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ABSTRACT

We introduce a novel linear bandit problem where a subset of features is latent,
resulting in partial access to reward information and spurious estimates. Without
properly addressing the latent features, the regret grows linearly over the decision
epoch T" while improving the regret bound is challenging because their dimension
and relationship with rewards are not available. We propose a novel analysis to
handle the latent features and an algorithm that achieves a regret bound sublinear
in T'. The core of the algorithm lies in (i) augmenting basis vectors orthogonal
to the observable feature space, and (ii) developing an efficient doubly robust
estimator that further improves the regret bound. With these two ingredients, our

algorithm achieves a regret bound of O(+/(d + dj,)T), where d is the dimension of
observable features, and d}, is the unknown dimension of the unobserved features
that affects the reward. Crucially, our algorithm does not rely on prior knowledge
of the unobserved feature space, which expands as more features become hidden.
Numerical experiments confirm that our algorithm outperforms both non-contextual
multi-armed bandits and other linear bandit algorithms.

1 INTRODUCTION

We consider a linear bandit problem where the learning agent has access to only a subset of the
features, while the reward is determined using the complete set of features, including both observed
and unobserved elements. Conventional linear bandit problems rely on the assumption that the
rewards are linear to only observed features, without accounting for the potential presence of
unobserved features. However, in many real world applications, rewards are often affected by the
latent features that are not observable to the agent. For example, in recommendation systems, the
true reward — such as user satisfaction or purchase decisions — depends not only on observable
features like user demographics or past behaviors but also on latent preferences, such as specific
tastes in artists (for streaming services) or brands (in e-commerce). Accurately incorporating these
latent features is essential for providing precise recommendations, while ignoring them causes bias or
model misspecification errors in every decision-making.

To address the latent features, |Park & Faradonbeh! (2022)), Kim et al.| (2023a)) and |Park & Faradonbeh
(2024)) rely on the assumption that observed features are linear to the latent features sampled from
a specific distribution, e.g., a mean-zero Gaussian. Establishing a regret bound sublinear in the
decision horizon without such structural assumptions on the latent features remains a significant
challenge and has not been accomplished yet. Key challenges in the bandit problem with partially
observable features arise from the complete lack of information on the latent features. Indeed, we do
not even know whether an agent observes features partially or not and whether we should use the
latent features or not.

To address these challenges, we propose a novel linear bandit algorithm that is agnostic to the
presence of partially observable features. Notwithstanding the absence of knowledge regarding
unobserved features, our algorithm is capable of obtaining a regret bound that is tighter than that
achieved both linear bandit algorithms that consider only observable features and multi-armed bandit
(MAB) algorithms that entirely ignore features. Our proposed algorithm achieves a regret bound of

O(\/T), without requiring any prior knowledge of the unobserved features, where 7 is the decision
horizon and O(-) represents Big-O notation omitting logarithmic factors.
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dp,=0 |0<dp<K—-d |d,=K—-d
Regret bound | O(VdT) | O(\/(d+dy)T) | OWKT)

Table 1: Regret bound range of our algorithm, RoLF, depending on d}, the dimension of the vector
space spanned by the rows of the matrix of unobserved features influencing the reward. Our algorithm
incurs regret adaptive to dj, and the regret bound does not exceed that of multi-armed bandit
algorithms leveraging UCB, in the worst case. Note that O denotes the big-O notation omitting
logarithm factors.

The key idea of our proposed algorithm lies in two main components: (i) the reconstructing the
feature vectors to capture the impact of unobserved features on the rewards, and (ii) constructing a
novel doubly robust estimator that is robust to information loss caused by unobservability. For (i),
we decompose rewards into two additive terms: one projected onto the row space of the observable
features, and the other onto its orthogonal complement. The former term maximally captures the
effects from the observed features, while the latter minimizes the impact of the the unobserved
features. We then augment the observable features with an orthogonal basis from the complement
space to capture all effects on the rewards. This allows us to reformulate the problem in a conventional
linear bandit framework, where the reward function is defined as the dot product of the minimally
augmented features and the associated unknown parameter. However, these augmented features
are not identical to the unobserved features, which may lead to potential estimation error. To
mitigate these errors, we leverage (ii) the doubly robust estimator, which is widely used in statistical
literature for its robustness to errors cause by missing data. Together, these two approaches allow the
algorithm to effectively compensate for missing information, enhancing both estimation accuracy
and adaptability to the environment.

Our main contributions are summarized as follows:

* We propose a linear bandit problem with partially observable features. Our problem setting
is more general and challenging than those in the existing literature on linear bandits with
latent features, which often rely on specific structural assumptions governing the relationship
between observable and latent features. In contrast, our approach assumes no additional
structure for the unobserved features beyond the linearity of the reward function, which is
commonly adopted in the linear bandit literature (Section 3)).

* We introduce a novel estimation strategy by (i) efficiently augmenting the features that
maximally captures the effect of reward projected onto the observed features, while mini-
mizing the impact of unobserved features (Section[d), and (ii) constructing a doubly-robust
(DR) estimator that is robust to the error caused by unobserved features. By integrating
augmented features with the DR estimator, we guarantee a convergence rate of O(t~'/2) on
the rewards for all arms in each round ¢ (Theorem 2).

* We propose the Robust to Latent Features (RoLF) algorithm for the general linear bandit

framework with latent features that achieves a regret bound of O(+/(d + dp,)T) (Theorem ,
where dj, is the dimension of the subspace formed by projecting the reward, linear to
unobserved features, onto the orthogonal complement of the row space of the observable
features (Section[4.2)). Our proposed algorithm requires no prior knowledge or modeling
of the unobserved features, yet achieves a sharper regret bound than both linear bandit
algorithms that consider only observable features (Li et al., 2010; |Abbasi-yadkori et al.,
20115 Agrawal & Goyal, 2013} Kim & Paik} 2019) and MAB algorithms (Auer et al.,[2002).

* Our numerical experiments demonstrate that our proposed algorithm consistently outper-
forms the existing linear bandit and MAB algorithms. These results support our theoretical
findings and validate the practicality of our method.

2 RELATED WORKS

In bandit problems, the learning agent learns only from the outcomes of chosen actions, leaving
unchosen alternatives unknown (Robbins||1952). This constraint requires a balance between exploring
new actions and exploiting actions learned to be good, known as the exploration-exploitation tradeoff.
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Efficiently managing this tradeoff is crucial for guiding the agent towards the optimal policy. To
address this, algorithms based on optimism in the face of uncertainty (OFU) (Lai & Robbins)
1985)) are widely used and studied in linear bandits (Abe & Long, |1999; |Auer, 2002} Dani et al.}
2008} [Rusmevichientong & Tsitsiklis, [2010). Notable examples include LinUCB (Li et al., [2010)
and OFUL (Abbasi-yadkori et al.| [2011)), known for their practicality and performance guarantees.
However, existing approaches differ from ours in two key aspects: (i) they assume that the learning
agent can observe the entire feature vector related to the reward, and (ii) their algorithms have regret

that scales linearly with the dimension of the observed feature vector, i.e., 6(d\/T)

In contrast, we develop an algorithm that achieves a sublinear regret bound by employing the doubly
robust (DR) technique, thereby avoiding the linear dependence on the dimension of the feature
vectors. The DR estimation in the context of linear contextual bandits is first introduced by Kim &
Paik| (2019) and |Dimakopoulou et al.|(2019), and subsequent studies improve the regret bound in
this problem setting by a factor of Vd (Kim et al.} 20215 2023b). A recent application (Kim et al.,
2023c)) achieves a regret bound of order O(+1/dT logT) under IID features over rounds. However,
the extension to non-stochastic or non-IID features remains an open question. To address this issue,
we develop a novel analysis that applies the DR estimation to non-stochastic features, achieving a
regret bound sublinear with respect to the dimension of the augmented feature vectors. Furthermore,
we extend DR estimation to handle sparse parameters, thereby further improving the regret bound to
be sublinear with respect to the reduced dimension.

