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ABSTRACT

Machine learning models can be biased towards the solutions of given differential
equations in two principal ways: through regularisation, or through architecture
design. Recent research has successfully constrained neural network architectures
to satisfy divergence-free fields and Laplace’s equation in two dimensions. This
work reinterprets these architectures as linear superpositions of general formu-
lated solutions. The notion of superposition is then exploited to develop novel
architectures which satisfy both these and novel differential equations. In addition
to new architectures for Laplace’s equation and divergence-free fields, we propose
novel constraints apt for the heat equation, and even some nonlinear differential
equations including Burgers’ equation. Benchmarks of superposition-based ap-
proaches against previously published architectures and physics-informed regu-
larisation approaches are presented. We find that embedding differential equation
constraints directly into neural network architectures can lead to improved per-
formance and hope our results motivate further development of neural networks
architectures developed to adhere specifically to given differential constraints.

1 INTRODUCTION

There has been fruitful interplay between the fields of machine learning and differential equation
solving. Differential equations provided useful means to machine learning: ordinary differential
equations (ODEs) appear in continuous depth neural networks (Chen et al., 2018) and stochastic
differential equations (SDEs) inspired novel approaches to generative modelling (Song et al., 2020).
On the other side, neural network architectures have also provided novel means to analyse and solve
differential equations, in particular, physics-informed neural networks (PINNs) (Lagaris et al., 1998;
Raissi et al., 2019) bias neural network outputs towards a given differential equation via construction
of appropriate regularisation terms. Also, neural networks have been shown to be effective surrogate
models of computationally-expensive, finite element solvers of partial differential equations (PDE)
(Nabian & Meidani, 2018). In addition to providing novel means for solving forward problems
of differential equations, neural networks proved useful in solving inverse-problems in differential
equations (Lu et al., 2021b), data-driven discovery of differential equations (Both et al., 2021) and
approaches for optimal control (Mowlavi & Nabi, 2023).

Thus far, physics-informed regularisation has been a dominant approach to biasing machine learn-
ing models towards differential equations, being widely applied from PDEs and ODEs (Raissi et al.,
2019) to fractional order differential equations (Pang et al., 2019). Despite their widespread ap-
plicability, the difficulty of training PINNs has been highlighted in many works that also highlight
potential means to improve their training. For example, via appropriate loss-scaling techniques
(Wang et al., 2021; Son et al., 2023), domain decomposition (Jagtap & Karniadakis, 2020; Moseley
et al., 2023), combining gradient and Hessian-based optimisation procedures (Mao et al., 2020), and
relaxation of the underlying differential equation form (Krishnapriyan et al., 2021).

It is yet unclear how to reliably train PINNs, or eventually provide convergence guarantees. There-
fore, recent research has started to move beyond PINNs, towards embedding target differential equa-
tions into underlying architectures directly. For example, neural conservation laws (NCLs), which
involve post-processing of multilayer perceptrons (MLPs) with higher-order derivatives to yield
divergence-free neural networks, ensure conservation principles by using divergence-free vector
fields (Richter-Powell et al., 2022). Holomorphic neural networks, which are complex-valued MLPs
with appropriate activation functions, have been shown to satisfy the Laplace equation (Ghosh et al.,
2023). Additionally, neural networks satisfying Hamiltonian laws have been developed to preserve
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the total energy of a dynamical system over time (Greydanus et al., 2019). Beyond the context of
neural networks, priors for Gaussian processes over the space of solutions of given linear differential
equations have also been developed (Harkonen et al., 2023).

Contributions of this work This work presents a framework for constructing neural networks to
satisfy linear differential equations through the principle of superposition. Since the solution space
of homogeneous linear differential equations is closed under addition, we can derive single-layer
feedforward architectures that leverage a superposition of solutions as a learnable representation of
solution functions. We demonstrate how this framework provides a unifying perspective on pre-
viously published neural network architectures applying to divergence-free vector fields (Richter-
Powell et al., 2022) and Laplace’s equations (Ghosh et al., 2023). Novel architectures expanding on
such applications to encompass also the heat equation and Burgers’ equation are presented. Despite
Burgers’ equation being nonlinear, we are able to construct appropriate architectures constrained to
it via suitable post-processing of architectures satisfying the heat equation. We benchmark our archi-
tectures against representative, standard architectures constrained to the same differential equations
(where applicable) as well as physics-informed neural networks.

