
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACCELERATING NEURAL ODES: A VARIATIONAL
FORMULATION-BASED APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Ordinary Differential Equations (Neural ODEs or NODEs) excel at mod-
eling continuous dynamical systems from observational data, especially when the
data is irregularly sampled. However, existing training methods predominantly
rely on numerical ODE solvers, which are time-consuming and prone to accumu-
lating numerical errors over time due to autoregression. In this work, we propose
VF-NODE, a novel approach based on the variational formulation (VF) to ac-
celerate the training of NODEs. Unlike existing training methods, the proposed
VF-NODEs implement a series of global integrals, thus evaluating Deep Neural
Network (DNN)–based vector fields only at specific observed data points. This
strategy drastically reduces the number of function evaluations (NFEs). Moreover,
our method eliminates the use of autoregression, thereby reducing error accumu-
lations for modeling dynamical systems. Nevertheless, the VF loss introduces
oscillatory terms into the integrals when using the Fourier basis. We incorporate
Filon’s method to address this issue. To further enhance the performance for noisy
and incomplete data, we employ the natural cubic spline regression to estimate a
closed-form approximation. We provide a fundamental analysis of how our ap-
proach minimizes computational costs. Extensive experiments demonstrate that
our approach accelerates NODE training by 10 to 1000 times compared to ex-
isting NODE-based methods, while achieving higher or comparable accuracy in
dynamical systems. The source code will be publicly available upon publication.

1 INTRODUCTION

Neural ordinary differential equations (NODEs) (Chen et al., 2018) represent a family of continuous-
depth machine learning models. Drawing inspiration from ResNets (He et al., 2016), NODEs aim
to parameterize vector fields of ODEs using deep neural networks (DNNs),

ẋ = fθ(t,x), (1)

where fθ : [0, T]×Rd → Rd is a DNN and θ denotes the model parameters. The continuous nature
and specific inductive bias of NODEs render them particularly well-suited for modeling dynamical
systems from irregularly sampled time series data (Rubanova et al., 2019; Kidger et al., 2020).
Thus, NODEs have been widely applied to various dynamical system applications, such as multi-
agent trajectory forecasting (Wen et al., 2022), model-based reinforcement learning (Alvarez et al.,
2020), optimal control (Chi, 2024) and chemical reaction process modeling (Yin et al., 2023).

In existing training frameworks of NODEs, numerical ODE solvers play a crucial role. The forward
pass outcomes are directly calculated using numerical ODE solvers. For the backward pass, there
are two methods commonly employed to backpropagate through ODE solvers (Kidger, 2022; Onken
& Ruthotto, 2020): (1) discretize-then-optimize, which involves directly backpropagating through
operations of ODE solvers, and (2) optimize-then-discretize, also known as the adjoint sensitivity
method, as utilized in (Chen et al., 2018), which introduces additional adjoint ODEs. In this method,
gradients of the scalar loss function with respect to parameters of NODEs are computed by solving
these adjoint ODEs. More details can be found in Appendix A.1.

Nonetheless, these ODE-solver-based training methods face two significant limitations. First, they
are inherently time-consuming. The internal mechanisms within numerical ODE solvers can incur
significant computational costs in solving NODEs (Lipman et al., 2022). This is attributed to the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(b) VF-NODE

Spline
Regression

(a) ODE-solver-based
Training Methods

Numerical ODE Solver

Solution of NODE
MSE Loss

Closed-form Approximation of
Estimated Trajectory

Estimated Trajectory DNN-based Vector Fields

Closed-form Approximation of
DNN-based Vector Fields

= VF Loss

Filon’s Method Filon’s Method

Spline Interpolation

DNN

Input

Sampled Trajectory

Sampled time points

Extra time points required
by ODE solver

Figure 1: Comparison of VF-NODEs and ODE-solver-based methods. (a) ODE-solver-based train-
ing methods: ODE solvers compute solutions of the NODEs, necessitating evaluations of the DNN-
based vector fields at additional data points. (b) VF-NODEs: implement global integrals numeri-
cally using Filon’s method and spline regression in the VF loss, evaluating the DNN-based vector
fields only at specific data points.

numerous evaluations of DNN-based vector fields beyond given sampled data points, as shown in
Fig. 1. For the optimize-then-discretize approach, this issue may be exacerbated by the introduction
of additional adjoint ODEs. Second, existing approaches may suffer from low accuracy. On the
one hand, the autoregressive nature of most numerical ODE solvers can lead to error accumulation,
as discussed in Appendix A.2. On the other hand, the optimize-then-discretize approach incurs
additional numerical discretization error, resulting in inaccurate gradients, and potentially causing
the training process to fail entirely (Gholami et al., 2019). In short, these limitations stem from the
use of numerical ODE solvers.

To date, various approaches have been proposed to address the aforementioned limitations of
NODEs. For example, to alleviate the computational bottleneck of NODEs, some works attempt
to constrain the complexity of learned dynamics (Finlay et al., 2020; Kelly et al., 2020; Pal et al.,
2021), while others seek to directly modify the ODE-solver-based training process (Kidger et al.,
2021; Djeumou et al., 2022; Norcliffe & Deisenroth, 2023; Matei et al., 2023). In the domain of
irregularly sampled time series tasks, several models built upon neural differential equations have
been proposed (Rubanova et al., 2019; Kidger et al., 2020). Nevertheless, these approaches remain
heavily reliant on ODE solvers, preventing them from effectively addressing the computational bot-
tleneck.

To address the challenges associated with the reliance on numerical ODE solvers during the training
of NODEs, we propose the VF-NODE, a novel approach that employs the variational formulation
(VF) (Brunel et al., 2014; Hackbusch, 2017) to accelerate training. The proposed approach integrates
a VF-based loss function within the standard NODE architecture. Our motivation is that the VF loss
can implement a series of global integrals, thus evaluating the DNN-based vector field only at spe-
cific data points in the observations. In contrast, existing ODE-solver-based training methods have
to evaluate the DNN-based vector fields at extra data points due to step size settings. Consequently,
our method significantly reduces the number of function evaluations (NFEs). On the other hand,
these global integrals mitigate autoregression compared with ODE-solver-based training methods,
eliminating error accumulation and improving prediction accuracy. However, the utilization of the
VF loss poses two challenges for NODEs. (i) It could result in additional oscillatory integrals due to
the introduction of Fourier basis functions like sine and cosine. (ii) It does not perform well when
data is missing and noisy. To address the first challenge, we incorporate Filon’s method (Deaño
et al., 2017) for oscillatory integrals. For the second challenge, we adopt the natural cubic spline
regression (De Boor, 1978) to obtain a closed-form approximation for Filon’s method. We also
provide a fundamental analysis of the acceleration benefits of our approach in Section 4.3. Exten-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

sive experiments demonstrate that the VF-NODE achieves a 10 to 1000 times speed increase over
existing baselines while maintaining higher or comparable accuracy.

Our contributions are three-fold: (1) We introduce a novel approach that employs the variational
formulation (VF) to significantly accelerate the training of NODEs. This method significantly re-
duces the number of function evaluations (NFEs) and improves the prediction accuracy. (2) We
integrate Filon’s method with natural cubic spline regression to effectively compute oscillatory in-
tegrals from noisy and partially observed data within the VF loss. (3) Evaluation results on multiple
dynamical systems including one real-world application demonstrate that our approach achieves 10
to 1000 times acceleration in training speed compared to the baselines while achieving higher or
competitive accuracy.

2 RELATED WORK

NODEs for Dynamical Systems. NODEs have been introduced to model continuous dynamical
systems. Latent ODEs based on VAEs were first proposed in (Chen et al., 2018), with RNNs as
encoders and NODEs as decoders. Rubanova et al. (2019) proposed ODE-RNNs, which use NODEs
to simulate continuous dynamics of hidden states in RNNs, and incorporated them into Latent ODEs
as encoders. Kidger et al. (2020) introduced Neural Controlled Differential Equations (NCDEs),
which can be viewed as the deep limit of RNNs. However, complex mechanisms involved in these
methods exacerbate the computational burden during training. In contrast, our approach is built on
common NODEs, requiring only simple multi-layer perceptrons (MLPs) and the VF loss. It can
significantly speed up NODE training and improve the robustness against noisy data. Biloš et al.
(2021) introduced Neural Flows as an alternative to NODEs, which directly use DNNs to model the
solution of ODEs. However, they have difficulty modeling autonomous systems.

Acceleration Techniques of NODEs. Existing works on accelerating the NODEs training can be di-
vided into three categories. (i) Regularization-based methods. Some approaches try to constrain the
complexity of learned dynamics using regularization techniques, including high-order derivatives
regularization (Kelly et al., 2020), kinetic regularization (Finlay et al., 2020), temporal regulariza-
tion (Ghosh et al., 2020) and others. Unfortunately, these methods may only accelerate inference,
and the training time may not be reduced. (ii) Design new architectures. Some works directly restrict
the dynamics by designing special architectures of NODEs, for example, Heavy Ball NODEs (Xia
et al., 2021) and Nesterov NODEs (Nguyen et al., 2022). In addition, model order reduction tech-
niques have been utilized to directly compress DNNs in NODEs (Lehtimäki et al., 2022). However,
these methods limit the expressivity of learned dynamics, making them unsuitable for dynamical sys-
tems. (iii) Modify training process. Other approaches try to modify the training process of NODEs
to implement acceleration, such as the IRDM (Daulbaev et al., 2020), seminorm approach (Kidger
et al., 2021), the Taylor theorem (Djeumou et al., 2022), the Gauß–Legendre quadrature (Norcliffe
& Deisenroth, 2023), and the sensitivity-free gradient descent (Matei et al., 2023). Nevertheless, all
existing modifications still rely on ODE solvers. Thus, the existing computational bottleneck is not
tackled effectively, leading to poor acceleration performance. In contrast, our method only performs
global numerical integrals, which is much more efficient than existing approaches.

Variation Formulation of ODEs. The VF method, as employed in our work, was initially intro-
duced for parameter estimation of known ODEs (Brunel et al., 2014). Subsequent research, such as
D-CODE (Qian et al., 2022), extended the use of VF for symbolic regression to facilitate the dis-
covery of equations. This approach was primarily adopted to circumvent the need for numerically
estimating derivatives from noisy data. However, it was not utilized to expedite the training of mod-
els, unlike in our work. Furthermore, the evaluation of D-CODE was limited to dynamical systems
sampled at regular intervals, employing the basic compound trapezoidal rule (Press, 2007) for com-
puting numerical integrals in the loss function. Notably, D-CODE did not address the challenges
posed by oscillatory integrals, which arise with the Fourier basis function (Deaño et al., 2017). In
contrast, our application of VF to NODEs serves distinct purposes. Firstly, we leverage VF to accel-
erate NODEs training. Secondly, we utilize it to avoid autoregression, thereby enhancing prediction
accuracy. From an application perspective, our focus is on modeling dynamical systems based on
irregularly sampled data. On the technical front, we integrate Filon’s method to effectively handle
oscillatory integrals, a significant advancement over the D-CODE approach.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PRELIMINARIES

Problem Setup. Consider a time-series dataset in which each trajectory is represented as
{(t0,x(t0)), (t1,x(t1)), . . . , (tK ,x(tK))}, where 0 = t0 < t1 < · · · < tK = T , and x(tk) =
[x1(tk), x2(tk), . . . , xd(tk)]

⊤ ∈ (R ∪ {∗})d are noisy observations, with ∗ denoting possible miss-
ing values. Our goal is to speed up the training of NODEs for dynamical systems.