Our problem is more general and challenging than the misspecified linear bandits, where the assumed
reward model fails to accurately reflect the true reward, such as when the true reward function is
non-linear (Lattimore & Szepesvaril, 2020), or a deviation term is added to the reward model (Ghosh
et al.,[2017; |Bogunovic et al., 2021; He et al., [2022). While our work assumes that the misspecified
(or inaccessible) portion of the reward is linearly related to certain unobservable features, misspecified
linear bandit problems can be reformulated as a special case of our framework. While the regret
bounds in Lattimore & Szepesvari| (2020), Bogunovic et al.|(2021) and He et al.| (2022) incorporate a
sum of misspecification errors that may accumulate over the decision horizon, our work establishes
a regret bound that is sublinear in the decision horizon 7" without any misspecification errors.
Ghosh et al.| (2017)) proposed a hypothesis test whether to use linear bandits or MAB and proved
O(K+/Tlog T) regret bound when the sum of misspecified error is greater than Q(d+/T). In contrast,
our algorithm attains O(+/(d + dy, )T log T') regret bound without necessitating such hypothesis tests
for misspecification or partial observability.

Lastly, our problem appears similar to the bandits with partially observable features studied by
by |Park & Faradonbeh| (2022). In their work, the observed features are assumed to be related to the
latent features through a known linear mapping, with the latent features sampled from a centered
Gaussian distribution. However, our approach does not impose any structural assumptions on either
the observed or latent features, making it a more general and challenging problem compared to that
of |Park & Faradonbeh| (2022)).

3 PRELIMINARIES

3.1 NOTATION

In this paper, we denote scalars and functions by regular lower-case letters, vectors by bold lower-case
letters, and matrices by bold upper-case letters. For any n € N, let [n] denote the set {1,2,.
Furthermore, the L1, Ly and supremum norm of a vector v is represented by ||v||1, ||v\|2, and
||v]|so» respectively, and the Lo-norm weighted by a positive definite matrix D is denoted by ||v||p.
For two vectors vy and v, the inner product is defined as the dot product between them, i.e.,
(v1,Vv2) := v{ vy, and we use both notations interchangeably. For a matrix M, its minimum and
maximum eigenvalue are denoted by Apyin (M) and A,ax (M), respectively, and let R(M) denote a
row space of M, i.e., a subspace spanned by the rows of M.

3.2 PROBLEM FORMULATION

In this section, we outline our problem setting and introduce several key assumptions. The true
feature vector z, € R%, associated with each arm a € [K], determines the rewards. However, the
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agent can observe only a subset of its elements, with the remaining elements unobserved. Specifically,
z, is defined as follows:

.
Za = [l.‘(ln’ o ’:Egzd)’ u((zwa T vuidu) : €))
where x,, := [11(11), S ,x,(ld)]—r € RY refers to the observable part; u, := [u((ln, e ,ufld“)}—r € R

represents the latent part, which remains inaccessible to the agent. For clarity, the observable
components will henceforth be highlighted in blue, while the unobservable components will be shown
in red. We begin with the following assumption regarding the features to simplify the analysis:

Assumption 1 (Fixed features). The true reward-generating features remain fixed throughout the
entire decision horizon T for all arms a € [K].

Under this assumption, it follows that the observable features x, associated with all arms are also
fixed. However, with slight modifications, our algorithm can be adapted to accommodate arbitrary,
time-varying features. Also note that the dimensions of the latent feature vector, d,, = d, — d, and the
true feature vector, d, are both unknown to the agent. Consequently, the agent is unaware of whether
the features are partially observed, which introduces significant challenges in selecting appropriate
strategies.

The reward associated with each arm is defined as the dot product of the corresponding true features
z, and an unknown parameter 8, € R%, given by Yot = (24,04) + € = ZIB* + ¢; for all
a € [K]. The error term, €;, captures the inherent randomness in the reward, and we adopt a standard
assumption commonly used in bandit problems for this error:

Assumption 2 (Sub-Gaussian noise). Let {F;};c[r] denote history at round t, represented by a
filtration of sigma algebras. The reward noise ¢, is assumed to be a o-sub-Gaussian random variable
conditioned on F. Formally, E[exp(Xe;)|F;—1] < exp (A\20?/2) for all X € R.

This assumption implies E[e; | F;_1] = 0, and E[yq | Fi—1] = (Zq, 0+). For brevity, we use E;_1[]
to denote E[-| F;_1] henceforth. Given that ¢, is sampled after each action is observed, it follows
that ¢, is F;-measurable. To eliminate issues of scale in the theoretical analysis, we assume that the
expected reward |(z,, 04)| < 1forall a € [K].

Let us write 8, = [(0(°)T,(81)T]T, where 6 € R? and () € R are the parameters for
observable features and latent features, respectively. Considering the composition of z, defined
in Eq. @), we can decompose reward y,, ; into three terms as follows:

Yoyt = (Xa,,0%) + € + (ug,,0) 2)

where the last term in Eq. (Z) corresponds to the inaccessible portion of the reward. This reward
model is equivalent to that imposed in the linear bandits with misspecification error (Lattimore et al.|
2020). While the regret bound in [Lattimore et al.[(2020) includes misspecification error that grows
linear in decision horizon, our proposed method (Section @) addresses this misspecification error and
achieves a regret bound that is sublinear in the decision horizon.

Let a, := argmax,c (g z, 0, denote the optimal action, considering both observable and latent
features. The theoretical performance of our algorithm is evaluated through cumulative regret, which
measures the total expected difference between the reward of the optimal action and the reward of the
action selected in each round. Formally,

T
Z (ya*,t - yat,t)
t=1

Before introducing our method and algorithm, we first present a regret lower bound for a scenario
where the inaccessible portion of the reward is ignored. For each ¢ € [T, let 7; denote policy that
maps {X, : a € [K]} and {y,, s : s € [t — 1]} to a probability distribution over [K]. Then the policy

Reg(T)=E

T T
- [Z (Xa, — Xat70i0)> + Z(ua* - uat70£U)> E)
t=1

t=1

is dependent with the observed context if there exist two sets of observed features {x((zl) ta €K}

and {ng) :a € [K]} in R¥X  guch that for each given value of rewards y1,...,y:—1 € R, the
policy is variant over the context, i.e.,
1 1 2 2
7Tt(xg )7 s 7X(K')7y1a s 7yt—1) 7& ﬂ't(xg )7 ce 7X(]()7y17 s 7yt—1)-
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For instance, the UCB policy for linear bandits (with observed contexts) is dependent with the
observed contexts, while the policy in the MAB algorithms (that disregard observed features) is not
dependent with the observed contexts. In the theorem below, we particularly provide a lower bound
for algorithms that employs policies that are dependent with the observed features.

Theorem 1 (Regret lower bound ignoring latent reward component). Suppose that T > 4d>. For

any algorithm 11 := (y, ..., mr) that consists of policies {m; : t € [T} that are dependent with
observed contexts, there exists a set of features {z1, ...,z } and a parameter 0, € R such that
the cumulative regret
T
Regn(T,04,21,...,2K) > 3

This theorem implies that neglecting the latent portion of the reward in decision-making could result
in regret that scales linearly with 7', indicating a failure in the learning process of the agent. The
comprehensive proof for this theorem is deferred to Appendix [B.T}

4 ROBUST ESTIMATION FOR PARTIALLY OBSERVABLE FEATURES

We propose our estimation method to obtain sublinear regret bound for linear bandits with latent
features. Section[.T]introduces the feature vector augmentation to handle the misspecification error
and Section [f.2] presents the doubly robust estimation to further improve the regret bound.

