
Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and
Multi-Agent Environments

Mikel Malagón 1 Josu Ceberio 1 Jose A. Lozano 1 2

Abstract
Advances in large models, reinforcement learning,
and open-endedness have accelerated progress to-
ward autonomous agents that can learn and inter-
act in the real world. To achieve this, flexible tools
are needed to create rich, yet computationally ef-
ficient, environments. While scalable 2D environ-
ments fail to address key real-world challenges
like 3D navigation and spatial reasoning, more
complex 3D environments are computationally
expensive and lack features like customizability
and multi-agent support. This paper introduces
Craftium, a highly customizable and easy-to-use
platform for building rich 3D single- and multi-
agent environments. We showcase environments
of different complexity and nature: from single-
and multi-agent tasks to vast worlds with many
creatures and biomes, and customizable proce-
dural task generators. Benchmarking shows that
Craftium significantly reduces the computational
cost of alternatives of similar richness, achieving
+2K steps per second more than Minecraft-based
frameworks.1

1. Introduction
Progress in Reinforcement Learning (RL) (Sutton & Barto,
2018), embodied AI (Paolo et al., 2024), and open-ended
agents (Hughes et al., 2024) is inherently tied to the envi-
ronments where agents are trained, evaluated, and analyzed.
Each new insight or advancement in the field is supported
by an environment that enables its emergence and study. A

1Department of Computer Science and Artificial Intelli-
gence, University of the Basque Country UPV/EHU, Donostia-
San Sebastian, Spain 2Basque Center for Applied Mathematics
(BCAM), Bilbao, Spain. Correspondence to: Mikel Malagón
<mikel.malagon@ehu.eus>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1Code available at https://github.com/mikelma/
craftium.

Figure 1. Examples of the diverse single- and multi-agent envi-
ronments that can be created in Craftium. From surviving in
procedurally generated dungeons to exploring vast open worlds
filled with animals, monsters, and varied biomes.

well-known example is the Arcade Learning Environment
(ALE) (Bellemare et al., 2013), which undoubtedly con-
tributed to the advancement of the RL field, marking many
of its most important milestones. To name a few: the intro-
duction of the Deep Q-Networks (Mnih et al., 2013), the
“infamously difficult Montezuma’s Revenge” (Bellemare
et al., 2016) that inspired many exploration strategies (Os-
trovski et al., 2017; Burda et al., 2019; Badia et al., 2020b),
and the first time an agent outperformed humans in all Atari
benchmarks (Badia et al., 2020a).

However, as observed throughout the literature, research in
these areas is bound to the challenges the employed envi-
ronments introduce. The researcher often faces a dilemma
between computationally efficient but simplistic environ-
ments or substantially slower but richer environments. For
instance, Continual Reinforcement Learning (CRL) (Abel
et al., 2023), Unsupervised Environment Design (UED)
(Garcin et al., 2024), and Multi-Agent RL (MARL) (Ying
et al., 2023), are greatly affected by the efficiency of the
employed environments as they require learning from many
tasks or agents. Thus, in these works, experiments are of-
ten limited to simple environments as a consequence of the
computational cost of employing more complex alternatives
(Rigter et al., 2024; Malagon et al., 2024; Rutherford et al.,
2024). For example, Craftax relies on 2D grids (Matthews
et al., 2024), while OMNI-EPIC (Faldor et al., 2025) em-
ploys 3D environments of substantially limited diversity
compared to alternatives like MineDojo (Fan et al., 2022)

1

https://github.com/mikelma/craftium
https://github.com/mikelma/craftium

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

or Habitat 3.0 (Puig et al., 2024).

Conversely, works on rich and complex environments (Grbic
et al., 2021; Earle et al., 2024; Prasanna et al., 2024; Raad
et al., 2024) rely on fully featured video games that have a
high computational cost and are closed-source. The best-
known of such platforms is Minecraft, which has inspired
several single-agent environments and benchmarks over the
years (Johnson et al., 2016; Guss et al., 2019; Fan et al.,
2022). However, Minecraft is a fully featured and complex
3D game, which makes it substantially more inefficient than
simpler alternatives (Wydmuch et al., 2019; Matthews et al.,
2024). Furthermore, its closed-source nature greatly limits
its flexibility, hindering its application to problems beyond
“classic” RL, like CRL, MARL, and UED.

Another important issue that especially affects research in
these areas is the lack of flexibility in the environments.
Commonly used environments offer no customization or
limited possibilities, often restricted to a set of predefined
parameters, such as difficulty level or the number of enemies.
Among others, these environments include: ALE (Machado
et al., 2018), MineRL (Guss et al., 2019), ProcGen (Cobbe
et al., 2020), MineDojo (Fan et al., 2022), Crafter (Hafner,
2022), and Craftax (Matthews et al., 2024). The lack of
flexibility hinders the ability to analyze specific behavior
of agents, obstructing algorithmic comparison beyond pure
performance benchmarking, which has been shown to be
insufficient for RL (Jordan et al., 2024). Although flexible
platforms that allow the creation of new and diverse environ-
ments exist, these fall into 2D worlds (Bamford et al., 2020;
Chevalier-Boisvert et al., 2023; Matthews et al., 2024) or
depend on complex Domain Specific Languages (DSL) that
make their implementation difficult, while still not being
3D, as is the case with VizDoom (Wydmuch et al., 2019)
and MiniHack (Samvelyan et al., 2021).

In this paper, we present Craftium, an easy-to-use plat-
form for creating rich and efficient 3D environments for
autonomous agent research. Unlike most complex envi-
ronment platforms, which are based on video games (e.g.,
VizDoom is based on ZDoom and MiniHack on NetHack),
Craftium is based on a game engine: Luanti (Luanti Team,
2025b). The integration with our modified version of the
engine (see Appendix A) allows the easy creation of com-
plex voxel environments2 using the powerful and greatly
documented Lua Modding API (Luanti Team, 2025a) in-
stead of much less popular DSLs, as employed in ZDoom
or MiniHack. Lua (Ierusalimschy, 2006) is a Python-like,
easy-to-use and understand, mature, and efficient program-
ming language used in many popular tools and projects,

2Voxel games use 3D blocks (voxels) to construct and represent
the world, allowing players to modify the environment by adding
or removing blocks. Figure 1 shows examples of these types of
environments.

e.g., Roblox, World of Warcraft, and Neovim. In Craftium,
Lua is used to expose the Luanti engine, allowing vast pos-
sibilities for developing custom environments. Moreover,
Luanti is open-source and has a vibrant community that has
created many games and assets that can be used in Craftium
environments (Ward, 2025a), significantly reducing the de-
velopment cost of complex scenarios. For instance, all the
environments shown in Figure 1 have been implemented in
less than 160 lines of code (comments and whitespace in-
cluded). These environments, later described in Section 3.5,
showcase the versatility of the presented framework, from
RL and MARL tasks of different nature, customizable proce-
dural environment generators for CRL, UED, and meta-RL
(Yu et al., 2020; Rimon et al., 2024) to gigantic procedu-
rally generated open worlds (64K×64K×64K blocks) for
research on embodied AI (Paolo et al., 2024) and open-
ended agents (Wang et al., 2023). Beyond being flexible,
feature-rich, and developer-friendly, we show that Craftium
environments run 38× faster than alternatives based on the
original Minecraft game, the only platforms that offer simi-
lar complexity and richness. Craftium also supports running
asynchronous environments in parallel, achieving more than
12K steps per second in this setup. Furthermore, Craftium is
the first framework that allows the creation of vast 3D open
worlds while supporting multi-agent settings, opening the
door to new research lines. Finally, Craftium implements
the popular Gymnasium (Towers et al., 2024) and Petting-
Zoo (Terry et al., 2021) interfaces, the modern standard for
RL and MARL research respectively, making it compatible
with many other libraries and projects (Raffin et al., 2021;
Huang et al., 2022b; Serrano-Muñoz et al., 2023).3 Finally,
Craftium is fully open source and includes extensive online
documentation with many guides, usage examples, tutorials,
a detailed reference, and ready-to-use scripts.1

2. Background: Luanti
Craftium is based on our modified version of the Luanti
game engine (refer to Appendix A for details and the list
of modifications). Luanti (Luanti Team, 2025b) is a well-
known open-source voxel game engine launched for the
first time in 2011 that is currently being developed by a
vibrant community. Unlike most game engines, Luanti sup-
ports modding at its core through its Lua API, allowing
fine-grained and real-time access and modification of the
internal state of the engine (examples can be found in Sec-
tion 3.2 and Appendix H). This enables extensive and pro-
grammatic customization of its behavior, facilitating the
creation, modification, and extension of existing games (en-
vironments) using its powerful Modding API (Luanti Team,
2025a; Ward, 2025b). Additionally, Luanti is implemented

3These interfaces are general and can be used for learning
paradigms beyond RL (e.g., evolutionary algorithms).

2

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Figure 2. Overview of Craftium’s internal architecture. Components denoted with ×N are repeated according to the number of agents
(one or more).

in C++, a widely adopted programming language known
for its high efficiency. Finally, Luanti is supported by an
active community that has created hundreds of open, free-
to-use games and mods (Ward, 2025a) that are seamlessly
loaded in Craftium. For example, community mods are em-
ployed in all the environments from Section 3.5 showcased
in Figure 1 and 9.

3. Craftium
Craftium follows the architecture illustrated in Figure 2. It
consists of two main components: the Luanti engine and the
Python environment interface. This interface is the bridge
between the environment and the agents. Internally, it han-
dles a communication channel per agent, which connects
to Luanti, sending and receiving data such as observations,
actions, and rewards. On the other hand, the Luanti server
executes the logic of the environment, specified by a file
characterizing the 3D world and a script (i.e., mod) that
defines its behavior. The Luanti server also synchronizes its
clients (one per agent), which handle rendering and commu-
nication tasks with the Python library. Finally, note that the
original version of Luanti does not support these features,
but its open-source nature allowed modifying its source
code to support this architecture (see Appendix A).

In the following, Sections 3.1, 3.2, and 3.3 describe
Craftium environments, the creation process, and the in-
terface to use them. Respectively, Section 3.4 compares the
performance of Craftium with other frameworks. Finally,
Section 3.5 showcases the presented framework as a general-
purpose environment creation tool across a variety of use
cases and fields concerning autonomous agents.

3.1. Observations, Actions, and Rewards

Observations. In Craftium, observations are images from
the agent’s point of view. An example observation is pro-
vided in Figure 3. Observations are highly customizable
(e.g., size, number of channels, etc.) and can vary between

environments. Moreover, Craftium supports many popular
techniques such as frame skipping and frame stacking that
are commonly used throughout the literature (Huang et al.,
2022a).

Figure 3. Example of a
64x64 pixel RGB image
observation.

Actions. By default, actions
are composed of a combination
of 21 keyboard actions and a tu-
ple that defines the movement of
the mouse, which is mainly used
to control the camera. Keyboard-
related actions are binary vari-
ables with a value of 1 if the key
is pressed, and 0 otherwise. The
movement of the mouse is de-
fined by the tuple (∆x,∆y) ∈
[−1, 1]2, where ∆x < 0 moves
the mouse to the left in the horizontal axis and ∆x > 0 to
the right, similarly, ∆y < 0 moves the mouse downwards
in the vertical axis and ∆y > 0 moves it upwards. Thus, if
∆x = ∆y = 0, the mouse is not moved. See Appendix B.1
for a detailed description of all the possible actions sup-
ported in Craftium.

The default action space is designed to be versatile, cover-
ing as many use cases as possible: from tasks with complex
action sequences (e.g., manual inventory control) to simple
navigation environments with a couple of actions (e.g., for-
ward and lateral movement). However, the default action
space is overly complex for most tasks: the number of pos-
sible keyboard action combinations in the default space is
221. Therefore, Craftium allows reducing the action space
to the minimal subset required to solve the task at hand,
substantially simplifying the learning process of the agent
(see Appendix B.2).

Rewards. In Craftium, reward functions are defined us-
ing Lua scripts (mods are discussed in the next section).
Craftium provides a comprehensive set of tools for this pur-
pose, including an extended version of Luanti’s Modding

3

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

1 name = craftium_mod
2 description = My environment
3 depends = default

Figure 4. Example configuration file of a mod
implementing a Craftium environment. This ex-
ample depends on the default mod that pro-
vides some basic functionalities to the mod.

1 core.register_on_dignode(function(ps, block)
2 if string.find(block["name"], "tree") then
3 set_reward_once(1.0, 0.0)
4 end
5 end)
6

7 core.register_on_dieplayer(function(obj, rn)
8 set_termination()
9 end)

Figure 5. Lua script (i.e., mod) implementing basic environment mechanics.