2 THEORY

We consider neural network architectures constrained to satisfy homogeneous linear differential
equations.

Consider an open set Ω ⊂ Rd1 , d1 ∈ N with boundary ∂Ω. Define a space of sufficiently smooth
functions, A, from Ω ∪ ∂Ω to Rd2 , d2 ∈ N. We consider equations of the form

Lu = 0 in Ω

Nu = 0 on ∂Ω
(1)

where u ∈ A, L and N are linear differential operators mapping elements of A to Rd3 -valued
functions on Ω ∪ ∂Ω, i.e. that L(af + bg) = aLf + bLg for all f, g ∈ A and a, b ∈ R. In the case
where d3 > 1 is vector-valued, we take the right-hand side to be the zero-vector.

Note that the assumptions in our formulations encompass a wide-range of common differential
equations with wide-reaching practical applications, such as the Laplace, Diffusion, Heat, Sturm-
Liouville and Wave equations, to name but a few. In all these cases, the goal is to find a function
u satisfying the differential equation and boundary conditions imposed by respectively L and N in
Eq. equation 1.

Define a family of parameterised functions, ui
θi

, i = 1, . . . , n for n ∈ N, with ui
θi

: Rd1 → Rd2 and
θi representing trainable parameters. Note that superscripts denote positional elements of u; they
do not represent powers. Interpreting each ui

θi
to be a row vector comprising of d2 columns, we can

represent the family of functions ui
θi

as an n× d2 matrix:

u =


u
1(1)
θ1

. . . u
1(d2)
θ1

...
. . .

...
u
n(1)
θn

. . . u
n(d2)
θn

 (2)

we allow u to be interpreted as a matrix-valued function operating on Ω ∪ ∂Ω, where the u(x) is
determined by the element-wise application of each element of u to x.

Definition 1 (Superposition network) Given an 1×n matrix W , a function ϕ : (Ω∪ ∂Ω) → Rd2 ,
given by ϕθ = Wu, where θ = {W, θ1, θ2, . . . , θn} is referred to as a superposition network with
respect to L if and only if Lui

θi
= 0 for all i.

Given a superposition network with respect to L denoted by ϕθ, it follows directly that Lϕθ = 0 by
linearity of L. Thus, by solving the following optimisation procedure:

θ∗ = argmin
θ

Ex∼P∂Ω

[
(Nϕθ(x))

2
]
, (3)
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where the expectation is taken with respect to a probability distribution P∂Ω defined over ∂Ω. The
resulting function ϕθ∗ then approximates the solution of Eq. equation 1, as exemplified in Fig. 1.

The construction of superposition networks with respect to a given linear-differential operator L de-
pends on the specific operator at hand. This is exemplified in section 2.1, where we note that existing
architectures in the literature constrained to Laplace’s equation and divergence-free constraints can
be interpreted as superposition networks, and section 2.2 where we propose new architectures for
additional operators.

Figure 1: A schematic of superposition networks, a single-layer feedforward neural network ar-
chitecture constrained to be in the solution space of a linear differential equation. Superposition
networks use a library of known solutions of the differential equation (a) and apply Lie group sym-
metries derived from the differential equation to derive suitable linear transformations (b) which
can then be combined in an output layer (c) to approximate nontrivial solutions of the differential
equation by training only on initial and boundary conditions.

2.1 EXISTING SUPERPOSITION NETWORKS

This section demonstrates that the principle of superposition provides a unifying perspective on
previous neural network architectures used to model divergence-free fields (Richter-Powell et al.,
2022) (L = ∇·) and Laplace’s equation (Ghosh et al., 2023) (L = ∇2). Both of these works apply a
postprocessing step to an existing neural network to constrain it to a certain differential equation. To
unify our treatment of both architectures we introduce the notion of a linear postprocessing operator.

Definition 2 (Linear postprocessing operator) Consider a function f : Rd1 → Rd3 , with com-
ponents enumerated by [f1, f2, . . . , fd3 ]. We equate f with its vector representation. Define an
operator A acting on f as a linear postprocessing operator with respect to L if and only if the
following hold:

1. The action of A on f is R-linear in the components of f , i.e. A[af1, af2, . . . , afd3 ] =
aA[f1, f2, . . . , fd3 ] ∀a ∈ R and

2. L(A(f)) = 0.

We use the notation A[f1, . . . , fd3
] to denote the application of A to f , which we write in a vec-

tor notation above to make clear that linearity of the operator acts on output components of f as
opposed to the inputs of f .

