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ABSTRACT

We propose a post-training method for lower-resource languages that preserves flu-
ency of language models even when aligned by disfluent reward models. Preference-
optimization is now a well-researched topic, but previous work has mostly ad-
dressed models for English and Chinese. Lower-resource languages lack both
datasets written by native speakers and language models capable of generating
fluent synthetic data. Thus, in this work, we focus on developing a fluent preference-
aligned language model without any instruction-tuning data in the target language.
Our approach uses an on-policy training method, which we compare with two com-
mon approaches: supervised finetuning on machine-translated data and multilingual
finetuning. We conduct a case study on Norwegian Bokmål and evaluate fluency
through native-speaker assessments. The results show that the on-policy aspect is
crucial and outperforms the alternatives without relying on any hard-to-obtain data.

1 INTRODUCTION

Instruction-tuning and preference-optimization have become a cornerstone of modern language
models, enabling base models to follow instructions and engage in helpful dialogue. However, this
progress has been largely confined to high-resource languages like English and Chinese, which benefit
from extensive human-written datasets and sophisticated language models capable of generating
fluent synthetic data. Lower-resource languages face a fundamental challenge: they lack both
instruction datasets written by native speakers and fluent models that could generate high-quality
training data (Guo et al., 2025). This work addresses a critical question for the democratization
of language technology: how can we create fluent preference-aligned language models for lower-
resource languages without any instruction-tuning dataset in the target language?1

Current approaches to post-training language models for lower-resource languages mostly rely on
static and predefined instruction-tuning datasets (Suzuki et al., 2023; Chouikhi et al., 2024; Lim
et al., 2025), which are usually machine-translated from English (Pipatanakul et al., 2023; Santilli
& Rodolà, 2023; Ranaldi & Pucci, 2023; Üstün et al., 2024; Nguyen et al., 2024; Bari et al., 2025;
Zosa et al., 2025). While this approach shows promising results when evaluated on standard NLP
benchmarks, the translation process introduces subtle linguistic artifacts – translationese – that make
the resulting models disfluent in the target language (Yu et al., 2022; Dutta Chowdhury et al., 2022).
Translationese is produced even by professional human translators, and machine-translation models
are negatively impacted by it to an even larger degree (Bizzoni et al., 2020). Thus, we believe that
post-training for lower-resource languages needs to shift away from such data.

Recent advances in reinforcement learning from AI feedback (RLAIF; Bai et al., 2022) offer a
potential solution to this challenge. By training models through on-policy reinforcement learning,
where the model learns from its own generated responses rather than from fixed datasets, we can
potentially avoid exposing the model to disfluent text altogether. The key insight is that a model that
has learned fluent generation through extensive pretraining on native texts can maintain this fluency
as long as it never trains on unnatural examples during the alignment phase.

In this work, we propose a fluency-aware post-training method that leverages on-policy reinforcement
learning to align language models for lower-resource languages without compromising their linguistic

1Fluency refers to the linguistic quality of text that makes it natural, grammatical, and easy to read. It should
look like a text written by a native speaker. It is independent of other qualities such as factual accuracy.
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naturalness. Crucially, we never train the model on any translated responses, preserving the fluent
generation capabilities learned during pretraining. We demonstrate that even a disfluent judge model
can successfully guide a fluent policy, as long as the judge sufficiently understands the target language
to evaluate response quality.

Our approach is validated on Norwegian Bokmål, a relatively small language with about 5 million
speakers. Norwegian is a good fit for the assessment because it is on one hand a language without
any manually written instruction datasets, yet the research community has pretrained a number of
Norwegian language models that can be leveraged for post-training. Lastly, we were able to employ
five native Norwegian speakers for accurate manual evaluation of fluency.

Our main contributions are:
• We propose an on-policy reinforcement learning method for post-training in lower-resource

languages that maintains fluency without requiring any instruction datasets in the target language.
• We demonstrate through extensive human evaluation with native Norwegian speakers that

on-policy training produces more fluent models than supervised finetuning on translated data.
• We show that fluent aligned models can be bootstrapped using disfluent judge models, enabling

post-training for languages without existing fluent instruction-tuned models.
• We provide comprehensive ablations revealing the critical importance of avoiding any exposure

to translated responses during training, even in small quantities.

2 FLUENCY-AWARE POST-TRAINING

This section describes our proposed method for post-training language models on a target lower-
resource language without any dedicated dataset in that language. The overall approach consists
of three stages: i) pretraining on the target language, ii) short SFT alignment on English, and iii)
on-policy alignment on the target language.

The key principle is to never train the language model on any unnatural text.

Pretraining on target language The first stage is essential to ensure that the base language model
learns all necessary linguistic knowledge and is able to generate fluent outputs in the target language.
Our study focuses on the subsequent training stages and does not cover this pretraining stage – that
has already been studied in detail by Gururangan et al. (2020); Ibrahim et al. (2024); Kim et al.
(2024); Samuel et al. (2025). Specifically for Norwegian, we build upon the multi-stage continual
pretraining from Samuel et al. (2025).

Short SFT alignment on English The second stage is crucial to teach the model to respond to
user prompts and follow the specific chat format (Appendix D.1). Typically, supervised finetuning
would be done on a carefully curated set of conversations in the target language, but such resources
are usually not available for lower-resource languages – so we instead opt for a short alignment on a
small high-quality English dataset. Specifically, we use the 1 000 curated prompt-response pairs from
LIMA (Zhou et al., 2023) and train the base model on this dataset for one epoch. The short training
ensures that the model does not catastrophically forget its innate knowledge of the target language.

On-policy alignment on target language Finally, in the third stage, the language model is aligned
to respond in a helpful, truthful and safe way – without losing its fluency in the target language that
has been learned in the initial pretraining stage. This is achieved by training with online on-policy
reinforcement learning where the model is trained solely on responses sampled from itself. In this
way, the model is never pushed away from the subspace of fluent outputs is has learned to prefer
during pretraining. A key observation is that we do not need to train any reward model as it suffices
to use an LLM-as-a-judge system to for the reward signal; as long as the judge understands the target
language, it does not have to be fluent to produce a fluent policy. We evaluate this hypothesis later in
Section 4.1. This effectively allows us to bootstrap fluent models in languages without any instruction
datasets and without any existing fluent language models.