API. This functionality is implemented in a modified version
of the engine developed specifically for this work, which
incorporates additional functions for setting and retrieving
reward values and episode termination flags. Some of these
functions are shown in the example mod from Section 3.2,
while the additional API functions for defining RL envi-
ronments are detailed in Appendix C. The complete list of
modifications to the original Luanti engine can be found in
Appendix A.

3.2. Creating Custom Environments

Creating a Craftium environment implies two steps: 1 gen-
erating a world: a database with all the information about
the virtual environment where the agent will be placed and
will interact with (Figure 1 shows images of a variety of
worlds); and 2 defining the behavior of the environment,
such as the reward function and conditions for episode ter-
mination. The following lines describe these steps in detail.

1 Luanti offers a vast range of possibilities for generating
worlds. However, creating a world can be as simple as a
few clicks when using one of the many predefined map
generators.4 If finer control over the map generation process
is needed, maps can be created using custom scripts. The
procedural environment generator presented in Section 3.5.4
is an example of a more complex custom map generation
process.

2 The next step is to define the behavior of the environment.
This is done via mods: user-defined scripts that modify and
extend the game engine’s behavior, allowing for the cre-
ation of custom environments, mechanics, and interactions
within the 3D world. A mod has a minimum of two files: a
configuration file and a Lua script.

The configuration file contains the mod’s metadata. It com-
monly includes the mod’s name, a description, and the list
of dependencies (see Figure 4). The Lua script is where
the environment’s mechanics are implemented. Figure 5
illustrates an example script that defines the task of chop-

4Map generators are documented at: https://dev.
luanti.org/mapgen.

ping as many trees as possible (presented in Section 3.5.1).
Line 1 registers a callback function that is called every
time the player (i.e., agent) digs a block. In line 2, this
function checks if the dug block is part of a tree; if the
condition is met, line 3 sets the reward to 1 for that timestep
(set reward once and other RL related functions are
described in Appendix C). Line 7 registers another callback
function. In this case, the function is run every time the
player dies and calls another function that terminates the
episode, in line 8.

Even basic mods, such as the presented example, can be
used to generate a wide range of environments. Furthermore,
advanced community-made extensions and games can be
easily integrated into Craftium, significantly expanding its
potential. Section 3.5 highlights some of these possibilities.
Refer to Appendix I and to the online documentation1 for
detailed instructions on creating Craftium environments.
Finally, note that the creation of Luanti mods is outside the
scope of this paper, as comprehensive resources are already
available (Luanti Team, 2025a; Ward, 2025b).

3.3. Interface

Once created, Craftium environments are used via the Gym-
nasium (Towers et al., 2024) (single-agent) or PettingZoo
(Terry et al., 2021) (multi-agent) interfaces. Both interfaces
are open-source and have become the standard interface
for RL and MARL environments, providing a unified ab-
straction over environments that enables interoperability
between environments and methods. Just by implement-
ing these interfaces, Craftium is already compatible with
many existing tools and projects to train, test, develop,
and analyze many algorithms, including but not limited
to stable-baselines3 (Raffin et al., 2021), Ray RL-
lib (Moritz et al., 2018), CleanRL (Huang et al., 2022b),
and skrl (Serrano-Muñoz et al., 2023).

Figure 6 illustrates an example using the Gymnasium
(single-agent) interface. Note that, PettingZoo employs a
very similar interface described in Appendix D. Line 4 loads
an example Craftium environment by name (see Section 3.5).
Line 6 initiates an episode, obtaining the first observation

4

https://dev.luanti.org/mapgen
https://dev.luanti.org/mapgen

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

1 import gymnasium as gym
2 import craftium
3

4 env = gym.make("Craftium/Room-v0")
5

6 obs, inf = env.reset()
7 for t in range(5000):
8 a = agent(obs)
9 obs, r, tm, tc, inf = env.step(a)

10

11 if tm or tc:
12 obs, inf = env.reset()
13

14 env.close()

Figure 6. Python code illustrating the interaction loop between the
agent and a Craftium environment using the Gymnasium interface.

and a Python dictionary with additional information (e.g.,
elapsed time). Lines 7-12 implement the agent-environment
interaction loop. In line 8, the agent selects an action based
on the current observation. The line 9 executes the action
specified by the agent, resulting in an observation, a reward,
a truncation flag, a termination flag, and a new informa-
tion dictionary, respectively. The truncation flag indicates if
the maximum number of timesteps allowed by the environ-
ment is reached, while the termination flag determines if the
episode has reached a terminal state (e.g., the player dies).
Both flags are checked in line 11, and if one or both of them
are true, the episode is restarted in line 12. Finally, the last
line closes the environment after the main loop ends.

3.4. Performance

MineDojo VizDoom Craftium
0

500

1000

1500

2000

2500

S
te
p
/s

Figure 7. Average steps per sec-
ond obtained with MineDojo, Viz-
Doom, and Craftium.

As stated in the intro-
duction, computation-
ally efficient environ-
ments are key for re-
search on autonomous
agents; as such, it has
been a focal point of
Craftium’s development.
Figure 7 compares the
steps (i.e., interactions)
per second obtained by
Craftium to VizDoom
and MineDojo, well-
known environment cre-
ation platforms from the
literature. Results show the average of 5 runs in 3 differ-
ent environments per framework, on a machine with a sin-
gle NVIDIA A5000 GPU and an Intel Xeon Silver 4309Y
CPU. Craftium achieves very competitive results compared
to VizDoom, even though VizDoom is based on ZDoom,
which is not 3D per se, discussed in Appendix F. Comparing
Craftium’s performance to MineDojo’s, we observe that the
presented framework achieves +2670 steps per second more.

Beyond the single-environment setup, running Craftium en-
vironments in parallel notably increases their throughput
as shown in Appendix E, reaching over 12K steps per sec-
ond on the same hardware. By significantly reducing the
computational requirements, Craftium enables researchers
to conduct large-scale experiments on complex scenarios
within their desired domain, supporting advancements in
emerging (but especially sensitive to computational cost)
areas like CRL, lifelong learning, UED, and open-ended
agents. Further details on the benchmark and extended
analysis of the results are provided in Appendix E.

3.5. Illustrative Examples

Craftium is a platform that allows the development of fast
and rich 3D environments for all research subfields of au-
tonomous agents, such as RL, MARL, embodied AI, meta-
learning, continual RL, and open-endedness. Due to the
page limitation, this section highlights Craftium’s poten-
tial across a few of its vast number of possible use cases:
single and multi-agent RL tasks (Sections 3.5.1 and 3.5.2),
open-world environments for large multimodal model-based
embodied agents (Section 3.5.3), and environment gener-
ators for CRL (Section 3.5.4). The aim is to demonstrate
the framework’s capabilities and provide accessible, well-
documented foundations for building custom environments
tailored to specific research needs. Note that these exam-
ples are merely illustrative and are not to be understood as
benchmarks.

3.5.1. EXAMPLE 1: SINGLE-AGENT RL

This section provides examples of using Craftium to cre-
ate single-agent environments for RL. We implement five
tasks of diverse nature: simple environments for testing RL
algorithms, sparse reward and exploration scenarios, and a
challenging survival task. For simplicity, all tasks share the
same 64× 64 pixel RGB image observation space. More-
over, the default action space described in Section 3.1 is
simplified to only use the necessary actions to solve each
task (see Appendix B.2). Figures and extended descriptions
of the environments are provided in Appendix G.1.

To complement this example, Figure 8 demonstrates that
environments of varying difficulty levels can be designed
within Craftium. The figure shows the results of the Proxi-
mal Policy Optimization (PPO) algorithm (Schulman et al.,
2017) in two of the presented tasks. Results in Figure 8a
indicate that the ChopTree task can be successfully solved,
chopping over 6 trees per episode (+1 for every chopped
tree). In SpidersAttack, agents are rewarded +1 for every
defeated spider, where an additional spider appears in every
round (until 5 spiders). As can be seen in Figure 8b, the
final episodic return in this task is lower than 1.5, showing
that the agents only reach the second of five rounds. See

5

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

E
p

is
o
d

ic
 r

e
tu

rn

Steps
0.0 0.2 0.4 0.6 0.8 1.0

×106

0

2

4

6

8

(a) ChopTree.

E
p

is
o
d

ic
 r

e
tu

rn

Steps
0.0 0.2 0.4 0.6 0.8 1.0

×106

0.25

0.50

0.75

1.00

1.25

(b) SpidersAttack.

E
p

is
o
d

ic
 r

e
tu

rn

Steps

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0
×106

(c) Multi-Agent Combat.

Figure 8. Episodic return curves obtained by PPO in the single-agent ChopTree and SpidersAttack tasks, and the multi-agent MACombat
environment. Results aggregate 5 different runs per task: average is denoted with lines and the standard error with the contour.

Figure 9. The leftmost picture shows an overview of the map for the open-world environment example. The map shows an area of
1.6K×1.6K blocks from the vast 64K×64K×64K blocks area that agents can explore. The color of each pixel is used to denote different
biomes, some of which are visualized in the center figures. The rightmost plot shows the results of PPO+LSTM and LLava-Agent
(zero-shot) in terms of average and best cumulative reward values across 10 repetitions per method. Refer to Appendix G.3 for further
details.

Appendix G.1 for further details and experimental results in
the rest of the tasks.

3.5.2. EXAMPLE 2: MULTI-AGENT RL

This section showcases Craftium’s multi-agent capabilities
by implementing a MARL environment: a one vs one multi-
agent combat environment. Like the tasks from the previous
section, this environment employs an RGB image observa-
tion space and a simplified discrete action space. Agents are
rewarded (+1) when punching other agents and penalized
for damage (-0.1). To illustrate an example, we train the
agents using self-play (Crandall & Goodrich, 2005), a popu-
lar method for this type of competitive scenario (Silver et al.,
2017; 2018; Jiang et al., 2024). Results are presented in
Figure 8c, where the policy has been trained to play against
itself using PPO. The increasing episodic return curve in the
figure shows how the policy learns to fulfill the task. Refer
to Appendix G.2 for additional figures and more details on
the environment and the learning method.

3.5.3. EXAMPLE 3: OPEN-WORLD ENVIRONMENTS

This section introduces an open-world environment as an
example of a complex scenario for embodied AI. The envi-
ronment employs the open-source VoxeLibre project (Fleck-
enstein et al., 2025) for Luanti, which provides a rich and
vast environment with many complex interactions, different
biomes, animals, plants, or hostile creatures. This section

Figure 10. Skills tree of the open-world environment in Sec-
tion 3.5.3. The diagram shows the hierarchical sequence of tasks
to be unlocked by the agent. Refer to the Appendix G.3 for details.

also serves as an example of how community-made games
in Luanti can be integrated into Craftium.

Leftmost and center images in Figure 9 illustrate part of the
vast and diverse virtual world generated for this environ-
ment. Figure 10 presents the skills tree developed for this
environment, showing the hierarchical sequence of skills
that the agent can develop to reach more complex goals.
Every time the agent unlocks a skill of the tool branch (e.g.,
collect two wood blocks), it receives a reward and new tools
(e.g., wood pickaxe and sword), while the objective switches
to the next skill (e.g., collect two stone blocks). Regarding
the hunt and defend branches, the agent receives a reward
according to the difficulty of hunting the animal or defeating
the monster (refer to Appendix G.3 for details).

To complement this example, the rightmost plot in Figure 9
compares the achievements of PPO+LSTM and an agent

6

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

(a)

0.00 0.25 0.50 0.75 1.00
Step 1e6

0.0

0.2

0.4

0.6

0.8

E
p

is
o
d

ic
 R

e
tu

rn

FS FT-L2

(b)
Figure 11. Images in (a) illustrate examples of the procedurally generated dungeon environments from Section 3.5.4. From left to right:
the dungeon’s top view, and two observations from the agent’s perspective, in front of a sand monster, and a spider with the diamond at
the back. The plot in (b) shows the episodic return curves of FS and FT-L2 in the fourth CRL task (see Appendix G.5 for details).

based on the open-source large multimodal model LLaVa
(Liu et al., 2024a) version 1.6 by Liu et al. (2024b) (with
no finetuning to this specific task). Results show that the
LLaVa-Agent unlocks the collect wood and stone stages,
while PPO+LSTM only completes the first one. Both meth-
ods successfully hunt animals and fight some monsters. This
example demonstrates Craftium’s usage beyond RL, analyz-
ing and evaluating the ability of large multimodal model-
based agents to leverage world knowledge to approach com-
plex open-world tasks. Additional information and details
are provided in Appendix G.3.