4.1 FEATURE VECTOR AUGMENTATION WITH ORTHOGONAL PROJECTION

In order to minimize regret, it is sufficient to estimate the K expected rewards {z, 0, : a € [K]}
rather than all components of 8, € R%. A straightforward approach to this problem, which achieves
a regret bound of O(v/ KT), is to disregard the observed features and apply MAB algorithms like
UCB1 (Auer et al., |2002). However, these algorithms tend to incur higher regret compared to those
that leverage features, particularly when the number of arms is significantly larger than the dimension
of the feature vectors, i.e., K > d.

We propose a unified approach to handle all cases of partially observable features and efficiently esti-

mate all K expected rewards. Let X := (x1,...,xx) € R*K represent a matrix that concatenates
the observed part of the true features, and U := (ugu), RN u%)) € R%*X represent the matrix that

concatenates the latent complements of the true features for each arm. Without loss of generality,
we assume a set of K vectors {x1,..., X} spans R?[]| We define Px := XT(XXT)~1X as the
projection matrix onto the row space of X, denoted R(X). Then the vector of rewards for all arms,
Y:= (Y1,¢,---,YK,t), is now decomposed as:

Y, = (X" +UT0M) + 15
=Px(X"0” +UTOM) + (Ix — Px)(X 0 + UTOM) + &1, ©)
= X0\ +(XXT)'XUT0M) + (Ix — Px)U 0™ + 1,
where the first and the second term are the projected reward onto R(X) and R(X), the subspace of
RX perpendicular to R(X). We write the projected parameter as ' 1= 6(°) + (XX T)~1XUT ™.

Now we handle the second term in Eq. . For any set of basis {b1,...,bx_4} € R(X)*, there

exist ,uyfl), e ui“) _; € R that express the projection of the reward as:

(Ix — Px)UTO™ = Zu(“) (5)

While the exact projected vector (Ix — PX)UTGi“) is unknown, it is evident that the vector lies in
the row space of (Ix — Px)UT, whose dimension is:

dp:=dim {R (Ix — Px)U")} =dim(R(X)" NR(U)) =rank(U) — dim(R(X) NR(U)). (6)

'When d > K, we can apply singular value decomposition on X to reduce the feature dimension to d < K
with R(X) = d.
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Figure 1: Illustration of the difference between conventional linear bandit algorithms (left) and
our approach (right) in estimating rewards of K = 3 arms. The conventional algorithms use
only observable features and find estimates on R(X) and the error due to unobserved features is
accumulated. In contrast, our strategy projects the latent part of the reward onto the orthogonal

complement of R(X) whose basis is denoted by bI@E“), and estimates the rewards of all arms in
R% . Note that 1, is the estimator of the parameter for observable features ., .

Although the coefficients Milﬁ)’--wliilf;)(, 4 depends on the choice of the basis vectors

{b1,...,bx_a4}, at most dj, coefficients are nonzero for any choice of the basis vectors. If we
define g, as [(1{) T, (") T)T € RE, where p{") = [u(:]), e ui,“;{fd]T, then Eq. (4) becomes
Y, =[X" by bg_4)u, + €1k, implying that the reward for each a € [K] is:

Yat = eIY = eaT[XT by -br_glp, +e = [XI eaTbl . --eaTbK_d]u* + €, 7

where e, € R¥ is a standard basis, with elements all zero except for 1 in the a-th coordinate. With
this modification, the rewards are now represented as a linear function of the augmented feature
vectors, X, =[x} e by ---elbr_4]T € RE without any misspecification error. A toy example
illustrating our strategy is shown in Figure|[T}

The dimension of the augmented feature vectors {X, : a € [K]} is K > d and we propose an

algorithm that employs the doubly robust ridge estimator and achieves O (v/ KT') regret bound (see
Appendix [A]). However, when K > d and d,, = 0, the regret is high compared to the linear bandits
with conventional features. Therefore, we propose a novel estimation strategy to avoid dependency
on K in the following section.

4.2 DOUBLY ROBUST LASSO ESTIMATOR

The Lasso estimator is widely used not only for estimating sparse parameters but also for regularizing
an estimator by imposing an L; penalty term, serving as a technique to prevent overfitting (Tibshiranil
1996). In Eq. (7), the parameter p, is sparse depending on the dimension of the latent features. Recall

that ui") are the coefficients to express the projection of the reward as represented in Eq. l| While

the exact projected vector (Ix — Px)U T 0" is unknown, it is evident that the vector lies in the row
space of (I — Px)U", whose dimension is:

dy,:=dim {R ((Ix — Px)UT)} =dim(R(X)* N R(U)) =rank(U) — dim(R(X) N R(U)). (8)

Thus, only d}, basis vectors are required to express the projection of the reward and there are at most
dj, nonzero entries in ,ui"). The dimension d;, reflects how closely the latent features are related to the
observed features. Specifically, d;, < rank(U) where equality holds if and only if R(U) C R(X)*.
Since rank(U) < min{d,, K}, the dimension dj, cannot exceed min{d,, K} — d. Additionally, if

R(U) C R(X), then dj, = 0.

Let [LtL denote the Lasso estimator for 1, using augmented feature vectors:

¢
B . ~ 2t 2K 2 ~ ~
il = argmin E (Yo, — .’13;;_“)2 + 204 [ — log TH( E XX )2 1. ©)
Boor=1 p a€[K]

To enable the estimator Eq. (9) to effectively detect the zero entries in f, the compatibility condition
is necessary (van de Geer & Bithlmann, 2009). The compatibility condition holds when the minimum
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eigenvalue of the Gram matrix, Apin (t~1 S4_, Ko, X,_). is greater than 0. However, increasing the
minimum eigenvalue requires a large number or samples for exploration, which causes high regret.
Increasing the minimum eigenvalue with possibly small number of exploration is significant in bandit
literature, as it determines the convergence rate and, consequently, the regret bound (Kim et al.| 2021
Soare et al., 2014).

We introduce a doubly robust (DR) estimator that employs the full feature Gram matrix
St ZaKzl XX, instead of 3'_, Xq,X, . The DR estimation originates from the statistical
literature on missing data, where “doubly robust” means that the estimator is robust against errors
in the estimation of both the observation probability and the response model. In bandits, at each
decision round ¢ € [T7], only the reward of the selected arm is observed, while the K — 1 unselected
rewards are missing. Thus DR estimation is applied to impute these K — 1 missing rewards and
include corresponding K — 1 feature vectors in the estimation. Since the observation probability is
given by the policy (which is known to the learner), the DR estimator is robust against errors in the
estimated rewards. While [Kim & Paik/(2019) proposed a DR Lasso estimator on IID features that
satisfies the compatibility condition, we propose another DR Lasso estimator that does not require
the assumptions on the features.

We improve the DR estimation by incorporating resampling and coupling methods. In round ¢, the
algorithm selects an action a; according to an €;-greedy policy. Then, we generate a pseudo-action
a; from a multinomial distribution:

Part =Plar = afar) =p and ¢y :=P(a; = klay) = %7 vk € [K]\{a}, (10)
where p € (1/2,1) is coupling probability set by the algorithm. To couple the policy of the actual
action a; and the pseudo-action a;, we resample both of them until they match. This coupling yields
a lower bound for the observation probability which reduces the variance of the DR pseudo-rewards
in Eq. (11). Let M, denote the event where a; = a; within a specified number of resamples. For
given §" € (0,1), we set the number of resamples as p; := log((t + 1)2/6")/log(1/p) so that event
M, occurs with probability at least 1 — &’/(¢ + 1)?. Resampling allows the algorithm to explore
further to find an action that balances between regret minimization and reward estimation.

This coupling replaces ¢; greedy policy with a multinomial distribution ¢1 ¢, ..., ¢x . When we use
DR estimation with €; greedy policy, the inverse probability €, 1'.= \/t appears in the pseudo-reward
(10), and thus the variance of the pseudo-reward explodes. Therefore, we couple the €; greedy policy
with the multinomial distribution (9) to bound the inverse probability weight gb;% = O(K).

With the pseudo-actions (coupled with the actual actions), we construct the unbiased pseudo-rewards

for all arms a € [K],

I(a; = a T

—<; (o — T i). (1)
a,t

and note that 17 defined in Eq. @) serves as the imputation estimator that fills in the missing rewards
of unselected arms in round ¢.