2.1 ONLINE ON-POLICY REINFORCEMENT LEARNING

This section describes the on-policy training in more detail. It is important to note that any implemen-
tation of online on-policy training with feedback from an LLM-as-a-judge system should work just
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as well in terms of fluency of the final policy network – our implementation is chosen to be simple
and comparable to the baseline approach of supervised finetuning, as detailed later in Section 3.

Reward model The standard approach to on-policy alignment – reinforcement learning from
human feedback (RLHF; Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022) – first
trains a Bradley-Terry reward model on a preference dataset from the target domain. Since we are
restricted to a lower-resource language, we suppose that such a dataset is not available – instead, we
rely on reinforcement learning from AI feedback (also known as constitutional AI).

In this scenario, we only use the domain knowledge to create a prompt template (constitution) that
clearly guides a multilingual language model to judge the quality of responses. As evident from later
results in Section 4.1, this setup provides enough signal that even a disfluent judge can train a fluent
and capable policy – as long as the judge has some level of understanding of the target language.

Objective function Let us start with defining the objective J to maximize during this post-training
stage. The objective in Equation (1) states that we want to find parameters θ of our language model
πθ (the policy model) that maximize the reward r given to a prompt x = (x1, x2, . . . x|x|) and its
corresponding response y = (y1, y2, . . . y|y|) sampled from the policy πθ:

argmax
θ

J (θ)
def
= argmax

θ
E

x∼D,y∼πθ(·|x)
r(x,y). (1)

Following the majority of works on LM alignment, we optimize the objective with policy gradient
methods (Williams, 1992; Sutton et al., 2000) that perform gradient descent on −∇θJ (θ) using
online on-policy samples y from the policy model πθ:

−∇θJ (θ) = − E
x∼D,y∼πθ(·|x)

r(x,y)∇θ log πθ(y|x). (2)

Directly using Equation (2) for training gives us the REINFORCE algorithm (Williams, 1992). To
increase its convergence speed and stability, we modify the rewards and optimize advantages A(x,y)
instead of r(x,y). Following REINFORCE WITH BASELINE (Weaver & Tao, 2001), we subtract the
baseline score b(x), and following Karpathy (2016), we further normalize by the dispersion factor
s(x); giving us A(x,y)

def
= (r(x,y)−b(x))/s(x). While these additional factors are often estimated by

separately trained models (Konda & Tsitsiklis, 2000; Schulman et al., 2017; Christiano et al., 2017),
we choose a more straightforward approach and estimate them as the sample mean and the sample
standard deviation over G responses (Kool et al., 2019; Ahmadian et al., 2024; Shao et al., 2024):

Â(x,y)
def
=

r(x,y)− mean
(
{r(x,y(i))}Gi=1

)
std

(
{r(x,y(i)}Gi=1

) . (3)

Putting Equation (2) and Equation (3) together, we can define the loss function L(θ,x) of a sin-
gle query x for optimizing the parameters θ of a policy πθ. One important detail is to account
for the potential length bias (Liu et al., 2025) when realizing the log-likelihood log πθ(y|x) as∑|y|

j=1 log πθ(yj |x,y<j) and normalizing by 1/|y|. As proposed by Rastogi et al. (2025), the length
bias can be mitigated by dividing by the total length of responses {y(i)}Gi=1 to a prompt x. Then the
token-level loss function becomes:

∇θL(θ)
def
= − E

x∼D,{y(i)}Gi=0 ∼πθ(·|x)

[
1∑

i|y(i)|

G∑
i=1

Â(x,y(i))

|y(i)|∑
j=1

∇θ log πθ(y
(i)
j |x,y(i)

<j)

]
, (4)

Note that unlike most current work on LM alignment, we do not modify the loss function to account
for sampling from a proximal policy (by clipping outlier samples and importance sampling) as in PPO
(Schulman et al., 2017). As detailed below, the synchronous parallelization makes all samples almost
fully on-policy and we have found no benefit in moving away from the simple REINFORCE-like loss
function in Equation (4).

KL-divergence regularization A well known issue of policy gradient methods in RLHF is that
they optimize model-based rewards instead of the true (and unknown) rewards. When the policy is
modeled by a large language model with billions of parameters, it can very quickly find shortcuts in
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the reward model and reward-hack its measured performance while degrading its true performance.
The most common way to mitigate this issue is to add a soft constraint to the optimization problem
that pushes the policy to stay close to its original state – the distance is usually measured by the KL
divergence and the strength of the constraint is parametrized by β (Kullback & Leibler, 1951; Jaques
et al., 2019):

argmax
θ

J (θ)
def
= argmax

θ
E

x∼D,y∼πθ(·|x)

[
r(x,y)− βDKL[πθ(· | x) ||πθref(· | x)]

]
. (5)

In order to optimize the objective J according to the new definition instead of the simpler one from
Equation (1), we need to introduce an additional loss term LKL (weighted by β) that will push the
trained policy πθ closer to the output distribution πθref .

The problem with KL divergence is that its exact computation is intractable in most cases.
This means that we have to approximate it in practice, the most common way is to sim-
ply use the already sampled prompts with responses and do a direct Monte-Carlo estimate of
Ex∼D,y∼πθ(·|x)

[
log πθ(y|x)/πθref (y|x)

]
, as done in the seminal RLHF work by Stiennon et al. (2020).

While straightforward, this approximation is very rough and ill-behaved, even becoming negative
sometimes.

Those estimates use only a small fraction of information available in the probability distributions
given by πθ(·|x,y<i) – only the single value of πθ(yi|x,y<i). Instead, we can get provably tighter
estimates when we Rao-Blackwellize the Monte-Carlo estimation by using the full next-token
distributions over the vocabulary V . Amini et al. (2025) prove that this estimation is unbiased and
has lower variance than the standard Monte-Carlo estimation.

LKL(θ)
def
= E

x∼D,y∼πθ(·|x)

[ |y|∑
i=1

|V|∑
w=1

πθ(yi = w |x,y<i) · log
πθ(yi = w |x,y<i)

πθref(yi = w |x,y<i)︸ ︷︷ ︸
DKL[πθ(· |x,y<i) ||πθref (· |x,y<i)]

]
. (6)

The computation overhead of the Rao-Blackwellized estimate is negligible because it still requires
only a single forward-backward pass through the policy model that is done even without any KL
regularization. Another benefit of regularizing the full output distribution is that it eliminates the
need of another loss term for regulating the output entropy – as used in most RLHF works – further
simplifying the training method.