3.5.4. EXAMPLE 4: PROCEDURAL ENVIRONMENT
GENERATION FOR CRL

This section demonstrates Craftium’s versatility by imple-
menting a procedural environment generator that automat-
ically constructs a sequence of increasingly difficult tasks.
While such a generator has broad applications, including
meta-RL (Dennis et al., 2020), open-endedness (Wang et al.,
2023), and UED (Rigter et al., 2024), we focus on a use case
in CRL (Abel et al., 2023). In CRL, agents interact with a
sequence of environments, each constrained by a timestep
budget, and are expected to leverage prior experience to
solve new tasks efficiently. Existing approaches typically
rely on manually designed task sequences, which limits their
scalability and diversity, and rely on repetitive patterns to
extend them (e.g., Wołczyk et al. (2021) and Tomilin et al.
(2023)). In contrast, our generator enables the automatic
creation of diverse task sequences with controlled difficulty,
showing how Craftium could be used to overcome these
limitations.

Conditioned on some input parameters, the generator proce-
durally constructs labyrinthic 3D dungeons populated with
hostile enemies. The agent has to navigate these dungeons,
survive, and reach its objective, a diamond. Rewards are as-
signed as +10 for collecting the diamond, +0.5 for defeating
an enemy, and 0 otherwise. In this example, we generate 10
environments of increasing difficulty. Figure 11a illustrates
a generated environment, while Appendix G.4 provides fur-
ther details on the generator.

To complement this example, we train two agents: one
from scratch on each task in the sequence (FS) and another
that continuously fine-tunes the previously learned model
using L2 regularization (FT-L2), a common baseline in
CRL (Gaya et al., 2023; Wołczyk et al., 2024). As shown
in Figure 11b and Appendix G.4 (complete results in the
appendix), FT-L2 significantly outperforms the from-scratch
baseline in several environments, demonstrating forward
knowledge transfer across the generated tasks.

4. Related Work
Table 1 includes a comparative overview of popular environ-
ment frameworks from the literature.5 The following lines
provide a more extensive discussion of this analysis.

Most of the environments employed in the literature are
adaptations of video games that were not originally designed
for research (Bellemare et al., 2013; Wydmuch et al., 2019;
Guss et al., 2019; Küttler et al., 2020). As a result, they offer
limited customization, often restricted to predefined param-
eters (e.g., number of enemies). Examples include ALE
(Machado et al., 2018), MineRL (Guss et al., 2019), and
NLE (Küttler et al., 2020). The lack of flexibility hinders
their use in various research scenarios, such as designing
custom environments to study catastrophic forgetting or
analyzing specific behaviors of different learning systems.
These limitations have long been recognized, and several
frameworks have been proposed that allow the creation
of completely new environments. For example, VizDoom
(Wydmuch et al., 2019) allows defining environments us-
ing ZScript, and MiniHack (Samvelyan et al., 2021) em-
ploys the des-file format for the same purpose. Both,
ZScript and the des-file format are Domain Specific
Langauges (DSL) tailored to the games they originate from
(ZDoom and NetHack, respectively). However, DSLs are of-
ten purpose-specific and lack the flexibility and functionality
of general-purpose programming languages. For instance,
the des-file format is not a programming language

5Although the original ProcGen project is unmaintained, the
table considers the community rewrite available at https://
github.com/Farama-Foundation/Procgen2.

7

https://github.com/Farama-Foundation/Procgen2
https://github.com/Farama-Foundation/Procgen2

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Table 1. Popular environment frameworks compared by: number of playable dimensions, procedural generation capabilities, environment
creation, whether environments can be programmatically implemented (and not through predefined configuration options), Gymnasium
support, multi-agent, and open-world capabilities. We specify the language if a framework allows programmatic implementation of
environments, and a red cross otherwise.

FRAMEWORK DIMS. PROC. GEN. ENV. CREAT. PROG. DEF. GYMNASIUM MARL OP. WORLD

ALE (Bellemare et al., 2013) 2D ✘ ✘ ✘ ✔ ✔ ✘
DM LAB (Beattie et al., 2016) 3D ✘ ✔ Lua ✘ ✘ ✘
AI2-THOR (Kolve et al., 2017) 3D ✔ ✔ ✘ ✘ ✔ ✘
VIZDOOM (Wydmuch et al., 2019) 2.5D ✘ ✔ ZScript ✔ ✔ ✘
MINERL (Guss et al., 2019) 3D ✔ ✘ ✘ ✘ ✘ ✔
NLE (Küttler et al., 2020) 2D ✔ ✘ ✘ ✘ ✘ ✔
PROCGEN (Cobbe et al., 2020) 2D ✔ ✔ ✘ ✔ ✘ ✘
MINIHACK (Samvelyan et al., 2021) 2D ✔ ✔ des-file format ✘ ✘ ✘
MINEDOJO (Fan et al., 2022) 3D ✔ ✔ ✘ ✘ ✘ ✔
HABITAT 3.0 (Puig et al., 2024) 3D ✔ ✔ ✘ ✘ ✔ ✘
CRAFTAX (Puig et al., 2024) 2D ✔ ✘ ✘ ✘ ✘ ✔

CRAFTIUM 3D ✔ ✔ Lua ✔ ✔ ✔

per se, just a language to define NetHack levels. Addi-
tionally, DSLs often differ significantly from mainstream
programming languages, which limits their usability and
adoption.

Some frameworks offer customization through the program-
ming languages in which they are implemented, avoiding the
limitations of DSLs. For example, Griddly (Bamford et al.,
2020) and MiniGrid (Chevalier-Boisvert et al., 2023) offer
Python APIs for creating grid-like 2D environments. While
grid environments are fast to simulate, they lack the com-
plexity and diversity of more advanced environments like
MineRL and VizDoom. Although more complex tasks could
be implemented in these frameworks, it would require sig-
nificant development effort for researchers. Regarding 3D
environments, MiniWorld (Chevalier-Boisvert et al., 2023)
offers a similar API to MiniGrid but suffers from the same
issues regarding the implementation of richer environments.

On the other hand, the field of embodied AI for robotics
has emphasized the importance of visually complex sce-
narios (Gan et al., 2021), including popular frameworks
such as AI2-THOR (Kolve et al., 2017) and Habitat 3.0
(Puig et al., 2024). However, these works focus on accurate
physical modeling and photorealism while having limited
diversity (mostly including indoor household scenarios) and
a lack of open-world environments (Deitke et al., 2022; Gu
et al., 2023; Wang et al., 2024). For higher-level cognitive
tasks that do not require accurate physics modeling or pho-
torealism, the field has popularly adopted Minecraft—an
extremely popular game with rich content and diverse open
worlds. Some examples are Malmo (Johnson et al., 2016)
and MineRL (Guss et al., 2019), which wrap Minecraft in
a Python interface. However, they lack support for task
customization or the creation of new environments. More
recently, MineDojo (Fan et al., 2022) has greatly improved
customization within Minecraft-based environments. Never-
theless, environment creation is constrained by predefined

parameters, making scenarios like those in Section 3.5 in-
feasible to implement (see Appendix H for details) and
lacking multi-agent support, which hinders its adoption in
this growing field.

5. Conclusion
Designing new environments and modifying existing ones
is crucial for advancing research in the different subfields
of autonomous agents, such as RL, MARL, CRL, embodied
AI, or open-endedness. However, many established envi-
ronments provide limited or no options for customization
(Bellemare et al., 2013; Guss et al., 2019; Küttler et al.,
2020; Matthews et al., 2024). Although some works offer
tools for developing environments, they rely on restrictive
DSLs (Wydmuch et al., 2019; Samvelyan et al., 2021) or
simpler 2D worlds (Bamford et al., 2020; Leibo et al., 2021;
Chevalier-Boisvert et al., 2023). Conversely, rich and com-
plex 3D environments like MineDojo (Fan et al., 2022) allow
limited customization, have no multi-agent support, and are
built on closed-source and prohibitively computationally
expensive games like Minecraft.

This work presents Craftium, an easy-to-use and flexible
framework for creating rich and fast 3D environments.
Craftium’s versatility is showcased in Section 3.5, which
shows its application to train and analyze single- and multi-
agent RL algorithms, implement open-world environments
for complex embodied agent tasks, and procedurally gener-
ate environments for CRL. Unlike many alternatives built
on top of existing video games, Craftium is based on Luanti,
a fully-featured open-source game engine. This analogy
is also translated to the presented framework, as it is not a
benchmark but a general-purpose tool for creating environ-
ments. By leveraging the extensive and well-documented
Luanti Modding API (Luanti Team, 2025a), Craftium en-
ables nearly limitless possibilities for the development of
custom single- and multi-agent environments. Additionally,

8

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Luanti has a vibrant community that has produced numerous
games and extensions (Ward, 2025a), which can be easily
integrated into Craftium environments (see Section 3.5.3).
Moreover, its efficient implementation significantly reduces
the computational cost of alternatives of comparable rich-
ness. As shown in Section 3.4, Craftium achieves over 2K
timesteps per second more than MineDojo, and performs
competitively with VizDoom, even though VizDoom is not
fully 3D. Craftium also implements the widely-adopted
Gymnasium (Towers et al., 2024) and Petting Zoo (Terry
et al., 2021) interfaces, making it compatible with numerous
existing tools and projects, such as Moritz et al. (2018);
Huang et al. (2022b); Serrano-Muñoz et al. (2023) and Raf-
fin et al. (2021). Finally, Craftium is open source and pro-
vides extensive documentation, including many practical
examples from which users can build environments for their
particular research needs.

Acknowledgements
We are grateful to Jose A. Pascual for the technical sup-
port and to Jon Vadillo and Ainhize Barrainkua for reading
preliminary versions of the paper. We also thank the Lu-
anti developers and community for their ongoing efforts
to maintain and continuously improve the engine and its
ecosystem.

Mikel Malagón acknowledges a predoctoral grant
from the Spanish MICIU/AEI with code PREP2022-
000309, associated with the research project
PID2022-137442NB-I00 funded by the Spanish MI-
CIU/AEI/10.13039/501100011033 and FEDER, EU. Josu
Ceberio has been partially supported by the Spanish
MICIU/AEI/10.13039/PID2023-149195NB-I00.

This work is also funded through the BCAM
Severo Ochoa accreditation CEX2021-001142-
S/MICIN/AEI/10.13039/501100011033; and the Research
Groups 2022-2025 (IT1504-22), the BERC 2022-2025
program, and Elkartek (KK-2024/00030) from the Basque
Government.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Abel, D., Barreto, A., Van Roy, B., Precup, D., van Hasselt,

H. P., and Singh, S. A definition of continual reinforce-
ment learning. In Proceedings of the 2023 Advances in
Neural Information Processing Systems (NeurIPS), 2023.

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P.,
Vitvitskyi, A., Guo, Z. D., and Blundell, C. Agent57:
Outperforming the atari human benchmark. In Proceed-
ings of the 2020 International Conference on Machine
Learning (ICML), 2020a.

Badia, A. P., Sprechmann, P., Vitvitskyi, A., Guo, D., Piot,
B., Kapturowski, S., Tieleman, O., Arjovsky, M., Pritzel,
A., Bolt, A., et al. Never give up: Learning directed explo-
ration strategies. In Proceedings of the 2020 International
Conference on Learning Representations (ICLR), 2020b.

Bamford, C., Huang, S., and Lucas, S. Griddly: A
platform for ai research in games. arXiv preprint
arXiv:2011.06363, 2020.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wain-
wright, M., Küttler, H., Lefrancq, A., Green, S., Valdés,
V., Sadik, A., et al. Deepmind Lab. arXiv preprint
arXiv:1612.03801, 2016.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based ex-
ploration and intrinsic motivation. In Proceedings of
the 20216 Advances in Neural Information Processing
Systems (NeurIPS), 2016.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The Arcade Learning Environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Ex-
ploration by random network distillation. In Proceedings
of the 2019 International Conference on Learning Repre-
sentations (ICLR), 2019.

Chen, B., Xu, Z., Kirmani, S., Ichter, B., Sadigh, D., Guibas,
L., and Xia, F. SpatialVLM: Endowing vision-language
models with spatial reasoning capabilities. In Proceed-
ings of the 2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2024.

Chevalier-Boisvert, M., Dai, B., Towers, M., de Lazcano,
R., Willems, L., Lahlou, S., Pal, S., Castro, P. S., and
Terry, J. Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented
tasks. arXiv preprint arXiv:2306.13831, 2023.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-
aging procedural generation to benchmark reinforcement
learning. arXiv preprint arXiv:1912.01588, 2020.

Crandall, J. W. and Goodrich, M. A. Learning to com-
pete, compromise, and cooperate in repeated general-sum
games. In Proceedings of the 2005 International Confer-
ence on Machine Learning (ICML), pp. 161–168, 2005.