Example 1 (Divergence-free neural networks) In work on modelling conservation laws, neural
models of divergence-free vector-fields were derived by considering the Hodge-star operation on
the exterior derivative of a differential form (Richter-Powell et al., 2022). The composition of the
Hodge-star operator on the exterior derivative is a linear postprocessing operator with respect to
the divergence operator.

Example 2 (Holomorphic neural networks) Taking the real part of a complex-valued MLP with
holomorphic activation functions yields a neural network architecture which satisfies Laplace’s
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equation, ∇2ϕ = 0 (Ghosh et al., 2023). In this scenario, taking the real-part of the complex
output of the MLP forms a linear postprocessing operator with respect to the Laplacian.

If f is taken as an MLP with a linear output layer, we can write f = [f1, f2, . . . , fd3 ] and take each
fi(x) =

∑
j wijσj(x), where σj(x) represents the activation of the j-th neuron of the last hidden

layer of the MLP with input x. Application of the linear postprocessing operator can now yield a
degeneracy of ways of representing a target neural network. For example, applying linearity with
i = 1 yields:

A[
∑
j

w1jσ1, . . . , fd3
] =

∑
j

|w1j |A[
w1j

|w1j |
|σ1, . . . ,

1

|w1j |
fd3], (4)

with applications of linearity to other indices giving alternative superposition representations.

Note that each wij can potentially be complex-valued, as in the case for holomorphic neural net-
works (Ghosh et al., 2023), whereas the definition of linear postprocessing operators only assumes
linearity over real numbers. Consequently, we only apply linearity to the absolute value of w1j in
Eq. equation 4.

The right hand side of Eq. equation 4 yields the definition of a superposition network if
LA[

w1j

|w1j | |σ1, . . . ,
1

|w1j |fd3] = 0 for each j. For instance, this holds for the neural networks pre-
sented in Examples 1-2, which can thus be interpreted as special cases of superposition networks.

2.2 NOVEL SUPERPOSITION NETWORKS

The use of linear postprocessing operators in previous works (Ghosh et al., 2023; Richter-Powell
et al., 2022) is tailored to specific linear differential equations—they use specific characteristics of
the exterior calculus of differential forms, or of holomorphic complex-valued functions, to cater to
particular differential equations. These approaches are not applicable to arbitrary linear differential
equations that we might consider as in Eq. equation 1. This section outlines an applicable approach
to systematically address new differential equations. We leverage the Lie group symmetries admitted
by a given differential operator to construct superposition networks applicable to cases beyond the
current state-of-art. Means to handle some non-linear differential equations are presented (i.e. the
Burgers’ equation) in section 2.2.4.

Consider superposition networks of the form ϕ : Rd1 → Rd2 , given by:

ϕθ(x) = θ0 +
1

N

N∑
i=1

θ
(i)
1 σi(g

σi

θ
(i)
2

x) (5)

where the output layer of the architecture is explicitly summed and the following terms are intro-
duced: (1) The activation function for the ith neuron, σi : Rd1 → Rd2 , satisfies Lσi = 0 for all
i. These activation functions can be trivial manufactured solutions for boundary conditions other
than those specified in Eq. equation 1. (2) Linear transformations which are not freely chosen, but
rather elements of a Lie group gσi

θ
(i)
2

acting on Rd1 parameterised by trainable parameters θ(i)2 such

that Lσi(g
σi

θ
(i)
2

x) = 0 whenever Lσi(x) = 0. (3) Parameters associated with an affine output layer

as usual: θ0 and θ
(i)
1 .

Note that the inclusion of the parameter θ0 ∈ Rd2 generalises definition 1. However, in all
differential equations we consider in this work, L has first-order derivatives which allows us
the flexibility to include θ0 in our architecture. Taking θ =

{
W, θ0, θ

(1)
2 , θ

(2)
2 , . . . , θ

(N)
2

}
, with

W =
{
θ
(1)
1 , θ

(2)
1 , . . . , θ

(N)
1 ,

}
allows us to the approximate a solution to Eq. equation 1 by solving

the optimisation problem in Eq. equation 3.