Distributed setup As opposed to supervised finetuning, RL approaches need several language
models to be fully materialized and used at the same time (the trained policy, the reference policy, the
sampled policy and the reward model). In principle, these models should be ran sequentially in a
cycle (Figure 1), but that is inefficient in practice and the cycle needs to be broken and parallelized.
As illustrated below in Figure 1, this can be achieved by postponing the update of the sampled policy
– effectively turning the training slightly off-policy.

samples + rewards

reward
model

samples

sampled
policy

 updated 
weights

trained
policy

sampled
policy

reward
model

trained
policy

sampled
policy

reward
model

trained
policy

sampled
policy

reward
model

sampled
policy

step = 0 step = 1 step = 2 step = 3

Figure 1: Left: Reinforcement-learning cycle. This diagram demonstrates the sequential nature
of online RL training: each training step starts by sampling new responses from the policy model,
followed by sampling response-judgments from the reward model, and then updating the weights of
the policy model based on the sampled responses and rewards. Right: Parallelization. Breaking
the cycle and postponing the update of the sampled policy allows for running all three models at the
same time (vertically-aligned blocks are ran concurrently on different GPU nodes).
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Unlike other approaches to distributed RL (Espeholt et al., 2018; Noukhovitch et al., 2025; Rastogi
et al., 2025), our parallelization is completely synchronous. This can make the resources allocated
for sampling underutilized (all workers have to wait until the longest response completes), but that
does not impact the overall efficiency much as most resources are allocated to the reward models. On
the other hand, our samples are unbiased (asynchronous approach typically up-sample problems with
short responses), and the completely synchronous training cycle simplifies the implementation, as
well as the the objective function – since the samples are guaranteed to be off-policy by just three
steps, we can still rely on on-policy training techniques without having to resort to more complicated
and less stable proximal-policy methods such as PPO (Schulman et al., 2017).

3 EXPERIMENT: ONLINE ON-POLICY TRAINING MAINTAINS FLUENCY

The main experiment of this paper aims to answer the central question: Does online on-policy training
produce more fluent language models than supervised finetuning on translated data? To answer this,
we designed the experiment to make on-policy training as similar to supervised finetuning as possible
– using the same base model, the same training data, and the same number of training samples. As
a case study for models trained on lower-resource language, we trained all models on Norwegian
Bokmål; then we asked five native speakers to do pair-wise fluency comparisons of outputs generated
from these models.

In total, we compare three post-training approaches represented by three language models that are
based on the same pretrained model, as illustrated in Figure 2:

NorMistral
English SFTcontinual training

Mistral Nemo
base

Mistral Nemo
instruct

supervised finetuning

supervised finetuning

NorMistral
Norwegian RL

NorMistral
translated SFT

NorMistral
base

RL alignment

LLM-as-a-judge reward model

Figure 2: Genealogy of the compared models. The three models compared in the main fluency test
(highlighted in bold boxes) all originate from a single base model – Mistral Nemo 12B (left).

Approach 1: Norwegian RL We follow the training method described in Section 2.1 when training
this model. More specifically, we start from NorMistral 11B, a continually pretrained Norwegian
base model from Samuel et al. (2025), and supervise-finetune it for a single epoch on the 1 000
English conversations from LIMA (Zhou et al., 2023). Then, in the final reinforcement-learning
stage, we use the same dataset as the second approach: No Robots by Rajani et al. (2023). In each
training step, we take 128 translated prompts from this dataset, sample a group of 8 responses for each
prompt and then grade each response by a judge model, which also has access to the gold English
response provided in the No Robots dataset – the judge prompt itself is attached in Appendix D.
In order to rule out the possibility that the policy learns to become fluent from the judge model,
we use Mistral Nemo 12B as the judge – a model with the same origin as the policy itself that is
also evaluated in this experiment as the approach number three. More technical training details are
described in Appendix B. Many of the decisions are ablated later in Section 4 – for example, it is
clear that Mistral Nemo is a poor reward model compared to larger language models, which should
however not influence the fluency of the trained policy (Section 4.1).

Approach 2: Translated SFT As illustrated in Figure 2, the translated-SFT model is initialized from
the same checkpoint as the first approach. Then we also finetune it on the same machine-translated
No Robots dataset – however in this scenario, we use the translated responses to directly finetune
the model on them by minimizing the conditional negative log-likelihood (in the first approach, the
responses are only used as hints for the reward model). To translate the full No Robots dataset to
Norwegian Bokmål, we use the Unbabel/Tower-Plus-72B model – currently the state-of-the-art
open-weights translation model with an explicit support for Norwegian (Rei et al., 2025). Other
strong translation models are ablated later in Section 4.4.
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Approach 3: Mistral Nemo The last tested model is Mistral-Nemo-Instruct-2407 by Jiang
et al. (2024a). Including it in this experiment serves three purposes: firstly, to give a reference
baseline from an externally trained model; secondly, to test the fluency of the reward model that has
been used in the first approach; and thirdly, to evaluate the performance of the standard multilingual –
but English-focused – post-training that has been used in most major releases of the latest language
models. It is worth noting that this model again stems from the same origin as the previous two,
however – while open-weights – no details about its post-training process are available.

Manual annotation of generated outputs Fluency is a language feature that is difficult to accu-
rately capture by statistical models, but it should be relatively straightforward to judge for native
speakers of that language. We therefore hired five research assistants, all native Norwegian speakers,
to compare the fluency of responses generated for a pool of prompts. The prompts are gathered
from the Norwegian Bokmål mimir-instruct dataset from de la Rosa et al. (2025), which is made
of artificially generated responses to prompts written by native Norwegian speakers. Since we use
this data primarily as seeds for diverse generated outputs to evaluate for fluency, we select the 100
queries with the longest gold responses as the seed prompts. Then we sample a single response
from each of the three evaluated models – using Nucleus sampling with temperature of 0.5, top k
of 64 and top p of 0.9 (Holtzman et al., 2020) – and gather the responses into all possible 300
pairs. These pairs are then rated by the annotators in the A/B testing fashion – Which is more fluent:
response A, response B, or are they equally fluent? Each annotator is presented with the 300 pairs
of responses in a randomized order; going through the full set of pairs took each annotator roughly
15–20 hours. We give more details about the actual annotation guidelines and the overall process
in Appendix C. The resulting dataset (with anonymized annotator names) is published online at
https://hf.co/datasets/redacted-for-review.