~ ST~ L
Tat = Xq By +

For a # ay, i.e., an arm a that is not selected in the round ¢, we impute the missing rewards using
i,j ,atL. .For a = a, however, the term I(a; = a)yq ./ %,t calibrates tlle predicted re~ward to ensure
the unbiasedness of the pseudo-rewards for all arms. Given that Eg, [I(a; = a)] = P(a; = a) = ¢q.4,

taking the expectation over a; on both sides of Eq. gives Eg, [Tfa,t] =Ky 1[Yas] = X, p, for all
a € [K]. Although the estimate X jz, may have high error, it is multiplied by the mean-zero random
variable (1 — I(a@; = a)/¢a.+), making the pseudo-rewards robust to the error in X f,.

The pseudo-rewards can only be computed when a; = a;, so they are used in rounds when the chosen
action a; and the pseudo-action a; match, indicated by the event M. Since M; occurs with high
probability, we can compute the pseudo-rewards for almost all rounds. Our DR Lasso estimator is
defined as:

¢
~ . - ~ 2 100 2Kt? ~ ~
Al = argmin E I(M.) E (Far —Xq p)” + —0y/2tlog 3 II( E Xa%, )2l
[ p— ac[K] p a€[K]
(12)

and the following theorem provides a theoretical guarantee that this estimator converges across all
arms after several exploration rounds.
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Algorithm 1 Robust to Latent Feature (RoLF)

1: INPUT: features {x, : a € [K]}, coupling probability p € (1/2,1), confidence parameter
0 >0.

2: Initialize fi, = O, the exploration phase £ = () and the exploration factor C,, := 8(v/K +
p~)?*p*(1 - p) K2 log 2.

3: Find orthogonal basis by, ..., bx_4in R(X)? to construct {X, : a € [K]}

4: fort=1,...,T do

5: if |&;] < C.log(2Kt%/6) then

6: Randomly sample a; uniformly over [K] and & = &1 U {t}.

7: else

8: Compute @ := arg maXqe|x| STl

9: while a; # a; and count < p; do
10: Sample a; with P(a; = a;) = 1—(t~*/?)and P(a; = k) = t~V/2 /(K —1), Vk # @y.
11: Sample @, according to Eq. (10).

12: count = count + 1

13: Play a; and observe y,, .

14: ifﬁt 7é Qg then

15: Set iy = fir_,

16: else

17: Update ﬁtL following Eq. |i with 7, ; and update il following Eq. @)

Theorem 2 (Consistency of the DR Lasso estimator). Let dj, denote the dimension of the projected
latent rewards defined in Eq. . For each t, let & C [t] denote an exploration phase such
that for T € & the action a, is sampled uniformly over [K]. Then for all round t such that

t > & > 8(VK +p~1)?p?(1 — p) 2K 2 log #, with probability at least 1 — 25 /t2,

; (13)

200 \/Q(d + dy) log 2522

max |Xq (ke — p,)| < :

a€[K]

Although we use K-dimensional feature vectors, the error bound of the DR Lasso estimator is only
logarithmic in K. This fast convergence rate is possible with the regularity conditions, such as
the restrictive minimum eigenvalue condition (Bithlmann & Van De Geer, 2011} van de Geer &
Biithlmann, [2009). While conventional method assumes that the feature vectors satisfy the condition,
our approach does not require this assumption, since our augmented features are orthogonal vectors in
R(X)*, their average Gram matrix satisfies Amin (D e (k] XX, ) > min{1, Amin(Dqe (k] xaXx) )}

Thus, the convergence rate has only y/log K rate in terms of K.
The consistency is proved by bounding the two components of the error in the pseudo-rewards

defined in (TI): (i) the noise of the reward and (ii) the error of the imputation estimator ;. Since
(i) is sub-Gaussian, it can be bounded using martingale inequalities. For (ii), the imputation error

z] (iF — p.) is multiplied by the mean-zero random variable (1 — ]I(?%'l)) and thus it can be bounded
by [l — gl /VE.

5 PROPOSED ALGORITHM AND THEORETICAL ANALYSIS

In this section, we present our proposed algorithm, which is based on a novel estimation approach
for handling partially observable features. The proposed algorithm significantly improves the regret
bound compared to linear bandit algorithms, which rely solely on observed features, and MAB
algorithms, even without prior knowledge of the latent features.

5.1 ROBUST TO LATENT FEATURES (RoLF) ALGORITHM

In the initialization step, when the observable features are given, our algorithm finds a set of orthogonal
basis {b1,...,bx_4} € R(X)" to augment each observable features. After the exploration phase,
the algorithm computes the candidate action, denoted by @y, and then resample both @; and a; until
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Figure 2: Cumulative regrets of the algorithms in comparison for scenario 1 (K = 50,d, = 31).

they match. If @; and a; do not match within p; := log((t 4+ 1)?/8")/log(1/p), the resampling phase
ends, and the agent selects a; and observes y,, ;. If they match, the algorithm updates both the
imputation and main estimators according to the equations provided in Eq. (9) and Eq. (I2).

The proposed algorithm does not require the knowledge of the dimension of the latent features d,,
and the dimension of the projected rewards from latent feature space onto the R(X)*. Although we
present the algorithm on fixed feature vectors, the algorithm applies to arbitrary feature vectors that
changes over time by updating the orthogonal basis.

5.2 REGRET ANALYSIS

We provide an analysis of ROLF using the Lasso estimators, as detailed in the following theorem:

Theorem 3 (Regret bound for Lasso RoLF). Let d;, denote the dimension of the projected latent
rewards defined in Eq. . Then for § € (0,1) and p € (1/2,1), the expected cumulative regret of
the proposed algorithm is bounded by

2
16K2(VE +p~1)2  2py/T log TE-

2KT?
;800 2(d + dp)T log ——,

E[Reg(T)] < 105 log T +

To the best of our knowledge, Theorem 3]s the first regret bound sublinear in 7" for the latent features
without any structural assumption. With slight modifications, the regret bound can also be applied to
scenarios with time-varying features and misspecified linear bandit problems.

Note that the number of rounds for the exploration phase is O(K? log K'T'), which is only logarithmic
in the horizon T. The factor K2 is not reducible since the algorithm must estimate all X biases from
the missing features. Using the Gram matrix with full feature vectors, Zf;l X,X, in combination
with DR estimation reduces the exploration phase time from O(K*log KT) to O(K?®log KT),
reducing the complexity by a factor of K. The convergence rate in the last term is proportional to

V/d + dj, rather than /K, as shown in Eq. . Thus, our regret bound is O(+/(d + dp,)T'log KT).

6 NUMERICAL EXPERIMENTS

In this experiment, we simulate and compare two versions of our algorithm, presented in Algorithm|[I]
and Algorithm [2] (Appendix [A]), with linear bandit algorithms that use only observable features:
LinUCB (Li et al,2010; (Chu et al.| 2011 and LinTS (Agrawal & Goyall,2013)). These algorithms
use the UCB and Thompson sampling methods, respectively, when the reward is modeled as a linear
function of the features. Additionally, since our algorithm incorporates DR estimation with the Lasso
estimator, we include DRLasso (Kim & Paik, |2019) in the comparison as well. To further evaluate
the performance of our algorithm in scenarios where latent features are expected but ignored, we also
compare it with UCB(J) (Lattimore & Szepesvaril, 2020), an MAB algorithm without features.
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Figure 3: Cumulative regrets of the algorithms in comparison for scenario 2 (d, = 60).
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Figure 4: Cumulative regrets of the algorithms in comparison for scenario 3 (d, = d).