Therefore, constructing appropriate superposition networks for a given linear-differential operator
amounts to choosing suitable forms of σi and gσi

θ
(i)
2

. In general, this can be done in a methodical way

by enumerating the Lie group symmetries of L (Gray, 2015). However, as we now demonstrate, for
several important classes of practical equations, suitable forms can be constructed by observation
and the method of manufactured solutions.
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2.2.1 LAPLACE’S EQUATION

In two-dimensions, Laplace’s equation is defined by taking L = ∂2

∂x2 +
∂2

∂y2 in Eq. equation 1. While
architectures have previously been designed to satisfy the Laplace equation, we present alternative
architectures here as a means of exemplifying the construction of superposition networks.

It follows directly that the following two-parameter Lie groups translate solutions of the Laplace
equation (harmonic functions) to other solutions of the Laplace equation:

(x̂, ŷ) = gDθDg
E2
θE (x, y) (6)

with (trainable) Lie group parameters being given by θE ∈ R3 and θD ∈ R. The transformations in
Eq. equation 6 are a composition of E2, the Euclidean group in two-dimensions, with a dilation of
the two-dimensional plane given by gDθD (x, y) = (θDx, θDy).

For any function, σ(x, y) such that
(

∂2

∂x2 + ∂2

∂y2

)
σ(x, y) = 0 ∀(x, y) ∈ Ω, it is readily verifiable

that the Laplacian is invariant under group actions as described in Eq. equation 6, which thus define
a suitable form for use as the transformation group in Eq. equation 5.

To define suitable functions σi in Eq. equation 5, we can take the real part of any holomorphic
function f : C → C, a choice for f(z) = f(x + iy) of for example sin z, sin(sin z), sin z2 or
sin2 z would yield for σi(x, y) the function sinx cosh y, sin(x2 − y2) cosh(2xy), sin2 x cosh2 y −
cos2 x sinh2 y and sin(sinx cosh y) cosh(cosx sinh y), respectively.

Combining these choices of basis functions with linear transformations as defined in Eq. equation 6
with Eq. equation 5 yields a single hidden layer superposition network constrained to Laplace’s
equation.

Remark 1 (The universality of superposition networks) As the weighted summation of the real
parts of holomorphic functions, it follows that the Laplacian superposition network as outlined is
the real part of a holomorphic function. Such functions cannot represent arbitrary harmonic func-
tions. In the case of Ω being a multiply-connected domain, there are harmonic functions that cannot
be represented as the real-part of a holomorphic function. There are means to circumvent such re-
strictions (Ghosh et al., 2023). However, the wider topic of proving the universality of a function
class within a space of solutions of arbitrary linear differential operators is, to our knowledge, yet
an open area of study. We thus leave investigations of universal superposition networks to future
work.

2.2.2 DIVERGENCE-FREE FIELDS

Similarly to the Laplace equation constrained architectures of section 2.2.1, divergence-free fields,
given in the scenario where Lϕ = ∇ · ϕ, obey the same symmetries as defined in Eq. equation 6.

It remains to define suitable activation functions. Previous work on deriving divergence-free neu-
ral network architectures (Ghosh et al., 2023; Richter-Powell et al., 2022) has demonstrated this
approach.

In two-dimensions, given a differentiable function f : R2 → R, we can derive a divergence-free
field g : R2 → R2 via the following transformation:

(x̂, ŷ) =

(
∂f(x, y)

∂y
,−∂f(x, y)

∂x

)
. (7)

The explicit forms used to derive superposition networks in our numerical experiments are enumer-
ated in section 3.4. In three-dimensions, given a differentiable function f : R3 → R3, we can derive
a divergence-free field g : R3 → R3 using:

(x̂, ŷ, ẑ) = ∇× f(x, y, z) (8)

2.2.3 HEAT EQUATION

We consider architectures constrained to satisfy the 2+1 (two spatial and one temporal) dimensional
heat equation, where L = ∂

∂t −α
(

∂2

∂x2 + ∂2

∂y2

)
in Eq. equation 1, where α is the thermal diffusivity

coefficient.
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In contrast to section 2.2.1, which constructed generally applicable Lie group symmetries of the
Laplace equation, here we demonstrate the construction of a superposition network for an appropri-
ate Lie group via a manufactured solution of the heat equation.