3.1 VARIATIONAL FORMULATION OF ODES

In this subsection, we formally introduce the variational formulation (VF) of ODEs we utilized in
Theorem 1. Through this formulation, we can establish a direct connection between the trajectory
x and the vector field f through a numerical integral.
Theorem 1 (Variational Formulation of ODEs (Brunel et al., 2014; Hackbusch, 2017)). Consider
d ∈ N+, T ∈ R+, continuous functions x : [0, T] → Rd, f : [0, T]× Rd → Rd, and ϕ ∈ C1[0, T],
where C1 is the set of continuously differentiable functions. Here we define the functionals

c(x,f , ϕ) :=

∫ T

0

x(t)ϕ̇(t) dt+

∫ T

0

f(t,x(t))ϕ(t) dt . (2)

Then x is the solution to the ODEs ẋ = f(t,x) if and only if

c(x,f , ϕ) = 0, ∀ϕ ∈ C1[0, T] s.t. ϕ(0) = ϕ(T) = 0. (3)

The proof of Theorem 1 can be found in (Qian et al., 2022). This theorem establishes the necessary
and sufficient conditions under which x is the solution of the ODEs ẋ = f(t,x). Moreover, in
contrast to existing training frameworks for NODEs, this connection does not rely on solving the
ODE numerically.

Intuitively, for a NODE expressed as Eq. (1), we can attempt to find the optimal parameters θ by
minimizing ∥c(x,f , ϕ)∥22 =

∑d
j=1 c

2
j (x,f , ϕ) to zero to satisfy Eq. (3). To operationalize this

concept in NODE training, we introduce Theorem 2 (Qian et al., 2022), which is outlined below.
Theorem 2. Let x : [0, T] → Rd be a continuously differentiable function which satisfies ẋ =
f(t,x). Then for the Lipschitz continuous neural network fθ : [0, T] × Rd → Rd, where θ are
parameters, the following limit holds.

lim
L→∞

L∑
ℓ=1

c2j (x,fθ, ϕℓ) = ∥(fθ,j − fj) ◦ (t,x)∥22, (4)

where {ϕ1, ϕ2, . . . , ϕL} are a series of Hilbert orthonormal basis for L2[0, T] such that ϕℓ(0) =

ϕℓ(T) = 0, ℓ = 1, . . . , L and ∥(fθ,j − fj) ◦ (t,x)∥22 =
∫ T

0
[fθ,j(t,x(t))− fj(t,x(t))]

2
dt.

The proof of Theorem 2 can be found in Appendix B. In general, Theorem 2 enables the appli-
cation of the VF to the training of NODEs. By leveraging this theorem, we convert an infinite
number of constraints into a series of constraints using a set of orthogonal basis functions. Addi-
tionally, we establish a connection between the VF and distances between functions, implying that
as ∥c(x,fθ, ϕ)∥22 converges to zero, the parameters θ in NODEs also converge to their optimal
values.

3.2 FILON’S METHOD

Filon’s method is designed for oscillatory integrals. Consider the integral
∫ T

0
h(t) sin(ωt) dt. We

aim to compute this integral numerically using the available data points {h(tk)}Kk=0 with 0 = t0 <
t1 < · · · < tK = T .

For general numerical integration techniques, such as the Newton-Cotes formula (Press, 2007), they
utilize polynomials pk(t) to approximate the entire integrand h(t) sin(ωt) within each time inter-
val [tk, tk+1]. Consequently, these methods struggle to handle high-frequency oscillations as ω
increases, because polynomials cannot effectively match the high-order derivatives of the integrand.
Further analysis on this issue is provided in Appendix C. To address this limitation, we introduce

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Filon’s method (Deaño et al., 2017), which employs polynomials solely to approximate the non-
oscillatory component h(t) in the original integrand. This approach enables the estimation of the
original integral as follows:∫ T

0

h(t) sin(ωt) dt =

K−1∑
k=0

∫ tk+1

tk

h(t) sin(ωt) dt ≈
K−1∑
k=0

∫ tk+1

tk

qk(t) sin(ωt) dt , (5)

where qk(t) is the approximate n-th-order polynomial of h(t) over the time interval [tk, tk+1]. It is
important to note that the integral

∫ tk+1

tk
qk(t) sin(ωt) dt can always be computed analytically. This

approach ensures that the accuracy of numerical integrals is not affected by ω, effectively addressing
the challenge of oscillatory integrals.

4 PROPOSED METHOD

In this section, we begin by introducing the VF loss for NODEs based on Theorem 2 and addressing
the computational challenges in the VF loss using Filon’s method and natural cubic spline regression.
Then, we elaborate on the steps of VF-NODEs. Finally, we provide a fundamental analysis of the
acceleration benefits of our approach.

4.1 COMPUTING THE VF LOSS

In Section 3.1, we systematically introduced the VF utilized in this work, and demonstrated the
connection between this formulation and the distance between the vector field fθ of the NODE and
the ground truth vector field f . Based on Theorem 1 and Theorem 2, the optimal parameters θ of a
NODE, as expressed in Eq. (1), can be obtained by solving the following optimization problem:

θ⋆ = argmin
θ

N∑
i=1

L∑
ℓ=1

∥∥∥c(x[i],fθ, ϕℓ)
∥∥∥2
2
,

c(x[i],fθ, ϕℓ) =

∫ T

0

x[i](t)ϕ̇ℓ(t) dt+

∫ T

0

fθ(t,x
[i](t))ϕℓ(t) dt ,

(6)

where {x[i]}Ni=1 are trajectories in the dataset, and ϕℓ(t) =
√

2/T sin(πℓt/T), which can be consid-
ered as the sine Fourier basis. However, computing the VF loss poses two computational challenges.
(i) The use of the sine Fourier basis introduces oscillatory terms into the integrals. (ii) It is challeng-
ing to compute integrals numerically from noisy and incomplete data.

To address the first challenge, we introduce the Filon’s method, which is designed for oscillatory
integrals. Integrals in Eq. (6) are one-dimensional oscillatory integrals, and these integrals can be
concluded as

∫ T

0
h(t) sin(ωt) dt, without loss of generality. As discussed in Section 3.2, polynomi-

als struggle to capture the nature of the oscillatory integrand h(t) sin(ωt) as ω increases. To tackle
this issue, we leverage Filon’s method, which uses polynomials to approximate the non-oscillatory
part h(t) in each interval. By focusing on h(t) alone, we eliminate the influence of ω on the precision
of the closed-form approximation.

To deal with the second challenge, we introduce the natural cubic spline regression (De Boor, 1978),
which is used to build up a precise closed-form polynomial approximation for h(t) in Filon’s method
from noisy data. For {h(tk)}Kk=0 with 0 = t0 < t1 < · · · < tK = T , we aim to construct a cubic
polynomial qk(t) in each interval [tk, tk+1] in Eq. (5):

qk(t) = ak,0 +

3∑
m=1

ak,m(t− tk)
m = ak,0 + ak,1(t− tk) + ak,2(t− tk)

2 + ak,3(t− tk)
3. (7)

By meeting the requirements for continuity, differentiability, natural boundary conditions, and
smoothness, we can calculate the coefficients ak,m (k = 0, . . . ,K − 1,m = 0, 1, 2, 3) in Eq. (7). In
general, spline regression allows us to create sufficiently precise closed-form approximations while
maintaining smoothness. We provide a detailed process for this calculation in Appendix D.

In summary, to compute the integral
∫ T

0
h(t) sin(ωt) dt, we first construct the natural cubic

spline approximation of h(t), denoted as qk(t), within each time interval using sampled data

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

{(tk, h(tk))}Kk=0. By substituting Eq. (7) into Eq. (5), we can estimate the integral accurately by
computing

∑K−1
k=0

∫ tk+1

tk
qk(t) sin(ωt) dt.

4.2 VF-NODES

The proposed VF-NODE uses the same neural architecture as the vanilla NODE, but it is trained
based on the VF loss. Given a trajectory {(tk,x(tk))}Kk=0, where 0 = t0 < t1 < · · · < tK = T , we
present the detailed steps of our method.

Step 1: Perform natural cubic spline regression on x(tk) to get the spline coefficients ak,m.

Step 2: Estimate the trajectory based on the spline to remove noise: x̂(tk) = ak,0 +∑3
m=1 ak,m(tk − tk)

m = ak,0 (k = 0, . . . ,K − 1) and x̂(tK) =
∑3

m=0 aK−1,m(tK − tK−1)
m.

Step 3: Evaluate the vector fields fθ(tk, x̂(tk)), k = 0, . . . ,K.

Step 4: Perform natural cubic spline interpolation on fθ(tk, x̂(tk)) to get the spline coefficients
bk,m.

Step 5: Compute the VF loss ∥c(x̂,fθ, ϕℓ)∥22 based on ak,m and bk,m:

L∑
ℓ=1

∥c(x̂,fθ, ϕℓ)∥22 =

L∑
ℓ=1

∥∥∥∥∥
∫ T

0

x̂(t)ϕ̇ℓ(t) dt+

∫ T

0

fθ(t, x̂(t))ϕℓ(t) dt

∥∥∥∥∥
2

2

(8)

where ∫ T

0

x̂(t)ϕ̇ℓ(t) dt =

√
2

T

πℓ

T

K−1∑
k=0

3∑
m=0

ak,m

∫ tk+1

tk

(t− tk)
m cos

πℓt

T
dt ,

∫ T

0

fθ(t, x̂(t))ϕℓ(t) dt ≈
√

2

T

K−1∑
k=0

3∑
m=0

bk,m

∫ tk+1

tk

(t− tk)
m sin

πℓt

T
dt .

(9)

These steps are summarized as Algorithm 1 in Appendix E. In this process, the natural cubic spline
serves two key roles in our method. (i) It builds up precise closed-form approximations of the trajec-
tory x(t), denoted as x̂(t), and vector fields fθ(t, x̂(t)) from noisy observations, which is essential
for estimating the oscillatory integral accurately. (ii) It fills in missing values in the trajectory x(t),
which is necessary for evaluating the vector fields fθ(t, x̂(t)).
Remark 1. It is important to emphasize that our primary use of natural cubic spline is for construct-
ing the closed-form approximation, which is essential for computing numerical integrals, rather than
for transforming the original irregularly sampled data into regularly spaced data. While we do uti-
lize this technique to fill in missing values, it is a natural byproduct of constructing the closed-form
approximation.
Remark 2. Because we have removed noise in observations by performing spline regression on x(t),
we only need to perform spline interpolation on fθ(t, x̂(t)) for obtaining a closed-form approxima-
tion.

4.3 FUNDAMENTAL ANALYSIS FOR THE ACCELERATION OF VF-NODES

Now we demonstrate how our method accelerates the training of NODEs in two ways: (1) reduce the
number of function evaluations (NFEs) and (2) improve parallelizability. Consider a trajectory with
M observed data points. As shown in Fig. 1 (a), ODE-solver-based training methods require evalu-
ating vector fields fθ many more than M times. For example, common adaptive-step-size explicit
Runge-Kutta methods (Butcher, 2016) use an autoregressive formula xn+1 = xn + h

∑J
j=1 zjgj

to estimate the solution of a NODE expressed as in Eq. (1). Here, h is the step size, J is the order
of the ODE solver, zj are coefficients and gj are evaluations of the DNN-based vector field fθ. In
this case, to make one-step-forward prediction, the DNN-based vector field must be be evaluated
for J times. Moreover, to ensure accuracy, these ODE solvers often require evaluating the DNN-
based vector field at additional data points beyond those provided in the observations. As a result,
the vector field fθ will be evaluated ≫ M × J times using ODE-solver-based training methods.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Additionally, due to the autoregressive nature of ODE solvers, these vector fields must be evaluated
step by step.

