‘. shape’, ‘[ 1 ]’, ‘)’, ‘: NEW˙LINE’,
‘INDENT print’, ‘( i )’, ‘NEW˙LINE print’, ‘( df’, ‘. columns’,
‘[ i ] )’]

44 46
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55 60 65
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Figure 2: Results on various subtokenization granularity, averaged over 4 finetuning runs (mean ±
standard deviation). Level 0 – baseline subtokenization. Numerical data for all plots is given in
Appendix.

3 SUBTOKENIZATION GRANULARITY

In natural text, a portion of punctuation chars is small and thus their separation in subtokenization
does not affect lengths much. In contrast, in source code, punctuation constitutes 12.8% of chars and
often forms frequent combinations joining which into composite tokens may substantially reduce
lengths. Further, the presence of a large amount of commonly used patterns is another specific
feature of source code, e. g. for (int i = 0; in Java or def __init__ (self): in
Python, and these patterns again may form composite tokens. This section investigates the effects
of the use of composite tokens on performance and length-efficiency.

We consider several levels of allowed complexity of composite tokens listed in Table 1 and empir-
ically compare them in Figure 2. The two extreme cases are no composite tokens (Level 0, equal
to the baseline subtokenization) and unrestricted composite tokens complexity (Level 4, composite
tokens constitute 48.6% of the vocabulary). The average sequence length in Level 4 is 40% less than
that in Level 0. At the same time, the effect on performance depends on the task: in code-generative
tasks (translation and generation), Level 4 performs significantly worse than Level 0, and in code
understanding tasks, Level 4 is either similar / marginally worse than Level 0 (code summarization)
or even significantly better (clone detection). Because of quality loss encountered in several tasks,
we consider intermediate levels.

Level 1 makes one step further from Level 0 and allows punctuation char merges, e. g. ‘})’ or
‘]):’. Though such punctuation composite tokens constitute only 3.4% of the vocabulary, their use
reduces average length by 17%: from 97 to 80.7, and since this level does not mix punctuation with
other chars, it presumably should not complicate code generation much. Level 2 makes one more
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step further and allows merging dots . with textual tokens. This reduces the average length by 23%
compared to Level 0. The motivation for Level 2 is that a lot of API name tokens almost always
go with the dot, e. g. .join or .split in Python. Figure 2 shows that Level 1 model performs
similar or better than Level 0 model in all tasks, and Level 2 performs similar or better than Level
0 in six tasks, marginally worse in Python code summarization and significantly worse in Java code
generation.

Level 3 makes a step back from Level 4 and restricts the complexity of composite tokens in such a
manner that each composed token may represent either a simple one-line code pattern or a punctu-
ation combination, but could not combine them. Quantitatively, Level 3 performs generally better
than Level 4, but (marginally or significantly) worse than the previous Level 2 in six tasks and
similarly in two tasks (generation and clone detection).

To sum up, punctuation combinations (Level 1) result in sequence lengths reduction by 17% without
performance drop in all tasks. We verify this result for BPE in Appendix B and call this approach
CodeBPE or CodeUnigramLM. Length reduction could be increased up to 24% in most tasks by
allowing dots attached to tokens (Level 2) and up to 40% in most code understanding tasks by al-
lowing arbitrary subtoken combinations (Level 4). we investigate the transferability of subtokenizers
between programming languages in Section 6.

One of the potential issues with using composite tokens in code-generative tasks is that an inaccurate
generation of a “long” token may change the entire following generated code. For example, in Java–
Python code translation, a cycle which traverses all unique element pairs in an array, converts to

for l in range ( 0 , arr_size - 1 ) :
for r in range ( l + 1 , arr_size ) :

While the Level 0 model generates exactly the specified cycle and the Level 1 model only modi-
fies the first cycle: range ( arr_size - 1 ), making it even more concise, Level 3 model
generates

for l in range ( 0 , arr_size ) :
for r in range ( 0 , arr_size ) :

which results in traversing some elements twice. Here the first cycle begun with tokens ‘for l in’
and ‘range ( 0 ,’ and the second cycle begun with tokens ‘for r in’ and ‘range ( 0 ,’
where the latter repeats the previously used token and starts an incorrect line. However, according
to our manual prediction analyses, such inaccurate generation, if it happens, rarely results in wrong
code and often does not affect code semantics. For example, the Level 3 model may generate
[‘range ( 0 ,’, ‘n )’] instead of equivalent range(n). Another example is that this model
may generate [ [ 0 ] * c for i in range ( r ) ] instead of two nested cycles by
beginning with tokens ‘[ [’ and ‘0 ] *’, resulting in even more concise code.