9

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Deitke, M., VanderBilt, E., Herrasti, A., Weihs, L., Ehsani,
K., Salvador, J., Han, W., Kolve, E., Kembhavi, A., and
Mottaghi, R. ProcTHOR: Large-scale embodied AI using
procedural generation. Proceedings of the 2022 Advances
in Neural Information Processing Systems (NeurIPS),
2022.

Dennis, M., Jaques, N., Vinitsky, E., Bayen, A., Russell, S.,
Critch, A., and Levine, S. Emergent complexity and zero-
shot transfer via unsupervised environment design. In
Proceedings of the 2020 Advances in Neural Information
Processing Systems (NeurIPS), 2020.

Earle, S., Kokkinos, F., Nie, Y., Togelius, J., and Raileanu,
R. Dreamcraft: Text-guided generation of functional 3d
environments in minecraft. In Proceedings of the 2024
International Conference on the Foundations of Digital
Games (FDG), 2024.

Faldor, M., Zhang, J., Cully, A., and Clune, J. OMNI-
EPIC: Open-endedness via models of human notions of
interestingness with environments programmed in code.
In Proceedings of the 2025 International Conference on
Learning Representations (ICLR), 2025.

Fan, L., Wang, G., Jiang, Y., Mandlekar, A., Yang, Y.,
Zhu, H., Tang, A., Huang, D.-A., Zhu, Y., and Anand-
kumar, A. MineDojo: Building open-ended embodied
agents with internet-scale knowledge. Proceedings of the
2022 Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Fleckenstein, L., Wuzzy, davedevils, and contribu-
tors. VoxeLibre, a voxel-based sandbox game
for luanti. https://git.minetest.land/
VoxeLibre/VoxeLibre, 2025. Accessed: 2025-05-
21.

Gan, C., Schwartz, J., Alter, S., Mrowca, D., Schrimpf, M.,
Traer, J., Freitas, J. D., Kubilius, J., Bhandwaldar, A.,
Haber, N., Sano, M., Kim, K., Wang, E., Lingelbach,
M., Curtis, A., Feigelis, K. T., Bear, D., Gutfreund, D.,
Cox, D. D., Torralba, A., DiCarlo, J. J., Tenenbaum, J. B.,
Mcdermott, J., and Yamins, D. L. ThreeDWorld: A plat-
form for interactive multi-modal physical simulation. In
Proceedings of the 2021 Advances in Neural Information
Processing Systems (NeurIPS) Datasets and Benchmarks
Track, 2021.

Garcin, S., Doran, J., Guo, S., Lucas, C. G., and Albrecht,
S. V. DRED: Zero-shot transfer in reinforcement learning
via data-regularised environment design. In Proceedings
of the 2024 International Conference on Machine Learn-
ing (ICML), 2024.

Gaya, J.-B., Doan, T., Caccia, L., Soulier, L., Denoyer, L.,
and Raileanu, R. Building a subspace of policies for

scalable continual learning. In Proceedings of the 2023
International Conference on Learning Representations
(ICLR), 2023.

Grbic, D., Palm, R. B., Najarro, E., Glanois, C., and Risi,
S. Evocraft: A new challenge for open-endedness. In
Proceedings of the 2021 Applications of Evolutionary
Computation: 24th International Conference, EvoAppli-
cations 2021, pp. 325–340. Springer, 2021.

Gu, J., Xiang, F., Li, X., Ling, Z., Liu, X., Mu, T., Tang, Y.,
Tao, S., Wei, X., Yao, Y., Yuan, X., Xie, P., Huang, Z.,
Chen, R., and Su, H. ManiSkill2: A unified benchmark
for generalizable manipulation skills. In Proceedings of
the 2023 International Conference on Learning Repre-
sentations (ICLR), 2023.

Guss, W. H., Houghton, B., Topin, N., Wang, P., Codel,
C., Veloso, M., and Salakhutdinov, R. MineRL: A large-
scale dataset of minecraft demonstrations. arXiv preprint
arXiv:1907.13440, 2019.

Hafner, D. Benchmarking the spectrum of agent capabilities.
In Proceedings of the 2022 International Conference on
Learning Representations (ICLR), 2022.

Huang, S., Dossa, R. F. J., Raffin, A., Kan-
ervisto, A., and Wang, W. The 37 implemen-
tation details of proximal policy optimization.
In ICLR Blog Track, 2022a. URL https:
//iclr-blog-track.github.io/2022/
03/25/ppo-implementation-details/.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty,
D., Mehta, K., and Araújo, J. G. CleanRL: High-quality
single-file implementations of deep reinforcement learn-
ing algorithms. Journal of Machine Learning Research,
23(274):1–18, 2022b.

Hughes, E., Dennis, M. D., Parker-Holder, J., Behbahani,
F., Mavalankar, A., Shi, Y., Schaul, T., and Rocktäschel,
T. Position: Open-endedness is essential for artificial
superhuman intelligence. In Proceedings of the 2024
International Conference on Machine Learning (ICML),
2024.

Ierusalimschy, R. Programming in Lua. Roberto Ierusalim-
schy, 2006.

Jiang, Y., Liu, Q., Ma, X., Li, C., Yang, Y., Yang, J., Liang,
B., and Zhao, Q. Learning diverse risk preferences in
population-based self-play. In Proceedings of the 2024
AAAI Conference on Artificial Intelligence, 2024.

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D.
The Malmo platform for artificial intelligence experimen-
tation. In Proceedings of the 2016 International Joint
Conference on Artificial Intelligence (IJCAI), volume 16,
pp. 4246–4247, 2016.

10

https://git.minetest.land/VoxeLibre/VoxeLibre
https://git.minetest.land/VoxeLibre/VoxeLibre
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Jordan, S. M., White, A., Silva, B. C. D., White, M., and
Thomas, P. S. Position: Benchmarking is limited in rein-
forcement learning research. In Proceedings of the 2024
International Conference on Machine Learning (ICML),
2024.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L.,
Herrasti, A., Deitke, M., Ehsani, K., Gordon, D., Zhu,
Y., et al. AI2-THOR: An interactive 3D environment for
visual AI. arXiv preprint arXiv:1712.05474, 2017.

Küttler, H., Nardelli, N., Miller, A., Raileanu, R., Selvatici,
M., Grefenstette, E., and Rocktäschel, T. The NetHack
Learning Environment. Proceedings of the 2020 Ad-
vances in Neural Information Processing Systems, 2020.

Leibo, J. Z., Dueñez-Guzman, E. A., Vezhnevets, A., Aga-
piou, J. P., Sunehag, P., Koster, R., Matyas, J., Beattie,
C., Mordatch, I., and Graepel, T. Scalable evaluation
of multi-agent reinforcement learning with Melting Pot.
In Proceedings of the 2021 International Conference on
Machine Learning (ICML), 2021.

Liu, H., Li, C., Li, Y., and Lee, Y. J. Improved baselines
with visual instruction tuning. In Proceedings of the 2024
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024a.

Liu, H., Li, C., Li, Y., Li, B., Zhang, Y., Shen, S.,
and Lee, Y. J. Llava-next: Improved reason-
ing, ocr, and world knowledge, January 2024b.
URL https://llava-vl.github.io/blog/
2024-01-30-llava-next/.

Luanti Team. Luanti’s modding API reference. https:
//api.luanti.org/, 2025a. Accessed: 2025-05-
21.

Luanti Team. Luanti’s main page. https://www.
luanti.org/, 2025b. Accessed: 2025-05-21.

Luanti Wiki. Luanti’s wiki FAQ page.
https://dev.luanti.org/faq/
#is-luanti-a-clone-of-minecraft, 2025.
Accessed: 2025-05-21.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness,
J., Hausknecht, M., and Bowling, M. Revisiting the
Arcade Learning Environment: Evaluation protocols and
open problems for general agents. Journal of Artificial
Intelligence Research, 61:523–562, 2018.

Malagon, M., Ceberio, J., and Lozano, J. A. Self-composing
policies for scalable continual reinforcement learning. In
Proceedings of the 2024 International Conference on
Machine Learning (ICML), 2024.

Matthews, M., Beukman, M., Ellis, B., Samvelyan, M.,
Jackson, M. T., Coward, S., and Foerster, J. N. Craftax: A
lightning-fast benchmark for open-ended reinforcement
learning. In Proceedings of the 2024 International Con-
ference on Machine Learning (ICML), 2024.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. In NIPS Deep
Learning Workshop 2013, 2013.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw,
R., Liang, E., Elibol, M., Yang, Z., Paul, W., Jordan,
M. I., et al. Ray: A distributed framework for emerging
AI applications. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI) of 2018, pp.
561–577, 2018.

Ostrovski, G., Bellemare, M. G., Oord, A., and Munos,
R. Count-based exploration with neural density models.
In Proceedings of the 2017 International Conference on
Machine Learning (ICML), pp. 2721–2730. PMLR, 2017.

Paolo, G., Gonzalez-Billandon, J., and Kégl, B. Position:
A call for embodied AI. In Proceedings of the 2024
International Conference on Machine Learning (ICML),
2024.

Prasanna, S., Farid, K., Rajan, R., and Biedenkapp, A.
Dreaming of many worlds: Learning contextual world
models aids zero-shot generalization. arXiv preprint
arXiv:2403.10967, 2024.

Puig, X., Undersander, E., Szot, A., Cote, M. D., Yang,
T.-Y., Partsey, R., Desai, R., Clegg, A., Hlavac, M., Min,
S. Y., Vondruš, V., Gervet, T., Berges, V.-P., Turner, J. M.,
Maksymets, O., Kira, Z., Kalakrishnan, M., Malik, J.,
Chaplot, D. S., Jain, U., Batra, D., Rai, A., and Mot-
taghi, R. Habitat 3.0: A co-habitat for humans, avatars,
and robots. In Proceedings of the 2024 International
Conference on Learning Representations (ICLR), 2024.

Raad, M. A., Ahuja, A., Barros, C., Besse, F., Bolt, A.,
Bolton, A., Brownfield, B., Buttimore, G., Cant, M.,
Chakera, S., et al. Scaling instructable agents across many
simulated worlds. arXiv preprint arXiv:2404.10179,
2024.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-Baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.

Rigter, M., Jiang, M., and Posner, I. Reward-free curricula
for training robust world models. In Proceedings of the
2024 International Conference on Learning Representa-
tions (ICLR), 2024.

11

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://api.luanti.org/
https://api.luanti.org/
https://www.luanti.org/
https://www.luanti.org/
https://dev.luanti.org/faq/#is-luanti-a-clone-of-minecraft
https://dev.luanti.org/faq/#is-luanti-a-clone-of-minecraft

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Rimon, Z., Jurgenson, T., Krupnik, O., Adler, G., and Tamar,
A. MAMBA: an effective world model approach for
meta-reinforcement learning. In Proceedings of the 2024
International Conference on Learning Representations
(ICLR), 2024.

Rutherford, A., Ellis, B., Gallici, M., Cook, J., Lupu, A.,
Ingvarsson, G., Willi, T., Khan, A., de Witt, C. S., Souly,
A., Bandyopadhyay, S., Samvelyan, M., Jiang, M., Lange,
R. T., Whiteson, S., Lacerda, B., Hawes, N., Rocktaschel,
T., Lu, C., and Foerster, J. N. JaxMARL: Multi-agent
rl environments in JAX. In Proceedings of the 2024
NeurIPS Datasets and Benchmarks Track, 2024.

Samvelyan, M., Kirk, R., Kurin, V., Parker-Holder, J., Jiang,
M., Hambro, E., Petroni, F., Küttler, H., Grefenstette, E.,
and Rocktäschel, T. MiniHack the planet: A sandbox for
open-ended reinforcement learning research. Proceedings
of the 2021 NeurIPS Datasets and Benchmarks Track,
2021.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Serrano-Muñoz, A., Chrysostomou, D., Bøgh, S., and
Arana-Arexolaleiba, N. skrl: Modular and flexible li-
brary for reinforcement learning. Journal of Machine
Learning Research, 24(254):1–9, 2023.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of Go without
human knowledge. Nature, 550(7676):354–359, 2017.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., Lillicrap, T., Simonyan, K., and Hassabis, D. A
general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play. Science, 362
(6419):1140–1144, 2018.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. The MIT Press, 2018.

Terry, J., Black, B., Grammel, N., Jayakumar, M., Hari,
A., Sullivan, R., Santos, L. S., Dieffendahl, C., Horsch,
C., Perez-Vicente, R., et al. PettingZoo: Gym for
multi-agent reinforcement learning. Proceedings of the
2021 Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Tomilin, T., Fang, M., Zhang, Y., and Pechenizkiy, M.
Coom: a game benchmark for continual reinforcement
learning. Proceedings of the 2023 Advances in Neural
Information Processing Systems (NeurIPS), 2023.

