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ABSTRACT

Reinforcement learning with verifiable rewards has significantly advanced the
reasoning capabilities of large language models, yet how to explicitly steer training
toward exploration or exploitation remains an open problem. We introduce Token
Hidden Reward (THR), a token-level metric that quantifies each token’s influence
on the likelihood of correct responses under Group Relative Policy Optimization
(GRPO). We find that training dynamics are dominated by a small subset of to-
kens with high absolute THR values. Most interestingly, tokens with positive
THR strengthen confidence in correct outputs, thus favoring exploitation, while
tokens with negative THR preserve probability mass for alternative outputs, en-
abling exploration. This insight suggests a natural intervention: a THR-guided
reweighting algorithm that modulates GRPO’s learning signals to explicitly bias
training toward exploitation or exploration. We validate the efficacy of this algo-
rithm on diverse math reasoning benchmarks. By amplifying tokens with positive
THR value and weakening negative ones, our algorithm improves greedy-decoding
accuracy, favoring exploitation. The reverse strategy yields consistent gains in
Pass@K accuracy, favoring exploration. We further demonstrate that our algorithm
integrates seamlessly with other RL objectives such as GSPO and generalizes
across architectures including Llama. These findings establish THR as a prin-
cipled and fine-grained mechanism for dynamically controlling exploration and
exploitation in RL-tuned LLMs, providing new tools for targeted fine-tuning in
reasoning-intensive applications.

1 INTRODUCTION

The integration of reinforcement learning with verifiable rewards (RLVR) has significantly advanced
the reasoning capabilities of large language models (LLMs) (Guo et al., 2025; Jaech et al., 2024;
Team et al., 2023). Group Relative Policy Optimization (GRPO) (Shao et al., 2024) and its variants
(i.e., GSPO Zheng et al. (2025)) have emerged as a widely adopted and empirically successful
method for training LLMs on complex reasoning tasks. Models like DeepSeek-R1 (Guo et al.,
2025), DeepSeek-Math (Shao et al., 2024), Med-R1 (Lai et al., 2025), and Search-R1 (Jin et al.,
2025) have leveraged GRPO to achieve state-of-the-art performance across diverse domains. Despite
these successes, a central and persistent challenge in RL-driven LLM training is managing the
inherent exploration-exploitation trade-off (Tang et al., 2024; Harris & Slivkins, 2025). Exploration,
sampling uncertain actions to acquire novel information, is crucial for tasks demanding creativity (Lu
et al., 2024) and enabling generalization to unseen test cases via scaling algorithms (Snell et al.,
2024). Conversely, exploitation prioritizes optimal decision-making based on current knowledge,
a preference in applications requiring high-confidence, low-variance responses, such as medical
diagnosis (Wu et al., 2025). However, effectively shifting the training objective between exploration
and exploitation remains an underexplored challenge.
Recent work has begun addressing this pressing challenge through various approaches. Chow
et al. (2024) examine how to steer the balance between exploration and exploitation via a best-of-
n training objective, but their approach relies on an external verifier to select the best candidate
among n generations. Contemporaneous works (Chen et al., 2025; Mahdavi et al., 2025; Walder
& Karkhanis, 2025) introduce Pass@K-training to encourage exploration, though their methods
primarily reweight questions based on hardness. Similarly, contemporaneous work (Cui et al.,
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2025) steers exploration by controlling entropy, but the analysis is limited to a token’s influence
on itself. In parallel, Deng et al. (2025) examines the learning dynamics of GRPO, showing how
training alters the confidence of correct responses. By downweighting penalties on tokens that
reduce this confidence, their method improves greedy decoding performance better exploiting model
capabilities. However, their analysis is limited to negative gradients and their role in exploitation.

Figure 1: Our THR algorithm identi-
fies high-influence tokens and reweights
their learning signals based on sign:
when p > 0, positive THR tokens are
amplified (exploitation); when p < 0,
negative THR tokens are amplified (ex-
ploration). The figure demonstrates con-
trol of exploration-exploitation trade-off.

Motivated by Deng et al. (2025), we examine the intrinsic
contribution of each token in the generated responses to
the confidence of correct responses and connect this to the
exploration–exploitation trade-off. We introduce Token
Hidden Reward (THR), a token-level metric that quan-
tifies how individual tokens influence the change in the
likelihood of correct responses within the GRPO frame-
work. Our analysis shows that a small subset of tokens car-
ries disproportionately high absolute THR values, while
most have negligible impact. Even more interestingly,
leveraging the sign of THR, we design a reweighting strat-
egy that explicitly adjusts learning signals : (1) Positive
THR tokens amplify the likelihood change of correct re-
sponses, strengthening confidence and improving greedy
decoding (exploitation); (2) Negative THR tokens pre-
serves probability mass for alternative (than the correct) re-
sponses, boosting Pass@K performance (exploration). We
specifically compare THR’s token-level reweighting with
question-level reweighting approaches such as Pass@K-
training, showing that THR provides finer-grained and
more effective guidance. Finally, we establish THR’s
theoretical and empirical connection to entropy-based ex-
ploration methods, while highlighting THR’s efficiency
in capturing cross-token interactions. In summary, our main contributions are threefold:
• We introduce Token Hidden Reward (THR) and conduct a thorough analysis, uncovering that a
small subset of tokens disproportionately influences training and that the sign of THR correlates with
the exploration-exploitation trade-off.
• We propose a THR-guided advantage reweighting strategy that effectively directs the fine-tuning
process, enabling targeted emphasis on either exploitation or exploration. Fig. 1 for visualization.
• Empirical evaluations on math benchmarks confirm the effectiveness of THR-guided reweighting,
resulting in the successful realization of desired performance improvements.