However, VF-NODEs only evaluate the DNN-based vector fields for exactly M times, as shown
in Fig. 1 (b). As discussed in Section 4.2, to compute global integrals in the VF loss numerically,
we evaluate the vector fields fθ only at the specific sampled data points in Step 3, in order to
construct a closed-form spline approximation in Step 4. In addition, these vector fields can be
evaluated simultaneously in Step 3. Although L integrals need to be computed in c(x,fθ, ϕℓ) for
ℓ = 1, . . . , L, these integrals share the same vector fields, allowing for efficient computation.

Summary of the Proposed VF-NODEs. Our method enables the learning of parameters in NODEs
without relying on numerical ODE solvers. Regarding computational efficiency, our approach re-
quires only a series of global integrals for each trajectory. In these numerical integrals, the vector
fields of NODEs are only evaluated at observed data points in parallel, significantly reducing the
number of function evaluations and achieving better parallelizability. Additionally, our approach
effectively mitigates error accumulation from autoregression, thus improving prediction accuracy.

5 EXPERIMENTS

In this section, we conduct a series of experiments to evaluate the performance of VF-NODEs. We
begin by applying the method to four dynamical systems of various dimensions. Subsequently, we
assess its performance on the real-world COVID-19 dataset. Lastly, we perform ablation studies to
examine the model’s key components.

Baselines. To evaluate acceleration performance, we compare our method against the following
training approaches for NODE-based models: (1) the discretize-then-optimize approach (Dis-Opt),
(2) the optimize-then-discretize approach (Opt-Dis) (Chen et al., 2018), and (3) the seminorm ap-
proach (Kidger et al., 2021). Additionally, we compare the accuracy of our proposed method
against two categories of SOTA methods. The first category includes NODE-based models: (1)
Vanilla NODE (Chen et al., 2018), (2) TayNODE (Kelly et al., 2020), (3) Latent ODE with RNN
encoder (Chen et al., 2018), (4) ODE-RNN (Rubanova et al., 2019), (5) Latent ODE with ODE-
RNN encoder (Rubanova et al., 2019), and (6) NCDE (Kidger et al., 2020). The second category
consists of Neural Flows (Biloš et al., 2021), where neural networks gθ are used to directly model
the solution of ODEs as x = gθ(t,x0). This category includes models such as ResNet Flows and
GRU Flows. Detailed hyperparameter settings of these models are provided in Appendix H.1. We
also discuss other training methods for NODEs based on spline mtehods, as shown in Appendix G.

5.1 SIMULATION OF LOW-DIMENSIONAL DYNAMICAL SYSTEMS

Dynamical Systems. We select four dynamical systems from fields such as biology, biochem-
istry, genetics and epidemiology: the glycolytic oscillator (Sel’Kov, 1968), the genetic toggle
switch (Gardner et al., 2000), the repressilator (Elowitz & Leibler, 2000), and the age-structured
SIR model (Ram & Schaposnik, 2021). These systems vary in dimensionality: the repressilator is
six-dimensional, and the age-structured SIR model is 27-dimensional, while the remaining systems
are two-dimensional. Further dataset details are provided in Appendix H.2.

Datasets. For each system, except the age-structured SIR model, we generate 125 trajectories with
randomly sampled initial conditions, of which 100 are used for training and 25 for validation. Each
trajectory is uniformly sampled with 100 data points from U [0, T], with values randomly dropped
at a rate of 1 − r via masking. Following (Qian et al., 2022), Gaussian noise ϵ = σR · std(x(t))
is added to each observation. For baselines, each trajectory is segmented into 5 short segments to
enhance the performance of baselines, while for VF-NODEs, the whole trajectory is used to improve
the precision of spline regression. Additionally, we generate 25 test trajectories, each containing 200
randomly sampled points. The first 100 points are sampled from U [0, T] for interpolation tasks, and
the remaining 100 from U [T, 2T] for extrapolation tasks. In our experiments, T is set to 10, σR to
0.01, and the retention ratio to r = 0.8. All settings remain the same for the age-structured SIR
model except for the number of trajectories: 500 are generated for training and validation (400 for
training and 100 for validation), and an additional 100 trajectories are generated for testing.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Evaluation on Acceleration. We compare the acceleration performance of our method against
NODE-based baselines in terms of average training time per epoch using the glycolytic oscillator.
As shown in Fig. 2, our method significantly accelerates the training of NODE-based baselines by
a factor of 10 to 1000. This improvement is attributed to our approach, which relies solely on
global numerical integration over the time domain, thereby reducing NFEs during training. Average
training time per epoch on other dynamical systems are provided in Appendix F.1.

VF-NODEs Vanilla NODE TayNODE Latent ODE 1 ODE-RNN Latent ODE 2 NCDE

10 1

100

101

Av
g

Tr
ai

ni
ng

 T
im

e
/ E

po
ch

 (s
) VF-NODEs

Dis-Opt
Opt-Dis
Seminorm

Figure 2: Average training time per epoch (second) for each method on the glycolytic model. Our
method can achieve 10 to 1000 times faster than the baselines. Due to the high stability of the
training speed for some methods, the uncertainty is negligible and not clearly visible in the figure.
Evaluation on Prediction Error. We evaluate the prediction error of different methods on in-
terpolation and extrapolation tasks using mean squared error (MSE), as shown in Tables 1 and 2
respectively. The results demonstrate that our method consistently achieves higher or comparable
performance compared wth the baselines. This superior performance can be attributed to two key
factors: (1) the standard NODE architecture in VF-NODEs aligns well with dynamical systems
represented by ODEs, and (2) the use of global integrals in the VF loss mitigates autoregression, ef-
fectively reducing error accumulation. Although Vanilla NODEs share the same neural architecture,
they rely on ODE solvers for training, which leads to error accumulation and significantly slower
training speeds compared to VF-NODEs. In the case of TayNODEs, the regularization term restricts
the complexity of the learned dynamics, limiting the expressivity of the model and leading to even
worse performance than Vanilla NODEs. Neural Flows also perform worse than VF-NODEs, as
they must explicitly model the time dependencies of solutions. In contrast, VF-NODEs can leverage
ODE solvers to handle time evolution during inference. Additionally, other baselines are designed
for more general irregular time series data. They do not align with the form of these dynamical
systems. Detailed training settings can be found in Appendix H.3.

Additionally, we test our method on the Gompertz model (Gompertz, 1825) and the Lotka-Volterra
equations (Kingsland, 1995). Related experimental results can be found in Appendix F.2.

Table 1: Testing MSE (mean±standard deviation) for interpolation tasks on 4 dynamical systems
with 80% observed data (r = 0.8). Lower values indicate better performance. Here e±n refers to
×10±n. Latent ODE 1 refers to Latent ODE with an RNN encoder. Latent ODE 2 refers to Latent
ODE with an ODE-RNN encoder. The best results are highlighted in bold black, and the second-
best results are highlighted in bold purple.

Glycolytic Toggle Repressilator AgeSIR
Vanilla NODE (1.51e-03)±(1.40e-03) (8.00e-04)±(8.69e-04) (2.25e-02)±(5.04e-03) (7.54e-03)±(6.58e-04)

TayNODE (3.20e-03)±(1.32e-03) (1.37e-02)±(9.96e-03) (1.43e-01)±(1.72e-02) (3.18e-01)±(7.36e-02)
Latent ODE 1 (2.21e-01)±(3.35e-02) (6.57e-01)±(1.48e-01) (2.33e+01)±(9.23e-01) (4.18e+01)±(6.56e+00)

ODE-RNN (8.80e-05)±(2.30e-05) (1.63e-03)±(5.56e-04) (1.41e-01)±(7.97e-03) (6.75e+00)±(3.43e-01)
Latent ODE 2 (1.00e-01)±(1.87e-02) (6.31e-01)±(4.69e-01) (7.47e-01)±(8.77e-02) (1.36e+09)±(1.93e+09)

NCDE (3.49e-02)±(1.36e-02) (3.96e-02)±(3.43e-02) (1.51e+00)±(1.22e+00) (1.22e+01)±(3.75e+00)
ResNet Flow (2.84e-01)±(5.69e-02) (7.09e-01)±(2.21e-01) (1.03e+01)±(8.14e-01) (2.50e+00)±(1.96e-01)
GRU Flow (3.80e-01)±(5.34e-02) (2.45e+00)±(1.88e-01) (7.45e+00)±(4.68e-02) (4.19e+01)±(1.22e-01)

VF-NODE (Ours) (6.35e-05)±(2.68e-06) (1.69e-04)±(6.09e-05) (1.92e-02)±(2.62e-04) (7.39e-03)±(6.71e-04)

5.2 REAL-WORLD APPLICATION: COVID-19 DATASET

We also evaluate the performance of VF-NODEs on the real-world COVID-19 dataset. Us-
ing covsirphy (Takaya & Team, 2020–2024), we leverage data from the COVID-19 Data

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Testing MSE (mean±standard deviation) for extrapolation task on 4 dynamical systems
with 80% observed data (r = 0.8). Lower values indicate better performance. Here e±n refers to
×10±n. Latent ODE 1 refers to Latent ODE with an RNN encoder. Latent ODE 2 refers to Latent
ODE with an ODE-RNN encoder. The best results are highlighted in bold black, and the second-
best results are highlighted in bold purple.

Glycolytic Toggle Repressilator AgeSIR
Vanilla NODE (8.79e-04)±(7.64e-04) (8.14e-07)±(6.72e-07) (1.25e-01)±(3.11e-02) (1.99e-02)±(1.69e-03)

TayNODE (4.71e-03)±(3.60e-03) (5.09e-02)±(5.09e-02) (8.73e-01)±(1.35e-01) (4.52e-01)±(1.31e-01)
Latent ODE 1 (2.39e-01)±(7.29e-02) (1.48e+00)±(1.28e+00) (9.14e+00)±(1.19e+00) (2.30e+02)±(4.85e+01)

ODE-RNN (4.68e-05)±(1.15e-05) (2.04e-04)±(1.42e-04) (2.02e-01)±(7.51e-03) (7.48e+00)±(9.12e-02)
Latent ODE 2 (1.82e-01)±(1.61e-01) (4.96e+00)±(5.70e+00) (3.09e+00)±(2.99e-01) (1.36e+09)±(1.93e+09)

NCDE (8.00e-01)±(4.48e-01) (1.03e+00)±(7.38e-01) (6.73e+00)±(4.85e+00) (2.13e+01)±(8.27e+00)
ResNet Flow (3.47e+00)±(2.82e+00) (5.32e+00)±(1.97e+00) (6.56e+01)±(2.23e+01) (1.95e+01)±(3.29e-01)
GRU Flow (7.39e-01)±(2.23e-01) (5.03e+00)±(5.22e-01) (1.84e+01)±(5.74e-01) (6.02e+01)±(1.89e-01)

VF NODE (Ours) (1.63e-04)±(3.05e-05) (4.79e-07)±(5.24e-08) (1.23e-01)±(1.48e-02) (2.37e-02)±(1.61e-03)

Hub (Guidotti & Ardia, 2020). This data can be modeled using a four-dimensional phase-dependent
SIR-F framework (Takaya & Team, 2020–2024), where the ODE parameters vary over time. VF-
NODEs, however, are not designed to handle these time-varying dynamics due to the limitations of
the standard NODE architecture. To address this, we apply S-R analysis (Balkew, 2010) to segment
the data, allowing the ODE parameters to remain constant within each segment. In this study, we
evaluate our method and the baselines using data from four countries: Japan, Italy, Norway, and
India. For each country, we extract 100 data points from the longest segment in a single trajectory,
allocating 80 for training, 10 for validation, and 10 for testing. Each data point consists of four
variables: Susceptible, Infected, Recovered, and Fatal. We standardize the data for consistency and
employ spline regression to smooth it. The experimental results, presented in Table 3, demonstrate
that our method achieves significantly better performance compared to the baselines. This superior
performance can be attributed to the fact that the COVID-19 dataset conforms to the SIR-F ODE
system, which aligns with the inductive bias of VF-NODEs. Vanilla NODEs outperform most other
baselines because they share the same neural architecture as VF-NODEs. However, Vanilla NODEs
have lower accuracy than our method due to the error accumulation caused by autoregression in
ODE-solver-based training methods. Detailed training settings are provided in Appendix H.3.