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., De Cola,
G., Deleu, T., Goulão, M., Kallinteris, A., Krimmel, M.,
KG, A., et al. Gymnasium: A standard interface for
reinforcement learning environments. arXiv preprint
arXiv:2407.17032, 2024.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv: Arxiv-2305.16291, 2023.

Wang, Y., Xian, Z., Chen, F., Wang, T.-H., Wang, Y., Fragki-
adaki, K., Erickson, Z., Held, D., and Gan, C. RoboGen:
Towards unleashing infinite data for automated robot
learning via generative simulation. In Proceedings of
the 2024 International Conference on Machine Learning
(ICML), 2024.

Ward, A. ContentDB: a content database for Luanti mods,
games, and more. https://content.luanti.
org/, 2025a. Accessed: 2025-05-21.

Ward, A. Luanti modding book. https:
//rubenwardy.com/minetest_modding_
book/en/index.html, 2025b. Accessed: 2025-05-
21.

Wołczyk, M., Zajac, M., Pascanu, R., Kuciński, Ł., and
Miłoś, P. Continual world: A robotic benchmark for
continual reinforcement learning. Proceedings of the
2021 Advances in Neural Information Processing Systems
(NeurIPS), 34:28496–28510, 2021.

Wołczyk, M., Cupiał, B., Ostaszewski, M., Bortkiewicz,
M., Zajkac, M., Pascanu, R., Kuciński, Ł., and Miłoś, P.
Fine-tuning reinforcement learning models is secretly a
forgetting mitigation problem. In Proceedings of the 2024
International Conference on Machine Learning (ICML),
2024.

Wydmuch, M., Kempka, M., and Jaśkowski, W. ViZDoom
Competitions: Playing Doom from Pixels. IEEE Trans-
actions on Games, 11(3):248–259, 2019.

Ying, D., Zhang, Y., Ding, Y., Koppel, A., and Lavaei, J.
Scalable primal-dual actor-critic method for safe multi-
agent RL with general utilities. In Proceedings of the
2023 Advances in Neural Information Processing Systems
(NeurIPS), 2023.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-World: A benchmark and evalu-
ation for multi-task and meta reinforcement learning. In
Proceedings of the 2020 Conference on Robot Learning
(CoRL), 2020.

12

https://content.luanti.org/
https://content.luanti.org/
https://rubenwardy.com/minetest_modding_book/en/index.html
https://rubenwardy.com/minetest_modding_book/en/index.html
https://rubenwardy.com/minetest_modding_book/en/index.html

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

A. Modifications to Luanti
Although Luanti is an extremely flexible game engine with extensibility built into its core, we had to modify its source code
for this work. As Luanti is a large C++ project with thousands of files, modifications have been thoughtfully introduced
to minimize possible conflicts with future updates of the engine. Most of the introduced code is limited to a dedicated
craftium.h file and some modifications to the client.cpp and game.cpp files. These are the main modifications
that have allowed running autonomous agents in Luanti:

• Implementation of a client that connects to the Python process with the agent’s implementation. This is the communi-
cation channel from which Luanti sends RGB frames and other timestep data to Python, and Python sends the next
actions to be executed.

• Executing the agent’s actions as keyboard and mouse commands in Luanti. All actions are translated as virtual keyboard
keypresses or mouse movements (for moving the camera and controlling the inventory).

• Extensions to the Luanti API to incorporate vital functionalities for RL environments. Extensions include new Lua
functions that implement functions such as setting the episode termination flag or sending reward values.

• Luanti has a client/server architecture, where the server runs the world’s logic and the client interfaces with the player
(e.g., game control and rendering). However, the asynchronous nature of this architecture introduces issues when using
slow agents (e.g., large multi-modal models). For example, the server could update the world many times while the
client waits for the agent to return an action. This causes many reproducibility issues and behaviors, such as monsters
attacking the player while the client waits for the agent’s response. For this purpose, Craftium introduces optional
synchronous client/server updates. This ensures that (when needed) the server waits for the client to be updated before
continuing with the next update.

• Related to the previous modification, even fast agents (e.g., smaller NNs) can introduce small delays (i.e., lags) to
Luanti, for example, when training the model in batches while running the environment. Consequently, we have
modified Luanti to avoid being affected by these delays and ensure the environment’s and physics’s coherence.

• Resetting episodes in complex environments can be time-consuming, sometimes requiring closing and restarting the
internal engine of the environment. In consequence, the training time in environments with frequent episode resets
(e.g., hard survival games like SpidersAttack) increases substantially. To avoid these hard resets, we implement several
functionalities in Craftium to soft reset the environment, not requiring reinitializing the engine. Unlike hard resets, soft
resets delegate the reset to the environment itself, to the Lua mod in the case of Craftium (see Appendix C for more
details).

B. Action Space Details
B.1. Default Action Space

The default action space of Craftium environments is composed of combinations of 21 keyboard actions and mouse
movements on the horizontal and vertical axes. Keyboard actions are binary values, where 1 translates to a key press and
0 if not used. Available keyboard commands are listed and described in Table 2. Note that these actions are a subset of
the default keyboard controls that Luanti offers6 and its selection is inspired by the action space of MineRL (Guss et al.,
2019). Mouse movements are defined by a tuple (horizontal and vertical movements) of real values in the [−1, 1] interval
(see Section 3.1).

B.2. Action Wrappers

By default, Craftium environments have a large action space with discrete (binary) and continuous values (see Section 3).
However, many tasks do not require the complete default action space and can be greatly simplified by considering only
the relevant actions to solve the specific task that the environment defines. Consequently, Craftium provides tools for

6Some controls like pausing the game or opening the chat have been excluded. For additional information, visit: https://dev.
luanti.org/controls/.

13

https://dev.luanti.org/controls/
https://dev.luanti.org/controls/

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Table 2. List of available keyboard actions in Craftium environments, their corresponding key in the default Luanti controls, and their
description.

ACTION KEY DESCRIPTION

Forward W Move the player forward.
Backward S Move the player backward.
Left A Move the player left.
Right D Move the player right.
Jump Space Jump and move up.
Aux 1 E Run faster.
Sneak Shift Sneak, move downwards.
Zoom Z Zoom in at the center of the camera.
Dig Left mouse button Punch if using a weapon or mine if using a tool.

Place Right mouse button
Use the pointed object if usable, otherwise
attempt to build at the pointed block.

Drop Q Drop the wielded item.
Inventory I Show/hide inventory.
Slot [1-9] 0-9 Select the item in the [0-9] position of the hotbar.

customizing the action space of environments by using Gymnasium Wrappers.7 Specifically, Craftium implements two
wrappers:BinaryActionWrapperand DiscreteActionWrapper.

BinaryActionWrapper allows selecting the subset of keyboard actions (see Table 2 for the complete list) to use in the
new action space. This wrapper also simplifies the continuous mouse movement actions by discretizing them into four binary
actions: move the mouse left, right, up, and down. The magnitude of these movements can be chosen by the developer. For
example, this wrapper allows simplifying the default {0, 1}21 ∪ [0, 1]2 action space into a {0, 1}3 space where binary values
correspond to: move forward, move mouse right, and move mouse left.

DiscreteActionWrapper allows selecting the subset of keyboard actions and discretizes the mouse movement
similarly to the previous wrapper. However, in this case, actions are not binary vectors but a single discrete value. Thus,
actions can not be combined as in the case of the previous wrapper. Following the previous example, instead of simplifying
the default action space into {0, 1}3 this wrapper defines the new space as {0, 1, 2}, where 0 corresponds to move forward,
1 moves the mouse to the right, and 2 moves it to the left.

C. Extensions to the Luanti Modding API
Luanti counts with an extensive and powerful API (Luanti Team, 2025a) that can be used to modify the behavior of the game
engine and create mods or entire games (Ward, 2025a). However, Luanti lacks the functionality to define RL environments
by itself. Therefore, Craftium distributes a modified version of the game engine (see Appendix A) that includes additional
functionalities in the API to make it possible to implement RL environments from Luanti mods. Table 3 lists and describes
the new functions added to the API. Note that besides basic RL environment functionalities, these additions to the API also
include functions for soft resetting the environments (see Appendix A for additional information).

D. Using Craftium through the PettingZoo (Multi-Agent) Interface
Figure 12 shows an example use case of the PettingZoo8 API in Craftium for multi-agent environments. Note that PettingZoo
is greatly inspired by Gymnasium and shares many similarities and design choices.9

Like the Gymnasium example from Figure 6, the first lines (1-5) instantiate a Craftium environment by name. In this
case, Craftium/MultiAgentCombat-v0 is loaded, corresponding to the multi-agent environment example showcased in

7Refer to Gymnasium’s documentation for more information: https://gymnasium.farama.org/api/wrappers/
action_wrappers/.

8More information at: https://pettingzoo.farama.org/api/aec/.
9In fact, both projects are developed under the same Farama foundation, see https://farama.org/.

14

https://gymnasium.farama.org/api/wrappers/action_wrappers/
https://gymnasium.farama.org/api/wrappers/action_wrappers/
https://pettingzoo.farama.org/api/aec/
https://farama.org/

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Table 3. List of the new functions added to the Luanti API. The “—” character is used to indicate that a function takes no arguments.

NAME PARAMETERS DESCRIPTION

set_reward float
Sets the reward value to the given value until another call to a
function that modifies the reward is made.

get_reward —
Returns the reward value of the current timestep, and nil if
not set.

set_reward_once float, float
Sets the reward to the first parameter only for the current
timestep, resetting it to the second parameter afterwards.

set_termination — Sets the termination flag to true for the current timestep.
get_termination — Returns a 1 if the termination flag is set to true, 0 otherwise.
reset_termination — Resets the episode termination falg.
get_soft_reset — Returns whether the environment should soft reset.

Section 3.5.2. Then, line 7 resets the environment to the initial state, initializing Luanti for the first time internally. Next,
lines 9-16 define the main agent-environment interaction loop. As defined in line 9, the loop cycles through the agents
(two agents for this specific environment). Line 10 obtains the observation, reward, termination/truncation flags, and the
information dictionary (similarly to the Gymnasium example). Next, lines 12-13 check if the episode should terminate. If
the episode continues, line 15 selects the action for the current agent, and line 16 executes it, running a single environment
step for the current agent. Finally, 18 closes the environment, shutting down Luanti and removing any temporary files.

1 from craftium import pettingzoo_env
2

3 env = pettingzoo_env.env(
4 env_name="Craftium/MultiAgentCombat-v0"
5)
6

7 env.reset()
8

9 for agent_id in env.agent_iter():
10 observation, reward, termination, truncation, info = env.last()
11

12 if termination or truncation:
13 break
14

15 action = agents[agent_id](observation)
16 env.step(action)
17

18 env.close()

Figure 12. Python code illustrating an example multi-agent scenario using the PettingZoo interface in Craftium.

E. Performance Benchmarks
Due to the page limit constraint of the paper, this section extends Section 3.4 in the main text, including additional details
and analyses for different setups.

Single-environment. To complement the results illustrated in Figure 7, Table 4 provides the exact average and standard
deviation values. The measurements aggregate the results of 5 different runs of 1K steps in 3 environments per framework.
Note that all environments considered for this experiment were single-agent, as MineDojo does not support multi-agent
scenarios10 and VizDoom does not provide multi-agent environments (although technically supports this setting).11 The
environments were: Speleo, Room, and Spiders Attack for Craftium (see Appendix G.1); VizdoomHealthGathering-
v0, VizdoomCorridor-v0, and VizdoomDefendCenter-v0 for VizDoom; and harvest milk, creative:255, and Harvest for

10Revelant discussion at (accessed May 2025): https://github.com/MineDojo/MineDojo/issues/15.
11For more details on the multi-agent capabilities of VizDoom (accessed May 2025): https://github.com/

Farama-Foundation/ViZDoom/issues/546.

15

https://github.com/MineDojo/MineDojo/issues/15
https://github.com/Farama-Foundation/ViZDoom/issues/546
https://github.com/Farama-Foundation/ViZDoom/issues/546

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

MineDojo. In all cases, observations were RGB images, without frameskip, and actions were selected uniformly at random.
In the case of MineDojo and Craftium environments observation size was set to 64× 64 pixels, and to 320× 240, as the
latter resolution is not available for VizDoom environments.