2 RELATED WORK

Reinforcement Learning for LLM Reasoning. Recent works have explored the use of model-
generated solutions as a form of bootstrapping to strengthen the reasoning capabilities of large
language models (LLMs)(Jaech et al., 2024; Guo et al., 2025; Team et al., 2025). These methods
typically generate candidate solutions using a pre-trained model, then filter them based on intermediate
correctness signals(Setlur et al., 2024) or final answer correctness (Guo et al., 2025; Team et al., 2025),
producing high-quality data to train a new model. Building on the success of reinforcement learning
from human feedback (RLHF) (Ouyang et al., 2022), follow-up works such as GRPO (Shao et al.,
2024; Guo et al., 2025) use online training to further enhance reasoning. Moreover, reinforcement
learning directly incorporates the model’s incorrect outputs into training, which has been found
to further boost reasoning performance (Seed et al., 2025). Despite these advances, the role of
model-generated outputs during training remains underexplored.
Optimizing for inference time objectives. An increasing number of finetuning methods seek to
align training with inference-time objectives. Some approaches treat inference-time computation
as a flexible post-hoc design choice (Snell et al., 2024), while others explicitly optimize best-of-n
performance during training (Huang et al., 2025). The latter, however, depends on an external verifier
to select the best output, which complicates scalability. Another direction emphasizes exploitation:
Deng et al. (2025) reduce penalties on tokens in incorrect responses that positively contribute to
correct responses, thereby strengthening the model’s most confident predictions. Their analysis,
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however, is restricted to negative gradients and does not address exploration. In parallel, several works
focus on exploration. Pass@K training (Chen et al., 2025; Mahdavi et al., 2025; Walder & Karkhanis,
2025) encourages exploration by reweighting questions based on hardness, but operates only at the
question level and overlooks token-level dynamics. Similarly, entropy-based regularization methods
such as COV-KL (Cui et al., 2025) promote exploration by adjusting token entropy, yet they model
only a token’s self-influence. By contrast, our work directly targets token-level contributions and
cross-token interactions, showing how they govern the exploration–exploitation balance in GRPO.

3 PRELIMINARY

Notations. W , wz , and hz denote token unembedding matrix, unembedding of a token z ∈ V , and
hidden embedding of token-sequence z ∈ V∗. zk is the k-th token in z and z<k is the first k − 1
tokens in z. For question x, the old policy πθold generates a group of G positive/negative responses
({y+

i }i∈[N+], {y−
i }i∈[N−]) with N+ +N− = G. Lastly, ez ∈ R|V| is one-hot vector for token z.

3.1 GROUP RELATIVE POLICY OPTIMIZATION

Group relative policy optimization, introduced in DeepSeek-Math (Guo et al., 2025) and DeepSeek-
R1 (Shao et al., 2024), simplifies RLVR by eliminating the value function estimation required in
PPO (Schulman et al., 2017). Instead of learning a separate value network, GRPO computes group-
relative rewards within each training batch, reducing training complexity while maintaining stable
policy updates. For a query pair x, the policy πθ samples G responses {yi}Gi=1. Each yi consists of a
sequence of |yi| tokens. Given rewards ri ∈ {0, 1} for each response, GRPO computes normalized
advantages Âi,k := ri−µ

σ , where µ and σ are the empirical average and standard deviation of the
rewards. Specifically for binary rewards ri ∈ {0, 1}, denoting q = N+/G the fraction of correct
(ri = 1) responses per group, GRPO’s advantage scores become:

Âi,k =


√

1−q
q if ri = 1,

−
√

q
1−q if ri = 0.

(1)

Note that this is constant across all tokens k = 1, . . . , |yi| in the i-th response. GRPO minimizes:

E
(x,a)∼D

{yi}G
i=1∼πθold (·|x)

[ 1∑G
i=1 |yi|

G∑
i=1

|yi|∑
k=1

min
(
γi,k(θ)Âi,k, Âi,k · clip (γi,k(θ), 1− ε, 1 + ε)

)]
, (2)

where ε is a clipping hyperparameter, clip(·) is the clipping operation, and γi,k(θ) =
πθ(yi,k|x,yi,<k)
πθold (yi,k|x,yi,<k)

is the likelihood ratio between the current policy πθ and the old policy πθold .

3.2 LIKELIHOOD CHANGE OF CORRECT RESPONSE IN GRPO
A recent study (Deng et al., 2025) analyzed the learning dynamics of GRPO, examining how the
likelihood of correct responses y+

i evolves during training. They proved the following theorem using
the unconstrained features framework (Yang et al., 2017; Mixon et al., 2022; Razin et al., 2024):
Theorem 3.1. For any question x, at any time t ≥ 0 of training, and any correct response
y+
i , i ∈ [N+] , in addition to its dependence on the token unembeddings, the likelihood change
d
dt lnπθ(t)(y

+
i |x) decreases as the following quantity increases:

q−
|y+

i |∑
k=1

N−∑
j=1

|y−
j |∑

k′=1

α−
k,k′ · ⟨hx,y+

i,<k
,hx,y−

j,<k′
⟩︸ ︷︷ ︸

Negative Token Hidden Reward

−q+
|y+

i |∑
k=1

N+∑
i′=1

|y+

i′ |∑
k′′=1

α+
k,k′′ · ⟨hx,y+

i,<k
,hx,y+

i′,<k′′︸ ︷︷ ︸
Positive Token Hidden Reward

⟩. (3)

Here, the weights α±
k,k′ quantify the similarity of token-level prediction errors across responses:

α+
k,k′′ =

〈
ey+

i,k
− πθ(t)(· | x,y+

i,<k), ey+

i′,k′′
− πθ(t)(· | x,y+

i′,<k′′)
〉
,

α−
k,k′ =

〈
ey+

i,k
− πθ(t)(· | x,y+

i,<k), ey−
j,k′

− πθ(t)(· | x,y−
j,<k′) ,

〉
.

where q+ =
√
(1− q)/q, q− =

√
q/(1− q), and recall q = N+/G.