Table 3: Testing MSE (mean±standard deviation) on the real-world COVID-19 dataset. Lower
values indicate better performance. Here e±n refers to ×10±n. Latent ODE 1 refers to Latent ODE
with an RNN encoder. Latent ODE 2 refers to Latent ODE with an ODE-RNN encoder. The best
results are highlighted in bold black.

Japan Italy Norway India
Vanilla NODE (1.42e+00)±(7.44e-01) (1.35e-02)±(1.39e-02) (1.03e-03)±(6.30e-05) (8.86e-04)±(3.76e-04)

TayNODE (2.02e+00)±(8.00e-01) (3.88e-02)±(5.70e-03) (5.57e-04)±(1.13e-04) (1.18e-02)±(1.08e-02)
Latent ODE 1 (1.02e+01)±(4.42e-01) (6.56e-01)±(2.87e-01) (1.83e-01)±(1.10e-01) (5.69e-01)±(1.59e-01)

ODE-RNN (8.43e+00)±(6.56e-01) (1.10e-01)±(1.12e-02) (5.58e-03)±(1.48e-03) (2.09e-01)±(1.74e-01)
Latent ODE 2 (1.12e+01)±(1.31e+00) (3.36e-01)±(2.70e-01) (4.12e-01)±(2.90e-01) (4.07e-01)±(1.54e-01)

NCDE (1.14e+01)±(1.10e+00) (8.72e-01)±(2.46e-01) (1.27e-02)±(1.20e-02) (3.94e-01)±(8.18e-02)
ResNet Flow (9.33e-01)±(1.69e-01) (3.69e-02)±(3.20e-03) (2.51e-02)±(1.65e-02) (2.04e-02)±(2.01e-03)
GRU Flow (1.39e+00)±(2.96e-02) (8.63e-03)±(1.17e-04) (3.07e-03)±(3.07e-07) (2.52e-03)±(1.84e-04)

VF NODE (Ours) (1.87e-01)±(4.82e-02) (1.64e-03)±(2.19e-04) (3.43e-04)±(1.18e-04) (5.68e-04)±(2.28e-04)

Furthermore, we also apply the proposed VF-NODEs to model the temporal effects of chemotherapy
on tumor volume. The experimental results are presented in Appendix F.3.

5.3 ABLATION STUDIES

Lastly, we conduct ablation studies to investigate the impact of various components on the perfor-
mance of VF-NODEs. Specifically, we examine: (1) the influence of Filon’s method and spline
regression and (2) the type of basis functions. The experimental settings are consistent with those
described in Section 5.1.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Influence of Filon’s method and spline regression. There are two key components enabling the
accurate computation of the VF loss in VF-NODEs: (1) Filon’s method and (2) natural cubic spline
regression. To evaluate the influence of these components, we assess the performance of VF-NODEs
under the following settings: (1) using only Filon’s method (Filon’s method + natural cubic spline
interpolation), (2) using only natural cubic spline regression (trapezoidal rule (Press, 2007) + natural
cubic spline regression), (3) using neither (trapezoidal rule + natural cubic spline interpolation).
(4) using Filon’s method with Hermite cubic spline. The experimental results, shown in Table 4,
demonstrate that while both components enhance performance, natural cubic spline regression has
a more significant impact. The inferior performance of Hermite cubic spline can be attributed to its
reliance on numerical differentiation, which is ill-posed on noisy, sparse data.

Table 4: Testing MSE (mean±standard deviation) for the ablation study on Filon’s method and spline
regression. Lower values indicate better performance. Here e±n refers to ×10±n.

Glycolytic Toggle
Filon Spline Regression Interpolation Extrapolation Interpolation Extrapolation

✓ Natural ✗ (9.13e+05)±(1.29e+06) (2.50e+30)±(3.53e+30) (9.39e+16)±(1.33e+17) (8.16e+37)±(1.15e+38)
✗ Natural ✓ (2.78e+01)±(2.65e+01) (5.76e+02)±(5.67e+02) (1.40e+09)±(1.40e+09) (4.35e+20)±(4.35e+20)
✗ Natural ✗ (5.59e+01)±(5.48e+01) (6.66e+01)±(6.55e+01) (1.69e+14)±(1.69e+14) (8.29e+29)±(8.29e+29)
✓ Hermite ✗ (1.54e+00)±(2.07e+00) (3.90e+01)±(5.51e+01) (3.74e-01)±(1.14e-01) (9.66e-01)±(4.43e-01)

VF-NODE (Ours) (6.35e-05)±(2.68e-06) (1.63e-04)±(3.05e-05) (1.69e-04)±(6.09e-05) (4.79e-07)±(5.24e-08)

Type of basis functions. To illustrate the rationale behind using Fourier basis and Filon’s method,
we test two alternative types of basis functions: (1) ϕℓ(t) = (t/T)(t/T − 1)(t/T − ℓ/L), and (2)
Hermite cubic spline interpolation at three points: (0, 0), (T/2, ℓ/L), and (T, 0), with derivatives
at these points set to 0. Filon’s method was not applied to these basis functions. The experimental
results, shown in Table 5, indicate that VF-NODEs with Fourier basis significantly outperform those
with other basis functions. This can be attributed to the requirement that ϕℓ should form a Hilbert
orthonormal basis in the function space, as per Theorem 2. However, performing Gram-Schmidt
orthonormalization on these basis functions is computationally expensive. Other Hilbert orthonor-
mal basis functions, such as orthonormal polynomials Chihara (2011), also exist but fail to meet the
boundary conditions ϕℓ(0) = ϕℓ(T) = 0. While Qian et al. (2022) used B-splines, their recursive
generation (De Boor, 1978) can significantly slow down the training of VF-NODEs.

Table 5: Testing MSE (mean±standard deviation) for the ablation study on the types for basis func-
tions ϕℓ. Lower values indicate better performance. Here e±n refers to ×10±n.

Glycolytic Toggle
Interpolation Extrapolation Interpolation Extrapolation

(t/T)(t/T − 1)(t/T − ℓ/L) (3.89e-02)±(8.37e-03) (1.56e-02)±(8.54e-03) (3.44e-01)±(3.79e-01) (6.23e-01)±(7.38e-01)
Hermite-based basis (7.06e-01)±(5.39e-01) (5.29e-01)±(4.99e-01) (4.16e+00)±(4.55e+00) (1.62e+01)±(2.06e+01)
VF-NODE (Ours) (6.35e-05)±(2.68e-06) (1.63e-04)±(3.05e-05) (1.69e-04)±(6.09e-05) (4.79e-07)±(5.24e-08)

We also conduct some additional ablation studies, including the sensitivity of VF-NODEs to hyper-
parameters, the effect of sampling, and the effect of noise, which can be found in Appendix F.4.

6 CONCLUSION AND LIMITATIONS

This work introduced a novel training method based on variational formulation to accelerate the
training of NODEs for dynamical systems. Our approach required only a series of global integrals
in the loss computation, eliminating the need for traditional numerical ODE solvers. To overcome
the challenges posed by oscillatory integrals in the VF loss, we incorporated Filon’s method to en-
hance model performance. Additionally, we developed a natural cubic spline regression to better
handle noisy and incomplete data. Extensive experiments demonstrated that our method signifi-
cantly accelerates NODEs training while maintaining high accuracy.

Limitations. A limitation of our approach is its reliance on polynomial-based approximation, which
may not effectively approximate complex trajectories in intricate dynamical systems, such as chaotic
systems, or may fail when the sampling is extremely sparse. Additionally, computing the numerical
integrals requires the trajectory points are available, meaning VF-NODEs are currently applicable
only to time series tasks. In future work, we aim to explore new techniques to address these chal-
lenges, such as coordinate gradient descent (Matei et al., 2023).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

Our research is centered on methodological advancements in NODEs, specifically aiming to enhance
the efficient modeling of dynamical systems in fields such as biology, epidemiology, and genetics.
This work does not involve human subjects, personal data, or any form of invasive technology. All
datasets used in our experiments are either generated from known ODEs or sourced from publicly
available datasets, ensuring compliance with their respective licenses and usage policies.

REPRODUCIBILITY STATEMENT

We are committed to promoting reproducibility in scientific research. To facilitate this, we have pro-
vided comprehensive details of our experimental setups in Section 5 and Appendix H. This includes
thorough descriptions of the datasets used, model architectures, hyperparameter settings, training
procedures, and evaluation metrics. We will also release our source code for reproducing all experi-
ments on a public repository upon publication.

REFERENCES

Victor M Martinez Alvarez, Rareş Roşca, and Cristian G Fălcuţescu. Dynode: Neural or-
dinary differential equations for dynamics modeling in continuous control. arXiv preprint
arXiv:2009.04278, 2020.

Teshome Mogessie Balkew. The SIR model when S (t) is A multi-exponential function. East Ten-
nessee State University, 2010.

Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan
Günnemann. Neural flows: Efficient alternative to neural odes. Advances in neural informa-
tion processing systems, 34:21325–21337, 2021.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Nicolas J.-B. Brunel, Quentin Clairon, and Florence d’Alche-Buc. Parametric Estimation of Ordi-
nary Differential Equations with Orthogonality Conditions. Journal of the American Statistical
Association, 109(505):173–185, 2014.

John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons,
2016.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Cheng Chi. Nodec: Neural ode for optimal control of unknown dynamical systems. arXiv preprint
arXiv:2401.01836, 2024.

Theodore S Chihara. An introduction to orthogonal polynomials. Courier Corporation, 2011.

Talgat Daulbaev, Alexandr Katrutsa, Larisa Markeeva, Julia Gusak, Andrzej Cichocki, and Ivan
Oseledets. Interpolation technique to speed up gradients propagation in neural odes. Advances in
Neural Information Processing Systems, 33:16689–16700, 2020.

Carl De Boor. A practical guide to splines, volume 27. springer verlag New York, 1978.