As can be observed in Table 4, Craftium achieves substantially higher steps per second than the Minecraft alternative,
MineDojo. The reasons for such a significant performance gap are many, as both frameworks are complicated systems with
many interacting components. One of the most significant differences is the choice of implementation language: MineDojo
is based on Minecraft, which is implemented in Java 8, while Craftium relies on Luanti, implemented in C++ and known to
perform significantly higher than Java.12 Another relevant aspect is that Minecraft is a complete game, which has grown in
complexity over the years, directly affecting the environments implemented on it. As it is a closed-source game, developers
are not allowed to modify its source code to remove irrelevant parts of the game for the environment at hand to improve
computational efficiency. Contrarily, Luanti is open source and exposes a highly flexible API to modify its behavior. This
allows building environments with only the relevant components for the task at hand. Along the same line, the open-source
nature of Luanti allowed its modification to tightly integrate it with the proposed framework. For example, to incorporate a
system to execute the actions sent from the Python interface as keyboard and mouse commands. Conversely, Minecraft does
not allow modifications to its source code, which requires MineRL and MineDojo13 to include many layers of complexity to
adapt the Minecraft game to the RL setting. Most notably, Minecraft is a game and is not intended to run on a server without
a monitor. Therefore, MineRL and MineDojo use an external tool, Xvfb.14 to emulate a monitor without showing any screen
output, which causes significant performance drawbacks. This also implies that the X11 windowing system15 is installed,
which is not often the case in HPC clusters.

Table 4. Average and standard deviation values obtained in the environment framework performance comparison conducted in Section 3.4.

FRAMEWORK STEP/S

CRAFTIUM 2746.69±230.41
VIZDOOM 2091.91±59.03
MINEDOJO 71.87±11.82

Parallel environments. Beyond single environment setups, Figure 13a compares Craftium and VizDoom in vectorized
(asynchronous) environments, popularly employed in many on-policy RL methods (e.g., A2C or PPO). As can be observed,
Craftium significantly benefits from parallelization, achieving comparable performance to the simpler VizDoom, see
Appendix F. In the best setting for the employed hardware, Craftium surpasses the 12K steps per second using the same
number of environments as CPU cores (16 in this case), an unprecedented efficiency for such rich and complex 3D
environments. In contrast, MineDojo lacks parallel environment support, and despite efforts, we could not include this
framework in Figure 13a.16 This issue makes MineDojo impractical for many research scenarios, where learning from
parallel environments can significantly enhance performance and reduce costs.

Observation size. Although many RL tasks might require relatively small observation resolution, as the 64× 64 pixel
resolution employed in Section 3.5, some applications might require larger observation sizes, such as large multimodal
model-based agents (see Section 3.5.3). Figure 13b shows Craftium’s loss in performance for various observation sizes
relative to the steps per second achieved with the 64× 64 pixel resolution. As can be seen, Craftium’s step per second loss
for 128× 128 pixel observations is minimal: less than 5% compared to the baseline performance with 64× 64 pixels. For
larger resolutions, 512× 512 pixels in this case, the performance drops considerably, around 33%. However, in such cases,
the performance bottleneck is likely in the model processing the images (e.g., a VLM) rather than in Craftium itself.

Environment’s complexity. Another important aspect that impacts an environment’s performance is its complexity or
richness. Note that to ensure a fair analysis and comparison, performance benchmarks in this paper consider environments of

12For example, see the performance comparison at https://benchmarksgame-team.pages.debian.net/
benchmarksgame/fastest/gpp-java.html.

13Note that MineDojo is based on MineRL. Refer to the work by Fan et al. (2022) for details.
14See https://en.wikipedia.org/wiki/Xvfb.
15See https://en.wikipedia.org/wiki/X_Window_System_core_protocol.
16See https://github.com/MineDojo/MineDojo/issues/96 (accessed May 2025).

16

https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/gpp-java.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/gpp-java.html
https://en.wikipedia.org/wiki/Xvfb
https://en.wikipedia.org/wiki/X_Window_System_core_protocol
https://github.com/MineDojo/MineDojo/issues/96

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

0 5 10 15 20 25 30
Number of Environments

2000

4000

6000

8000

10000

12000

S
te

p
/s

Craftium (Frameskip = 4)

Craftium (Frameskip = 8)

VizDoom

(a) Parallel asynchronous environments.

64x64 128x128 512x512
Observation Size

35

30

25

20

15

10

5

0

5

S
te

p
/s

 l
o
ss

 (
%

)

(b) Resolution’s impact on performance.

flat_world minetest_world
World Type

0

1000

2000

3000

4000

5000

6000

7000

S
te

p
/s

(c) Comparison of environments of different richness.

2 4 6 8 10 12 14
Number of Agents

5

4

3

2

1

0

1

2

3

S
te

p
/s

 l
o
ss

 (
%

)

(d) Number of agents and relative performance.

Figure 13. Additional performance benchmarks and comparisons. All figures above aggregate the results from 5 repetitions per setup,
running 1K time steps on each.

different nature and requirements, see the beginning of Appendix E for details. To analyze how richness affects Craftium’s
performance, Figure 13c benchmarks environments using worlds (see Section 3.2) of different complexity. The figure
shows the results obtained using two world types: flat_world, a simple flat world without procedural generation or
biomes,17, and minetest_world, a substantially more complex world with procedural generation, biomes, underground
dungeons, plants, etc.18 Results for flat_world were collected using the Room and Spiders Attack environments (see
Appendix G.1), while Chop Tree and Speleo were used for minetest_world. Finally, four parallel environments were
employed for both cases. Observing Figure 13c, we see that the world’s complexity affects the Craftium’s performance
(around 30% in this case). However, Craftium’s versatility allows the developer to choose within this richness-performance
tradeoff, selecting the relevant parts for their specific needs, while discarding unnecessary complexities: enabling procedural
generation or not, including animals or NPCs, additional biomes, etc.

Number of agents. Regarding Craftium’s multi-agent capabilities, in Figure 13d we analyze how the number of agents
operating in the same environment impacts performance. The figure analyzes the loss in steps per second as the number of

17See https://content.luanti.org/packages/srifqi/superflat/.
18More information at https://content.luanti.org/packages/Luanti/minetest_game/.

17

https://content.luanti.org/packages/srifqi/superflat/
https://content.luanti.org/packages/Luanti/minetest_game/

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

agents increases; for each agent, not in total,19 and relative to the steps per second achieved with two agents. As can be seen,
although the number of agents might decrease the relative steps per second performance, the maximum average loss is lower
than 4%. Moreover, the figure shows no noticeable relationship between the two axes: adding more agents has a negligible
impact on the relative step per second reached. Finally, at the time of this writing, Craftium supports a maximum number of
agents equal to the number of CPU cores of the machine (16 in the case of Figure 13d). This issue limits Craftium’s usage
on massively multi-agent environments, which we aim to address this issue in future updates.

Memory usage. Besides steps per second analyzed in the previous benchmarks, another important efficiency measure is
the memory usage of an environment. For instance, memory requirements directly limit the number of parallel environments
that can be employed (as studied in the paragraph above on parallel environments). To fairly compare Craftium to VizDoom
and MineDojo, we analyzed the memory usage of these frameworks across different tasks, the same ones as in the single-
environment paragraph at the beginning of this appendix. Results show that Craftium (660MB) is notably lighter than
MineDojo (1.7GB), the only framework with comparable environment richness. This result highlights Craftium’s capabilities
to create lightweight environments that avoid extra complexities in tasks that do not require them. Finally, VizDoom (84MB)
is the lightest due to its minimalist design. However, reduced memory usage comes at the cost of simplicity, which limits its
diversity (e.g., no 3D) and its application to a broad range of research fields (refer to Appendix F for a detailed discussion on
the topic).

F. Limitations of 2.5D Environments
VizDoom is based on ZDoom, a modern and open-source implementation of the original Doom game. The Doom game,
released in 1993, employed innovative rendering techniques that made it appear 3D while not having fully three-dimensional
scenarios. These rendering techniques, referred to as 2.5D20 perspective, make VizDoom environments computationally
efficient while having some visual features of 3D scenarios. However, 2.5D graphics limits VizDoom environments from
an autonomous agent research standpoint compared to fully 3D frameworks such as Craftium. Some of the most notable
limitations are the following:

• The agent’s viewpoint is restricted to a horizontal plane, preventing it from truly looking up or down.

• Level height (floor and ceiling) is stored in a 2D matrix, making it impossible to create overlapping structures like
bridges, floors, or buildings.

• Enemies and objects are 2D sprites that change in size and angle based on the agent’s position.

These limitations make VizDoom environments significantly different from more realistic and diverse 3D scenarios as those
in Craftium, failing to cover fundamental challenges for autonomous agents that are of interest for current research, e.g.,
spatial 3D reasoning (Chen et al., 2024) and complex agent-environment interactions (Wang et al., 2023).

Furthermore, 2.5D environments greatly limit the diversity of tasks and scenarios, which is particularly relevant for areas
like continual reinforcement learning, unsupervised environment design, and meta-learning, all of which are of growing
interest to the research community (Hughes et al., 2024). Craftium is especially relevant to these fields, as it enables diverse,
3D, vast open-world environments that are computationally efficient and support multi-agent scenarios, opening the door to
exciting future research directions.

G. Details on the Illustrative Examples
Due to the size limitations of the main paper, this section includes additional information on the illustrative examples shown
in Section 3.5.

G.1. Environments for Single-Agent RL

All tasks share the same observation space of 64× 64 pixel RGB images. In all cases, the action space has been simplified
into a discrete space a ∈ {0, 1, 2, . . .} as described in Section 3.1 (see Appendix B.1 for details). The simplified action space

19The relative performance is computed as total steps per second (running the agents in serial, not in parallel) divided by the number of
agents.

20See https://en.wikipedia.org/wiki/2.5D.

18

https://en.wikipedia.org/wiki/2.5D

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

(a) Chop tree. (b) Small room. (c) Room. (d) Speleo. (e) Spiders attack.

Figure 14. Visualizations of the example environments for single-agent RL in Section 3.5.1.

also introduces a nop action (do nothing) to all tasks. The following lines describe the five tasks introduced in this section.

Chop tree. The agent is placed in a dense forest, equipped with a steel axe (see Figure 14a). Every time the agent chops a
tree, a positive reward of +1 is given; 0 otherwise. Therefore, the task is to chop as many trees as possible until episode
termination. Available actions are nop, move forward, jump, dig (used to chop), and move the mouse left, right, up, and
down. Episodes terminate when 2K timesteps are reached.

Room and small room. These tasks present the same objective in different scenarios. In both cases, the agent is placed
in one half of a closed room with a red block in the other half of the room. The objective is to reach this block as fast as
possible. The difference between both tasks is the size of the room (see Figures 14c and 14b). The reward is constant; all
timesteps have a reward value of -1, and the episode terminates when the agent reaches the block. To avoid solving the
task by memorization, the initial position of the agent and the red block are randomized in every new episode. Available
actions are: move forward, move mouse left, and move mouse right. The timestep budget is 1K in SmallRoom, and 2K for
the variant with the larger room. Four actions are available: nop, move forward, and move the mouse right and left.

Speleo. The agent is located in a closed cave illuminated with torches (see Figure 14d). The task is to reach the bottom
of the cave as fast as possible. For this purpose, the reward at each timestep is the negative altitude (Y-axis position) of
the agent. Therefore, the reward increases as the agent goes deeper into the cave. Actions are nop, move forward, jump,
and move the mouse left, right, up, and down. Episodes terminate if the agent dies (falling from a great height) or if 3K
timesteps are reached.

Spiders attack. The agent is placed in a large cage together with hostile spiders (see Figure 14e), it is equipped with a
steel sword, and the objective is to survive. In the beginning, there is a single spider in the cage, but every time all spiders
are defeated, a new round starts with one more spider than in the previous one (until 5 spiders). The reward of defeating a
siper is +1. Actions are: nop, move forward, move left, move right, jump, attack, and move mouse left, right, up, and down.
Finally, episodes terminate if the agent dies or the 4K timestep limit is reached.

Complementing the examples from Section 3.5.1, Figure 15 provides the episodic return curves of PPO in all of the presented
tasks. Results aggregate 5 runs per task, where PPO was trained for 1M timesteps each. These experiments are mere
examples to complement Section 3.5.1, and thus, no hyperparameter tuning was performed to improve the obtained results.
Moreover, the performance in some of the tasks might be substantially improved if more training timesteps are considered.

Regarding the PPO algorithm, we employed the high-quality implementations from CleanRL (Huang et al., 2022b). Specifi-
cally, the PPO implementation for Atari environments was adapted to Craftium environments, as both observation spaces
consist of RGB images and action spaces are discrete (in the case of the environments presented in Section 3.5.1). Moreover,
this implementation already considers many details shown to benefit PPO (Huang et al., 2022a). The hyperparameters and
CNN network architecture were set according to their default values in the original PPO implementation from CleanRL.21

19

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

0.0 0.2 0.4 0.6 0.8 1.0
×106

0

2

4

6

8

10

E
p

is
o
d

ic
 r

e
tu

rn

Chop tree Small room Room Spiders attackSpeleo

Steps
0.0 0.2 0.4 0.6 0.8 1.0

×106
0.0 0.2 0.4 0.6 0.8 1.0

×106

140

120

100

80

60

40

20

0.0 0.2 0.4 0.6 0.8 1.0
×106

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.2 0.4 0.6 0.8 1.0
×106

250

200

150

100

50

2500

2000

1500

1000

500

0

500

Figure 15. Episodic return curves obtained by PPO in all of the tasks from Section 3.5. Lines aggregate the average values of 5 different
seeds per task, while the contour denotes the standard error of the results.