This theorem provides the theoretical foundation of our analysis by explaining how individual tokens
of both correct and incorrect responses influence training dynamics of correct response likelihood.
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4 TOKEN HIDDEN REWARD

Using the log-likelihood change d
dt lnπθ(t)(y

+
i | x) as a proxy for the GRPO objective, we now

introduce Token Hidden Reward (THR) to isolate and quantify each token’s specific contribution to
the model’s confidence in correct outputs. We then establish how THR values encode exploration-
exploitation dynamics in model training.

4.1 DEFINITION OF THR

Definition 4.1. Given a question x and a correct response y+
i , for any token yj,k′ , k′ ∈ [|yj |] in

another (positive or negative) response yj , the THR quantifies that token’s contribution to the change
d
dt lnπθ(t)(y

+
i | x) in the likelihood of the correct response. Formally, the hidden reward for the

k′-th token is defined as:

THR(y+
i ,yj , k

′) = (2rj − 1) ·
|y+

i |∑
k=1

αk,k′ · ⟨hx,y+
i,<k

,hx,yj,<k′ ⟩ .

Note the negative sign for incorrect responses (r(y) = 0) reflecting that GRPO penalizes those
responses. In view of Theorem 3.1, a higher THR is associated with a larger increase in likelihood.

Since GRPO operates on groups of responses (thus, there can be multiple correct answers), we extend
THR to the group setting by marginalizing over all positive responses:
Corollary 4.2. Given a question x and the set of correct responses {y+

i }N+ , for any token yj,k′ in
a response yj (where yj ∈ {y+

i }i∈[N+] ∪ {y−
i }i∈[N−]), the token hidden reward is defined as its

contribution to the likelihood change of the group of correct responses
∑N+

i=1
1

|y+
i |

d
dt lnπθ(t)(y

+
i | x).

Formally, the k′-th token’s contribution to likelihood change of the group of correct responses is:

THRj,k′ ≜ THR(yj , k
′) ≜

N+∑
i=1

1

|y+
i |

THR(y+
i ,yj , k

′).

In Corollary 4.2, the magnitude of THRj,k′ quantifies the strength of each token’s influence on the
likelihood. The sign of THRj,k′ indicates whether a token positively or negatively contributes to the
likelihood of generating the correct response.

4.2 CONNECTING THR WITH EXPLORATION AND EXPLOITATION.

Figure 2: Density of THR scores for Qwen2.5-
Math-1.5B. For both correct responses (a) and in-
correct responses (b), we observe that only a small
subset of tokens exhibits significantly high THR
values. Notably, both types of responses contain
tokens with both positive and negative THR scores.

Since the likelihood of correct responses reflects
the model’s confidence, we interpret changes in
this likelihood, driven by token-level contribu-
tions, as signals of exploitation or exploration.
In our context, we define these as follows:
Exploration is encouraged by a lower increase
in the likelihood of observed correct responses
since this preserves some probability mass for
alternative outputs.
Exploitation is encourages by a higher increase
in the likelihood of observed correct responses,
since this strengthens confidence in those ob-
served correct outputs.

Since THR values quantify the amount by which
likelihood of correct responses increases, we can
modulate the trade-off between exploration and
exploitation through reweighting THR tokens: Amplifying positive THR tokens (by increasing their
advantage weights) reduces the quantity in Eq. (3), boosting correct response likelihood and favoring
exploitation. Conversely, amplifying negative THR tokens increases this quantity, reducing correct
response likelihood and encouraging exploration. We validate these insights through our detailed
analysis in Section 5 and exhaustive experiments in Section 6.
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5 THR-GUIDED TOKEN ADVANTAGE ADJUSTMENT

In this section, we first analyze tokens’ THR values and then propose a THR-based adjustment of
token advantages to steer exploitation and exploration.
THR Analysis. Having defined THR, we now analyze its behavior in practice by examining the
distribution of token-level THR scores in Fig. 2, where we observe:
Dominant Tokens. For both correct and incorrect responses, the majority of tokens have THR scores
clustered around zero. However, a small subset of tokens exhibit significantly larger THR values,
indicating that these tokens dominate the training dynamics.
Sign of THR. Both correct responses (a) and incorrect responses (b) contain tokens with both positive
and negative THR scores, revealing that tokens in either response type can either strengthen or weaken
confidence in correct outputs.
Then we use THR to guide the training from two complementary perspectives: magnitude, by
focusing on the most influential tokens, and sign, by steering exploration versus exploitation.
Dominant Token Training. We define dominant tokens as those whose absolute THR score exceeds
a threshold, i.e., THR > τ . We detail the selection of τ in Section 6. To isolate the contribution of
these tokens, we construct a training objective that masks out all others by setting their advantage to
zero. The modified token-level advantage becomes:

ÂTHR
i,k = 1[|THRi,k| > τ ] · Âi,k. (4)

We refer to this setup as THR-only training. As shown in Table 1, this strategy achieves similar
performance to the original GRPO method, which utilizes all tokens. This observation supports our
claim that a small set of highly influential tokens largely determines performance.
Steering Exploration and Exploitation via THR Sign. To further exploit the information captured
by THR, we introduce a token-level reweighting strategy that adapts training dynamics based on the
sign of each token’s THR score. Specifically, we modulate the advantage based on whether a token
positively or negatively contributes to the correct response. To encourage exploitation, we increase
the weight of tokens with positive THR and reduce that of tokens with negative THR. Conversely, to
promote exploration, we reverse this weighting. This yields token-level reweighted advantages:

Â
THR(p)
i,k = 1[|THRi,k| > τ ] · (1 + sign(THRi,k) · p) · Âi,k . (5)

When p > 0, this scheme boosts positive THR tokens while dampening negative THR tokens, thus
reinforcing exploitation. In contrast, setting p < 0 reverses this behavior, shifting the training focus
toward exploration. Experimental results for this reweighting approach are reported in Section 6.1.
See also Fig. 1 for visualization of the tradeoff.