Alfredo Deaño, Daan Huybrechs, and Arieh Iserles. Computing highly oscillatory integrals. SIAM,
2017.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,

11

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider, Eren
Sezener, Stephen Spencer, Srivatsan Srinivasan, Milovs Stanojevic, Wojciech Stokowiec, Luyu
Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL http:
//github.com/google-deepmind.

Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, and Ufuk Topcu. Taylor-lagrange
neural ordinary differential equations: Toward fast training and evaluation of neural odes. arXiv
preprint arXiv:2201.05715, 2022.

Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional regula-
tors. Nature, 403(6767):335–338, 2000.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your
neural ode: the world of jacobian and kinetic regularization. In International conference on
machine learning, pp. 3154–3164. PMLR, 2020.

Timothy S Gardner, Charles R Cantor, and James J Collins. Construction of a genetic toggle switch
in escherichia coli. Nature, 403(6767):339–342, 2000.

Amir Gholami, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-efficient
gradients for neural odes. arXiv preprint arXiv:1902.10298, 2019.

Arnab Ghosh, Harkirat Behl, Emilien Dupont, Philip Torr, and Vinay Namboodiri. Steer: Simple
temporal regularization for neural ode. Advances in Neural Information Processing Systems, 33:
14831–14843, 2020.

Benjamin Gompertz. Xxiv. on the nature of the function expressive of the law of human mortality,
and on a new mode of determining the value of life contingencies. in a letter to francis baily, esq.
frs &c. Philosophical transactions of the Royal Society of London, (115):513–583, 1825.

Emanuele Guidotti and David Ardia. Covid-19 data hub. Journal of Open Source Software, 5(51):
2376, 2020. doi: 10.21105/joss.02376.

Wolfgang Hackbusch. Variational formulation. Elliptic Differential Equations: Theory and Numer-
ical Treatment, pp. 159–180, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Jacob Kelly, Jesse Bettencourt, Matthew J Johnson, and David K Duvenaud. Learning differential
equations that are easy to solve. Advances in Neural Information Processing Systems, 33:4370–
4380, 2020.

Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

Patrick Kidger and Cristian Garcia. Equinox: neural networks in JAX via callable PyTrees and
filtered transformations. Differentiable Programming workshop at Neural Information Processing
Systems 2021, 2021.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equa-
tions for irregular time series. Advances in Neural Information Processing Systems, 33:6696–
6707, 2020.

Patrick Kidger, Ricky TQ Chen, and Terry J Lyons. ” hey, that’s not an ode”: Faster ode adjoints via
seminorms. In ICML, pp. 5443–5452, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Sharon E Kingsland. Modeling nature. University of Chicago Press, 1995.

12

http://github.com/google-deepmind
http://github.com/google-deepmind

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ian Knowles and Robert J Renka. Methods for numerical differentiation of noisy data. Electron. J.
Differ. Equ, 21:235–246, 2014.

Mikko Lehtimäki, Lassi Paunonen, and Marja-Leena Linne. Accelerating neural odes using model
order reduction. IEEE Transactions on Neural Networks and Learning Systems, 2022.

Xin Li, Jingdong Zhang, Qunxi Zhu, Chengli Zhao, Xue Zhang, Xiaojun Duan, and Wei Lin.
From fourier to neural odes: Flow matching for modeling complex systems. arXiv preprint
arXiv:2405.11542, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Ion Matei, Maksym Zhenirovskyy, Johan De Kleer, and John Maxwell. Sensitivity-free gradient
descent algorithms. Journal of Machine Learning Research, 24(300):1–26, 2023.

Ho Huu Nghia Nguyen, Tan Nguyen, Huyen Vo, Stanley Osher, and Thieu Vo. Improving neural
ordinary differential equations with nesterov’s accelerated gradient method. Advances in Neural
Information Processing Systems, 35:7712–7726, 2022.

Alexander Norcliffe and Marc Peter Deisenroth. Faster training of neural odes using gauß–legendre
quadrature. arXiv preprint arXiv:2308.10644, 2023.

Derek Onken and Lars Ruthotto. Discretize-optimize vs. optimize-discretize for time-series regres-
sion and continuous normalizing flows. arXiv preprint arXiv:2005.13420, 2020.

Avik Pal, Yingbo Ma, Viral Shah, and Christopher V Rackauckas. Opening the blackbox: Accel-
erating neural differential equations by regularizing internal solver heuristics. In International
Conference on Machine Learning, pp. 8325–8335. PMLR, 2021.

William H Press. Numerical recipes 3rd edition: The art of scientific computing. Cambridge uni-
versity press, 2007.

Zhaozhi Qian, Krzysztof Kacprzyk, and Mihaela van der Schaar. D-code: Discovering closed-form
odes from observed trajectories. In International Conference on Learning Representations, 2022.

Vishaal Ram and Laura P Schaposnik. A modified age-structured sir model for covid-19 type
viruses. Scientific reports, 11(1):15194, 2021.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

EE Sel’Kov. Self-oscillations in glycolysis 1. a simple kinetic model. European Journal of Bio-
chemistry, 4(1):79–86, 1968.

Hirokazu Takaya and CovsirPhy Development Team. Covsirphy version 3.1.2: Python library for
covid-19 analysis with phase-dependent sir-derived ode models. https://github.com/
lisphilar/covid19-sir, 2020–2024. Accessed: 2024-09-19.

James M Varah. A spline least squares method for numerical parameter estimation in differential
equations. SIAM Journal on Scientific and Statistical Computing, 3(1):28–46, 1982.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Song Wen, Hao Wang, and Dimitris Metaxas. Social ode: Multi-agent trajectory forecasting with
neural ordinary differential equations. In European Conference on Computer Vision, pp. 217–233.
Springer, 2022.

13

https://github.com/lisphilar/covid19-sir
https://github.com/lisphilar/covid19-sir

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hedi Xia, Vai Suliafu, Hangjie Ji, Tan Nguyen, Andrea Bertozzi, Stanley Osher, and Bao Wang.
Heavy ball neural ordinary differential equations. Advances in Neural Information Processing
Systems, 34:18646–18659, 2021.

Jun Yin, Jiali Li, Iftekhar A Karimi, and Xiaonan Wang. Generalized reactor neural ODE for dy-
namic reaction process modeling with physical interpretability. Chemical Engineering Journal,
452:139487, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A BACKGROUND: TRAINING OF NODES

A.1 FOUNDATIONAL TRAINING FRAMEWORKS OF NODES

In current training frameworks of NODEs, the outcomes are directly computed using numerical
ODE solvers for the forward pass. Consider a scalar-value loss function L(·), the input is the result
of an ODE solver:

L(x(t1)) = L
(
x(t0) +

∫ t1

t0

fθ(t,x)dt

)
= L (ODESolve(fθ,x(t0), t0, t1)) , (10)

Then for the backward pass, to compute gradients ∂L/∂θ , there are two major approaches:
discretize-then-optimize and optimize-then-discretize (Kidger, 2022; Onken & Ruthotto, 2020). In
the discretize-then-optimize approach, operations of ODE solvers are directly backpropagated. In
contrast, the optimize-then-discretize approach, also known as the adjoint sensitivity method, intro-
duces additional backward-in-time adjoint ODEs and calculates the gradients with an integral:

da

dt
= −a⊤ ∂fθ(t,x)

∂x
,

∂L
∂θ

=

∫ t0

t1

a⊤ ∂fθ(t,x)

∂θ
dt. (11)

where a = ∂L
∂x is the adjoint state. Other training frameworks are typically modifications of these

two approaches.

A.2 ERROR ACCUMULATION OF NUMERICAL ODE SOLVERS

In this subsection, we discuss the issue of error accumulation in numerical ODE solvers. ODE
solvers widely used in the context of NODEs can be expressed as

xn+1 = xn + hg(tn,xn),

where h is the step size, and g(·, ·) denotes the updating formula. In essence, numerical ODE solvers
use the state at the current time step to predict the state at the next time step, which can be viewed
as a form of autoregression.

To demonstrate error accumulation, let us consider the simple ODE ẋ = x. The analytical solution of
this ODE is x(t) = x(0) exp(t). We compute the mean absolute percentage error (MAPE) between
the analytical solution and the numerical solution obtained using LSODA in scipy (Virtanen et al.,
2020). The MAPE is shown in Fig. 3. As observed in the figure, the error increases over time. For
untrained NODEs, such error accumulation can lead to poor performance during training.

0 2 4 6 8 10
t

0.000

0.001

0.002

0.003

0.004

0.005

M
AP

E

MAPE between Numerical Solution and Ground Truth

Figure 3: The MAPE between the numerical solution and ground truth (analytic solution) for ẋ = x.

B PROOF OF THEOREM 2

According to (Qian et al., 2022), we present the proof of Theorem 2, which is refined for neural
networks.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof of Theorem 2. Given the definition of c:

c(x,fθ, ϕℓ) :=

∫ T

0

x(t)ϕ̇ℓ(t) dt+

∫ T

0

fθ(t,x(t))ϕℓ(t) dt . (12)

For the first term in Eq. (12), we can express it as:∫ T

0

x(t)ϕ̇ℓ(t) dt =

∫ T

0

x(t) dϕℓ(t) = x(T)ϕℓ(T)− x(0)ϕℓ(0)−
∫ T

0

ẋ(t)ϕℓ(t) dt

= −
∫ T

0

ẋ(t)ϕℓ(t) dt .

(13)

Substituting Eq.(13) into Eq.(12), we obtain:

c(x,fθ, ϕℓ) =

∫ T

0

fθ(t,x(t))ϕℓ(t) dt−
∫ T

0

ẋ(t)ϕℓ(t) dt

=

∫ T

0

(fθ(t,x(t))− ẋ(t))ϕℓ(t) dt

=

∫ T

0

(fθ(t,x(t))− f(t,x(t)))ϕℓ(t) dt .

(14)

Based on Parseval’s identity, for each element in c(x,fθ, ϕℓ), we can obtain:

lim
L→∞

L∑
ℓ=1

c2j (x,fθ, ϕℓ) = lim
L→∞

L∑
ℓ=1

∫ T

0

[(fθ,j(t,x(t))− fj(t,x(t)))ϕℓ(t)]
2
dt

=

∫ T

0

[fθ,j(t,x(t))− fj(t,x(t))]
2
dt

= ∥(fθ,j − fj) ◦ (t,x)∥22

(15)

Thus, we have proven Theorem 2.

C GENERAL NUMERICAL INTEGRATION TECHNIQUES DO NOT WORK FOR
OSCILLATORY INTEGRALS

For integrals over tabular data, Newton-Cotes formula-based methods (Press, 2007), such as the
trapezoidal method and Simpson’s method, are commonly used. These methods estimate the original
integral by: ∫ T

0

h(t) sin(ωt) dt =

K−1∑
k=0

∫ tk+1

tk

h(t) sin(ωt) dt ≈
K−1∑
k=0

∫ tk+1

tk

pk(t) dt , (16)

where pk(t) is the approximate n-th-order polynomial of h(t) sin(ωt) over the time interval
[tk, tk+1]. This approach can compute the integral accurately when the original integrand is an exact
n-th-order polynomial in [tk, tk+1]. However, based on Taylor expansion, such polynomials only
ensure accurate computation of an integral within an error bound of O(g(n+1)) for any integrand
g(t) (Deaño et al., 2017). For the oscillatory integrand h(t) sin(ωt), as ω increases, the (n + 1)-th
derivative of the integrand also increases rapidly and can be pretty large. In this scenario, polyno-
mials may struggle to accurately approximate h(t) sin(ωt), causing general numerical integration
techniques to fail in calculating such integrals.