Figure 16. Screenshot of the illustrative multi-agent environment from Section 3.5.2.

G.2. Multi-Agent Combat

This section describes the multi-agent environment example from Section 3.5.2 in detail. As can be seen in Figure 16,
the scenario consists of a completely flat world, where two agents are placed in a closed jail. Both agents have no
items or tools available, and cannot escape the jail. Similarly to the classic single-agent RL task (see Section 3.5.1 and
Appendix G.1), observations are 64× 64 RGB images, and the action space consists of a simplified discrete space using the
DiscreteActionWrapper from Appendix B.2. Specifically, the discrete action space consists of the following actions:
nop, forward, left, right, jump, attack, and move the mouse right or left. An agent gets a positive reward (+1) when punching
other agents and (-0.1) on damage (i.e., losing one health point). Finally, episodes terminate if the number of health points
(initialized to 20) of any of the agents is zero, or the maximum number of timesteps (2K by default) is reached.

Regarding the self-play method employed in Section 3.5.2, we employ the same CNN architecture and PPO algorithm
implementation as in the single-agent environment examples from Appendix G.1 (refer to the last part of this appendix for
details). In this case, as we employ self-play (Silver et al., 2017), both agents share the same internal NN-based policy, which
is updated every 128 steps. Finally, the agents were trained for 1M timesteps using grayscale versions of the observations
and frame stacking of 4 frames, resulting in a 4× 64× 64 pixel observation space.

G.3. Open World

In Section 3.5.3 we introduce an open-world environment. In this environment, the agent has to survive and gather resources
in an open world based on the open-source VoxeLibre (Fleckenstein et al., 2025) game for Luanti. The environment is
designed to have three different tracks: tools, hunt, and defend.

The first, the Tools track, consists of 4 different milestones: collect two wood blocks, three stone blocks, three iron blocks,
and finally, a diamond block. When the agent unlocks one of the stages (i.e., tasks), it receives a reward and a new set of
tools to employ to solve the next task. The reward for completing each of the stages is 128, 256, 1024, and 2048, respectively.
Moreover, when the agent unlocks a new stage, it receives a sword and a pickaxe made of the material of the completed stage.
For example, if the agent unlocks the wood stage (collect two wood blocks), a wood sword and pickaxe are automatically
added to its inventory. To simplify solving the first stage of this track, the initial inventory of the agent is composed of a

21Source code of the original PPO implementation: https://github.com/vwxyzjn/cleanrl (commit 8cbca61).

20

https://github.com/vwxyzjn/cleanrl

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

stone axe and 256 torches. The stone axe allows the agent to more easily chop trees to collect wood, while it also serves to
defend from enemies (i.e., monsters) and hunt animals.

Conversely, the Hunt and Defend tracks are non-sequential. The agent is expected to develop skills to handle increasingly
complex scenarios rather than progressing linearly (although this could also be the case). In these tracks, a reward is provided
to the agent every time it punches an enemy or an animal. In the case of enemies, the reward value is equal to the damage
caused by the tool, while in the case of the animals, this value is reduced to half. The motivation behind this particular
reward function is the following. If the agent defeats an enemy or hunts an animal, the episodic return obtained by the agent
is linear to the life of the enemy or animal. Moreover, the agent is also encouraged to use the correct tool for these tasks. For
example, using a sword to fight a monster will provide more reward than using a torch or a pickaxe for the same task.

In Luanti, the time of day of the game is linked to the real clock time, where the day/night cycle lasts for 20 minutes by
default.22 In consequence, in this environment, the time of day is set according to the global timestep to maintain consistency
and avoid relying on real clock time while training agents. If the latter is not considered, the time of day experienced by the
agents could vary depending on the time required by the agent to select an action, which greatly varies depending on its
implementation and architecture.

The following lines provide details on the methods used in the experiment from Section 3.5.3. Note that in both cases,
the action space of the agents was composed of 18 discrete actions, defined using DiscreteActionWrapper from
Appendix B.2. The actions are: nop, move forward, backward, left, and right, jump, sneak, dig, place, slot 1, slot 2, slot 3,
slot 4, slot 5, move the mouse right, left, up, and down. Slot [1, . . . , 5] corresponds to the actions of selecting the tool or
object in that position of the inventory (i.e., often referred to as the hotbar).

PPO+LSTM. This method is based on the popular PPO algorithm while employing a convolutional neural network to
encode observations and an LSTM module providing memory capabilities to the agent. As the experiments in Appendix G.1,
this agent is based on CleanRL’s PPO implementations, in this case in PPO+LSTM for Atari games.23 Similarly, hyperpa-
rameters were kept fixed (not optimized), as the purpose of this experiment is to serve as an example. Finally, the observation
space for this agent was set to 84×84 of greyscale images using 4 observations for frame stacking.

LLaVa-Agent. This agent is based on the open-source large multimodal model (LMM) LLaVa by (Liu et al., 2024a),
specifically version 1.6 (Liu et al., 2024b). This agent is not intended as a new proposal for LMM for embodied AI, but just
as an example of how LMMs can be employed within Craftium environments to solve general tasks by leveraging their
world knowledge. For this purpose, LLaVa has been directly employed with no fine-tuning for the open-world environment.
Specifically, at each timestep, LLaVa is provided with the current observation (512×512 pixel RGB image) and a short
prompt describing the current task. The prompt also includes a list of all available actions, where LLaVa is asked to choose
one. Actions are taken by parsing the response from the model, where a random action is chosen if a parsing error occurs,
although we observed that this barely happens. The employed prompt has been selected from a set of prompts of different
nature listed in Table 6 based on the results from Figure 17, which led to the use of the prompt 1 (ID 1 in Table 6).

Note the <objective> placeholder, this is replaced with the text corresponding to the current objective: “is to chop a
tree”, “is to collect stone”, “is to collect iron”, or “is to find diamond blocks”. This text is automatically placed every time
the agent unlocks a stage of the Tools branch of the skills tree.

Details of Figure 9. The figure aggregates results from 10 different random seeds for each method, PPO+LSTM, and
LLaVa-Agent. In the case of LLaVa-Agent, each run was constrained by a 1-hour limit (≈ 7000 prompting iterations per run)
and limited to 1M steps in the case of PPO+LSTM. Consequently, the X-axis has been set to the training time percentage to
accommodate both cases and for the sake of visualization. Finally, the Y-axis shows the best and average cumulative reward
obtained for each method. The latter is made to properly visualize when a method unlocks one of the milestones from the
skills tree.

G.4. Procedural Environment Generation

The procedural environment generation example employs a random dungeon generator implemented for this work. Although
the generator can randomly create a vast number of different environments, their reward function is the same. In these

22Additional information at https://wiki.luanti.org/Time_of_day.
23The original implementation can be found at: https://github.com/vwxyzjn/cleanrl/ (commit 8cbca61).

21

https://wiki.luanti.org/Time_of_day
https://github.com/vwxyzjn/cleanrl/

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

1 2 3 4
Prompt ID

0

50

100

150

200

250

Fi
n
a
l
E
p
is

o
d
ic

 R
e
tu

rn

Figure 17. Performance comparison of LLaVa-Agent employing different prompt cadidates from Table 6. The plot aggregates the results
from five 1-hour runs for each prompt.

ID Prompt

1

You are a reinforcement learning agent in the Minecraft game. You will be presented with the
current observation, and you have to select the next action with the ultimate objective of fulfilling
your goal. In this case, the goal <objective>. You should fight monsters and hunt animals just
as a secondary objective and survival. Available actions are: <actions>. From now on, your
responses must only contain the name of the action you will take, nothing else.

2

You are a reinforcement learning agent in the Minecraft game. Your primary objective is:
<objective>. You must decide the best action based on the current observation. Fighting
monsters and hunting animals are secondary tasks and should only be performed when necessary
for survival or when they directly contribute to your goal. The available actions are: <actions>.
Your response must be only the name of the action you will take, with no extra text.

3

You are an AI reinforcement learning agent in the Minecraft game. Your goal is: <objective>.
Each step, you receive an observation and must select an action from the following list:
<list-actions>. Your task is to prioritize the main objective while ensuring survival. Choose
the most effective action based on the current observation. You must respond with only the name of
the action, nothing else.

4

You are an autonomous reinforcement learning agent in the Minecraft game. Your mission is to
complete the following objective: <objective>. Each step, follow a structured decision-making
process: (1) Analyze the current observation. (2) Determine whether to focus on the main objective
or take necessary survival actions. (3) Choose the best action from: <actions>. Your response
must be strictly one action name, with no explanations.

Table 6. Prompt candidates for the LLaVa-based agent in Section 3.5.3: (1) direct and imperative tone, (2) emphasis on the primary task,
(3) listing possible actions, and (4) structured decision-making.

22

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

environments, the agent is randomly placed (equipped with a sword) in a room and has to navigate a labyrinthic dungeon
full of hostile enemies (monsters) to reach the diamond. This process is divided into two steps: 1 randomly generate the
dungeon’s map, represented in ASCII (defined in Appendix G.4.1), and 2 build the 3D environment from the map.

1 This first step is accomplished by the RandomMapGen Python class, which implements the dungeon generation
algorithm. Given some input parameters, RandomMapGen returns an ASCII representation of the generated map. Internally,
RandomMapGen first creates the rooms, places the enemies, and locates the objective and the agent’s initial position (the
agent and the objective are never located in the same room). Then, an iterative algorithm based on repelling forces is used
to place the rooms so that none intersect. Secondly, it computes the minimum number of corridors needed to create a
map where all rooms are reachable. Finally, it rasterizes the map into its ASCII representation using Bresenham’s line
algorithm.24

The complete list of parameters that RandomMapGen accepts is the following:

• Number of rooms of the dungeon.

• Minimum and maximum sizes of the rooms. The final size is randomly selected from this range.

• A dispersion parameter in the [0, 1] range that controls the distance between the rooms.

• Minimum and maximum number of monsters per room. If the minimum is set equal to the maximum, the number of
monsters per room is fixed.

• The probability of each monster type being located in one room. RandomMapGen considers up to 4 types of different
monsters. Monster types are denoted as: a, b, c, or d. The specific monster that will be considered for each type is
defined by the user in step 2 .

• A boolean flag indicating whether monsters can appear in the room selected for the agent’s initial position.

• A boolean flag indicating whether to add a ceiling to the map. This option is used when using monsters that can climb
over or fly out of the map.

2 Once the ASCII map is created, a mod is used to generate the final 3D dungeon inside Luanti. This mod iterates over the
characters that compose the map and places the blocks and enemies (referred to as mobs in Luanti and gaming terminology,
not to be confused with mods) accordingly. The configuration parameters of the mod are the following:

• The ASCII map generated in step 1 (or via another process).

• Names of the monsters for types a, b, c, or d. Available monsters are described in the documentation of the
mobs monsters project.25

• The material used for the construction of the dungeons.26

• The name of the object to use as the objective (a diamond by default).27

• The reward of reaching the objective (100 by default).

• The reward of defeating a single monster (1 by default).

G.4.1. THE ASCII MAP FORMAT

The ASCII map format has been intentionally designed to be human-readable and to facilitate the implementation of custom
procedures to create them (or even be specified by hand). The format consists of 9 possible characters, listed and described
in Table 7. As can be seen in Figure 18a, maps are divided into layers, divided by the “-” (dash) character. The first layer
is commonly employed to define the floor of the dungeons, while the second defines the walls and the positions of all
characters and the objective; the rest of the layers are used for determining the height of the walls.

24See https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm.
25Accesible at: https://codeberg.org/tenplus1/mobs_monster.
26List of some available materials: https://wiki.luanti.org/Games/Minetest_Game/Nodes.
27List of some available items: https://wiki.luanti.org/Games/Minetest_Game/Items.

23

https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
https://codeberg.org/tenplus1/mobs_monster
https://wiki.luanti.org/Games/Minetest_Game/Nodes
https://wiki.luanti.org/Games/Minetest_Game/Items

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

Table 7. List of characters that comprise the ASCII map format and their meaning.

Character Meaning

(whitespace) Air block.
Construction block. Used for the floor and walls.
% Glass block. It can be used for the ceiling.
@ The initial position of the agent.
O Position of the objective.
a, b, c, d Location of a monster of type a, b, c, or d
- New layer.