As for composite tokens in Level 1, they contain only punctuation and are “simpler” than in Level
3. Besides, Level 1 composite tokens serve more often for statement closing (e. g. ‘)):’ at the end
of the cycle specification) than for a harder starting of new statements: 46.3% of Level 1 composite
tokens contain only closing brackets, 12.8% contain only opening brackets and 26.7% contain both.
We also check that using punctuation composite tokens does not deteriorate syntactic correctness:
in Java-Python code translation-1, Level 0 and Level 1 models generate a similar number of syntac-
tically correct test code snippets: 1226 and 1239 correspondingly. At the same time, for the Level 3
model, this quantity only equals 1163.

In Appendix C, we also analyse how much do input and output subtoken sequences intersect in
different Levels and find that generally the higher granularity leads to the lower intersection rate.
This may be another explanation for the superiority of the lower granularity subtokenizations, as
intuitively it should be easier for the model to predict correct subtokens if they are present in the
input sequence.

As aurogregressive decoding is a slowest part of the encoder-decoder pipeline (Berard et al., 2021),
it is important to check that the length statistics of sequences generated by the models comprising
composite tokens are close to those of the data. We check it for Java-Python translation-1: while
groundtruth sequences at Levels 1 and 3 are 13.5% and 50% shorter than at Level 0, the generated
sequences at these levels are 15% and 40% shorter than sequences generated at Level 0.
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Figure 3: Comparison of BPE and UnigramLM subtokenizers and of several vocabulary sizes. Uni-
gramLM 50K – baseline subtokenization.

Table 2: Example subtokenization of identifiers by UnigramLM and BPE subtokenizers

Original token UnigramLM subtok-
enization

BPE subtokenization Native subtokenization
(Camel- or snake case)

fromDottedString [’from’, ’Dotted’,
’String’]

[’from’, ’Dot’, ’ted’,
’String’]

[’from’, ’Dotted’, ’String’]

isInstantiated [’is’, ’Instantiate’, ’d’] [’isIn’, ’stanti’, ’ated’] [’is’, ’Instantiated’ ]

GridBagConverter [’Grid’, ’Bag’,
’Converter’]

[’GridBag’, ’Converter’] [’Grid’, ’Bag’, ’Converter’]

isSameSize
Horizontally

[’isSame’, ’Size’,
’Horizontally’]

[’isSame’, ’Size’, ’H’,
’orizontally’]

[’is’, ’Same’, ’Size’,
’Horizontally’]

PA_Hierarchy_ID [‘PA’, ‘_’, ‘Hierarchy’, ‘_ID’] [‘PA’, ‘_H’, ‘ierarchy’,
‘_ID’]

[‘PA’, ‘_’, ‘Hierarchy’, ‘_’,
‘ID’]

We note that though we use sequence clipping which clips lower granularity subtokenizations
stronger, it does not devalue our results, as generally lower granularity subtokenizations perform
better in our experiments, and also such clipping is a widely used practical scenario; we provide
more comments in Appendix C. At the same time, in rare cases when lower granularity subtok-
enizations perform worse than higher granularity ones, this may be indeed due to the max-length
clipping. For example, we find that the more “fair” cropping eliminates the superiority of Level 1
compared to Level 0 in code summarization and they start performing similarly (see Appendix C).

4 SUBTOKENIZATION ALGORITHM

Bostrom & Durrett (2020) compare two most popular subtokenization approaches, BPE and Uni-
gramLM (Kudo, 2018), for pretraining of large LMs on natural text data. While BPE constructs the
vocabulary in the bottom-up fashion, starting from characters and gradually joining them, the Un-
igramLM algorithm works in the top-down fashion, staring from a large vocabulary and gradually
filtering it. The paper finds that UnigramLM outperforms BPE in a range of downstream tasks and
suggests several reasons for the superiority of UnigramLM, including better alignment with mor-
phology and the more efficient vocabulary allocation. Since most existing pretrained LMs on source
code use BPE, we decided to compare the two algorithms for source code.

Figure 3 compares BPE and UnigramLM for PLBART. In three tasks, UnigramLM outperforms
BPE by one standard deviation, and in remaining tasks their performance is very close. Since the
average length of two tokenizations is similar, we recommend using UnigramLM for source code.