6 EXPERIMENTS & ANALYSIS

We evaluate THR’s empirical effectiveness through comprehensive experiments across four dimen-
sions: (1) Demonstrating exploitation (p > 0) and exploration (p < 0) capabilities as measured by
greedy accuracy and Pass@K performance, (2) comparing our fine-grained token-level control against
coarser-grained question-level baselines, (3) analyzing the relationship between THR and prediction
entropy, and (4) validating generalizability across a GRPO variant (i.e., GSPO-token (Zheng et al.,
2025) and Llama architectures.
Experimental settings. For all experiments, we follow Zeng et al. (2025) and train on the MATH
dataset (levels 3–5) (Hendrycks et al., 2021). To accelerate training, we adopt dynamic sampling (Yu
et al., 2025), which discards samples with zero advantage and resamples until a full batch is formed.
Unless otherwise specified, all models and methods are fine-tuned with identical reinforcement
learning hyperparameters. Specifically, we use four A100 GPUs with a prompt batch size of 256 and
8 rollouts per prompt. We use a learning rate of 1e−6, and a mini-batch size of 64, resulting in 32
gradient updates per step. Training runs for 40 steps, which corresponds to more than two effective
epochs given the higher throughput from dynamic sampling. We set the sampling temperature to
1.0, the clipping ratio to 0.2, and the KL loss coefficient to 1× 10−4. For the threshold τ , we follow
Deng et al. (2025, Eq. (8)), defining it as the average influence of the i′-th correct response’s tokens
on the likelihoods of other correct responses. Additional details are provided in Appendix B.
Evaluation setup. Since exploitation focuses on making the best decisions based on existing
knowledge (Harris & Slivkins, 2025), we assess exploitation ability of fine-tuned models by
measuring their greedy decoding accuracy. Here we adopt six widely used math benchmarks:
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three “Hard datasets” (AIME 2025, AIME 2024 (Veeraboina, 2023), AMC23) and three “Stan-
dard datasets” (MATH500 (Hendrycks et al., 2021), Olympiad (He et al., 2024), and Minerva
Math (Lewkowycz et al., 2022)). To evaluate exploration, we report the unbiased Pass@K ac-
curacy (Chen et al., 2021) using temperature 1.0 on the challenging AIME2024, AIME2025 and
AMC23 datasets, which require more exploration during attempts. The Pass@K metrix is defined
as Pass@K = Ex∼D

[
1−

(
M−C
K

)
/
(
M
K

)]
, where M ≥ K is the number of generated responses per

question x, and C denotes the number of correct responses. For all Pass@K evaluations, we use
M = 256 and report results for K = 21:8.

Base Model Method Hard Datasets Standard Datasets Total Avg.
AIME25 AIME24 AMC23 Hard Avg. MATH500 Minerva Olympiad Standard Avg.

Qwen2.5-0.5B-Ins

Base 0.0 0.0 2.5 0.8 33.4 4.4 7.0 14.9 7.9
GRPO 0.0 0.0 7.5 2.5 33.8 8.8 9.9 17.5 10.0
THR 0.0 0.0 15.0 5.0 34.6 8.1 7.6 16.8 10.9
THR (p = −0.2) 0.0 0.0 20.0 6.7 34.0 9.9 8.9 17.6 12.1
THR (p = 0.2) 0.0 0.0 17.5 5.8 35.6 11.0 6.5 17.7 11.8

Qwen2.5-Math-1.5B

Base 0.0 3.3 20.0 7.8 39.6 7.7 24.9 24.1 15.9
GRPO 3.3 13.3 57.5 24.7 71.8 29.0 34.1 45.0 34.8
THR 3.3 13.3 55.0 23.9 70.8 32.4 34.1 45.8 34.8
THR (p = −0.1) 10.0 13.3 60.0 27.8 70.6 32.0 32.7 45.1 36.4
THR (p = 0.1) 3.3 13.3 62.5 26.4 71.4 33.1 34.5 46.3 36.3

Qwen2.5-Math-7B

Base 13.3 6.7 42.5 20.8 64.6 15.8 26.7 35.7 28.3
GRPO 13.3 10.0 62.5 28.6 82.2 46.0 42.1 56.8 42.7
THR 10.0 16.7 65.0 30.6 80.8 44.1 43.1 56.0 43.3
THR (p = −0.1) 23.3 16.7 62.5 33.9 82.2 36.8 42.4 53.8 44.0
THR (p = 0.1) 20.0 16.7 75.0 37.2 82.2 43.4 43.4 56.3 46.8

Table 1: Exploitation Results on hard and standard math datasets. Pass@1 accuracy (%) using greedy
decoding across different methods and datasets. Bold is best performance, underline is second-best.