For the simulation environment, we generate true features z, for each arm a € [K] from N'(0,1,_)
and subsample d elements to construct x,,. Orthogonal basis vectors {b1, ..., bx_4} are derived
via singular value decomposition (SVD) on the observable feature matrix X, ensuring orthogonality
to R(X). We augment X with the basis vectors via linear concatenation. Rewards are generated by
sampling the unknown parameter 8, € R¥ from Unif(—1/2,1/2). The hyperparameter p, for the
sampling distribution of ay, is set to 0.6 (see Eq. ). The confidence parameter ¢ is 0.0001, and
the total decision horizon is 7" = 1000. To address both partial and full observability, d, > d is used,
and we run 5 independent experiments. We compare the algorithms across three scenarios:

Scenario (i). We examine algorithm performance as d, the number of observed elements, varies
to assess the impact of observability. With K = 50 arms and d, = 31, we compare results for
d=1,|d./2] =15,and d. — 1 = 30. Figure[2| presents the results, showing that our algorithm
consistently outperforms others in regret and robustness. In contrast, LinUCB, LinTS, and DRLasso
show significant dependence on the number of observable features, with performance deteriorating
and variability increasing as observability decreases.

Scenario (ii). Here, the number of arms equals the dimension of the observed features, K = d. This
experiment demonstrates that our algorithm remains robust to changes in K, unlike MAB algorithms
that ignore observable features. We compare performance with K = 20, 30, and 40, keeping d, = 60
constant. Figure [3| shows the results that the performance of UCB(§) deteriorates as K increases,
while our algorithm consistently performs better in terms of both regret and robustness.

Scenario (iii). We evaluate performance when the number of arms is less than the dimension of
observed features, setting d = 2K and varying K as 15, 20, and 30, with d, = d. Before using
the features in our algorithms, we apply singular value decomposition (SVD) for dimensionality
reduction. Figure |4 shows that our algorithm performs well even in extreme cases. By applying
dimension reduction through SVD, our algorithm remains applicable even when the matrix of feature
vectors is not full rank. Furthermore, the results suggest that our algorithm demonstrates superior
performance even in the absence of partial observability.

10
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REPRODUCIBILITY STATEMENT

All theoretical results made in this paper are accompanied by detailed proofs, which can be found
in Appendix [B]and Appendix [C| The assumptions underlying these claims are clearly stated in Sec-
tion[3.2]of the main text. Furthermore, for the implementation of our proposed algorithm, along with
instructions for reproducing the experimental results, we provide a ZIP file containing the source
code in the supplementary materials.
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Algorithm 2 Robust to Latent Feature with Ridge Estimator (RoLF-Ridge)

1: INPUT: features {x, : a € [K]}, coupling probability p € (1/2,1), confidence parameter
d>0.

: Initialize f1, = Ok, the exploration phase & = () and the exploration factor C, := 32(1 —
p) K.

[\

3: Find orthogonal basis by, ..., bx_4in R(X)* to construct {X, : a € [K]}

4: fort=1,...,T do

5. if|&] < Celog(2Kt?/5) then

6: Randomly sample a; uniformly over [K] and & = &1 U {t}.

7: else

8: Compute G; := arg maX,e[x] Xq al

o: while a; # a; and count < p; do

10: Sample a; withP(a; = a;) = 1—(t~Y/2)and P(a; = k) = t~Y/2 /(K —1), Vk # .
11: Sample a; according to Eq. (10).

12: count = count + 1

13: Play a; and observe y,, .

14: if a; # a; then

15: Set it := il ,

16: else

17: Update ﬁf following Eq. with 7, ; and update it following Eq. 1)

A  ROBUST TO LATENT FEATURE ALGORITHM WITH RIDGE ESTIMATOR

Our Doubly robust (DR) ridge estimator is defined as follows:
-1

t
= | Y I(M;) > XX + Ik > I(M;) XaTar | (15)
T=1 a€[K] T=1 a€[K]

where 7, - is the DR pseudo reward:
H(Adt = CL)

~ . ~T-R T 4R
Ta’t T Xa l‘l't + ¢ (yast - Xa I“l’t )7
a,t

and the imputation estimator j1.* is defined as

t -1/
plt = (Z X0, X +pIK> (Z iaTyaT,T> : (16)
T=1

=1

The following theorem shows that this Ridge estimator is consistent, meaning it converges to the true
parameter g, with high probability as the agent interacts with the environment.
Theorem 4 (Consistency of the DR Ridge estimator). For each t, let &, C [t] denote an exploration

phase such that for T € &, the action a, is sampled uniformly over [K|. Then for all round t such
that || > 32(1 — p) "2 K? log(2Kt?/§), with probability at least 1 — 36,

~T /~ 2 [ t+1

R /
max |x L, — L < — — Rlogi_’_ K 5
aG[K]‘ a( ¢ *)| \/E (p 1) )

With |&;] = O(K?log Kt) number of exploration, the DR Ridge estimator achieves O(y/K/t)
convergence rate over all K rewards. This is possible because the DR pseudo-rewards defined
in Eq. impute the missing rewards for all arms a € [K] using X/ j1,, based on the samples
collected during the exploration phase, & . With this convergence guarantee, we establish a regret
bound for RoLF-Ridge, which is the adaptation of Algorithm[I|using the Ridge estimator.

Theorem 5 (Regret bound for Ridge RoLF). For § € (0,1), the expected cumulative regret of the
proposed algorithm using DR Ridge estimator is bounded by

2pV/T log LHD° 9K?  24T> T2
Reg(T) < 66log T+ 22YT 18—, 3 log “o— 4 8VET % log — +1).

K —1log(1/p)  (1-p) 5

13
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The first and second terms come from the distribution of a; which is a combination of the 1 — ¢=1/2-

greedy policy and resampling up to p; := log((¢t + 1)?/d)/log(1/p) trials. The third term is
determined by the size of the exploration set, &, while the last term arises from the estimation error
bounded by the DR estimator as described in Theorem i} The hyperparameter p € (1/2,1) balances
the size of the exploration set in the third term and the estimation error in the last term. Overall,
the regret is O(v/KT log T), which shows a significant improvement compared to the regret lower
bound in Theorem [I]for any linear bandit algorithms that do not account for unobserved features and
unobserved rewards.

B MISSING PROOFS

B.1 PROOF OF THEOREM[I]

We start the proof by providing a detailed account of the scenario described in the theorem. Without
loss of generality, we consider the case where K = 3. As stated in the theorem, a, represents the
index of the optimal action when considering the entire reward, including both observable and latent
components. In contrast, a, denotes the index of the optimal action when considering only the
observable component. For the sake of clarity in the proof, we introduce an additional notation, a’,
which refers to an action whose observable features are identical to those of a,, but with a distinct
latent component. Specifically, this implies that a’ # a, and 2z, # Z,,, but Xo» = X, .

Taking this scenario into account, the observable part of the features associated with ay, a’, and a,
are defined as follows:

d a1’ d a1’ d a1’
o, = _ﬁ...,_ﬁ} o = [_ﬁ_ﬁ] Xa, 1= [ﬁﬁ} |

Additionally, we assume that the unobservable portion of the true features, u, € R4 is drawn from
the set U := {—1,1}%. We define the unobservable feature vectors for actions ay, a’, and a, as
follows:
e, =1, 1] Jue =1, =1 ju,, i=[-1,...,-1]",

where in u,s, the number of 1’s and -1’s are equal. Since T' > 4d?, it can be observed that the
supremum norms of z,, , Z,/, and z,, — each constructed by concatenating the observable and
corresponding unobservable parts — do not exceed 1, consistent with ??. This ensures that the
scenario aligns with the assumption imposed on the feature vectors throughout this paper.