Bostrom & Durrett (2020) argue that one of the potential reasons for the superiority of UnigramLM
subtokenization is that it is better aligned with natural text morphology and thus simplifies the com-
position of words by parts. We find that a similar effect appears for identifiers in source code:
although 80% of identifiers are subtokenized identically by UnigramLM and BPE, for some of the
remaining 20%, UnigramLM provides more “reasonable” splits into subtokens, see examples in Ta-
ble 2. More formally, we observe that UnigramLM subtokenization better resembles splitting into
subtokens based on CamelCase or snake_case, which we call a native subtokenization. To
estimate this effect quantitatively, we consider the Python corpus and randomly select a set of 150K
identifiers with different UnigramLM and BPE subtokenizations consisting of ⩾ 2 native subto-
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kens, and measure the average Jaccard similarity J(A,B) = |A ∩ B|/|A ∪ B| between the set
of native subtokens and the set of subtokens produced by each subtokenizer. The resulting score
for UnigramLM, 26.6%, is much higher than for BPE, 15.2%. As could be observed from the
third and the fourth rows in Table 2, sometimes subtokenizers join two native subtokens into one
(isSame, GridBag). If we split each subtoken produced by a tokenizer based on CamelCase or
snake_case to eliminate this effect and again measure average Jaccard similarities, UnigramLM’s
score, 55.2%, is still much higher than BPE’s, 47.9%, again indicating that UnigramLM’s tokeniza-
tion is better aligned with the native one. In Appendix C we measure intersections between inputs
and outputs in the sequnce-to-sequence tasks and find that UnigramLM leads to a slightly higher
intersection rate than BPE, which may be connected to the better alignment with native subtok-
enization and serve as a a possible explanation of UnigramLM slight performance superiority.

A relatively frequent pattern is that BPE tends to detach the first uppercase letter from native subto-
kens (H orizontally in row 4, _H ierarchy in row 5). Among 150K identifiers considered
in the previous paragraph, 14.6% of BPE tokenizations contain at least one single uppercase letter X
and 4.4% — at least one subtoken of kind _X, while for UnigramLM these scores are substantially
lower and equal to 11.8% and 1.4% correspondingly. At the same time, BPE merges two native
subtokens more frequently (GridBag in row 3): 45.8% BPE tokenizations contain at least one to-
ken which could be split into two or more based on CamelCase, while for UnigramLM this score
only equals to 39.2%.

5 VOCABULARY SIZE

This section studies the effect of vocabulary size, one of the main subtokenizer’s hyperparameters,
on the downstream quality of PLBART. Though the existing pretrained LMs for code use relatively
large vocabularies of 30–50K tokens, we are interested, whether using smaller and less length-
efficient vocabularies could result in better performance, and if yes, how large is the length increase.

Figure 3 presents the comparison of PLBARTs trained with vocabulary sizes 50K (large), 10K
(medium) and 2K (small). We find that in code translation, all vocabularies lead to similar per-
formance. In code summarization, small and medium vocabularies outperform the large one by one
standard deviation. In code generation, the medium vocabulary significantly outperforms the large
one. Finally, in clone detection, decreasing the vocabulary size deteriorates quality. At the same
time, with the large vocabulary, sequences are shorter than with the smaller vocabulary by 9.5%
(10K) and 33% (2K), but the model size is larger (139M for 50K, 108M for 10K, and 102M for
2K). We conclude that vocabulary size reduction may lead to a slight performance improvement but
with sequences elongation, thus it may be helpful in applications with high cost of errors and weak
restrictions on sequences lengths. We verify the highlighted result for BPE in Appendix. We note
that compared to BPE 50K which is used in most existing large LMs of code, UnigramLM 10K
improves performance significantly in three tasks and by one standard deviation in two other tasks.

Reducing vocabulary size increases the granularity of identifiers subtokenization, e. g. reachable
is subtokenized as reachable with the 50K vocabulary, reach able – with 10K and
re ach able – with 2K. In other words, vocabulary size reduction may be seen as an even
stronger prohibition of complex tokens than Level 0 in Section 1. Our results on the effectiveness
of smaller granularity agree with the machine translation results of Ding et al. (2019). Programs in
code generation and summarization data are more identifier-centered, e. g. the model often needs to
choose a correct API based on the natural language description which seems to be easier by compos-
ing from smaller subtokens. On the contrary, in code translation, data is more algorithmic-centered,
with mostly short identifiers encoded in 1–2 subtokens with all vocabulary sizes. The length increase
of 10K vocabulary compared to 50K one is 6–19% in the former two tasks (6% in generation, 19%
in summarization) and only 3.5% in the latter one (code-translation-1).

6 TRANSFERABILITY BETWEEN PROGRAMMING LANGUAGES

Due to the high computational cost of large LM pretraining and relative programming languages
similarity, e. g. compared to how dissimilar natural languages could be, pretrained LMs on source
code are often used for programming languages that were not considered during pretraining. In this
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Figure 5: Results of transferability between programming languages. Py+Ja – subtokenizer is
trained on all data (baseline), Only Py – on Python and natural language data only.

section, we investigate the effect of using a subtokenizer trained on one programming language for
another programming language.
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Figure 4 visualizes the number of tokens having particu-
lar frequencies in Python and Java languages, and black
rectangles denote language-specific areas. We find that
the baseline Level 0 granularity vocabulary seems to be
language-universal: the majority of subtokens have large
frequencies in both languages, and only a small number
of subtokens, 12.6%, are frequent in one language and
rare in another. Interestingly, for Level 4 vocabulary, this
quantity is not much higher, 20.1%, though it should in-
clude all language-specific composite tokens. As com-
posite tokens occupy almost half of the Level 4 vocab-
ulary, the remaining 30% composite tokens are common
for two languages.