Results We show the resulting win-rates from the manual annotation in Table 1. These win-rates are
calculated by going through all pair-wise comparisons and either giving the winning model (preferred
by more annotators) a single point or giving both models half a point in case of a tie – so-called
1/0.5/0 method of aggregation (Copeland, 1951).

Table 1: Model win-rates according to the manual fluency annotation. The values show the win-
rate percentages of the row-wise models over the column-wise models. The last column aggregates
the win-rates of each model.

Model on-policy RL translated SFT Mistral Nemo Average

on-policy RL — 67.5 91.8 79.7

translated SFT 32.5 — 87.5 60.0

mistral Nemo 8.2 12.5 — 10.3

The results clearly show that the most-preferred responses are from the on-policy training method,
followed by translated SFT and then by Mistral Nemo. This supports our main claim as it demonstrates
that the policy can indeed outperform its reward-judge on fluency. It is worth noting that the first
two approaches produced very fluent outputs and the fluency of 1/3 of their pair-wise comparisons
was agreed to be ‘equal’ – the difference between them mostly stems from infrequent traces of
translationese in the SFT outputs.

4 FURTHER EVALUATIONS AND ABLATIONS

This section studies the effect of various post-training choices on the final performance in more detail.
We scale up the manual fluency scoring from Section 3 by introducing an automatic fluency estimate,
and also focus on more general performance of the trained models by incorporating Norwegian
understanding and generation benchmarks.

Automatic fluency evaluation We have to rely on model-based measurement of fluency to lower
the cost of evaluating all experiments in this section. The Norwegian fluency model is trained like a
standard Bradley-Terry reward model (Stiennon et al., 2020) on a dataset D of paired preferred and
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non-preferred texts (xw,xl) ∈ D. Specifically, we add a scalar linear head to a pretrained language
model (NorMistral 11B in our case) and finetune it by minimizing the following loss:

Lfluency(θ)
def
= − E

xw,xl ∼D

[
log σ

(
rθ(xw)− rθ(xl)

)]
. (7)

We create the training data by combining existing resources and newly synthesized texts. Firstly, we
use the Norwegian ASK-GEC corpus of corrected student essays (Jentoft, 2023) – from there we
take all sentences with mistakes as the non-preferred texts and their (partially) corrected versions as
the preferred texts. Secondly, we do backtranslation with the Opus collection of Norwegian-English
machine translation models (Tiedemann et al., 2023): we sample a clean Norwegian sentence from
the Norwegian Dependency Treebank (NDT; Solberg et al., 2014) or the Norwegian Review Corpus
(NoReC; Velldal et al., 2018), then we sample one model to translate the sentence to English and
then sample another model to translate in back to Norwegian; finally, the original sentence is casted
as preferred and the backtranslated version and non-preferred. The ASK-GEC corpus is supposed
to teach the fluency scorer to take grammaticality into account while the second synthetic source
focuses on translationese and lexicographic issues.

The fluency scorer can be directly evaluated by utilizing the manual annotations from the previous
Section 3. Looking at all instances where the annotators agreed that one response is preferred over
another response, the fluency scores agree with this ranking in 85.5% cases. This agreement is even
slightly higher than the agreement among annotators – when limiting their annotation to non-ties (for
comparability), they agree with the consensus in 83.2% cases, which highlights how subjective the
notion of fluency can be. To lower the variance of the fluency score, we sample 16 responses from
each evaluated model and average the scores. The raw scores are sigmoid-normalized into percentage
values for clarity. When applied to the three approaches from the previous section, the fluency scores
are 2.47 (92.2%) for on-policy RL, 1.94 (85.7%) for translated SFT, and 0.76 (65.3%) for Mistral
Nemo, which corresponds to the manual evaluation of these three models.

Natural language understanding (NLU) evaluation We use the subset of reading-comprehension
tasks (NorQuAD, Belebele and sentence-level NoReC) from the Norwegian evaluation benchmark
NorEval by Mikhailov et al. (2025) to assess the level of Norwegian language understanding. Unlike
NorEval, we evaluate the correctness of each generated response with an extra call to a judge model,
Llama 3.3 70B (Grattafiori et al., 2024), that compares it with the gold answer. This ensures that the
evaluation is invariant to formatting variation of the generated outputs. We take the accuracies of the
three aforementioned tasks and report their average as the Norwegian NLU score.

Natural language generation (NLG) evaluation In order to assess the Norwegian generative
abilities, we use two benchmarks from NorEval that were designed for this purpose: NorRewrite and
NorSummarize (Mikhailov et al., 2025). We follow the original implementation of these benchmarks,
which evaluates the quality of each response by comparing it pairwise with another response and
automatically judging it with Llama 3.3 70B. We report the win-rate percentages of individual
models against the smallest evaluated model, Llama 3.1 8B (Grattafiori et al., 2024).

4.1 FLUENT POLICY DOES NOT NEED A FLUENT REWARD MODEL

The main experiment has shown that even a disfluent judge model (Mistral Nemo 12B) can produce
a policy that is substantially more fluent than the judge itself. In this section, we investigate this
phenomenon more thoroughly by checking that it is not an anomaly and that it holds for a diverse
range of judge models. First, we evaluate each judge model on the three benchmarks described
above: natural language understanding (NLU), generation (NLG), and fluency. Then, using a judge
to provide the reward signal, we train a policy with the same method as in Section 3, and evaluate the
policy on fluency – to see what effect does each judge model have.

Results We have evaluated language models of different sizes and different levels of Norwegian
knowledge – three models from the Mistral family of models (Jiang et al., 2024a;b), three Qwen
models (Qwen et al., 2025), and two Llama models (Grattafiori et al., 2024) – the results of the
evaluation are in Table 2. Comparing the fluency scores of judges with policies, there is no apparent
correspondence (the Pearson’s correlation coefficient is 0.067); the policies are fluent regardless of
the (dis)fluency of their judge. There is also no clear relation between the other two measures of
judge quality on the resulting fluency. We hypothesize that the fluency score stays stable because
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of training only on on-policy samples (which start fluent because of targeted pretraining) and the
selection of the judge model only affects other response qualities.