We further define the true parameter, incorporating the definition of 0&0) from the theorem statement:

1 12 217

6*:: @,...7@,E,...7E

Note that it is straightforward to verify that ||0.,||; = 1, thereby satisfying ??. With this estalished,
we can also observe that the expected reward for the three actions are defined as:

d 2
Z, 70* = (Xq ,0(0) =+ u, 705(“) :—7_’_,’
< * > < * * > < * > 3\/T 3
<Z/9*>:<X/9(0)>+<u,0(“)>:7L72
a’s a’y Yk a’s Uy 3\/T 3,
(Za,,0.4) = (Xa,,0'”) + (u, 9<u>>_if3
: T oISy ¥
respectively. Given the assumption 7' > 4d?, we can verify that:
4 2d
Za,,04) = (2a,,0,) = 5 — —= > 1, 17
(70 0.) = (70, 0.) = 5 = o7 a7)

which confirms that a, is optimal when considering the full feature set.

Using the conventional linear bandit algorithms such as OFUL (Abbasi-yadkori et al.| [2011)) and
LinTS (Agrawal & Goyall 2013), the action selected in round ¢, a4, is based solely on x,,, thereby

14
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neglecting the unobserved portion of the reward. Given this action a,, the instantaneous regret
incurred by these algorithms in round ¢ is defined and decomposed as follows:

Reg(t) = (za,,0x) — (Za,,0x)
= <Za* — Zq,, 0*> +<Zao - Zat;0*>-
—_—————
(%)

We consider the first part denoted by (x). Note that this term is calculated as described in Eq. ,
and is therefore lower bounded by 1. Hence, the cumulative regret becomes:

T
Reg(T) = >~ Reg(?)

t=1
T
= Z ((Za, — Za,,04) + (Za, — Za,,04))
t=1
T T
> Z Z Zq, — Zat7 >
T
=T+ (24, ~ Za, 0.) .- (18)

t=1

(+%)

For the term denoted by (), it can be further decomposed as follows:

t=1 t=1

where the first term corresponds to the regret induced by linear bandit algorithms that only consider
observable features, and by definition, this term is always greater than or equal to O.

The second term of this decomposition depends on how often a; matches a,, since selecting a, makes
this term negative. Following the definitions of x,, and x,-, the agent cannot accurately distinguish
between the two actions when their respective latent rewards are excluded. As a result, one of the two
actions is chosen uniformly at random, meaning a, is selected at most 7'/2 times in the worst-case
scenario. Thus, the second term is bounded below by —27'/3, leading to the following inequality:

T
2
T+Z 2,0 >>T+Z(<xao,0i0)>_<xa“9£0)>> - T
t=1
r T
> 5+ 30 (00, 09) — (x4, 61))
t=1
T
> 0
-3
which completes the proof. O

B.2 PROOF OF THEOREM[Z]

LetV,:=>"_, > acli] XaXq - Then

ey o (e = )l < \/ S ORI (Be— ) = 2, — v,
a

aclK] €lK]

1/2

Recall that W, := V, / Qﬁt and w; := V" “u,. Then

ma [R] (7, — )] < £/ — wills
a€[K]
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To use Lemma 3] we prove a bound for

Z Y (Far =%V, ViV,

7=1a€[K] oo
Let wy : Vl/QutL By definition of 7,
S Gor - KUV VR,

T7=1a€[K] oo

T7=1a€[K]
< zt: 3 - M@ =) g XV (WE - wy)
= P t aXq V¢ t t
T=1a€[K] “T oo
Z Z (y,m - iIV;l/Zwt) Vt_l/Qia
T=1a€[K]

o0
With probability at least 1 — 4, the event M. happens for all 7 > 1 and we obtain a pair of matching
sample a, and a.. Thus, the second term is equal to,

3y o (ya,T—saI v, w) V;“?ia Sy oy Mee=a vy

=1a€[K] T= 1a€[K]

—1/2~
g €a,7 Vi Xa,
T=1

o0

Because ||V||oo = maxie | |ej v| for any v € R?,

_1/2~
ea +V Xa,
o0

Applying Lemma w1th probablhty atleast 1 — §/t2,

1/2~
:fmax|g eaTeTV /xa7|
P a€[K]

t
1 2 _1/2~ 2K¢2
D e R PGS S &

t
- -~ - 2K t2
= max o, |2e]V, 1/2 ( E xaTx;rT> \Z 26, log 5

a€[K]

T=1

2Kt?

< max a\/QeTVt 2(v,) V;l/Qea log
a€[K]

Kt2

= o14/2log 5
[2 2K t2

<oy/-log (19)
P )

Let A, :=>"'_, Zae K] H(‘;T*a) iaiT Then the first term,

S (- M) v R (- w)
T= 1a€[K

=i v - Ay V;l/2 (Wl — wi)

and thus,

_1/2~
Xa,

(20)

o0

‘ o0

16

t ar = -
= Z Z (1 — H(aq—_a)) V;l/Qiai;rV;l/Q (WtL — Wt) + M (ya’r _ i;v;l/2wt) V;l/Z)"{’a
Pa,r —

oo
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Since ||v||oc = max;e(q |€] v| for any v € R?,

= max |e] V; 1/2 (Vi—A)V, 1/2 (Wi —wy) |

‘oo a€[K]

< V2V, — A V*I/Q‘ wl .
—fé%He“ t (Vy ) Vy MW Wt”z

ViR (v - A) V2 (e - w)

Because w; is a minimizer of Eq. (9), by Lemma3]and Eq. (19),
2(d +dp)log 2Kt2
p)\min (Vt_l/Q% Z’T:l iaTXITVt_l/Z) .

HVVt WtHV 1/21 Ly 1§aTXTTV;1/2 <40

Because ¢, » = p and the coupling event N, >1. M. holds with probability at least 1 — 6/t

t
Y lnsl oy ¥ Mt
T=1

T=1a€[K]

Sy Y ety

T7=1a€[K]

Thus, under the coupling event N_; M.,

2(d + dj,) log 2522
PAinin (Vt 1/2AtV 1/2)

> L
— WtHV,:l/QAtV;UZ S 4o

By Corollary |1} with € € (0,1) to be determined later, for ¢t > 8¢~ 2(1 — p)2K?log %, with
probability at least 1 — §/¢2,
[t = Vi 2av | < en
2

which implies, (1 — €)Ix < V; /A, V; /? Thus,

9F — wil], < 4o [2(d+ dp)log 252
t Hla =71 _¢ P

Now Eq. (20) is bounded by,
[Vt ve - g Vit (wk —w)

(o)
22)
- - 2(d + dp,) log 25 (
< max Hel—vt 1/2 (V. — Ay) 1/2” \/ (d+ dp) log
a€[K] 21—¢€ p
With simple algebra,

T~xr—1/2 —~1/2
er v, (V- AV,

fé?ﬁé]H o Ve T (Ve—A) VT

= max \//\max (Vi 2 (V- AV eae) VP (V- A V)
ae

< max \//\max (V;l/"’ (Vi — AV, LV (v, — A V;”Q)

Vt_l/2 (Vt _ At) Vt—l/QHQ

- oV =
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Thus,

Vi (Vi A VR (- w)

‘ _ Aoe 2(d+dh)log2[§t2.
~  1—c¢€ p

Now we obtain,

Z S (Far =50V P ) V2R, < \/2 (d+ dh 2Kt2
T7=1a€[K] -
2K log 2Kt 2K 2
< \/T 21og 21!
1—e€
1 2Kt2
= < + - 210g
1—€e p
Setting e = p~ / (VK +p~") gives LK = p~Land fort > 8(vK +p~1)2p2(1—p) 2K2 log 2K,
T —1/2~ 2Kt?
Z Z Far — X1V, 1/2 W)V, gl < S0 9log :
T7=1a€[K] - p
Because w; is a minimizer of (I2), by Lemma 3]
200 2(d + dj,) log 252

HWt 1/2 < e

p Amin (Vf_l/2(z =1 Xaxa)vt_l/2>

Wt”v V25t RaRa) V]

which is equivalent to,

2

~ 200 2Kt
||Wt _Wt||2 < p\/Q(d-i-dh) log 5

This concludes,

)

200 |2(d+ dp)log %
< —
max [Xa (b — p)| < » \/ "

which conmpletes the proof. O

B.3 PROOF OF THEOREM[3]

Because the regret is bounded by 2 and the number of rounds for the exploration phase is at most
2
[Er| < 8(VK +p~1)?p*(1 - p) "2 K? log 5.