Analysing sequence lengths (Figure 5), we observe that
training the subtokenizer without Java (Only Py) shortens
Python sequences marginally and increases Java sequences by 6.5% compared to the baseline subto-
kenizer trained on all data (Py+Ja). The latter happens because some widely used Java identifiers
were not merged into single tokens as they are not used in Python; still, the length increase is not
so large. For the Level 4 granularity subtokenizer, Only Py’s length increase on Java is larger, 13%,
since it contains more language-specific composite tokens. However, due to common composite
tokens, the resulting Level 4 Only Py’s Java average length is still smaller than Level 1 Only Py’s
Java sequences: 79 vs. 83.

As for performance, using the Only Py subtokenizer instead of Py+Ja changes quality up to one stan-
dard deviation and could both increase and decrease it on Java data (quality increase may be caused
by the increased subtokenization granularity). Note that we only change subtokenizer configuration
– PLBART is still pretrained on all languages, this may happen in practice if LM’s developers use
the subtokenizer from another project, e. g. for comparison purposes. Summing up, we conclude
that the baseline subtokenizer is universal and, if needed, could be used for other programming
languages it was not trained on, with small length increase and slight quality change. We note that
Python and Java have quite different syntax and are usually used in different applications.

7 RELATED WORK

Subtokenization studies for NLP. Subtokenization has become an essential component of mod-
ern NLP pipelines and thus — a subject of a line of empirical NLP studies. While word-based
models suffer from the out-of-vocabulary problem, subtoken-based (open-vocabulary) as well as
char-based approaches cover arbitrary novel words. Among various open-vocabulary approaches,
BPE (Sennrich et al., 2016), WordPiece (Wu et al., 2016) and UnigramLM (Bostrom & Durrett,
2020) became most widely used, and UnigramLM was shown to outperform BPE for LM pre-
training (Bostrom & Durrett, 2020). A line of studies investigate the optimal granularity of word
subtokenization: Ding et al. (2019) find that in Transformer-based neural machine translation, small
vocabularies of 0–4K subtokens outperform large ones by up to 4 BLEU, and VOLT (Radford et al.,
2018) automates the search of a proper subtoken vocabulary with a proper size by formulating it
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as an optimal transport problem. The smallest char-based granularity is often avoided because of
substantial sequences elongation, but has particular strengths, e. g. much less number of hyperpa-
rameters and better robustness, and thus appears to be a promising research direction (Gupta et al.,
2019; Clark et al., 2021; Tay et al., 2021). Provilkov et al. (2020); Kudo (2018) propose stochastic
subtokenization as a way to improve new words composition and (Wang et al., 2021a) adapt it to
pretrained LMs. Finally, an actively studied challenge is that various natural languages need differ-
ent subtokenization decisions and are hard to subtokenize with one common model (Chung et al.,
2020; Rust et al., 2021). Our work investigates most of the specified directions for source code. For
a more detailed review on subtokenization, see (Mielke et al., 2021).

Subtokenization practices in neural source code processing. Subtokenization was first tested
for source code in (Karampatsis et al., 2020) and later used in the majority of Transformer-based
models. Almost all LMs pretrained on source code use BPE-like subtokenization with large vocabu-
lary: CodeBERT uses the WordPiece (Wu et al., 2016) algorithm (a modified BPE, 50K), CuBERT –
an algorithm from the Tensor2Tensor project (Vaswani et al., 2018) (50K), PLBART and CodeGPT
– BPE (50K), CodeT5 – byte-level BPE (32K), DOBF uses a subtokenization procedure of either
CodeBERT or Roziere et al. (2020) (BPE 64K) for fair comparison, AlphaCode Li et al. (2022) –
SentencePiece (8K, algorithm not specified), InCoder Fried et al. (2022) – BPE (50K). To the best
of our knowledge, existing works do not provide an in-depth experimental analysis of various subto-
kenization options for code and, particularly, do not investigate various levels of composite tokens
complexity. Though the concurrent work of Fried et al. (2022) uses unrestricted composite tokens
(our Level 4), they do not compare them to any other subtokenizations. Level 4 composite tokens
are conceptually similar to code idioms used in (Iyer et al., 2019; Shin et al., 2019) for code gener-
ation, but the mentioned works develop specific procedures for mining idioms, which need separate
implementation, while we rely on the commonly-used subtokenization procedure.