Method Qwen2.5-0.5B-Instruct Pass@K Qwen2.5-Math-1.5B Pass@K Qwen2.5-Math-7B Pass@K
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

AIME 2025
Base 0.1 0.2 0.3 0.6 1.2 2.5 5.0 10.0 20.0 1.3 2.6 4.9 8.6 13.9 19.9 26.2 33.4 40.0 2.7 5.0 8.9 14.7 21.7 29.5 37.4 44.5 50.0
GRPO 0.2 0.4 0.6 1.2 2.5 4.8 9.2 17.1 30.0 5.9 9.9 15.0 20.5 26.5 33.6 41.5 49.8 56.7 10.5 16.4 23.2 30.2 37.4 43.9 49.7 55.6 63.3
THR 0.2 0.3 0.6 1.2 2.5 4.8 9.2 17.1 30.0 5.4 9.2 14.1 19.4 25.0 31.7 39.5 48.0 56.7 9.6 15.2 21.9 29.2 36.2 42.6 49.8 58.3 63.3
THR (p < 0) 0.2 0.3 0.6 1.1 2.3 4.6 9.0 17.5 33.3 6.0 10.1 15.3 20.9 26.8 33.9 41.7 50.0 60.0 11.7 17.9 24.9 32.1 38.9 44.7 50.7 57.9 66.7
THR (p > 0) 0.1 0.3 0.5 0.9 1.9 3.7 7.3 14.2 26.7 4.6 8.0 12.8 18.7 25.6 33.7 43.0 52.5 60.0 9.3 15.2 22.4 29.9 36.5 42.4 48.5 55.9 63.3

AIME 2024
Base 0.1 0.2 0.4 0.8 1.6 3.1 5.6 9.8 16.7 3.3 6.3 11.3 18.5 27.4 36.4 44.3 49.6 53.3 7.5 13.5 22.0 32.0 41.0 47.9 53.7 59.4 66.7
GRPO 0.4 0.8 1.5 2.9 5.4 10.0 17.2 27.3 36.7 11.4 17.7 24.3 30.5 36.7 43.4 50.0 56.0 63.3 14.4 20.7 27.5 34.7 42.0 49.6 58.1 67.3 76.7
THR 0.4 0.7 1.5 2.9 5.4 9.7 15.7 22.0 26.7 10.6 16.7 23.4 30.2 37.2 44.8 51.9 58.5 63.3 15.7 21.3 27.3 34.7 43.2 51.4 58.4 63.6 66.7
THR (p < 0) 0.4 0.8 1.5 2.9 5.4 9.4 14.9 21.5 30.0 11.9 18.2 24.9 31.2 37.9 45.3 52.9 61.2 70.0 17.3 22.6 28.5 35.5 43.2 51.3 58.8 66.3 73.3
THR (p > 0) 0.4 0.7 1.4 2.6 4.7 8.1 12.9 19.9 30.0 8.4 13.6 20.0 27.0 34.7 43.1 50.8 57.6 63.3 13.6 19.0 24.9 31.8 39.9 48.8 57.3 64.2 70.0

AMC23
Base 4.1 7.8 14.0 23.4 36.1 50.6 64.4 75.4 82.5 15.3 26.7 42.1 58.6 72.3 81.9 88.8 94.3 97.5 25.0 40.6 58.2 72.9 82.8 88.7 92.6 96.2 100.0
GRPO 11.4 18.7 28.3 39.7 52.3 64.5 74.9 81.8 85.0 46.6 59.1 70.0 78.9 85.5 90.2 93.7 96.0 97.5 60.8 72.7 81.3 86.8 89.8 92.0 94.2 95.9 97.5
THR 12.0 20.2 30.8 43.0 56.1 68.6 79.5 88.0 92.5 44.8 57.8 69.1 78.2 85.1 90.1 93.6 95.9 97.5 58.1 71.3 80.7 87.1 90.9 93.5 95.9 98.3 100.0
THR (p < 0) 12.0 20.1 30.6 42.7 56.5 70.8 82.7 89.6 92.5 47.9 61.0 72.2 81.1 87.3 91.6 95.1 98.0 100.0 60.2 72.2 80.7 85.9 89.5 92.8 95.9 98.3 100.0
THR (p > 0) 11.1 18.8 29.2 41.9 56.0 69.3 80.1 87.5 92.5 41.4 54.8 66.8 76.6 84.2 89.5 93.2 95.8 97.5 57.0 70.0 79.8 86.8 91.2 94.0 96.1 97.3 97.5

Average
Base 1.4 2.7 4.9 8.3 13.0 18.7 25.0 31.7 39.7 6.6 11.9 19.4 28.6 37.9 46.1 53.1 59.1 63.6 11.7 19.7 29.7 39.9 48.5 55.4 61.2 66.7 72.2
GRPO 4.0 6.6 10.1 14.6 20.1 26.4 33.8 42.1 50.6 21.3 28.9 36.4 43.3 49.6 55.7 61.7 67.3 72.5 28.6 36.6 44.0 50.6 56.4 61.8 67.3 72.9 79.2
THR 4.9 7.4 11.7 15.7 21.3 27.7 34.8 42.4 49.7 20.3 28.0 35.5 42.6 49.1 55.5 61.7 67.5 72.5 27.8 35.9 43.7 50.3 56.8 62.5 67.8 72.7 76.7
THR (p < 0) 4.9 7.4 11.6 15.6 21.4 28.3 35.5 43.5 51.9 21.9 29.8 37.5 44.4 50.7 57.3 63.2 69.7 76.7 29.7 37.6 44.7 51.2 57.2 62.9 68.5 74.2 80.0
THR (p > 0) 4.9 6.6 10.4 15.1 20.9 27.0 33.4 40.5 49.7 18.1 25.5 33.2 40.8 48.2 55.4 62.3 68.6 73.6 26.6 34.7 42.4 49.5 55.9 61.7 67.3 72.5 76.9

Table 2: Exploration Results. Pass@K results for Qwen2.5-0.5B-Instruct, Qwen2.5-Math-1.5B, and
Qwen2.5-Math-7B are reported on the AIME (24,25) and AMC23 datasets, along with their average.