16K2(VE +p~1)?

2
Reg(T) < (1-p)? 2[(? + te%;g Ei—1[Yst] — Er—1[Ya, t)
2 —1\2
VR S (I = 80 (Brlyed] — Brcaly )}
( p) te[TI\Er
+ > A{l(ar # @) (Beo1[yes] — Ero1[ya,.])} -
te[TI\Er

By Theorem 2} on the event {a; = @},
Eo 1Y) = B [Yas i) = g, 18, — Fg, 11,

~ ~L ~T ~L ~T ~L
< 2 max |X, (N* - N’t71>‘ T T, B — X, By
a€[K]
<2max‘§T( —AL_>‘
— a€[K] a | Bx i

40 2
< 400 2(d+dp,) log 2Kt ,
P t )

18
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with probability at least 1 — 55/t for each ¢ € [T] \ Er. Summing over ¢ gives,

800 \/ 2d+dp), 2Kt2
log .
P t )

> {I(ar =ay) (Beoi[yee] — Beo1[ya,))} <

te[T\Er
By resampling at most p; times, the probability of the event {a; # a.} is

Pt

. p B » m—1
P8 =2 w1 (1 (K—nﬁ)

m=1

(K —pl)ﬁ ((K —pW%)l {1 - (1 - (K—pwi)p}

Pt
- (25
(K —1)vt
bpy

>77

“K -1V
where the last inequality uses (1 + )™ > 1 + na for z > —1 and n € N. Then the expected sum of
regret,

E| Y A{T(ar=ar) Beoa Y] — Ero1[Ya,.i])}

te[T\Er

< Y Pla#ar)
te[T\Er

< 2p\/T

-~ K-1
2p\/T log %

T K1 log(1/p)

j%

Thus,
2
16K2(VE +p )2 2py/T log L
E[Reg(T)] < 106log T + J
[Reg(T) (1-p)? K —1 log(1/p)
2KT?
+ 80g 2(d+dp)T log )

which concludes the proof. O

B.4 PROOF OF THEOREM[4]

Let Vt =Y (M) > aelK] XX) +Igand V=30, > aelK] XoX, + Ig. By definition

of i1 Ht >
t

X (i — ) =%, Vi 0D I(My) > R (Far — X4 1) — 1

T=1 a€[K]
By definition of the pseudo-rewards,
- ~ I(ar=a)\ -1 ,. I(a, =a
Far = Xq By = (1 - gbt)) Xa (Nf)’ - )+ (QS)%,T-

Let A= Y IM) Y =05, %] + L and Ay = X0, ¥ 0%, %] + L
Then,

%] (A, — ) =%V (V= &) (B - )+ 301Mp) S

T=1 a€[K]

I(a, =a) -
—— Xa€a,r — My
Pa,r

19
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By definition of the imputation estimator fz,,

—1 "
pl— (Z To, Ty + pIK> (Z Ty, €a, r— pu*)
T=1

=1
¢ L/
1 _ 1

= Ta, T, + 1k Lo, €a,r = 1

<; (baT,T T ) (Z ¢a7 T *

¢ ~ t
Il(a; =a) . - 1.
= Z Z (d))q;ara:(l +1Ix (Z —Ty. €q, 7 — u*> ,
=1 a€[K] T =P

where the second equality holds because ¢, » = p. Under the coupling event N%._; M.,

ZH(MT) Z H(a;) )xax +1Ix = Z Z — xaﬁerIK

T=1 a€[K] T=1a€[K]
-:At7

X, (B, — ) =%, Vi ! {(Vt (Z —Za, €a, 7 — p*> + Z ¢ *}
t
1
:~;rv2§_1 {(Vt - At) At_l + IK} (Z ;ia’Tea/TyT —_ N*)

T=1
t
_Ty—1/2 ( 1/2 4 -1 1/2) ~1/2 1.
=x, V V,/7A;°V A% E —Zo €a. 7 — My | -
t t t Vi t <T_1 D :
Taking absolute value on both sides,

mavs %, (7 = )| < max [Kally; VATV

Z P xaf €ar,m — My

a€[K] f—t Vt_l
By Corollary which implies Ix — V, 1 2AtVt_ 1/2 =< el k. Rearraging the terms,
VATV < (1— o) .

Thus,

maxge[K) ”}AEa”V—1 i 1_

_ < ¢ - _
max X (B — )] < - Z_:l P
T= Vt
maXge[K) H;‘:anvg1 i -
— 1 —€ ZmaT6a77T + ||""*HV;1
=1 Vt_l

Note that the matrix V; is deterministic. By Lemma 9 in (Abbasi-yadkori et al.l [2011)), with
probability at least 1 — 6,

t
E La, Car,r
T=1

1

t
Ziweam‘r
=1 (Zr m“T aT +IK)

det(X | Bo, &)+ Ix)1/2
o\l 2log 5 T

vt

\/ det(z 1T, Xy +IK)
< o\/log 5 ,

20
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for all ¢ > 1. Because

K
t Tr(zlt 1 & T a)—i—K
det (Z To, &y + IK> < =

T=1

A

_ ftmaxecp [Ea, 2 + K"
K

< {t+1}"

where the last inequality holds by || Z,_ |2 < VK||Za, ||oc < K. Thus,

/ t+1
<o Klong,

max,e(k] [[Xally-1 11
m — < t 1
ae?}){{ |X (Ut Mo | > 1—e Klog 5 ||/J'*HV

11 t+1
< (/K lo
<7 1_6< og —5— +lndlv; )

Because ””’*”V,‘l < |, ll2 < VK, setting € = 1/2 completes the proof. O

€a.,T

vt

which proves,

SES

B.5 PROOF OF THEOREM[3]

Because the regret is bounded by 1 and the number of rounds for the exploration phase is at most
|Er| < 32(1 — p)2K?log @.

Reg(T) < 32(1 —p)*K* log + Z Et—1[ys,t] — Et—1[Ya, ¢]

te[T\Er
919 2dT?
=32(1—p) ?K?log ——+ > {I(ar =a;) (Be-1[yss] — Beo1[ya,.c])}
te[T\Er
+ > {T(ar # @) (Be-1[yes] — Ero1[Ya,.e)}-
te[T\Er
On the event {a; = a;},
Er[tt] = Bt Y 1] =Z,, 1, — g, b,
< 2;2%?( ‘XI (H* fig 1)‘ +51—J/Z£1 - 5;;1151

.
<2;r€1?;§ ‘Xa (u* e 1)‘

f< \/TNE)

with probability at least 1 — 39 /¢, by Theorem Summing over ¢ gives,

Z {I(ar = @) (Ep—1[yxt] — Ei—1[Ya, )} < SVKT (; \/ log ? + 1) .

te[TI\Er
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By resampling at most p; times, the probability of the event {a; # @} is

O Pt p B p m—1
P(“”é“t)‘m;(z(—lm(l (K—Wi)

(K —pl)ﬁ ((K —pl)ﬁ> i {1 - (1 - (K—pl)ﬁ)p}

- (- )

Ppe

Zmy

where the last inequality uses (1 4+ )™ > 1 + nx for z > —1 and n € N. Then the expected sum of
regret,

E| > {l(a=a) Eilpad —Eilyaa)}| < D Pla#ar)

te[TI\Er te[TI\Er
< 2pVT

T K-1

2pV/T log %

K —1 log(1/p)

pT

Thus,

2
32K2 2dT2 QPﬁIOg& o—\/ﬁ
E[Reg(T)] < 65logT 1 o KT | =y/log——+1]|. O
[Reg(T)] < 66 log +(1_p)2 0g sty og(1/p) +8VKT S\1os—; +