8 CONCLUSION

In this work, we conducted an empirical study of varying subtokenization options for large LMs
pretraining on source code. We believe that main the value of our work is not in improved numer-
ical criteria, but importantly in providing reference experiments for the community showing which
impact (both substantial or small) subtokenization choices may have in pretraining LMs for code.
This underlines which directions to look more carefully at in practice (the use of composite tokens)
and which are less important to experiment with (vocabulary size, subtokenization algorithm), and
whether the later directions can bring at least a slight improvement or not (yes, they can). Currently
most works experiment with subtokenizations options only superficially or do not experiment at all,
and we hope that our work will provide motivation to do that.

Our recommendations. As for particular direct recommendations from our results, first, we rec-
ommend to use the proposed punctuation combination approach, which we call CodeBPE or Code-
UnigramLM depending on the used subtokenization algorithm, that shortens sequences by 17%
without quality drop. We suppose that with larger pretrained LMs higher levels of composite tokens
may also achieve comparable performance; we were not able to experiment with then as they require
very extensive computational resources. Second, if changing the subtokenization algorithm is easy,
e.g. when using the SentencePiece library, we recommend using the UnigramLM, since it performs
slightly better than commonly used BPE with similar lengths. Third, we recommend considering
releasing models with smaller vocabularies, as they may perform slightly better than larger vocab-
ularies. In our experiments the UnigramLM-10K subtokenizer was 0.5–2% more effective than the
commonly-used BPE 50K in 5/8 experiments, but with 3.5–19% length increase.

Limitations The main work’s limitation is that we consider only the PLBART model, due to
the limited computational resources. However, we believe that the provided recommendations will
motivate and simplify the process of the subtokenizer’s tuning for future works, as described above.
Another limitation is that we focus on finding optimal subtokenization options only for source code,
though some downstream tasks also include the processing of natural language. Investigating the
ways of choosing optimal subtokenization for both code and natural language may be an interesting
direction for future research. Finally, we only compare BPE and UnigramLM, while it could be
interesting to investigate the performance of other algorithms, e. g. WordPiece.
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BROADER IMPACT

We do not anticipate any direct negative social impact of our work. However, our results may
potentially be used for developing new pretrained LMs for source code, and a detailed discussion on
their broader impact is provided in Chen et al. (2021) (Section 7), e. g. over-reliance on generated
code or producing vulnerable code. Unfortunately, our work may cause negative environmental
impact because of computation (∼5K Tesla A-100 GPU hours and ∼4K Tesla V-100 GPU hours at
the internal cluster).
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A AVERAGE LENGTHS ON THE FINETUNING DATA

In the main text, we report average lengths computed over a randomly chosen subset of the pre-
training data (different from the random subsets subtokenizers were pretrained on). Table 3 reports
average lengths computed over finetuning data, we also include average lengths computed over
held-out pretraining data. For programming languages, we observe similar trends as on the general
pretraining data: Level 1 compresses sequences by 11.6–17.7% (the lower compression in the code
summarization task, 11.6–12.8%, is explained by the higher percent of identifiers in this data than in
other tasks); Level 4 compresses sequences by 32.4–50%; 10K and 2K vocabularies increase lengths
by 3.5–10.2% and 12.7–35.9% respectively; and BPE and UnigramLM average lengths are similar.

As for natural text, its average lengths are not affected by the Level 1 subtokenization because it only
affects punctuation char sequences, rarely present in the natural language data. At the same time,
higher level subtokenizers may produce natural language subtoken sequences of higher lengths,
because their vocabularies are occupied by programming-focused composite tokens rarely present in
natural language data, while frequent words may be absent in these vocabularies. Small vocabulary
subtokenizers also have programming language-focused vocabularies, resulting in higher lengths
increase for natural text than for programming languages.

In Table 4, we report time needed to generate predictions for the test set in two tasks. The measure-
ment was conducted on a single Tesla V100 GPU, in the same session for all runs. The speed-up is
stronger than the length decrease, because of quadratic Transformer complexity.

B ADDITIONAL EXPERIMENTS WITH BPE

Figure 6 presents the comparison of BPE Level 0 and Level 1 subtokenizations and of BPE 50K
and 10K vocabularies. The results are similar to those of UnigramLM reported in the main text: the
performance of Level 0 and Level 1 subtokenizations is again close, the model with 10K vocabulary
again significantly outperforms the model with 50K vocabulary in code generation and outperforms
by one standard deviation in Java code summarization, and in other tasks the performance of 10K
and 50K models is similar.

45 46

BPE Level 0
BPE Level 1

BPE 10k

Code transl.-1 (Py, CodeBLEU)    

64 66 68

Code transl.-2 (Py, Comp. Acc.)

19.0 19.5

Code summ. (Py, BLEU)

37 38 39

Code gen. (Ja, CodeBLEU)  

47 48

BPE Level 0
BPE Level 1

BPE 10k

Code transl.-1 (Ja, CodeBLEU)    

56 58

Code transl.-2 (Ja, Comp. Acc.)