D SPLINE-BASED APPROXIMATION

In this section, we delve into the application of natural cubic splines for constructing closed-form
approximations from sampled data. Generally, two techniques are employed for this purpose: (1)
natural cubic spline interpolation, and (2) natural cubic spline regression.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Let’s begin with natural cubic splines. Given sampled data {h(tk)}Kk=0, our objective is to construct
a cubic polynomial qk(t) within each interval [tk, tk+1]:

qk(t) =

3∑
m=0

ak,m(t− tk)
m = ak,0 + ak,1(t− tk) + ak,2(t− tk)

2 + ak,3(t− tk)
3, (17)

where ak,m (k = 0, . . . ,K, m = 0, 1, 2, 3) are the coefficients of this polynomial. To ensure a
smooth approximation in each interval, the following conditions must be met:

1. Continuity: The spline must be continuous at each point: qk(tk+1) = qk+1(tk+1).

2. Smoothness: The first and second derivatives of the spline must be continuous at each point:
q′k(tk+1) = q′k+1(tk+1), and q′′k (tk+1) = q′′k+1(tk+1).

3. Natural boundary condition: The second derivative at the endpoints should be zero:
q′′0 (t0) = q′′K−1(tK) = 0.

Now, let’s examine the difference between spline interpolation and spline regression. The crucial
distinction lies in their treatment of the sampled data points. Spline interpolation constructs a piece-
wise cubic polynomial that exactly passes through all the given data points:

qk(tk) = h(tk) =⇒ ak,0 = h(tk).

However, it is not adept at handling noisy data as it strictly adheres to the given points. In contrast,
spline regression constructs a piecewise cubic polynomial that best fits the data points in a least-
squares sense while maintaining smoothness. This is achieved by solving the following optimization
problem:

min
ak,m

{
λ

K∑
k=0

[h(tk)− q(tk)]
2
+ (1− λ)

∫ T

0

(q(2)(t))2 dt

}
, (18)

where q(t) = qk(t), t ∈ [tk, tk+1], and λ ∈ [0, 1] is a hyperparameter used to control smoothness.
When λ = 1, this formulation reduces to spline interpolation. Spline regression is better suited for
handling noisy data. The process of solving these coefficients ak,m can be found in (De Boor, 1978).

In our method, we initially employ spline regression to construct precise closed-form approxima-
tions of trajectories from noisy data, thereby obtaining estimated trajectories x̂(t). Subsequently,
we utilize spline interpolation to construct accurate closed-form approximations of vector fields
f(t, x̂(t)).

E ALGORITHM OF VF-NODE

The detailed algorithm is presented in Algorithm 1. First, we employ natural cubic spline regression
to construct an analytical approximation of trajectories from noisy and partially observed data x,
represented as the coefficients of the spline. Next, we estimate the values in trajectories based
on the spline to remove noise and fill in missing values. Then, we compute the vector fields f
based on estimated trajectories and utilize natural cubic spline regression again to build an analytical
approximation of f . Finally, using Filon’s method, we compute oscillatory integrals based on the
analytical approximations of x and f .

F ADDITIONAL EXPERIMENTS

F.1 ADDITIONAL RESULTS: AVERAGE TRAINING TIME ON OTHER DYNAMICAL SYSTEMS

In addition to the average training time per epoch on the glycolytic model presented in Fig. 2, we
also provide additional timing results for the repressilator model and the age-structured SIR model,
as shown in Fig. 4 and Fig. 5, respectively. For some methods, the uncertainty may not be visible
due to their stability. Across different cases, the proposed VF-NODEs achieve acceleration factors
ranging from 10 to 1000 times compared to the baselines.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 1: VF Loss

Data: A trajectory {(tk,x(tk))}Kk=0, where 0 = t0 < t1 < · · · < tK = T , and
x(tk) = [x1(tk), x2(tk), . . . , xd(tk)]

⊤ ∈ (R ∪ {∗})d
Input: Smoothing coefficient λ ∈ [0, 1], the number of basis functions L, and neural network

fθ(·,x(·))
Output: The VF loss
/*Perform spline regression on x to get spline coefficients */
ak,m = SplineRegression(λ, {(tk,x(tk))}Kk=0) ∈ Rd, k = 0, . . . ,K − 1, m = 0, 1, 2, 3
/*Make estimations of the trajectory x */
for k = 0 : K do

if k < K then
x̂(tk) = ak,0 +

∑3
m=1 ak,m(tk − tk)

m = ak,0

else
x̂(tK) =

∑3
m=0 aK−1,m(tK − tK−1)

m

/*Evaluate the vector fields f */
f(tk) = fθ(tk, x̂(tk)), k = 0, . . . ,K
/*Perform spline interpolation on f to get spline coefficients
*/

bk,m = SplineInterp({(tk,f(tk))}Kk=0) ∈ Rd, k = 0, . . . ,K − 1, m = 0, 1, 2, 3
/*Compute oscillatory integrals */
for ℓ = 1 : L do∫ T

0
x̂(t)ϕ̇ℓ(t) dt =

√
2
T

πℓ
T

∑K−1
k=0

∑3
m=0 ak,m

∫ tk+1

tk
(t− tk)

m cos πℓt
T dt∫ T

0
fθ(t, x̂(t))ϕℓ(t) dt ≈

√
2
T

∑K−1
k=0

∑3
m=0 bk,m

∫ tk+1

tk
(t− tk)

m sin πℓt
T dt

c(x,f , ϕℓ) =
∫ T

0
fθ(t, x̂(t))ϕℓ(t) dt+

∫ T

0
x̂(t)ϕ̇ℓ(t) dt

return
∑L

ℓ=1 ∥c(x,f , ϕℓ)∥22

VF-NODEs Vanilla NODE TayNODE Latent ODE 1 ODE-RNN Latent ODE 2 NCDE

10 1

100

101

Av
g

Tr
ai

ni
ng

 T
im

e
/ E

po
ch

 (s
) VF-NODEs

Dis-Opt
Opt-Dis
Seminorm

Figure 4: Average training time per epoch (second) for each method on the repressilator model.
Our method can achieve 10 to 1000 times faster than the baselines. Due to the high stability of the
training speed for some methods, the uncertainty is negligible and not clearly visible in the figure.

VF-NODEs Vanilla NODE TayNODE Latent ODE 1 ODE-RNN Latent ODE 2 NCDE
10 1

100

101

102

Av
g

Tr
ai

ni
ng

 T
im

e
/ E

po
ch

 (s
) VF-NODEs

Dis-Opt
Opt-Dis
Seminorm

Figure 5: Average training time per epoch (second) for each method on the age-structured SIR
model. Our method can achieve 10 to 1000 times faster than the baselines. Due to the high stability
of the training speed for some methods, the uncertainty is negligible and not clearly visible in the
figure.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F.2 ADDITIONAL EXPERIMENTS ON SIMULATION FOR DYNAMICAL SYSTEMS

Besides four dynamical systems mentioned in Section 5.1, we also test two additional dynamical
systems: (1) the Gompertz model (Gompertz, 1825) and (2) Lotka-Volterra equations (Kingsland,
1995). The Testing MSE for our method and other baselines are presented in Table 6. These ad-
ditional experimental results also demonstrate the outstanding performance of the proposed VF-
NODEs. Detailed training settings are presented in Appendix H.3.

Table 6: Testing MSE (mean±standard deviation) on two additional dynamical systems with 80%
observed data (r = 0.8). Lower values indicate better performance. Here e±n refers to ×10±n.
Latent ODE 1 refers to Latent ODE with an RNN encoder. Latent ODE 2 refers to Latent ODE with
an ODE-RNN encoder. The best results are highlighted in bold black, and the second-best results
are highlighted in bold purple.

Gompertz Lotka-Volterra
Interpolation Extrapolation Interpolation Extrapolation

Vanilla NODE (3.18e-07)±(9.26e-08) (1.76e-07)±(8.74e-10) (1.21e+00)±(5.99e-01) (2.11e+01)±(5.89e+00)
TayNODE (5.15e-05)±(1.02e-05) (4.12e-06)±(2.64e-06) (1.50e+02)±(8.24e+00) (1.64e+02)±(2.85e+00)

Latent ODE 1 (4.54e-03)±(3.56e-04) (2.91e-03)±(3.87e-03) (4.62e+02)±(9.22e+01) (1.69e+03)±(7.16e+02)
ODE-RNN (1.52e-05)±(1.42e-05) (2.04e-06)±(1.82e-06) (1.97e+01)±(2.50e+01) (1.32e+02)±(1.84e+02)

Latent ODE 2 (4.37e-03)±(4.78e-05) (2.26e-03)±(2.18e-04) (2.39e+03)±(1.85e+03) (1.35e+03)±(1.34e+02)
NCDE (5.37e-04)±(2.92e-04) (3.50e-02)±(4.10e-02) (3.94e+00)±(2.52e+00) (3.14e+01)±(2.47e+01)

ResNet Flow (1.81e-02)±(1.86e-02) (5.63e+00)±(7.79e+00) (2.57e+02)±(9.53e+01) (2.98e+02)±(3.68e+01)
GRU Flow (2.27e-03)±(1.63e-03) (4.95e-02)±(3.62e-02) (3.69e+02)±(1.15e-01) (4.83e+02)±(9.83e+00)

VF-NODE (Ours) (2.76e-07)±(1.70e-07) (1.78e-07)±(4.49e-09) (1.00e+00)±(3.01e-03) (1.36e+01)±(4.66e+00)

F.3 TEMPORAL EFFECT OF CHEMOTHERAPY ON TUMOR VOLUME

We also use VF-NODEs to model the temporal effect of chemotherapy on tumor volume. Using the
same data preprocessing as (Qian et al., 2022), the results are shown in Table 7. NCDEs failed due to
the setting in diffrax (Kidger, 2022). Note that our method does not outperform all baselines due
to the inherent limitations of the standard NODE architecture, which assumes that time series data
must be the solution of an ODE system. In contrast, ODE-RNNs, which combine ODEs with RNNs,
are not bound by this constraint. However, it is important to note that the training of VF-NODEs
can be almost 180 times faster than that of ODE-RNNs. Detailed training settings are provided in
Appendix H.3.

Table 7: Testing RMSE (mean±standard deviation) of modeling the temporal effect of chemotherapy
on tumor volume. Lower values indicate better performance. Here e±n refers to ×10±n. The best
results are highlighted in bold black, and the second-best results are highlighted in bold purple.

RMSE
Vanilla NODE (1.89e-03)±(9.76e-06)

TayNODE (2.31e-03)±(1.43e-05)
Latent ODE (RNN Enc.) (3.88e-03)±(1.27e-04)

ODE-RNN (1.59e-03)±(3.43e-04)
Latent ODE (ODE-RNN Enc.) (9.02e-03)±(4.42e-03)

NCDE (nan)±(nan)
ResNet Flow (1.88e-03)±(3.46e-06)
GRU Flow (3.14e-03)±(3.66e-06)

VF-NODE (Ours) (1.87e-03)±(3.71e-05)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

F.4 ADDITIONAL EXPERIMENTS ON ABLATION STUDIES

In this subsection, we first evaluate the sensitivity of the proposed VF-NODEs to two hyper-
parameters: the number of basis functions L and spline regression hyper-parameter λ mentioned
in Appendix D. Subsequently, we assess the performance of VF-NODEs under varying sampling
and noise conditions.