Consider functions σi(x, y, t) of the following form:

σi(x, y, t) = e−2αt sinx sin y, (9)
which provides a manufactured solution to the heat equation suitable as the activation function in
Eq. equation 5.

Given the heat-equation and the chosen activation function, it can be validated through direct sub-
stitution that the following group action provides a trainable transformation (x, y, t) → (x̂, ŷ, t̂) for
use as the linear component of Eq. equation 5:

x̂i = θx1ix+ θx2i

ŷi = θy1iy + θy2i

t̂i =
θ2x1i + θ2y1i

2
t+ θti,

(10)

whence it follows 1 that Lσi(x̂i, ŷi, t̂i) = 0, and hence constraining the linear layer of a superposi-
tion network to follow Eq. equation 10, with an activation function given by Eq. equation 9, yields
an architecture automatically satisfying the heat equation.

2.2.4 BURGERS’ EQUATION

So far, we investigated how the construction of superposition networks can constrain architectures to
certain linear differential operators, leaving unaddressed the case of nonlinear differential equations.
However, the latter can be converted to (and from) linear differential equations through appropriate
transformations in certain important cases. Applying such transformations to superposition networks
thus extends the utility of these architectures to cases of nonlinear differential equations.

To this end, we consider 1D Burgers’ equation:
∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(11)

If ν ̸= 0, we can apply the Cole-Hopf transformation (Cole, 1951; Hopf, 1950): u(x, t) =
−2ν ∂

∂x lnϕ(x, t) which yields the heat equation

∂ϕ

∂t
= ν

∂2ϕ

∂x2
(12)

If ϕ(x, t) is defined via the means outlined in section 2.2.3 with Eq. equation 5, it follows that
ϕ(x, t) naturally satisfies the heat equation. We can thus train the superposition network on the
boundary and initial conditions inherited from the Burgers’ equation and finally apply the inverse
transformation, where the derivatives can be calculated readily via automatic differentiation. The
resulting architecture is then guaranteed to be constrained to Burgers’ equation.

This approach can be generalized to 2D and 3D Burgers’ equations
∂u

∂t
+ u · ∇u = ν∇2u (13)

via the transformation u = −2ν∇ lnϕ.

3 APPLICATIONS

3.1 METHODS

There are two principal manners in which to provide a differential-equation based inductive bias
to a neural network: 1. with appropriate regularisation terms, such as physics-informed neural net-
works(Raissi et al., 2019). 2. by incorporating differential equation constraints within the architec-
ture itself (Ghosh et al., 2023; Richter-Powell et al., 2022).

1Note how the partial derivatives of L are still taken with respect to the original coordinates of (x, y, t).
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We seek to benchmark superposition networks against both approaches where possible, but limit
ourselves to PINNs where no such hard-constrained architecture exists.

General Formulation We consider differential equations as outlined in equation 1, however, we
allow L to also be nonlinear to encompass our handling of Burgers’ equation.

Introduce probability distributions of collocation points over the interior of a domain PΩ and the
boundary of the domain P∂Ω.

PINN(BI) PINNs use appropriately constructed regularisation terms to provide inductive biases
towards a given differential equation. Many neural network architectures are amenable to physics-
informed regularisation, yet MLPs tend to be the most widely used. To optimise a PINN to solve a
forward-solution of a given differential, the following loss function is minimized:

LPINN(θ) = Ex∼P∂Ω
[(N fθ(x))

2
] + Ex∼PΩ

[
(Lfθ(x))2

]
, (14)

where fθ represents an MLP with trainable parameters and the two terms represents contributions
of the boundary and interior respectively. We denote by PINNB/PINNI methods which provide an
extra weight (by a factor of 1000 in our numerical experiments) to the boundary and interior loss
terms, respectively.

RAR The expectation over Ω in equation 14 is often done over a fixed distribution. In Lu et al.
(2021a), an adaptive approach is introduced whereby points with high PDE residuals are adaptively
added to the pool of points to estimate of the second term of equation 14. We name such approach
RAR and include it within our benchmarks: every 1000 epochs of training, we sample 1024 new
candidate collocation points, and add the 32 with the highest PDE residuals to the pool of collocation
points used for each subsequent training epochs.