Table 2: The effect of judge’s knowledge of Norwegian on the trained policy. The table shows
the average Norwegian understanding, generation and fluency scores (Section 4) of different judge
models, and fluency of the policy models trained with reward signals from these judges. The fluency
scores are color-coded so that disfluent model are red and fluent model are blue.

Judge performance Fluency of
Judge NLU NLG Fluency trained policy

Mistral Nemo 12B 87.5 29.7 67.0 92.2
Mistral Large 123B 90.0 70.4 83.4 94.2
Mixtral 8x22B 91.3 20.2 70.9 92.1
Llama 3.1 8B 86.4 50.0 62.8 92.9
Llama 3.3 70B 90.7 57.7 84.2 93.5
Qwen 2.5 14B 89.6 43.5 39.0 93.1
Qwen 2.5 32B 91.7 59.9 43.2 93.9
Qwen 2.5 72B 92.0 75.2 50.7 92.9

4.2 THE EFFECT OF TRAINING LENGTH ON FLUENCY

We further validate the claim that fluency is consistently stable for on-policy training by looking at
the change of fluency score throughout training.

Results Figure 3 shows the result of training a policy supervised by Mistral Large and evaluating
its fluency and NLG performance every 25 training steps. The fluency score remains stable around
93% after the initial convergence in the first 50 training steps. Upon closer inspection, the lower
initial fluency score of 87.5% can be explained by the increased likelihood of responding in English
(not by disfluent Norwegian per se) triggered by the previous English SFT stage; then the model
learns to consistently respond in Norwegian, which leads to the perceived increase in fluency. On the
other hand, when looking at the change of fluency throughout SFT training on translated Norwegian,
we can see a clear decrease in fluency from the initial starting point, which can only be attributed to
responding with consistent – but slightly disfluent – Norwegian.
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Figure 3: Fluency and NLG scores throughout training. We measure the performance score every
25 training steps for the reinforcement learning (in blue) and every epoch for the SFT training.

4.3 THE IMPORTANCE OF NOT TRAINING THE POLICY ON ANY TRANSLATED RESPONSES

The previous experiment has highlighted the importance of the initial SFT stage and the ability of the
policy model to recover from the sudden shift to English. As described earlier, we only train on the
1 000 examples (31 training steps) from the LIMA dataset (Zhou et al., 2023) in the initial SFT stage.
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The results in Table 3 suggest that training on more samples can have slight negative effects. Even
clearer fluency deterioration is seen after machine-translating the dataset from English – even a small
amount of translated data can introduce measurable amount of disfluencies in the final policy.

4.4 IMPACT OF TRANSLATION QUALITY ON SFT PERFORMANCE

Even though we have selected Tower-Plus as the state-of-the-art model for translation from English
to Norwegian (Rei et al., 2025), a possible explanation of our results is that the observed disfluencies
are caused only by some adverse features of this particular model and do not hold in general. Thus,
we assess the effect of translating the No Robots dataset with other models by supervised-finetuning
a model on the translated dataset and then evaluating the fluency of the trained model. We only test
translation models that explicitly support translation from English to Norwegian, which includes
LLM-based translation models, massively multilingual models, as well as a traditional small model
trained specifically for translation. The fluency scores in Table 4 verify that Tower-Plus, as the largest
available translation model, results in the most fluent policy among the other choices.

Table 3: The effect of the initial SFT stage.
We ablate various settings and measure the fi-
nal performance when starting reinforcement
learning from such SFT checkpoints.

SFT settings RL fluency

English dataset (1 epoch) 94.2
English dataset (2 epochs) 93.2
English dataset (4 epochs) 92.8
Translated dataset (1 epoch) 91.0

Table 4: The effect of using different machine-
translation models. We train models on the trans-
lated dataset and measure their fluency.

Translation model Size Fluency

Tower-Plus (Rei et al., 2025) 72.7B 85.7
MADLAD-400 (Kudugunta et al., 2023) 10.7B 82.4
Seed-X (Cheng et al., 2025) 7.5B 73.4
NLLB-200 (Team et al., 2022) 3.3B 75.5
OPUS Eng-Gem (Tiedemann et al., 2023) 0.1B 68.2

5 RELATED WORK

As mentioned above, there have been countless works that focused on supervised finetuning of
language models for lower-resource languages (Suzuki et al., 2023; Pipatanakul et al., 2023, inter alia),
substantially less focus has been on leveraging reinforcement learning for preference optimization
for such languages (Lai et al., 2023; Dang et al., 2024). While fluency in less-spoken languages
is a significant limitation of current language models, there has not been a large interest of the
research community on this topic; likely because accurate fluency evaluation is difficult. Dang et al.
(2024) consider fluency as an important aspect of multilingual performance, but only include it as
part of a general LLM-as-a-judge evaluation prompt, whose accuracy is not validated. Zhang et al.
(2025) evaluate the fluency of their models by human annotators, but only after first back-translating
the generated responses to English. A recent paper by Sainz et al. (2025) focuses on the effect of
post-training configuration on fluency, similarly to our work – they assess the fluency by native
(Basque) speakers, but only consider the effect of different data mixtures for supervised finetuning.

6 CONCLUSION

In this work, we demonstrated that on-policy reinforcement learning offers a practical path to creating
fluent aligned language models for lower-resource languages without requiring any instruction-tuning
datasets in the target language. Through extensive evaluation with native Norwegian speakers, we
showed that our approach produces more fluent models than the standard practice of supervised
finetuning on machine-translated data, achieving a 79.7% win-rate compared to 60.0% for translated
SFT and 10.3% for a multilingual baseline. Our experiments revealed two critical insights: first,
that avoiding any exposure to translated text during training is essential for maintaining native-level
fluency – even minimal exposure to translated responses measurably degrades fluency; and second,
that fluent policies can be successfully trained using disfluent judge models, as long as the judge has
sufficient understanding of the target language to evaluate response quality. This work opens the door
for developing high-quality language models for the hundreds of lower-resource languages that lack
extensive instruction-tuning datasets.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work, we described the training method in Section 2, provided full
hyperparameter settings in Appendix B and we openly release our custom training code at https:
//github.com/censored-for-review. The training code is based on common and freely distributed
Python libraries: torch, vllm and transformers. Some evaluations use model-based fluency score
that is released alongside the paper at https://hf.com/censored-for-review.
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Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024b.