The number of basis functions L. We set the number of basis function L to test the impact of L
on the performance and training speed of VF-NODEs by setting L = 50, 60, 70, 80, 90, 100, 110,
as shown in Fig. 6 and Fig. 7, respectively. We can see that when L increases, the testing MSE
decreases generally. This can be attributed to Filon’s method and spline regression, which enable
us to compute oscillatory integrals precisely from noisy and partially observed data. Additionally,
Fig. 7 demonstrate that the training speed of VF-NODEs is not sensitive to L. Considering the
computational cost, we set L = 80 in all experiments.

50 60 70 80 90 100 110
Basis Functions

0.0001

0.0002

0.0003

M
SE

Glycolytic
Interp
Extrap

50 60 70 80 90 100 110
Basis Functions

0.0000

0.0001

0.0002

M
SE

Toggle

Interp
Extrap

Figure 6: The impact of the number of basis functions L in the VF loss on model performance

50 60 70 80 90 100 110
Basis Functions

0.015

0.020

0.025

0.030

Av
er

ag
e

Ti
m

e
(s

) Glycolytic

50 60 70 80 90 100 110
Basis Functions

0.015

0.020

0.025

0.030 Toggle

Figure 7: The impact of the number of basis functions L in the VF loss on training speed of VF-
NODEs.

Spline Regression Hyper-parameter λ. As discussed in Appendix D, λ controls the smoothness of
the splines. Typically, λ values greater than 0.9 are suitable for most cases. To evaluate the sensitiv-
ity of the proposed VF-NODEs to λ, we test VF-NODEs with λ = 0.9, 0.99, 0.9999, and 0.99999.
The experimental results are presented in Table 8. These results indicate that our method is robust
to variations in λ. In practice, λ can be selected based on the noise level of the sampled trajecto-
ries, with higher noise levels generally requiring smaller values of λ, making it a straightforward
parameter to adjust.

Table 8: Testing MSE (mean±standard deviation) from the ablation study on the sensitivity of VF-
NODEs to λ. Lower values indicate better performance. Here e±n refers to ×10±n.

Glycolytic Toggle
λ Interpolation Extrapolation Interpolation Extrapolation

0.9 (4.20e-03)±(3.44e-04) (4.81e-03)±(6.03e-04) (5.40e-03)±(2.46e-04) (7.57e-06)±(5.49e-06)
0.99 (1.14e-03)±(2.00e-04) (1.78e-03)±(7.26e-04) (2.16e-03)±(7.42e-04) (8.29e-06)±(9.32e-06)

0.999 (7.27e-04)±(6.59e-04) (7.80e-04)±(5.77e-04) (1.79e-03)±(9.64e-04) (1.52e-05)±(9.32e-06)
0.9999 (5.32e-04)±(4.47e-04) (1.41e-03)±(1.59e-03) (8.94e-03)±(1.09e-02) (3.40e-02)±(4.80e-02)
0.99999 (6.35e-05)±(2.68e-06) (1.63e-04)±(3.05e-05) (1.69e-04)±(6.09e-05) (4.79e-07)±(5.24e-08)

Effect of sampling. There are three key settings related to sampling: (1) the number of data points
per trajectory, (2) the random dropping rate, 1−r, and (3) sampling interval T . First, we fix r = 0.8,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

T = 10 and sample 50, 100, 300, 500, 700, and 1000 points for each trajectory, respectively. The
experimental results are presented in Table 9. Next, we fix the number of points at 100 and test
with r = 0.4, 0.6, and 0.8, as presented in Table 10. Finally, we vary the sampling interval, setting
T = 10, 20, and 50, while considering 100, 200, 500 sampled points respectively, as reported
in Table 11. These experiments demonstrate that our method is robust across different sampling
settings, particularly on sparsely sampled data. This can be attributed to spline regression’s ability
to perform effectively on sparse datasets (Knowles & Renka, 2014).

Table 9: Testing MSE (mean±standard deviation) from the ablation study on the number of sampling
points for each trajectory. Lower values indicate better performance. Here e±n refers to ×10±n.

Glycolytic Toggle
Point Interpolation Extrapolation Interpolation Extrapolation

50 (5.28e-04)±(3.23e-04) (7.08e-04)±(3.36e-04) (1.56e-03)±(8.33e-04) (4.56e-06)±(8.45e-07)
100 (6.35e-05)±(2.68e-06) (1.63e-04)±(3.05e-05) (1.69e-04)±(6.09e-05) (4.79e-07)±(5.24e-08)
300 (4.90e-05)±(1.74e-05) (1.20e-04)±(3.72e-05) (2.09e-04)±(7.24e-05) (1.73e-07)±(4.65e-08)
500 (4.97e-05)±(1.39e-05) (1.01e-04)±(3.11e-05) (2.02e-04)±(1.00e-04) (2.21e-07)±(7.07e-08)
700 (4.46e-05)±(1.39e-05) (8.39e-05)±(1.17e-05) (1.28e-04)±(5.15e-05) (1.05e-07)±(5.15e-08)

Table 10: Testing MSE (mean±standard deviation) from the ablation study for the random dropping
rate 1− r. Lower values indicate better performance. Here e±n refers to ×10±n.

Glycolytic Toggle
r Interpolation Extrapolation Interpolation Extrapolation

0.4 (1.05e-04)±(2.27e-05) (2.46e-04)±(1.42e-04) (5.84e-04)±(1.19e-04) (1.51e-06)±(4.24e-07)
0.6 (8.09e-05)±(4.52e-05) (1.72e-04)±(8.13e-05) (3.75e-04)±(6.26e-05) (7.23e-07)±(2.31e-07)
0.8 (6.35e-05)±(2.68e-06) (1.63e-04)±(3.05e-05) (1.69e-04)±(6.09e-05) (4.79e-07)±(5.24e-08)

Table 11: Testing MSE (mean±standard deviation) from the ablation study on the sampling interval
T for each trajectory. Lower values indicate better performance. Here e±n refers to ×10±n.

Glycolytic Toggle
T Interpolation Extrapolation Interpolation Extrapolation
10 (6.35e-05)±(2.68e-06) (1.63e-04)±(3.05e-05) (1.69e-04)±(6.09e-05) (4.79e-07)±(5.24e-08)
20 (4.11e-04)±(4.60e-04) (9.27e-04)±(8.23e-04) (1.24e-04)±(6.65e-05) (2.28e-07)±(4.25e-08)
50 (3.22e-04)±(1.21e-05) (2.34e-03)±(9.19e-04) (3.86e-04)±(3.18e-04) (1.90e-07)±(8.22e-08)

Effect of noise. We set the relative noise level σR = 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, and 0.5
respectively. The experimental results are shown in Fig. 8. By setting the smoothing hyperparameter
λ = 0.99 in spline regression (as discussed in Appendix D), VF-NODEs demonstrate robustness to
different noise settings.

10 2 10 1

Relative Noise Level R

10 4

10 3

10 2

10 1

M
SE

Glycolytic
Interp
Extrap

10 2 10 1

Relative Noise Level R

10 5

10 3

10 1

M
SE

Toggle
Interp
Extrap

Figure 8: Testing MSE on the effect of relative noise level σR.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

G DISCUSSION: TRAINING NODES BASED ON NATURAL CUBIC SPLINES

The proposed VF-NODEs utilize natural cubic splines to numerically compute integrals in the VF
loss. Beyond this, some other training methods for NODEs also leverage splines. One such method
is gradient matching (Varah, 1982; Li et al., 2024), where the derivatives of sampled trajectories
are estimated numerically using splines or other spectral methods. The DNN-based vector fields
are then trained to match these estimated derivatives. In the second method, given the sampled
trajectories {x(tk)}Kk=0, the DNN-based vector fields can be approximated as

fθ(t, x̂(t)) ≈ bk,0 +

3∑
m=1

bk,m(t− tk)
m, t ∈ [tk, tk+1]. (19)

Using this approximation, the solution of NODEs at the sampled time points can be computed as

x̂(tk+1) = x̂(tk) +

∫ tk+1

tk

fθ(τ, x̂(τ)) dτ

≈ x̂(tk) +

∫ tk+1

tk

[
bk,0 +

3∑
m=1

bk,m(τ − tk)
m

]
dτ

= x̂(tk) +

3∑
m=0

bk,m
(tk+1 − tk)

m+1

m+ 1
.

(20)

The NODE can then be trained by minimizing the MSE between x(tk) and x̂(tk). All these methods
are ODE-solver-free, similar to the proposed VF-NODEs.

We refer to these methods as Grad-Matching NODEs and Spline-Integ NODEs, respectively. We
compared the proposed VF-NODEs with these methods, with experimental results presented in Ta-
bles 12 and 13. While the training speed of these methods is similar (approximately 10−2 second
per epoch), we observe that their performance is significantly worse than that of VF-NODEs.

For Grad-Matching NODEs, this performance gap can be attributed to their sensitivity to noisy
and sparse sampling. In contrast, VF-NODEs rely solely on numerical integrals, representing an
improvement and generalization of gradient matching methods Brunel et al. (2014).

For Spline-Integ NODEs, the discrepancy arises due to the autoregressive nature as described in
Eq. (20). Errors accumulate across iterations because each step depends on the approximation from
the previous one. VF-NODEs, by relying on global numerical integrals, avoid this issue of error
accumulation, resulting in more robust and accurate training.

Table 12: Testing MSE (mean±standard deviation) for interpolation task of NODEs trained with
splines on 4 dynamical systems with 80% observed data (r = 0.8). Lower values indicate better
performance. Here e±n refers to ×10±n. The best results are highlighted in bold black.

Glycolytic Toggle Repressilator AgeSIR
Grad-Matching NODE (7.91e-04)±(6.52e-04) (1.19e-03)±(8.55e-04) (5.48e-02)±(9.20e-03) (9.50e-03)±(2.08e-04)

Spline-Integ NODE (1.34e-03)±(1.44e-03) (9.58e-03)±(7.76e-03) (9.64e-02)±(1.01e-02) (3.48e-02)±(2.34e-03)
VF NODE (Ours) (6.35e-05)±(2.68e-06) (1.69e-04)±(6.09e-05) (1.92e-02)±(2.62e-04) (7.39e-03)±(6.71e-04)

Table 13: Testing MSE (mean±standard deviation) for extrapolation task of NODEs trained with
splines on 4 dynamical systems with 80% observed data (r = 0.8). Lower values indicate better
performance. Here e±n refers to ×10±n. The best results are highlighted in bold black.

Glycolytic Toggle Repressilator AgeSIR
Grad-Matching NODE (6.32e-04)±(1.86e-04) (4.43e-06)±(4.22e-06) (3.87e-01)±(4.90e-02) (3.16e-02)±(1.38e-03)

Spline-Integ NODE (5.44e-03)±(6.45e-03) (5.22e-05)±(3.55e-05) (6.05e-01)±(7.54e-02) (1.68e-01)±(8.96e-03)
VF NODE (Ours) (1.63e-04)±(3.05e-05) (4.79e-07)±(5.24e-08) (1.23e-01)±(1.48e-02) (2.37e-02)±(1.61e-03)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

H EXPERIMENTAL SETTINGS

All experiments in this work are implemented using jax (Bradbury et al., 2018). Specifically, the
implementation of neural differential equation models is based on equinox (Kidger & Garcia,
2021) and diffrax (Kidger, 2022). To optimize models, we use the optax (DeepMind et al.,
2020). All the experiments are implemented on the same server, equipped with 4 A5000 GPUs with
24GB graphics memory.