6.1 EFFECTIVENESS OF THR IN EXPLOITATION AND EXPLORATION

We use varying-sized Qwen2.5 models (Yang et al., 2024): 0.5B-Ins, Math-1.5B, Math-7B.
Impact of Dominant Tokens. Training exclusively with THR-dominant tokens (Eq. (4)), results
in performance comparable to original GRPO. In Table 1, vanilla THR (p = 0) matches GRPO in
greedy accuracy across models. Similarly, in Table 2 it also performs on par with GRPO with respect
to Pass@K. Thus, THR-dominant tokens play a critical role in guiding the training process.
Exploitation (p > 0). Setting p > 0 amplifies positive THR tokens while suppressing negative ones.
As shown in Table 1, THR(p = 0.1) increases the total average greedy accuracy over vanilla THR
(p = 0) by 1.9% on Qwen2.5-Math-1.5B and 3.5% on Qwen2.5-Math-7B. It further outperforms
GRPO by 1.1% and 4.0% on the same models, highlighting p > 0 as the most effective configuration
for exploitation. Moreover, despite prioritizing exploitation, p > 0 maintains competitive Pass@K
results at larger K, staying close to both vanilla THR and GRPO (Table 2).
Exploration (p < 0). To encourage exploration, we upweight tokens with negative THR values
while down-weighting positive ones, leaving more probability mass for alternative generations. As
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shown in Table 2, p < 0 consistently delivers strong Pass@K performance across all model sizes. For
example, on Qwen2.5-Math-1.5B, THR(p = −0.1) surpasses the best baseline by 2.4% at Pass@128
and 5.0% at Pass@256, while Qwen2.5-Math-7B shows steady gains of about 1% on average across
all K. In addition, p < 0 maintains competitive greedy accuracy, outperforming vanilla THR and
GRPO on several datasets (Table 1). Although weaker than p > 0 on standard benchmarks, it excels
on hard datasets such as AIME and AMC, with Qwen2.5-Math-1.5B even exceeding the p > 0
configuration. This suggests that allowing greater exploration can be beneficial for hard datasets.

6.2 THR VS. PASS@K TRAINING: TOKEN-LEVEL VS. QUESTION-LEVEL REWEIGHTING

Pass@K Training as Question-Level Reweighting. Chen et al. (2025); Mahdavi et al. (2025);
Walder & Karkhanis (2025) develop RLVR objectives that directly target Pass@K optimization.
For GRPO, these amount to re-weightings of the advantage scores in a way that favors “rare suc-
cesses”—i.e., responses associated with “hard” questions. Crucially, the reweighting is uniform
across all tokens and responses for a given question, which we term question-level reweighting. To
be concrete, As we show in Appendix D.1, that Chen et al. (2025)’s question-level reweighting of
vanilla GRPO advantages takes the following simplified form (assuming G ≥ K):

Â@K
i,k =

√√√√ (
N−

K

)
/
(
G
K

)
1−

(
N−

K

)
/
(
G
K

) ·√ q

1− q
· Âi,k. (6)

In practice, we adopt a convex combination q · Âi,k + (1− q) · Â@K
i,k of vanilla GRPO advantage and

the above Pass@K advantage, termed Pass@K-mixed (Chen et al., 2025), to avoid overly suppressing
easy questions and preserve valuable learning signals. Empirically, Pass@K-mixed outperforms
GRPO on both Qwen2.5-Math-1.5B (Table 3) and Llama3.2-3B-Instruct (Table 9). For training, we
use K = 4, G = 8 throughout our experiments.

Method Qwen2.5-Math-1.5B Pass@K Qwen2.5-Math-7B Pass@K
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

AIME 2025
GRPO 5.9 9.9 15.0 20.5 26.5 33.6 41.5 49.8 56.7 10.5 16.4 23.2 30.2 37.4 43.9 49.7 55.6 63.3
Pass@K-mixed 5.6 9.6 14.6 20.1 26.1 33.3 41.7 50.0 56.7 10.6 16.5 23.1 30.1 37.1 43.3 48.9 56.3 66.7
THR (p < 0) 6.0 10.1 15.3 20.9 26.8 33.9 41.7 50.0 60.0 11.7 17.9 24.9 32.1 38.9 44.7 50.7 57.9 66.7
THR(p < 0) +Passk-Mixed 4.8 8.3 12.9 18.1 23.6 30.2 37.9 46.5 56.7 10.1 15.8 22.3 29.1 36.0 42.2 47.9 54.6 63.3
THR(p < 0)+χPassk+(1− χ)GRPO 5.7 9.6 14.4 19.3 24.7 31.9 40.9 51.2 63.3 11.1 17.4 24.7 31.9 38.4 44.6 50.9 57.2 63.3