Andrej Karpathy. Deep reinforcement learning: Pong from pixels, 5 2016.

Seungduk Kim, Seungtaek Choi, and Myeongho Jeong. Efficient and effective vocabulary expan-
sion towards multilingual large language models, 2024.

Vijay R. Konda and John N. Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information
Processing Systems 12, pp. 1008–1014. MIT Press, 2000.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a baseline
for free! In ICLR 2019 Workshop on Deep Reinforcement Learning meets Structured Prediction
(DeepRLStructPred@ICLR), 2019.

Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Derrick Xin, Aditya Kusupati, Romi
Stella, Ankur Bapna, and Orhan Firat. MADLAD-400: a multilingual and document-level large
audited dataset. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathematical
Statistics, 22(1):79–86, 1951. doi: 10.1214/aoms/1177729694.

Viet Lai, Chien Nguyen, Nghia Ngo, Thuat Nguyen, Franck Dernoncourt, Ryan Rossi, and Thien
Nguyen. Okapi: Instruction-tuned large language models in multiple languages with rein-
forcement learning from human feedback. In Yansong Feng and Els Lefever (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demon-
strations, pp. 318–327, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.emnlp-demo.28.

Junghwan Lim, Gangwon Jo, Sungmin Lee, Jiyoung Park, Dongseok Kim, Jihwan Kim, Junhyeok
Lee, Wai Ting Cheung, Dahye Choi, Kibong Choi, Jaeyeon Huh, Beomgyu Kim, Jangwoong
Kim, Taehyun Kim, Haesol Lee, Jeesoo Lee, Dongpin Oh, Changseok Song, and Daewon Suh.
Expanding foundational language capabilities in open-source llms through a korean case
study, 2025.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective, 2025.

Vladislav Mikhailov, Tita Enstad, David Samuel, Hans Christian Farsethås, Andrey Kutuzov, Erik
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A THE USE OF LARGE LANGUAGE MODELS

Large language models have been used to provide feedback, fix grammatical errors and improve
the writing in this paper; in particular, we used the Claude family of language models from https:
//claude.ai. In addition, we used the autocompletion tool from GitHub Copilot when writing the
code used in this work.

B HYPERPARAMETERS

Second stage – English SFT We finetune all model parameters on a single epoch of the English
SFT dataset. We use the StableAdamW optimizer (with β1 = 0.9, β2 = 0.99 and ϵ = 1 · 10−8) for
increased robustness to gradient spikes (Wortsman et al., 2023) with constant learning rate of 2 · 10−6

and 10% linear warm-up phase. The batch size is set to 32 sequences that are truncated to 4 096
tokens as the maximum sequence length. We slightly regularize the training with weight decay of
0.1. The user-assistant conversations are formatted according to the minimal chat template listed in
Appendix D.1. The loss is only computed on the assistant responses, the user queries are ignored in
the loss calculation.

Third stage – translated SFT This uses the same hyperparameters as the second stage, only
changing the training dataset and the optimal number of epochs to 3.

Third stage – RLAIF The policy is trained similarly to the second SFT stage except for: the
batch size is increased to 128 for increased stability and the learning rate is slightly lowered to
1 · 10−6 for the same reason. The weight of the additional KL-divergence term is set to 1 · 10−2.
The responses are randomly sampled from the (delayed) policy without any adjustment to the output
probability distribution, they are only truncated to the maximum of 2 048 tokens. The reward-judge
model uses the prompt template listed in Appendix D.2, its judgments are randomly sampled with
softmax temperature reduced to 0.2. If the final numerical score cannot be parsed from the generated
judgment, we set it to 3 (out of 10), as the error is likely caused by a malformed policy response.

C MANUAL ANNOTATION PROCEDURE

The annotation is performed by a hired team of five MSc students in NLP/CS, all native Norwegian
speakers. The annotators are compensated for their efforts, with an hourly pay rate of 236 NOK per
hour. All annotators undergo a training stage, whereby they receive detailed annotation guidelines
and annotate 10 examples, followed by a joint seminar where any disagreements are discussed, before
proceeding to the main phase of the annotation.

The annotation has been done online via a simple application (Figure 4).

C.1 ANNOTATION GUIDELINES

These are the full annotation guidelines that the hired annotators followed:

OVERVIEW

This document provides guidelines for evaluating the fluency of responses generated by Norwegian
language models. Annotators will compare pairs of responses (Response A and Response B) and
determine which response demonstrates better fluency, or if they are equally fluent.

The evaluation focuses exclusively on language quality, naturalness, and grammaticality. Do NOT
consider features such as factual accuracy and correctness, completeness of information, creativity
and originality, or length and conciseness.

DEFINITIONS

What is fluency?

Fluency refers to the linguistic quality of text that makes it natural, smooth, and easy to read. It
should look like a text written by a native speaker. A fluent text should consistently use either Bokmål
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Figure 4: Screenshot of the annotation tool. Each annotators is provided with a randomized
sequence of response pairs in randomized order.

or Nynorsk (depending on the prompt), and should sound genuinely Norwegian rather than as it were
translated from another language.

Fluency issues to look for

When evaluating fluency, pay attention to:

• Grammar errors: agreement errors (e.g. adjective-noun or determiner-noun disagreement),
incorrect verb tense, incorrect word order (violating V2 requirement), wrong word forms

• Awkward phrasing: Unnatural word order, stilted expressions, robotic language

• Punctuation problems: Missing or incorrect punctuation that affects readability

• Word choice issues: Inappropriate vocabulary, incorrect word usage, repetitive language, wrong
use of idioms or phrases, incorrect spacing of formation of compound words (”kaffe kopp” vs
”kaffekopp”), preposition errors (”på” vs ”i”)

• Flow disruptions: Abrupt transitions, disconnected ideas within sentences

• Spelling errors: Typos and misspellings, wrong capitalization, incorrect use of diacritics (e.g.
”å” vs ”a”, ”ø” vs ”o”)

• Translationese: A common problem of language models is that they base their output on
English – the majority language in the language corpus. This can result in unnatural language
patterns that look like literal translations from English, such as: “stå opp for seg selv”, “gjøre en
forskjell”, “være for salg”.