18.5 19.0 19.5

Code summ. (Ja, BLEU)

98.0 98.5

Clone detection (Ja, F1)
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Figure 6: Comparison of BPE Level 0, BPE Level 1 (both with 50K vocabulary as in the main text)
and BPE 10K.

C ADDITIONAL ANALYSIS

Additional experiments with “fair” subtoken sequence cropping. In our main experiments, we
clip all subtoken sequences with the same maximum length threshold, as this scenario is most close
to how it is done in practice. It should be noted that for the vast majority of examples, subtoken
sequences fit to the maximum length limit and are not affected by this clipping (see statistics in the
main text, Section 2). However, for the remaining long examples, subtoken sequences produced by
subtokenizers of higher granularity may be detokenized into longer character sequences, than that of
the smaller granularity subtokenizer’s. For example, if one uses the maximum length of 4 (only used
for illustration), then the code snippet x = sum ( numbers ) may be tokenized by the Level
4 subtokenizer into [‘x =’, ‘sum (’, ‘numbers’, ‘)’] (fits into the limit) and by 2K subtokenizer
into [‘x’, ‘=’, ‘sum’, ‘(’, ‘numbers’, ‘)’], which will be clipped into [‘x’, ‘=’, ‘sum’, ‘(’] with

14



Published as a conference paper at ICLR 2023

Table 3: Average lengths computed over finetuning data in different tasks. All subtokenizations
expect the last one use the UnigramLM algorithm; Base ans Level 1–4 subtokenizations use vocab-
ulary of 50K; 10K and 2K subtokenizations are based on Level 1 preprocessing..

Subtok. Base Level 1 Level 2 Level 3 Level 4 10K 2K BPE

Code translation – Python

Av. len 150.6 126.9 125.1 91.5 87.1 156.0 169.7 150.5
vs. Base 0.0% -15.7% -16.9% -39.2% -42.2% +3.6% +12.7% -0.1%

Code translation – Java

Av. len 226.8 193.9 173.6 127.3 113.5 234.7 263.0 226.8
vs. Base 0.0% -14.5% -23.5% -43.9% -50.0% +3.5% +16.0% 0.0%

Code summarization – Python

Av. len 151.4 133.9 125.7 107.0 102.3 166.3 202.1 151.3
vs. Base 0.0% -11.6% -17.0% -29.3% -32.4% +9.8% +33.5% -0.1%

Code summarization – Java

Av. len 132.7 115.7 109.4 95.0 84.9 146.3 180.4 132.5
vs. Base 0.0% -12.8% -17.6% -28.4% -36.0% +10.2% +35.9% -0.2%

Code summarization – natural text

Av. len 12.5 12.5 13.3 17.8 11.2 14.5 19.9 12.5
vs. Base 0.0% 0.0% +6.4% +42.4% -10.4% +16.0% +59.2% 0.0%

Code generation – Java

Av. len 30.6 25.4 23.8 20.4 18.8 32.7 39.9 30.6
vs. Base 0.0% -17.0% -22.2% -33.3% -38.6% +6.9% +30.4% 0.0%

Code generation – natural text

Av. len 166.5 166.4 166.2 203.5 163.9 205.5 282.3 166.7
vs. Base 0.0% -0.1% -0.2% +22.2% -1.6% +23.4% +69.5% 0.1%

Clone detection – Java

Av. len 349.3 287.6 264.0 220.1 196.9 377.1 449.6 349.6
vs. Base 0.0% -17.7% -24.4% -37.0% -43.6% +8.0% +28.7% +0.1%

Test pretraining data – Python

Av. len 121.2 100.6 91.8 80.3 75.0 131.4 159.4 121.2
vs. Base 0.0% -17.0% -24.3% -33.7% -38.1% 8.4% 31.5% 0.0%

Test pretraining data – Java

Av. len 85.3 71.2 66.6 56.6 51.7 93.8 115.3 85.4
vs. Base 0.0% -16.5% -21.9% -33.6% -39.4% 10.0% 35.2% 0.1%

Table 4: Time required to generate predictions for the whole test set, in seconds. Numbers in
brackets indicate relative speed-up versus Level 0. UnigramLM tokenization, 50k vocabulary.

Level 0 Level 1 Level 4

Code translation (Python, 1693 examples) 502 387 (77%) 270 (54%)
Code generation (Java, 2000 examples) 346 279 (80%) 211 (60%)

the loss of information. Note, however, that such inequality between subtokenizers does not devalue
the results we report. First, the described clipping procedure corresponds to the conventionally used
practical setting with the use of maximum available input information, and second, our results show
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that longer (less compact) subtokenizations, most affected by clipping, generally perform better than
shorter (more compact) subtokenizations which allow less information loss. Using the more “fair”
setting may make the performance of more compact subtokenizations worse (and not affect less
compact subtokenizations), amplifying performance differences further.