AIME 2024
GRPO 11.4 17.7 24.3 30.5 36.7 43.4 50.0 56.0 63.3 14.4 20.7 27.5 34.7 42.0 49.6 58.1 67.3 76.7
Pass@K-mixed 10.6 16.7 23.5 30.3 37.1 44.3 51.2 57.5 63.3 14.9 20.7 26.8 33.8 41.2 49.1 58.0 67.9 76.7
THR (p < 0) 11.9 18.2 24.9 31.2 37.9 45.3 52.9 61.2 70.0 17.3 22.6 28.5 35.5 43.2 51.3 58.8 66.3 73.3
THR(p < 0) +Passk-Mixed 10.4 16.5 23.4 30.0 36.4 41.8 49.8 59.0 70.0 13.7 19.4 25.7 33.2 41.6 49.8 57.3 64.8 73.3
THR(p < 0)+χPassk+(1− χ)GRPO 11.0 17.0 23.8 30.4 37.0 44.2 52.0 59.8 66.7 18.1 24.3 31.2 38.4 45.5 52.6 60.7 69.8 76.7
AMC23
GRPO 46.6 59.1 70.0 78.9 85.5 90.2 93.7 96.0 97.5 60.8 72.7 81.3 86.8 89.8 92.0 94.2 95.9 97.5
Pass@K-mixed 45.2 58.1 69.4 78.4 85.2 90.8 95.2 98.5 100.0 61.3 73.5 81.3 85.8 88.1 89.6 91.1 93.1 95.0
THR (p < 0) 47.9 61.0 72.2 81.1 87.3 91.6 95.1 98.0 100.0 60.2 72.2 80.7 85.9 89.5 92.8 95.9 98.3 100.0
THR(p < 0) +Passk-Mixed 43.9 57.5 69.2 78.6 85.9 91.4 95.6 98.3 100.0 58.0 71.2 80.5 86.4 90.1 93.0 96.0 98.7 100.0
THR(p < 0)+χPassk+(1− χ)GRPO 46.8 59.6 70.6 79.4 86.4 91.8 95.8 98.6 100.0 61.4 72.3 80.2 85.3 88.8 92.0 95.1 97.1 97.5

Average
GRPO 21.3 28.9 36.4 43.3 49.6 55.7 61.7 67.3 72.5 28.6 36.6 44.0 50.6 56.4 61.8 67.3 72.9 79.2
Pass@K-mixed 20.5 28.1 35.8 42.9 49.5 56.1 62.7 68.7 73.3 28.9 36.9 43.7 49.9 55.5 60.7 66.0 72.4 79.5
THR (p < 0) 21.9 29.8 37.5 44.4 50.7 57.3 63.2 69.7 76.7 29.7 37.6 44.7 51.2 57.2 62.9 68.5 74.2 80.0
THR(p < 0)+Passk-Mixed 19.7 27.4 35.2 42.2 48.6 54.5 61.1 67.9 75.6 27.3 35.5 42.8 49.6 55.9 61.7 67.1 72.7 78.9
THR(p < 0)+χPassk+(1− χ)GRPO 21.2 28.7 36.3 43.0 49.4 56.0 62.9 69.9 76.7 30.2 38.0 45.4 51.9 57.6 63.1 68.9 74.7 79.2

Table 3: Comparing exploration ability with Pass@K. Results for Qwen2.5-Math-1.5B and Qwen2.5-
Math-7B are reported on the AIME 2024, AIME 2025, and AMC23 datasets, along with their average.

THR as Token-Level Modification within a Question. Contrasting to the question-level reweighting
in Eq. (6), our THR algorithms in Eq. (4) and Eq. (5) operate at the token-level by reweighting the
advantage with factors that are specific to tokens across responses within a question x. As formalized
in Corollary 4.2, THR adjusts the advantage of each token based on whether it contributes positively
or negatively to the likelihood. By setting p < 0 in Eq. (5), THR effectively reserves probability
mass for alternative responses within the same question, thereby encouraging exploration.
Comparing THR with Pass@K training. We compare the performance of THR with p < 0 to
Pass@K-mixed training. THR consistently outperforms Pass@K-mixed across all Pass@K metrics
on Qwen models. With average improvement > 1.1% across most K values on both Qwen2.5-Math-
1.5B and Qwen2.5-Math-7B, this highlights THR’s stronger ability to promote exploration.
Directly combining THR with Pass@K training is Suboptimal. We also investigate whether
directly combining THR(p < 0) with Pass@K-mixed yields additional benefits but found it underper-
forms compared to plain THR(p < 0). We hypothesize that this is because Pass@K-mixed tends
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to assign excessively low weights to “easy” questions (for those, N− and thus the first reweighting
factor in Eq. (6) is small), thereby weakening THR’s ability to explore still-present and valuable
token-level variations within them. To validate this hypothesis, we combine THR with a “static”
version of Pass@K-mixed training where advantages become: χ · Pass@K + (1− χ) ·GRPO, for
constant (question-independent) χ. Setting χ = 0.2 helps preserve the influence of easy questions.
This modification leads to consistent improvements over THR(p < 0)+Pass@K-mixed and even
outperforms THR (p < 0) on Qwen2.5-Math-7B, with Pass@K performance increases by up to
0.7% for K = 4, 8 and shows steady gains across K = 21:7. These results suggest that while
Pass@K training and THR target different aspects of exploration, maintaining adequate weight for
easy questions allows THR to complement Pass@K training effectively.
In summary, both THR and Pass@K training employ what Chen et al. (2025) term implicit advantage
design to steer exploration. However, THR provides more fine-grained control by operating at the
token level, enabling more targeted and effective exploration management.

6.3 ON THE RELATION OF THR WITH ENTROPY

In this section, we study the relation between THR and entropy because entropy has long served as a
proxy for exploration in RL (Wang et al., 2018; Cui et al., 2025).