C TECHNICAL LEMMAS

Lemma 1. (Exponential martingale inequality) If a martingale (Xy;t > 0), adapted to filtration JF,
satisfies Elexp(AX;) | Fi—1] < exp(\202/2) for some constant oy, for all t, then for any a > 0,

a2
P(1Xr — Xol > a) < 2exp <—T)
23 0%
Thus, with probability at least 1 — 9,

| X7r — Xo| <

= 2
220? log 5
t=1

C.1 A HOEFFDING BOUND FOR MATRICES
Lemma 2. Let {M, : 7 € [t]} be a R*%valued stochastic process adapted to the filtration

{Fr: 1 €[t]}, ie, M, is Fr-measurable for T € [t]. Suppose that the matrix M, is symmetric and
the eigenvalues of the difference M., — E[M, | F_1] lie in [—b, b] for some b > 0. Then for x > 0,

22
P 221‘ < 2dexp (_W>

Proof. The proof is an adapted version of Hoeffding’s inequality for matrix stochastic process with
the argument of (Tropp, 2012). Let D, := M, — E[M, | F_1]. Then, for 2 > 0,

(o] o)l (0 22 oo (50 )

22

t
> M, —E[M.|F,_]
=1

t

> o,

T=1
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We bound the first term and the second term is bounded with similar arguement. For any v > 0,

t t t
P (A (Z DT> > x) <P <exp {mmax (Z DT> } > e“’> < e "E |exp {vAmax (Z DT> H :
T=1 T=1 =1

. t . . .
Since ) . _, D, is a real symmetric matrix,

L) R ) Rt

where the last inequality holds since exp(v Zi: 1 D) has nonnegative eigenvalues. Taking expecta-
tion on both side gives,

E lexp {U)\max (Z DT> } <E|Tr {exp (v Z DT> }1
= TrE |exp (v Zt:DT>
i
=TrE |exp (v ZDT + log exp(UDt))l .

By Lieb’s theorem (Tropp} 2015) the mapping D +— exp(H + log D) is concave on positive
symmetric matrices for any symmetric positive definite H. By Jensen’s inequality,

TrE

exp (U i D, + log exp(th))] <TrE [exp (v i D, +logE [exp(vDy)| Ft1]>1

T=1 T=1

By Hoeffding’s lemma,

2% ¢ 2

for all x € [—b, b]. Because the eigenvalue of D lies in [—b, b], we have

—vb vb

]E [exp(th)\ ]:t—l] j E W (bId — Dt) —|— % (Dt + bId)

]:t—l]

—vb vb
e +e
=—1I
5 d
2b2
= exp(vT)Id.

23
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Recursively,

. _
exp {v)\max (Z DT> }1 < TrE |exp
T=1 L

< TrE |exp

~
I
—

E

v Z D, +logE [exp(vDy)| Fi— 1])]

1
—2 272

vy D+ (%)Id +log E [exp(vD;—1)| ftﬂﬂ

212
v Dq— + (2’1)2[) )Id>]

< TrE |exp

< TrE |exp

Thus we have

(
P ()\max (i DT> > x) < dexp <—vx + tvzb2> .
)

Minimizing over v > 0 gives v = z/(tb?

o)) ol £

which proves the lemma. O

C.2 A BOUND FOR THE GRAM MATRIX
The Hoeffding bound for matrices (Lemma 2)) implies the following bounf for the two Gram matrices
Api=30 R, X and Vo= 3000 30 RaX,

Corollary 1. For any ¢ € (0,1) and t > 8¢ 2(1 — p)2K?log 25~ QKt , with probability at least
1—6/t2,
e

Proof. Note that

V;I/QAtVt_l/Q _ —1/2 Z Z < o 1) % %] Vt_l/27

T7=1a€[K]

and the martingale difference matrix for each 7 € [t],

G, = a < oTu- K-1 XX, Vi
5 (=0 Yy € (K1) g vy
Pa,r 1-p a€|K] ?
a€[K] 2
< 2B e Rl
— INnax ||X,
S 1—pacir) IV
2K 1
_l—p t’
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where the last inequality holds by Sherman-Morrison formula. By Hoeffding bound for matrix
(Lemma[2), for z > 0

_ - 1 —p)?ta?
P (Hvt VZA VY IKH2 > x) < 2K exp (—(8229”) .

Setting = = ¢ € (0,1) which will be determined later, for ¢ > 8¢2(1 — p)~2K2log 2K with
probability at least 1 — §/t2,
HIK - V;l/ZAtV{UZH <e
2

C.3 AN ERROR BOUND FOR THE LASSO ESTIMATOR

Lemma 3 (An error bound for the Lasso estimator with unrestricted minimum eigenvalue). Let
{x+}re(y denote the covariates in [~1,1]% and y, = x] W + e, for some w € R? and e, € R. For
A >0, let

W = argmlnz —xTw )+ Alwll.

Let S := {i € [d] : (i) # 0} and = := Y\ _, x,x]. Suppose =; has positive minimum
eigenvalue and | Y _, €% ||oo < A/2. Then,

2A/[3]

Wi —wls, < :
>\min (2t>

Proof. The proof is similar to that of Lemma B.4 in (Kim et al., 2024), but we provide a new proof
for the (unrestricted) minimum eigenvalue condition. Let X' := (xy,...,%;) € [~1,1]4** and
e/ = (e1,...,e;) € RY. We write X, (j) and w;(j) as the j- th column of Xt and j-th entry of wy,
respectively. By definition of wy,

X (W — W) + |2+ MWy < [lef” |3+ Aw])1,
which implies
X (W = We) |34+ AWl < 2 (W, — )" X[ e, + AW

< 2|[W; = L [IX/ etfloc + AWl
< A[wi = Wil + AW,

where the last inequality uses the bound on A. On the left hand side, by triangle inequality,

Wil =D W@+ D [we(d)]

€S ie[d)\S
> (wili) = Y W) = w (@) + Y W)
i€S 1E€S, i€[d)\S
=Wl = [Wu()) = W@+ D [Wa(i)]
i€S i€[d)\S

and for the right-hand side,
1w, =Wl = [Weli) = w(@i) + D |we(i)l-
i€eS ie[d\S
Plugging in both sides and rearranging the terms,

X (W = W) [3 < 20D [We(i) — w(i). (23)
ieS
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Because X, X; is positive definite,

X (W = W) 13 = Amin (X X0) Y [W0(d)

ieS

Amm X Xt
> -~ - 7
N

5 i

i€S

- W

Ol

where the last inequality holds by Cauchy-Schwarz inequality. Plugging in Eq. (23) gives,

X (W —We) I3 <20 [We (i) — W (i)
=
S| _
S2M ey 1K (W = W) |2
Amm( )
2)02(S] 1 9
<—+ X
Sy T w3,
where the last inequality uses ab < a?/2 + b?/2. Rearranging the terms,
N 4028
X, (W — A bl
X (=) I < 35

which proves the result.

C.4 EIGENVALUE BOUNDS FOR THE GRAM MATRIX.

Lemma 4. Fora € [K], let X, := xI,ea P1,-
Then, an eigenvalue of ), €[K] xa

" ea Pr- d]
is in the followmg interval

€ R denote augmented features.

min m]n Z Xa ) bl max AIrla-}( Z Xa b
a€[k] a€[K]
Proof. Let P := (p1,...,px_q) € REX(K=d) Because the columns in P are orthogonal each

other and to x1,...,Xx,
aclK] Zae[K] pT €aX

[ Zae[K] XaXI

_Zae[K] Ple.x,

[ EaE[K] XaXy

_EQE[K] Pe.e/ X

[> e XX, XP
PTXT Iy

Eae[K] XX, O
(0) Ix_q

Thus, for any A e R, det(3 e (s XaXq — M)
det(}- e r) XaXa — Ala)(1

26

ZGE[K xq.e, P

>acix] Xaeq P

= det(}_ ek XX,
— A& =4 = 0 gives the eigenvalues and the lemma is proved.

|
|

>aex) Xeae, P
Ik —a

|

P'P

I g

|

— AM)(1 —\)E~=9, Solving

O
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