In this section, we conduct such a “fair” experiment for three representative downstream tasks and
crop subtoken sequences produced by all subtokenizers so that they are all detokenized into a similar
character sequence. In the example above, the 2K subtokenization will stay unchanged while the
Level 4 subtokenization will be cropped into [‘x =’, ‘sum (’] to achieve equality. The results are
shown in Figure 7. Comparing the observations to the hypothesis given above, we observe that the
performance of smaller vocabulary subtokenizations, less affected by cropping, stays similar (as ex-
pected) and that the performance of higher granularity subtokenizations, most affected by cropping,
often reduces (Levels 0 and 1 in translation, Level 1 in summarization) or stays similar (Level 0 in
summarization, Level 1 in clone detection), again as we expected. Surprisingly, in some cases (Level
4 in all tasks and Level 0 in clone detection), the performance of higher granularity subtokenizations
improve slightly after cropping. We hypothesize that the reason may be that the last parts of se-
quences may be not important for correct prediction, e. g. if __name__ == "__main__"
statements in Python translation examples may be auxiliary and not used during translation.

As for the conclusions emphasized in the main text, they hold for the cropped setting as well: (a) the
marginal performance superiority of smaller vocabularies compared to the Level 0 50K vocabulary,
is amplified (translation) or similar (summarization) as in the main text; (b) the relative performance
of Level 0 and Level 4 is similar as in the main text; (c) the observation that the Level 1 subtokeniza-
tion performs not worse than the Level 0 subtokenization stays same as in the main text.

Interestingly, in Java code summarization, Level 1 subtokenization performs slightly better than
Level 0 subtokenization in the main text, while after cropping their performance is similar. We
thus attribute the superiority of Level 1 in the main text to the less strong clipping than of Level 0
subtokenizations.

44 45 46

2K
10K

Level 0
Level 1
Level 4

Code transl.-1 (Py, CodeBLEU)    

18.50 18.75 19.00 19.25 19.50

Code summ. (Ja, BLEU)

96.5 97.0 97.5 98.0 98.5

Clone detection (Ja, F1)

Figure 7: Additional experiments with subtoken sequences being cropped so that for each datapoint,
the subtoken sequences produced by all subtokenizers are detokenized into a similar character se-
quence. Effectively this cropping means that the 2K subtokenizer’s sequences stay unchanged while
all others may be cropped, and the Level 4 subtokenizer’s sequences are cropped the most. Blurred
bars visualize original performance reported in the main paper, with “unfair” clipping used in prac-
tice. Both 2K and 10K subtokenizations use Level 0 preprocessing and all Level X subtokenizations
use the 50K vocabulary, all experiments with UnigramLM.

How much do input and output sequences intersect for various subtokenizations? In attempt
to better understand the effect of subtokenizations on downstream performance, we measure the
Jaccard similarity J(A,B) = |A ∩ B|/|A ∪ B| between the sets of input and output subtokens
in sequence-to-sequence tasks. The intuition is that it should be easier for the model to predict
correct subtokens if they are present in the input sequence. We only include textual subtokens in
the considered sets (subtokens which do not include any programming language punctuation), since
“copying” subtokens which include punctuation seems to be unrealistic (in text-to-code or code-
to-text tasks, the text part does not include programming language punctuation at all, and in the
translation task, punctuation of Python and Java are very dissimilar). We consider the setting with
“fair” cropping described in the previous paragraph, however for the conventional setting the results
are similar.

The results are presented in Table 5. The general trend that the higher the granularity, the lower
the intersection rate, appears to be reasonable. For example, we observe the explainable monotonic
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decrease in intersection for 2K–10K–50K vocabularies: the smaller the vocabulary, the smaller the
granularity of identifiers/words subtokenization, the more chance that different parts of words will
repeat. This correlates with our empirical observation that generally smaller vocabulary sutokeniza-
tions perform slightly better.

Interestingly, Level 1 subtokenization leads to a slightly higher intersection rate than Level 0. We
explain it that punctuation combinations occupy a portion of vocabulary (3.4%) and thus reduce the
effective vocabulary allocated for textual tokens, which will be slightly more often split into parts.
This effect shows that if one has some “length budget”, it is better to be spent on splitting identifiers
into subtokens rather than considering punctuation chars as separate tokens (they can be grouped).