AA Adaptive activation functions were proposed by Jagtap et al. (2020) to improve convergence
of PINNs. In particular, they propose that given an MLP f(x) = WL(σ(WL−1(. . . (σ(W1x))))),
that it be modified to be of the form f(x) = WL(anσ(WL−1(. . . (anσ(W1x))))) for a trainable
parameter a and fixed hyperparameter n. Following the original publication, we initialise a = 1.0
and fix n = 10 for all our experiments. We also include a combination of this technique with the
residual adaptive approach which we denote as RAR+AA.

Holomorphic Neural Networks We implement holomorphic neural networks as a means to
model the Laplace equation, following Ghosh et al. (2023).

Holomorphic neural networks parameterise a holomorphic function with a complex-valued MLP
fθ(x + iy) : C → C. If the activation functions of the MLP are themselves holomorphic, then the
real part of the output is guaranteed to satisfy Laplace’s equation in two-dimensions with inputs x
and y. A holomorphic neural network can thus be trained to solve instances of Laplace’s equations
in two-dimensions by minimising the following loss function.

LHolomorphic(θ) = Ex∼P∂Ω
[N (Re(fθ(x)))] , (15)

where Re(z) denotes taking the real part of a complex number z and fθ represents a holomorphic
neural network. In all numerical experiments, we use sin as our holomorphic activation function.

NCL It is possible to derive divergence-free neural networks in arbitrary dimensions (Richter-
Powell et al., 2022). However, in our numerical experiments, we limit ourselves to the two-
dimensional case, which allows us to simplify our exposition compared to the more general for-
mulations presented in (Richter-Powell et al., 2022).

Define a neural network fθ : R2 → R as a multilayer perceptron with trainable parameters θ. Then
we can postprocess fθ as follows to achieve a divergence-free function gθ : R2 → R2 given by
applying Eq. equation 7 to fθ. We optimise divergence-free neural networks as per the loss function
in Eq. equation 14.

Experimental Details Details common for every numerical experiment are outlined in this sub-
section. All experiments reported in Table 1 were executed in Python3, making use of NumPy (Har-
ris et al., 2020) and Matplotlib (Hunter, 2007) libraries, with all the neural networks implemented

7
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Table 1: A summary of experimental results (lower is better) comparing superposition networks
to alternative architectures imposing differential equation constraints for the methods outlined in
section 3.1. Root-mean squared errors (RMSEs) of the final trained solution are shown with standard
deviations over 10 random seeds reported. For the heat equation, we report the RMSE at the end of
the simulation. Note that Holomorphic neural networks are only applicable to Laplace’s equation,
and NCL only applies to divergence-free fields.

Laplace 1 Laplace 2 Heat 1 Heat 2 Navier Stokes Burgers’

Superposition 0.0067±0.0023 0.010±0.0047 0.0080±7.3e-5 0.00084±0.00018 0.11±0.0026 0.0030±0.0024
PINN 0.15±0.0030 0.29±0.093 0.0085±0.0024 0.0027±0.0017 0.10±0.00090 0.0039±0.0022
PINNB 0.0063±0.0041 0.12±0.066 0.063±0.016 0.015±0.0025 0.085±0.0090 0.0049±0.0030
PINNI 0.56±0.00091 0.82±0.067 0.080±0.024 0.046±4.4e-5 0.10±0.00034 0.12±0.010
RAR 0.15±0.0015 0.43±0.012 0.0085±0.0075 0.0026±0.0012 0.10±0.00058 0.0036±0.00065
AA 0.19±0.12 0.54±0.084 0.039±0.015 0.016±0.016 0.097±0.00086 0.0067±0.0039
RAR+AA 0.20±0.12 0.55±0.063 0.0070±0.0020 0.0053±0.0034 0.099±0.00080 0.018±0.012
NCL - - - - 0.097±0.0015 -
Holomorphic 0.0029±0.0022 0.0033±0.0009 - - - -

via PyTorch (Paszke et al., 2019). In the supplementary material we also report an independent
implementation of the PINN baseline for the Laplace benchmark using JAX Bradbury et al. (2018),
which does not materially differ from the numerical results presented.