ANNOTATION PROCEDURE

Step-by-Step process

• Read the prompt: Do not analyze the fluency of the prompt, but look at it to understand the
context and language style.

• Read both responses completely without making immediate judgments

• Identify fluency issues in each response using the criteria above, ignore content accuracy and
relevance
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• Compare the severity and frequency of fluency issues between responses
• Make your decision based on overall fluency

Decision options

You must select one of three options:

• A is more fluent: Response A has better overall language quality than Response B
• B is more fluent: Response B has better overall language quality than Response A
• Equally fluent: Both responses have similar language quality (minor differences that don’t

clearly favor either response)

Important guidelines

• Minor differences matter: Even small improvements in fluency should influence your decision
• Be consistent: Apply the same standards across all evaluations
• When in doubt about equality: If you cannot decisively determine which is better after careful

analysis, select ”Equally fluent”

EXAMPLES

Here are some examples of texts that should not be considered as fluent Norwegian:

• ”Vi kan også prøve å finne måter å gjøre oppgavene dine mer overskuelige og gi deg mer tid til å
gjøre dem på.” (word choice)

• ”skrivemappa din” (agreement) ”en elsket medlem av kongefamilien” (agreement)
• ”jeg vil se deg neste gang” (English-influenced translationese, more fluent would be ”sees neste

gang”)
• ”banal hjertroman” (compound)
• ”den første konge” (double definiteness)

EDGE CASES AND SPECIAL CONSIDERATIONS

• Other language than Norwegian: If one of the responses is in a different language (e.g.
English), even partly, it should be considered less fluent than the Norwegian response, regardless
of its quality.

• Technical or specialized language: Technical terminology and domain-specific language
should be considered fluent if used correctly and consistently, even if it might seem less natural
to a general audience.

• Formatting issues: Ignore formatting differences (bold, italics, bullet points) unless they directly
impact readability or sentence structure.

• Code or mathematical expressions: If responses contain code snippets or mathematical
expressions, evaluate only the fluency of the natural language portions.

D PROMPT TEMPLATES

Prompt templates are a crucial part of modern training pipelines, we list them here for full trans-
parency:

D.1 CHAT TEMPLATE FOR POLICY MODELS

{{- bos_token }}

{%- for message in messages %}
{%- if message['role'] == 'user' %}

{{- '<instruction>' + message['content'] + '</instruction>' }}
{%- elif message['role'] == 'system' %}
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{{- '<system_prompt>' + message['content'] + '</system_prompt>' }}
{%- elif message['role'] == 'assistant' %}

{%- generation %}
{{- message['content'] + '</s>' }}
{%- endgeneration %}

{%- endif %}
{%- endfor %}

D.2 PROMPT TEMPLATE FOR THE REWARD/JUDGE MODEL

You are an expert evaluator tasked with assessing the quality of AI responses in Norwegian conversations. You will evaluate in
English.

## Critical Language Requirement

**IMPORTANT:** The AI assistant MUST respond in Norwegian when the user writes in Norwegian. Responding in English to a Norwegian
query is a fundamental failure that should be heavily penalized, regardless of how good the content might be. This is a
basic expectation for a Norwegian language assistant. Technical terms and programming code may remain in English within
Norwegian text.

## Input Format

You will receive three JSON objects, your goal is to evaluate the "ai_response" value:

```json
{
"conversation_history": [
{"role": "user", "content": "Norwegian user message"},
{"role": "assistant", "content": "Norwegian assistant response"},
{"role": "user", "content": "Norwegian user reply"},
...

],
"gold_response": "English reference response from human annotator",
"ai_response": "Norwegian AI response to evaluate (this is the LAST assistant response)"

}
```

Note: The gold response is a reference point but may not be perfect or the only good approach. Gold responses are written in
English for evaluation purposes, but the AI should respond in Norwegian when users write in Norwegian (unless explicitly
asked to use another language).

## Evaluation Process (Write in English)

Follow these steps in order:

**Important:** For multi-turn conversations, evaluate ONLY the last AI response, not any previous assistant responses in the
conversation history.

### Step 1: Summarize the User Request
Briefly describe what the user is asking for in the conversation.

### Step 2: Analyze the Gold Response
Explain how the gold (human-written) response approaches the request. Note its key elements and strategy.

### Step 3: Analyze the AI Response
Explain how the AI response being evaluated approaches the request. Note its key elements and strategy.

### Step 4: Evaluate Across Five Criteria

#### 1. Correctness and Instruction-Following
- Does the response directly address what was asked?
- Is the information provided accurate and correct?
- Are all parts of the request fulfilled?
- **Is the response in Norwegian when the user wrote in Norwegian?** (Critical requirement)

#### 2. Style
- **Language Match**: Does the response match the user's language? (Norwegian input = Norwegian output, unless user requests

otherwise)
- **Tone**: Is it appropriately casual, polite, and friendly Norwegian (unless context demands otherwise)?
- **Structure**: Are ideas well-organized with proper paragraph breaks (two newlines between distinct thoughts)?
- **Markdown**: Is markdown used effectively to enhance readability?
- **Readability**: Is the text easy to read and understand?

#### 3. Safety
- Does the response avoid harmful content?
- Is it appropriately balanced - neither promoting harmful behavior nor being unnecessarily cautious/moralizing for innocuous

requests?

#### 4. Logical Reasoning and Nuance
Assess three interconnected aspects:
- **Nuance**: Is the complexity appropriate for the query?
- **Factuality**: Are all facts and claims correct?
- **Reasoning Quality**: Is the logical structure sound? Is there clear, non-repetitive narrative flow?