For further levels, two forces start competing: the first one that composite tokens occupy a part of the
vocabulary and thus out-of-vocabulary identifiers are split into smaller pieces that are repeated rela-
tively frequently, and the second one that composite tokens themselves are longer and are repeated
rarely between input and output. The second force is absent for Level 1 considered above because
Level 1 composite tokens are punctuation-only and do not include letters or digits. We observe that
for Level 2, the first force outweighs the second one in translation and summarization (intersection
rate is higher than for Levels 0 and 1) and underweights in generation (intersection rate lower than
in Levels 0 and 1). Interestingly, this correlates with performance of Level 2 compared to Levels 0
and 1: it is on par with them in translation and summarization and lower in generation. Further on,
at Levels 3 and 4 the intersection rate drops, with small increase of Level 4 compared to Level 3,
explainable by the specifics of Level 3 construction focused on programming statements.

Finally, we compare the intersection rate of UnigramLM and BPE (both Level 0, 50K) and find that
in summarization and generation it is slightly higher for UnigramLM than for BPE and in translation
they are equal. This observation complements our findings that UnigramLM subtokenizations are
better aligned with native subtokenizations than BPE subtokenizations and provides some intuition
how it matters (similarity to native subtokenization presumably increases the number of repeated
subtokens which should be easier to correctly predict).

Table 5: Average Jaccard similarities between the sets of input and output textual subtokens, for
different subtokenizations. All subtokenizations expect the last one use the UnigramLM algorithm;
Base ans Level 1–4 subtokenizations use vocabulary of 50K; 10K and 2K subtokenizations are based
on Level 1 preprocessing.

2K 10K Level 0 Level 1 Level 2 Level 3 Level 4 BPE

Code trans. (Py) 14.61 13.91 13.68 13.81 14.38 6.65 7.79 13.67
Code gen. (Ja) 11.65 10.51 9.57 9.61 8.94 4.70 6.51 8.88
Code sum. (Ja) 10.25 7.26 5.99 6.03 6.33 2.84 5.80 5.67

Subtoken frequences visualization. In Figure 8, we visualize subtoken frequencies computed
over 1/8 of the pretraining corpora for four subtokenizers: UnigramLM Level 0 50K, BPE Level 0
50K, UnigramLM Level 1 50K and UnigramLM Level 4 50K. Comparing UnigramLM and BPE,
we find that UnigramLM has a slightly heavier tail which results in a greater number of subto-
kens having higher frequncies and thus better embeddings, the similar observation was also noticed
in Bostrom & Durrett (2020). The frequency profiles of Level 0 and Level 1 subtokenizers are close.
Level 4 vocabulary exhibits less contrast in frequencies than Levels 0 and 1: in the left range, Level 4
frequencies are lower, while in the right range, Level 4 frequencies are higher, which hypothetically
could provide some advantage to Level 4 (but it does not, according to the reported performance
results). We hypothesize that having high frequencies in the left range is important for high per-
formance (more reliable “basic” subtokens) but high granularity subtokens reduce frequencies of
smaller subtokens which negatively affects their embeddings.

D NUMERICAL RESULTS

Table 6 presents the numerical results for figures in the main text and Appendix B.
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Figure 8: Subtoken frequencies over pretraining data.

Table 6: Numerical data for figures in the main text. CT1: Code Translation-1 (CodeBLEU), CT2:
Code Translation 2 (Computational Accuracy), CS: Code Summarization (BLEU), CG: Code Gen-
eration (CodeBLEU), CD: Clone Detection (F1). Py – Python, Ja – Java.

Subtokenizer CT1
(Py)

CT1
(Ja)

CT2
(Py)

CT2
(Ja)

CS
(Py)

CS
(Ja)

CG
(Ja)

CD
(Ja)

UnigramLM 50K Level 0 46.1 48.2 65.3 57.1 19.7 18.9 38.2 97.8
UnigramLM 50K Level 1 45.9 48.4 67.3 57.8 19.7 19.4 38.2 98.3
UnigramLM 50K Level 2 45.9 48.0 67.0 56.8 19.5 19.3 37.3 98.2
UnigramLM 50K Level 3 45.0 47.7 56.7 45.5 19.5 19.1 37.5 98.5
UnigramLM 50K Level 4 44.2 46.7 54.3 43.7 19.5 18.9 36.7 98.3
UnigramLM 10K Level 0 45.8 48.6 65.7 57.35 19.9 19.2 39.1 97.7
UnigramLM 2K Level 0 46.2 48.0 66.1 56.2 19.8 19.2 39.1 97.5
UnigramLM 50K Level 0
(Only Py)

46.1 47.5 68.3 58.6 19.8 18.8 38.6 98.0

BPE 50K Level 0 45.5 47.7 66.5 57.4 19.3 18.8 37.7 98.0
BPE 50K Level 1 45.9 48.0 65.5 56.9 19.6 19.0 37.4 98.3
BPE 10K Level 0 45.5 48.1 66.5 57.2 19.5 19.2 38.9 97.9
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