H.1 HYPERPARAMETERS FOR MODELS

To evaluate the performance of VF-NODEs, we compare them with two categories of baseline mod-
els: NODE-based models and Neural Flows. To maintain consistent parameters across all models,
we employed the following hyperparameters:

• VF-NODEs: the vector field is parameterized as a 4-layer MLP with 128 hidden units per
layer. For the VF loss:

– The number of basis functions L is set to 80 for all tasks.
– the smoothing hyperparameter λ is set to 0.99999 for most tasks, while for the simu-

lation of the age-structured SIR model, λ is set to 0.9999.

• Vanilla NODEs (Chen et al., 2018): the vector field is parameterized as a 4-layer MLP with
128 hidden units per layer.

• TayNODEs (Kelly et al., 2020):

– The neural architecture of TayNODEs is the same as that of Vanilla NODEs.
– The 5-th order derivative regularization is used to match the order of Dopri5 solver.
λ is set to 0.001.

• Latent ODEs with RNN encoders (Chen et al., 2018):

– RNN encoder: a 1-layer GRU with 25 hidden units.
– NODE Decoder: the vector field is parameterized as a 4-layer MLP with 124 hidden

units per layer.
– The latent size is set to 4.

• ODE-RNNs Rubanova et al. (2019): 1-layer GRU with 4 hidden units + 4-layer MLP with
127 hidden units per layer for NODE.

• Latent ODEs with ODE-RNN encoders (Rubanova et al., 2019):

– ODE-RNN Encoder: 1-layer GRU with 4 hidden units and a 4-layer MLP with 84
hidden units per layer for NODE.

– NODE Decoder: A 4-layer MLP with 84 hidden units per layer for NODE.
– Latent size is set to 4.

• NCDEs (Kidger et al., 2020): The hidden size is set to 4. A 4-layer MLP with 89 hidden
units per layer is used for the vector field.

• ResNet Flow (Biloš et al., 2021): 4-layer MLP with 128 hidden units per layer.

• GRU Flow (Biloš et al., 2021): Three 4-layer MLP with 74 hidden units per layer.

In most experiments, we used the Dopri5 solver for NODE-based models. However, because
training ODE-RNNs is computationally intensive, we employed the Midpoint solver for these
models to reduce computational complexity.

H.2 SETTINGS FOR DYNAMICAL SYSTEMS

In this subsection, we provide detailed information on the dynamical systems used in this work,
including their trajectories and the simulation results of VF-NODEs compared to the best baseline,
as reported in Tables 1 and 2. For this study, we selected six dynamical systems. The specific
parameters and trajectories for each system are detailed below.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Glycolytic oscillator (Sel’Kov, 1968). The glycolytic oscillator is a fundamental system in bio-
chemistry that models the glycolysis process. It can be expressed as

ẋ1 = θ1 − θ2x1 − x1x
2
2,

ẋ2 = −x2 + θ3x1 + x1x
2
2,

(21)

where θ1 = 0.75, θ2 = θ3 = 0.1, and x1(0), x2(0) ∈ [0.1, 1.1].

0 5 10 15 20
t

0.5

1.0

1.5

2.0

2.5

3.0

x 1

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0.5

1.0

1.5

2.0

x 2

Ground Truth
VF-NODE
Best Baseline

Figure 9: The trajectory plots of the glycolytic model with simulation results of VF-NODEs and the
best baseline (ODE-RNN).

Genetic toggle switch (Gardner et al., 2000). The genetic toggle switch is a key mechanism in
genetic engineering and synthetic biology for controlling genes. It can be expressed as

ẋ1 =
a1

1 + xn1
2

− x1,

ẋ2 =
a2

1 + xn2
1

− x2,
(22)

where a1 = a2 = 4, n1 = n2 = 3, and x1(0), x2(0) ∈ [0.1, 4.0].

0 5 10 15 20
t

2.5

3.0

3.5

4.0

4.5

5.0

x 1

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0.1

0.2

0.3

0.4

x 2

Ground Truth
VF-NODE
Best Baseline

Figure 10: The trajectory plots of the toggle switch model with simulation results of VF-NODEs
and the best baseline (Vanilla NODE).

Repressilator (Elowitz & Leibler, 2000). The repressilator is a genetic regulatory network. It can
be expressed as

ṁi = −mi +
α

1 + ρnj
+ α0, i = lacI, tetR, cI,

ρ̇i = −β(ρi −mi), j = cI, lacI, tetR,

(23)

where ρi are three repressor-protein concentrations, and mi are corresponding mRNA concentra-
tions. We set α = 10, α0 = 10−5, β = 1, n = 3, and mi(0), ρi(0) ∈ [0, 5].

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 5 10 15 20
t

5

10

15

m
la

cI

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

2.5

5.0

7.5

10.0

12.5

m
te

tR

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

5

10

15

m
cI

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

2.5

5.0

7.5

10.0

12.5

p c
I

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

2.5

5.0

7.5

10.0

12.5

p l
ac

I

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

2.5

5.0

7.5

10.0

12.5

p t
et

R

Ground Truth
VF-NODE
Best Baseline

Figure 11: The trajectory plots of the repressilator model with simulation results of VF-NODEs and
the best baseline (Vanilla NODE).

Age-structured SIR model (Ram & Schaposnik, 2021). The age-structured SIR model is a variant
of the standard SIR model that considers the effects of different age groups. It can be expressed as

Ṡi = −β
Si

N

n∑
j=1

MijIj ,

İi = β
Si

N

n∑
j=1

MijIj − γIi,

Ṙi = γIi,

(24)

where Si, Ii, and Ri (i = 1, . . . , 9) denote the numbers of susceptible, infected, and removed
individuals, respectively, for the age groups 0–9, 10–19, ..., 70–79, and 80+. The age-contact matrix
M is parameterized as

M =



19.2 4.8 3.0 7.1 3.7 3.1 2.3 1.4 1.4
4.8 42.4 6.4 5.4 7.5 5.0 1.8 1.7 1.7
3.0 6.4 20.7 9.2 7.1 6.3 2.0 0.9 0.9
7.1 5.4 9.2 16.9 10.1 6.8 3.4 1.5 1.5
7 7.5 7.1 10.1 13.1 7.4 2.6 2.1 2.1
3.1 5.0 6.3 6.8 7.4 10.4 3.5 1.8 1.8
2.3 1.8 2.0 3.4 2.6 3.5 7.5 3.2 3.2
1.4 1.7 0.9 1.5 2.1 1.8 3.2 7.2 7.2
1.4 1.7 0.9 1.5 2.1 1.8 3.2 7.2 7.2


.

In addition, we set β = 0.8, γ = 0.5, and Si(0), Ii(0), Ri(0) ∈ [0.1, 10.1] (i = 1, . . . , 9).

Gompertz model (Gompertz, 1825). The Gompertz model is widely applied in medical research
and tumor growth analysis as a kind of growth model. It can be expressed as

ẋ = −θ1x · log(θ2x), (25)

where θ1 = θ2 = 1.5, and x(0) ∈ [0.1, 1.1].

Lotka-Volterra equations (Kingsland, 1995). The Lotka–Volterra equations are used to model the
interactions between the predator and prey populations over time, capturing how the population sizes
of each species affect the other. This system can be expressed as

ẋ1 = αx1 − βx1x2,

ẋ2 = δx1x2 − γx2,
(26)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 5 10 15 20
t

0

5
S 1

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0

5

10

I 1

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

5
10
15

R 1

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0.0

2.5

5.0

S 2

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0

5I 2

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

10

15

20

R 2

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0.0

0.5

1.0

S 3

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0

2

4

I 3

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

7.5

10.0

12.5

R 3

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0

5

S 4

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0

5I 4

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

5

10

15

R 4

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0

5

S 5

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0

5

10

I 5

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

10

20
R 5

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0

2

4

S 6

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0.0

2.5

5.0

I 6

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

5

10

R 6

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0.0

2.5

5.0

S 7

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0

5

10

I 7

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

5
10
15

R 7

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0

5

S 8

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0

5

I 8

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

10

20

R 8

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0

5S 9

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

0

5I 9

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

5
10
15

R 9

Ground Truth
VF-NODE
Best Baseline

Figure 12: The trajectory plots of the age-structured SIR model with simulation results of VF-
NODEs and the best baseline (Vanilla NODE).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x 1

Ground Truth
VF-NODE
Best Baseline

Figure 13: The trajectory plots of the gompertz model with simulation results of VF-NODEs and
the best baseline (Vanilla NODE).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

10

20

30

40

50

60

70

80

90

x 1

Ground Truth
VF-NODE
Best Baseline

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0

2

4

6

8

10

12

14

x 2

Ground Truth
VF-NODE
Best Baseline

Figure 14: The trajectory plots of the Lotka-Volterra equations with simulation results of VF-
NODEs and the best baseline (Vanilla NODE).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where α = 1.0, β = 0.3, δ = 0.1, γ = 3.0, and x1(0) ∈ [10.0, 20.0], x2(0) ∈ [5.0, 10.0].

To generate datasets from these dynamical systems, the Dopri5 solver in diffrax is used.

H.3 TRAINING SETTINGS

For all tasks, we employed the Adam optimizer (Kingma & Ba, 2014), loading all training data in a
single epoch. The testing MSE losses of NODE-based baselines reported in all tables were evaluated
based on models trained using the optimize-then-discretize approach, following (Kidger, 2022).

For all tasks except modeling the temporal effect of chemotherapy on tumor volume, we set the
number of training epochs to 5,000; for the tumor volume modeling task, we used 300 epochs.

For all tasks except the simulation of the age-structured SIR model, we utilized the
cosine onecycle schedule from optax as the learning rate scheduler, with an initial learn-
ing rate of 0.001. The scheduler parameters were set as follows: transition steps equal
to the number of epochs, peak value at 0.01, pct start at 0.2, div factor at 100, and
final div factor at 1,000. For the simulation of the age-structured SIR model, we employed
the cosine decay schedule as the learning rate scheduler, also with an initial learning rate of
0.001. The parameters were set as follows: decay steps equal to the number of epochs, alpha
at 0.01, and exponent at 1.0.

28

	Introduction
	Related Work
	Preliminaries
	Variational Formulation of ODEs
	Filon's Method

	Proposed Method
	Computing the VF Loss
	VF-NODEs
	Fundamental Analysis for the Acceleration of VF-NODEs

	Experiments
	Simulation of Low-Dimensional Dynamical Systems
	Real-World Application: COVID-19 Dataset
	Ablation Studies

	Conclusion and Limitations
	Background: Training of NODEs
	Foundational Training Frameworks of NODEs
	Error Accumulation of Numerical ODE Solvers

	Proof of Theorem 2
	General Numerical Integration Techniques do not work for Oscillatory Integrals
	Spline-Based Approximation
	Algorithm of VF-NODE
	Additional Experiments
	Additional Results: Average Training Time on Other Dynamical Systems
	Additional Experiments on Simulation for Dynamical Systems
	Temporal effect of chemotherapy on tumor volume
	Additional Experiments on Ablation Studies

	Discussion: Training NODEs based on Natural Cubic Splines
	Experimental Settings
	Hyperparameters for Models
	Settings for Dynamical Systems
	Training Settings