#### 5. Appropriate Conciseness
- Is the response length appropriate for the query?
- Does it avoid being too brief or unnecessarily verbose?
- **Heavily penalize responses that are excessively long for simple questions**

**Length Guidelines:**
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- Simple factual questions (capitals, dates, names): 1-2 sentences
- Explanatory questions (how/why something works): 1-2 paragraphs
- Complex or multi-part questions: Multiple paragraphs acceptable

### Step 5: Summary and Final Score
Summarize your evaluation across all criteria and provide a final score in the format:

**Score:**
X/10

Where X is an integer from 1-10:
- 10: Excellent
- 8-9: Very good
- 6-7: Good
- 4-5: Adequate
- 2-3: Poor
- 1: Terrible

The score should be placed on a new line and it should be the last item of your response.

---

## Examples

### Example 1: Recipe Request (Score: 9/10)

**Input:**
```json
{
"conversation_history": [
{
"role": "user",
"content": "Hei! Kan du gi meg en oppskrift på pasta carbonara? Jeg har aldri laget det før."

},
{
"role": "assistant",
"content": "Selvfølgelig! Pasta carbonara er en klassisk italiensk rett. Her er en enkel oppskrift:\n\n**Ingredienser (4

porsjoner):**\n- 400g spaghetti\n- 200g guanciale (eller pancetta/bacon)\n- 4 eggeplommer + 1 helt egg\n- 100g revet
Pecorino Romano\n- Svart pepper\n- Salt\n\n**Fremgangsmåte:**\n1. Kok spaghettien i saltet vann\n2. Stek guanciale til
sprø\n3. Bland egg og ost\n4. Ta pannen av varmen, bland alt sammen\n5. Tilsett pastavann for kremete
konsistens\n\nHusk åjobbe raskt og holde pannen av varmen når du blander inn eggene!"

},
{
"role": "user",
"content": "Takk! Men jeg forstår ikke helt det med eggene - hvorfor må pannen være av varmen? Og hva er guanciale?"

}
],
"gold_response": "Great questions! Let me explain both:\n\n**Why remove from heat:**\nThe eggs in carbonara should create a

creamy sauce, not scrambled eggs. If the pan is too hot, the eggs will cook too quickly and become lumpy/scrambled. By
taking the pan off heat and using just the residual warmth from the pasta and rendered fat, the eggs gently coat the pasta
and create that signature silky sauce.\n\n**What is guanciale:**\nGuanciale is cured pork jowl (cheek), a traditional
Italian ingredient. It has a rich, intense pork flavor and renders beautiful fat. If you can't find it:\n- Pancetta
(Italian cured pork belly) is the best substitute\n- Regular bacon works too, though it's smokier\n- Look for guanciale at
Italian specialty stores or delis\n\nThe rendered fat from the guanciale is crucial - it helps create the creamy sauce
along with the eggs and cheese!",

"ai_response": "Flotte spørsmål! La meg forklare begge deler:\n\n**Hvorfor pannen må være av varmen:**\nEggene i carbonara skal
lage en kremete saus, ikke eggerøre! Hvis pannen er for varm, vil eggene stivne med en gang og bli klumpete. Ved åta pannen
av varmen bruker du bare restvarmen fra pastaen og det varme fettet til åvarme eggene forsiktig. Dette gir den silkemyke
sausen carbonara er kjent for.\n\nTenk på det som forskjellen mellom ålage eggerøre (høy varme, fast konsistens) og en
kremet saus (lav varme, flytende konsistens).\n\n**Hva guanciale er:**\nGuanciale er italiensk speket svinekjake - altså
kjøttet fra grisen sin kinn. Det har en dyp, intens smak og gir fra seg deilig fett når det stekes. \n\nHvis du ikke finner
guanciale:\n- **Beste alternativ:** Pancetta (italiensk speket svineside)\n- **Nest beste:** Vanlig bacon (blir litt
annerledes pga røyksmaken)\n- **Hvor finne det:** Prøv italienske spesialbutikker eller velassorterte
delikatessebutikker\n\nFettet fra guancialen er superviktig - det blander seg med egg og ost og blir til den kremete
sausen!"

}
```

**Evaluation:**

**User request:** The user has follow-up questions about the carbonara recipe, specifically asking why the pan must be off heat and
what guanciale is.

**Gold response approach:** Explains both concepts clearly, with the heat explanation focusing on avoiding scrambled eggs, and
providing substitution options for guanciale.

**AI response approach:** Provides detailed explanations in Norwegian for both questions, using an analogy for the egg cooking
process and listing substitutes for guanciale with a hierarchy of alternatives.

**1. Correctness and instruction-following:** Excellent. Directly answers both specific questions with accurate information.
Responds in Norwegian as required.

**2. Style:** Very good. Clear Norwegian matching the user's language, uses helpful formatting and even includes a relevant emoji.
The analogy comparing to scrambled eggs is pedagogically effective.

**3. Safety:** No issues.

**4. Logical reasoning and nuance:** Excellent. The complexity is appropriate for someone learning to cook, with helpful analogies
and practical substitution advice.

**5. Appropriate conciseness:** Good length - thorough without being overwhelming for two specific questions.
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**Summary:** This is an excellent follow-up response that addresses both questions clearly and helpfully. The explanations are
accurate, practical, and well-suited to someone learning to cook carbonara for the first time. Importantly, it responds in
Norwegian to match the user's language.

**Score:**
9/10

### Example 2: Simple Math Question (Score: 4/10)

[... abbreviated for clarity ...]

### Example 10: Overly Verbose Response (Score: 3/10)

[... abbreviated for clarity ...]

---

## Scoring Guidelines

- **10/10**: Exceptional response that exceeds expectations
- **8-9/10**: Very good response with minor areas for improvement
- **6-7/10**: Good response that covers basics but lacks finesse
- **4-5/10**: Adequate but with significant shortcomings
- **2-3/10**: Poor response with major problems (including language mismatch or extreme verbosity)
- **1/10**: Complete failure or nonsensical response

**Critical penalties:**
- Responding in English to a Norwegian query: Maximum score of 2/10
- Extreme verbosity for simple questions: Significant score reduction

---

## Evaluation Task

Now, evaluate the following AI response using the process and criteria described above. Remember to:
1. Write your evaluation in English
2. Follow all five steps in order
3. Be specific and provide examples from the response
4. Heavily penalize responses that are in English when the user wrote in Norwegian
5. Heavily penalize responses that are excessively verbose for simple questions
6. End with a score in the format X/10

**Input to evaluate:**
```json
{{input}}
```

Begin your evaluation:
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