Ground truths for the heat equation and Navier-Stokes benchmarks were constructed using
FEATools commercial software with the open-source OpenFOAM backend (Weller et al., 1998)
for Navier-Stokes, and MATLAB’s backslash backend for the heat equation (Amestoy et al., 2000).
While the source-code is based on proprietary software, we include CSVs of simulation output for
use with our analyses for the purpose of reproducibility along with the source code of all experi-
ments in the supplementary material. We consistently use Kaiming Uniform initialisers (He et al.,
2015), optimised for 32000 epochs over full-batches with an Adam optimizer (Kingma & Ba, 2014)
with a learning rate (LR) of 10−3. We use tanh activations for real-valued neural networks and
sin activations for holomorphic networks. All experiments run using Python 3.10 on two-cores of a
Dual AMD Rome 7742 processor with 8GB of RAM and were allocated 12 hours of compute time,
but finished well-within that period.

In the following sections, we present the specific methods and results used for each differential
equation. All experiments are repeated for 10 different random seeds with means and standard
deviations of all results shown in Table 1.

3.2 LAPLACE’S EQUATION

Consider a domain given by Ω = (0, 1) × (0, 1), with ∂Ω corresponding to the boundary lines at
x = 0, y = 0, x = 1, y = 1.

We construct a target function given by:

f(x, y) = Re

{
1

(z − 1.2− 0.5i)(z + 0.2− 0.5i)(z − 0.5 + 0.2i)(z − 0.5− 1.2i)

}
, (16)

where z = x + iy. Note that we construct a holomorphic function in Eq. equation 16 that is not
holomorphic throughout the entirety of C. This prevents the solution of the function from appearing
as a trivial solution of the superposition and holomorphic neural networks.

As boundary conditions, we take Dirichlet conditions of f(x, y) on ∂Ω for the benchmark that we
refer to as Laplace 1, and we take Neumann boundary conditions in the y-direction at y = 1 for the
case of Laplace 2.

For the superposition networks, we take as activation functions the real parts of the following func-
tions sin z, sin z2, sin2 z, sin sin z, ez , esin z , sin ez and ez

2

as our chosen activation functions in
Eq. equation 5, with 32 repeats of functions each. We implement elements of the Euclidean sym-
metry group in Eq. equation 6 as a rotation followed by a translation, with half of them mirrored
to allow for orientation to be preserved or flipped. Initial angles of rotations are sampled uniformly
on (0, 2π). Shift amounts in Eq. equation 6 are initialised to zero. All other parameters in the su-
perposition network initialised to zero. For holomorphic neural networks and PINNs, we use MLPs

8
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with three hidden layers of width 64. We provide training points on 128 evenly spaced points on
each of the lines x = 0, x = 1, y = 0, y = 1 for collocation points on the boundary, and on 1024
uniformly-random distributed points on the interior of Ω.

We find that neural network architectures constrained to follow the Laplace equation tend to per-
form better than PINNs in our benchmarks, as demonstrated in table 1. Holomorphic neural net-
works maintain a strong performance across both benchmarks, surpassing superposition networks.
However, holomorphic neural networks are only applicable towards modelling Laplace’s equation
in 2D,wwhereas the superposition network methodology applies to arbitrary linear differential equa-
tions in arbitrary dimensions.

3.3 HEAT EQUATION

We consider two heat equation benchmarks in two-spatial dimensions with different initial condi-
tions:

ϕ(x, y, 0) =

√
e−5((x−0.5)2+(y−0.5)2)(sin2 5πx+ cos2 3πy) (17)

and

ϕ(x, y, 0) = e−5((x−0.5)2+10(y−0.5)2) − e−20((x−0.5)2+5(y−0.7)2) − e−20((x−0.5)2+5(y−0.3)2) (18)

for what we refer to as Heat1 and Heat2 in table 1, respectively.

As for boundary conditions, we take mixed Dirichlet and Neumann boundary conditions such as

ϕ(0, y, t) = ϕ(1, y, t) = 0
∂ϕ

∂y

∣∣∣∣
y=0

=
∂ϕ

∂y

∣∣∣∣
y=1

= 0 (19)

for Heat1 (17) and

∂ϕ

∂x

∣∣∣∣
x=0

=
∂ϕ

∂x

∣∣∣∣
x=1

= 0 ϕ(x, 0, t) = ϕ(x, 1, t) = 0 (20)

for Heat2 (18).

As with the Laplace equation in section 3.2, we are careful to ensure that the initial conditions are
not directly representable by a single term of a superposition, thus many superposition bases are
required to approximate the resulting solution.