##########
##########
##########
##########
##########

#####
#####
##########
##########
##########
##########
##########

-
##########
#
@
#
#

#
#
#####
#
O
b
##########

-
##########
#
#
#
#

#
#
#####
#
#
#
##########

(a) ASCII map representation. (b) Resulting 3D dungeon environment.

Figure 18. Example ASCII map format of a dungeon environment and the resulting 3D scenario in the Craftium environment. Note the 3D
characterizations of the spider (denoted with a in the ASCII map) and the diamond (O in the ASCII map). The ceiling has been removed
for the sake of visualization.

G.5. Environment Sequence for Continual RL

In Section 3.5.4, the procedural environment generator is applied to CRL by defining a sequence of related and increasingly
difficult scenarios. Similarly to the examples from Section 3.5.1, the FS (baseline) and FT-L2 methods are based on the PPO
implementations from CleanRL. The difference between the FS and FT-L2 is that the latter fine-tunes the model learned in
the previous task and uses L2 regularization during training, while the FS always learns a model from scratch. FT-L2 was
selected for this example as it has shown significant forward knowledge transfer capabilities in other works (Gaya et al.,
2023; Wołczyk et al., 2024; Malagon et al., 2024).

Regarding the observation and action spaces, they have been kept constant across the sequence. The observation space is set
to 64×64 pixel greyscale images, with 4 frames for frame stacking, and the same quantity for frame skipping (Huang et al.,
2022a). The action space consists of a set of 10 discrete actions: nop, move forward, left, right, jump, attack, move the
mouse right, left, and down. Finally, episodes terminate if the health of the agent is exhausted or 5K timesteps are reached.

For the sake of visualization, figure 20 provides a simplified 2D visualization of the environments. Observing the figure, we
see that the first two environments employ the same map (with the initial position of the agent and the objective switched).
This is intended, as the training time in each environment is low (1M timesteps), thus, the first two environments offer

24

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

E
p

is
o
d

ic
 R

e
tu

rn

2M
0

1

2

3

4

3M

0.2

0.4

0.6

4M
0.0

0.2

0.4

0.6

0.8

5M
0

1

2

3

6M

0.1

0.2

0.3

7M

0.20

0.25

0.30

0.35

0.40

0.45

8M

0.2

0.4

0.6

9M

0.2

0.3

0.4

0.5

0.6

10M

0.1

0.2

0.3

0.4

0.5

Step
FS FT-L2

Figure 19. Episodic return curves of the baseline (FS) and FT-L2 over the tasks from the CRL sequence of Section 3.5.4. Note that the
first environment is omitted as the FT-L2 is not applied in this case (there is no previous model to fine-tune). See Appendix G.5 for details
and Figure 20 for simplified 2D visualizations of all the environments in the sequence.

CRL methods a way to learn to reach their objective before more difficult tasks arrive. From the 2nd task onwards, the
environments contain two or more monsters, whereas tasks 3 and 4 have a single monster between the agent and the objective
(the diamond), and from the 5th task onwards have two or more.

As can be seen in Figure 19, FT-L2 substantially improves the results of the baseline in the 2nd and 4th, showing considerable
forward knowledge transfer between some of the generated environments. Although the final episodic return is lower,
environments the 5th and 6th also show some forward knowledge transfer in the first parts of the training.

Figure 20. Overview of the maps generated for the CRL environment sequence in Section 3.5.4. Note that these are 2D representations of
the environments (for proper visualization) and that the actual environments are 3D, as can be seen in Figure 11a and Figure 18b. The
robot indicates the initial position of the agent, while the yellow characters indicate sand monsters, and the black characters denote spiders.
Maps have been enumerated with their corresponding position in the CRL sequence.

25

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

H. Environment Creation Flexibility of Craftium and Minecraft-Based Frameworks
Note that the visual similarity between Craftium (and Luanti) and the popular Minecraft game arises from their shared use
of voxel-based graphics and sandbox-style28 environments. However, it is important to clarify that Luanti, as a game engine,
is not an implementation or clone of Minecraft, and it serves fundamentally different goals compared to Minecraft, which is
a standalone game, see Luanti Wiki (2025).

Besides significant performance improvements, multi-agent support, and a fully open-source nature compared to Minecraft-
based alternatives, Craftium also provides an extremely flexible interface for creating new environments via the Luanti
Modding API. The flexibility and versatility of this API are demonstrated by the rich and complex environments that can be
created with it, see Figure 9, thanks to the wide range of mods created by the community (see Ward (2025a) for examples).
This section focuses on showcasing some code examples that directly compare the flexibility of Craftium’s API with the
MineDojo API to create new environments. Note that we only compare Craftium to MineDojo as it is, currently, the only
Minecraft-based framework that allows the creation of custom environments.

One major limitation of MineDojo’s API is that although it allows for spawning different Minecraft entities (mobs and
items) in a given location, the behavior, aspect, and other properties of the entities are those of Minecraft (the default ones)
and cannot be changed. Figure 21 shows how MineDojo allows spawning entities. On the other hand, Craftium leverages
the Luanti API, which allows access to the internal state of the game engine, allowing it to change any aspect of it in real
time. This is illustrated with an example code in Figure 23 and Figure 24 that show how many properties and behaviors of
entities can be modified in Craftium.

Another crucial difference between Craftium’s and MineDojo’s APIs is the map generation capabilities. MineDojo limits
map generation to some predefined scenarios (only 5) and biomes. Figure 22 shows the map customization capabilities of
MineDojo. On the other hand, Craftium’s API allows the user to define any type of custom biome and combine them in any
way.29 In Figure 25 we showcase a simple example of defining a custom desert biome in Craftium’s API. Note that Craftium
users can employ any of the vast number of biomes already implemented by the community (some of them illustrated in
Figure 9).30

1 env.spawn_mobs("spider", [5, 0, 5])

Figure 21. MineDojo. Although MineDojo allows for spawning entities in some positions, lacks the capability to modify the behavior of
entities in any way.

1 env = minedojo.make("open-ended", specified_biome="desert")

Figure 22. MineDojo. MineDojo only allows defining worlds from a set of predefined biomes and scenarios.

1 local mob_def = core.registered_entities["mobs_monster:zombie"]
2 mob_def.on_punch = function(self, hitter)
3 hitter:set_hp(hitter:get_hp() + 5)
4 end

Figure 23. Craftium. Example code demonstrating how the behavior of entities can be modified in Craftium. In this case, the definition
of zombies is changed to increase the health of the agent by 5 when successfully attacking a zombie.

28Sandbox games allow players extensive creative freedom to explore, build, and manipulate the game environment with few constraints
or predetermined goals.

29More information and tutorials at Ward (2025b).
30Examples at https://content.luanti.org/packages/?tag=mapgen.

26

https://content.luanti.org/packages/?tag=mapgen

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

1 mobs:register_mob("craftium:my_spider", {
2 docile_by_day = false,
3 group_attack = true,
4 type = "monster",
5 passive = false,
6 attack_type = "dogfight",
7 reach = 2,
8 damage = 3,
9 hp_min = 25,

10 hp_max = 25,
11 armor = 200,
12 walk_velocity = 3,
13 run_velocity = 6,
14 jump = false,
15 on_die = function(self, pos)
16 -- Set reward to 1.0 for a single timestep, then reset to 0.0
17 set_reward_once(1.0, 0.0)
18 -- Spawn more spiders
19 num_spiders = num_spiders + 1
20 for i=1,num_spiders do
21 spawn_monster({ x = 3.7 - i, y = 4.5, z = 0.0 })
22 end
23 end
24 })
25

26 local monster = mobs:add_mob(pos, {
27 name = "craftium:my_spider",
28 ignore_count = true,
29 })

Figure 24. Craftium. Example of a completely custom spider type. Note that we only show a few options of those available: group attack
capabilities, health, reach, attack type, armor, velocity, etc. Moreover, a custom behavior is defined to set the reward and spawn more
spiders when the spider dies.

1 -- Register a custom biome (e.g., desert)
2 core.register_biome({
3 name = "custom_desert",
4 node_top = "default:sand",
5 depth_top = 1,
6 node_filler = "default:stone",
7 })
8

9 -- Generate a random landscape with different biomes
10 core.register_on_generated(function(minp, maxp, blockseed)
11 if math.random() > 0.5 then
12 core.set_biome_area(minp, maxp, "custom_desert")
13 end
14 end)

Figure 25. Craftium. Example showing how custom biomes can be created and used in Craftium.

27

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

I. Creating Custom Environments
In the following, we outline the steps to create a custom open-world environment from scratch, where the task is to find
the deepest possible cave within a limited number of steps (i.e., episode). Note that the following instructions assume that
Craftium is already installed.

1 Creating the world. The first step is to create the environment’s world. Run the Luanti binary (which should already
be built and available in the Craftium installation directory) and follow the instructions in Figure 26. Note that the first five
steps are required only once; for future environments, follow only steps 5 and 6 from Figure 26. Close Luanti once the
world is created (happens almost instantly).

Figure 26. Creating the world using Luanti’s graphical menu (left to right, top to bottom). 1 Click the Content tab in the main menu. 2
Click Browse online content. 3 Select Minetest Game. 4 Click the green Install button and wait a few seconds. 5 Return to the main
menu and click the Minetest logo at the bottom. 6 Click New to create a world. 7 Enter a name (world in this tutorial) and click Create.

2 Creating the mod. Before coding the Craftium environment, set up a directory to store all environment-related data.
This directory should contain the game, world, and mod, which we will name craftium_env. To create the environment’s
directory, run the following CLI commands from Craftium’s main directory:

1 mkdir -r my_env/mods/env_craftium
2 cp -r worlds games my_env
3 echo "load_mod_env_craftium = true" >> my_env/worlds/world/world.mt

Figure 27. CLI commands to create and set up the environment’s directory.

After running the commands above, we can create the mod.conf and init.lua files, as described in Section 3.2.
In this example, the task is to find the deepest cave possible within an episode. To set up the mod, first, create a file
named mod.conf inside the my_env/mods/env_craftium directory with the contents from Figure 28. Then, create

28

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

init.lua in the same directory using the contents from Figure 29. Although there are many possibilities for the
init.lua file, in this case, the agent is rewarded based on its negative Y-axis position (depth).

1 name = env_craftium
2 description = Craftium environment
3 depends = default

Figure 28. Configuration file for the Craftium environment, specifying the mod name and its dependencies (which, in this case, only
includes the default mod).

1 core.register_globalstep(function()
2 -- Get the player's object
3 local player = core.get_connected_players()[1]
4

5 -- Check if the player is connected
6 if player == nil then
7 return
8 end
9 -- Get the player's Y position

10 local y = player:get_pos()[2]
11 -- Set the reward value for the current step
12 set_reward(-y)
13 end)
14

15 -- This function is run every time the player dies
16 core.register_on_dieplayer(function(obj, rn)
17 -- Set the termination flag to true
18 set_termination()
19 end)

Figure 29. Example Lua mod. The code defines two callback functions: the first (line 1) runs at every timestep, setting the reward to
the player’s negative Y-axis position (i.e., depth). The second (line 16) triggers when the player dies (e.g., after a fatal fall) and sets the
environment’s termination flag to true (see Section 3.3).

3 Running the environment With the world and mod set up, the final step is to run the environment. Figure 31 shows a
Python script that, when executed in the same directory as the environment (Craftium’s main directory in this tutorial), loads
the environment and performs random actions while plotting the current observation at each timestep (see Figure 30). This
example simply showcases the custom environment using a random agent. Note that more complex agents and learning
algorithms can be easily integrated by replacing 21 with a call to the desired method.

Figure 30. Example output from the script in Figure 31, showing an observation from the environment created in this section.

29

Craftium: Bridging Flexibility and Efficiency for Rich 3D Single- and Multi-Agent Environments

1 import matplotlib.pyplot as plt
2 import craftium
3 from craftium import CraftiumEnv
4

5 env = CraftiumEnv(
6 env_dir="my_env",
7 obs_width=512,
8 obs_height=512,
9)

10

11 observation, info = env.reset()
12

13 ep_ret = 0 # Episodic return
14 for step in range(100):
15 # Display the current observation
16 plt.cla()
17 plt.imshow(observation)
18 plt.pause(0.01)
19

20 # Sample a random action
21 action = env.action_space.sample()
22

23 observation, reward, terminated, truncated, _info = env.step(action)
24

25 ep_ret += reward
26 print(step, reward, terminated, truncated, ep_ret)
27

28 if terminated or truncated:
29 observation, info = env.reset()
30 ep_ret = 0
31

32 env.close()

Figure 31. Example Python script that loads and runs the custom environment with a randomly acting agent.

30