In this instance, we only benchmark against PINNs since NCL and holomorphic neural networks do
not represent the heat equation.

For the superposition networks, we implement architectures as per section 2.2.3 with 64 trainable
components. We initialise all parameters in Eq. equation 10 and Eq. equation 5 random-uniformly
on (0, 1), with the exception of θx1i and θy1i, which are initialised random-uniformly on (0, 10).
We use MLPs with 3 hidden layers of width 64 for PINNs.

We find that the superposition network methodology is able to perform better than the PINN on
both problems, even though the approximation of the initial solution is not as precise. The diffusion
phenomenon is, however, very well captured, proving that the proposed method can handle the extra
layer of complexity brought by the time dependency of the differential equation.

3.4 INCOMPRESSIBLE NAVIER-STOKES EQUATION

In this section, we demonstrate the challenges remaining in physics-informed optimsation for prac-
tical problems. We consider solutions to the incompressible steady-state Navier-Stokes equation:

(u · ∇)u = ν∇2u− 1

ρ
∇p, (21)

with the additional constraint that ∇ · u = 0 everywhere. We denote the x and y components of u
with unbolded symbols u and v, respectively.

We take Ω as (0, 0.5) × (0, 0.1), with two circles of radius 0.05 removed from the rectangle. The
centres of the circles lie at (0.15, 0.1) and (0.35, 0.0). As boundary conditions, we take u = (0.1, 0)

9
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at x = 0, u = w on the circles, p = 0 at x = 0.5, and v = 0 elsewhere. The constraint of v = 0
corresponds to imposing a reflection of the velocity field parallel to the x-axis at y = 0.15 and y = 0,
thus this represents a tiled structure.

For the superposition network setups, we follow to use the following forms for σi in Eq. equation 5:
(cos(x + y),− cos(x + y)), (ex+y,−ex+y), (x cos(xy),−y cos(xy)). Our initialisation and num-
ber of symmetry groups follow the same parameters as per section 3.2. For PINNs, NCL and the
networks representing p we use MLPs with three hidden layers of width 32 each. The PINN has an
additional loss term for divergence-free constraints. We sample equally spaced points on ∂Ω such
that each line segment has a density of 1000 collocation points per unit length, with the exception of
each semi-circle which has 100 collocation points on the semi-circle each. The interior collocation
points are formed with rejection sampling with 1024 random uniformly distributed points distributed
over the rectangle (0, 0.5)× (0, 0.1).

We find it noteworthy that in this scenario where nonlinear Navier-Stokes constraints cannot be
embedded within the architecture, convergence is problematic for all methods.

3.5 BURGERS’ EQUATION

We construct a benchmark defined as per the 1D-Burgers’ equation in equation 11 with ν = 0.1,
initial conditions of u(x, 0) = exp(−50(x−0.6)2)− exp(−50(x−0.4)2) and boundary conditions
of u(0, t) = 0 and u(1, t) = 1, with Ω = (0, 1)2.

For superposition networks, we consider 100 components with parameters chosen analogously to
the heat equation experiments of section 3.3. We use 64 evenly spaced points on each Dirichlet
boundary for imposing boundary conditions and 1024 collocation points on the interior for PINN
based methods.

4 DISCUSSION

Motivated by the difficulty of training physics-informed regularisation, this work has sought to em-
bed linear differential equation constraints within neural network architectures, and also theoreti-
cally demonstrated the possibility of extending this to some non-linear differential equations. We
suggested a systematic approach to further extend our approach to include additional differential
operators, and hence ODE/PDEs, as well as illustrating ad-hoc constructions for notable cases. Cru-
cially, ensuring convergence guarantees for equations at the interior of the domain might enable
the adoption of neural architectures in more critical applications than is currently targeted. Numer-
ical investigations support a perspective that favours embedding differential equations constraints
via architectural design rather than regularisation. However, we emphasise some limitations in our
approaches. While we present Lie-group symmetries and manufactured solutions of certain linear-
differential equations, we do not present methodical ways to derive such solutions for arbitrary
linear differential equations. In practice, for other diffrential equations, a practitioner might em-
ploy techniques such as a trial ansatz, using physically-motivated arguments, or attempting standard
approaches used in nonlinear differential equations (Hydon, 2000). We hope that our work moti-
vates further research into embedding differential equation constraints directly into neural network
architectures.
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