Method Qwen2.5-Math-1.5B Pass@K Qwen2.5-Math-7B Pass@K
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

AIME 2025
COV-KL 5.3 9.1 14.0 19.4 25.1 31.4 37.8 44.2 50.0 11.5 17.5 24.1 30.8 37.6 43.6 48.9 54.2 60.0
THR (p < 0) 6.0 10.1 15.3 20.9 26.8 33.9 41.7 50.0 60.0 11.7 17.9 24.9 32.1 38.9 44.7 50.7 57.9 66.7
AIME 2024
COV-KL 11.0 17.1 23.8 30.2 36.6 43.1 49.1 54.6 60.0 14.7 20.4 26.7 33.9 41.5 48.7 55.1 61.6 70.0
THR (p < 0) 11.9 18.2 24.9 31.2 37.9 45.3 52.9 61.2 70.0 17.3 22.6 28.5 35.5 43.2 51.3 58.8 66.3 73.3
AMC23
COV-KL 46.8 59.3 70.3 79.3 86.1 91.2 94.8 96.8 97.5 62.3 73.5 81.4 86.7 89.9 92.2 94.5 96.2 97.5
THR (p < 0) 47.9 61.0 72.2 81.1 87.3 91.6 95.1 98.0 100.0 60.2 72.2 80.7 85.9 89.5 92.8 95.9 98.3 100.0
Average
COV-KL 21.0 28.5 36.0 43.0 49.3 55.2 60.6 65.2 69.2 29.5 37.1 44.1 50.5 56.3 61.5 66.2 70.7 75.8
THR (p < 0) 21.9 29.8 37.5 44.4 50.7 57.3 63.2 69.7 76.7 29.7 37.6 44.7 51.2 57.2 62.9 68.5 74.2 80.0

Table 4: Comparing exploration ability with Pass@K. Results for Qwen2.5-Math-1.5B and Qwen2.5-
Math-7B are reported on the AIME 2024, AIME 2025, and AMC23 datasets, along with their average.

Figure 3: Overlap between high THR and
high entropy tokens. For each sample, we
quantify the overlap between tokens with high
THR and high entropy, and plot the resulting
density. The distribution shows a pronounced
peak near 90%, highlighting a strong token-
level association between these two metrics.

Dominant tokens overlaps with high entropy to-
kens. For a confident (low-entropy) token eyk′ −
π(·|x,y<k′) has small magnitude, thus the resulting
α·,k′ in Definition 4.1 tends to be close to zero, lead-
ing to a low THR. We analyze the overlap between
tokens with high THR scores and those with high
entropy. For each sample, we select the same number
of high-entropy tokens as high-THR tokens, compute
their overlap rate, and plot the kernel density esti-
mate (Chen, 2017) of the resulting overlap scores in
Fig. 3. We find consistently high overlap ratio, often
around 90%, indicating a strong correlation between
THR and entropy. This finding is consistent with the
observation of contemporaneous work (Wang et al.,
2025), demonstrating that training on only the top
20% of high-entropy tokens is sufficient to achieve
performance on par with GRPO using all tokens.
Relation between THR and entropy regularization. In Appendix D.2, we establish, under mild
assumptions, a link between reweighting p and entropy regularization at the token level. In particular,
reweighting token advantages with THR implicitly regulates the dynamics of token entropy, with
both strength and direction determined by the hyper-parameter p1. Besides the conceptual similarity,
we argue below that THR is a more efficient alternative to entropy-based methods.
Comparison with COV-KL. Cui et al. (2025) propose COV-KL as an entropy-based regularization
approach focusing on how each token affects the update of itself during training. In contrast, THR, as
formalized in Definition 4.1, explicitly captures the cross-token interactions that arise throughout the

1The strength and direction are controlled by the value and sign of hyper-parameter p
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Figure 4: Mean of AIME 2024, AIME 2025, and AMC23 datasets’ Pass@K performance of THR on
GSPO using Qwen2.5-Math-1.5B across different K.

Figure 5: Mean of AIME 2024, AIME 2025, and AMC23 datasets’ Pass@K performance of different
methods on Llama3.2-3B-Instruct across different K.

learning process. As shown in Table 4, THR(p < 0) consistently outperforms COV-KL in all Pass@K
settings, underscoring the importance of modeling cross-token influence for guiding exploration.

6.4 GENERALIZING THR TO OTHER RL OBJECTIVES AND MODEL FAMILIES

Combining with other RL objectives. We further show that THR can be seamlessly integrated
with other group relative RL objectives. For demonstation, we apply THR to the token level variant
of group sequence policy optimization (GSPO-token) (Zheng et al., 2025), which optimizes at the
sequence level while allowing token level advantage adjustment (details in Appendix A). Fig. 4
shows that THR(p < 0) boosts Pass@K performance across all K with an average improvement
∼0.9% to THR(p = 0) and 1.4% to GSPO. See Apx. for detailed results.
Performance on Llama. To further demonstrate the generality of THR across model families, we
evaluate it on Llama3.2-3B-Instruct. Unlike Qwen, Llama exhibits weaker mathematical knowledge,
limited cognitive behaviors (Gandhi et al., 2025), and faces reduced reasoning length during training.
Despite this, as shown in Fig. 5, THR still substantially boosts exploration, achieving up to a 7%
Pass@K improvement compared to GRPO. Setting p < 0 amplifies these exploration gains even
further. While baselines such as COV-KL and Pass@K-mixed also provide exploration improvements,
they consistently underperform relative to THR. Reduced response length, results on exploitation,
exploration results on each dataset, and more training details are provided in Appendix C.3.

7 CONCLUSION

We introduced THR, demonstrating that fine-grained analysis of learning dynamics can yield novel
practical algorithmic insights steering exploration-exploitation in RLVR. Our findings suggest that
RL for LLMs benefits from token-level interventions that leverage the unique structure of language
generation, revealing new opportunities for principled algorithmic design. Our analysis connects
THR with contemporaneous approaches, from Pass@K optimization’s question-level reweighting to
entropy-based exploration methods, reinforcing that multiple perspectives on the same underlying
dynamics can complement and inform each other. As the field matures, combining insights from
different analytical lenses (dynamics-based, entropy-based, objective-based) could yield even more
sophisticated training methods. Specifically, our dynamics-first approach opens several promising
directions itself, such as adaptive tuning of THR’s parameter p based on training progress or question
difficulty and exploring similar token-level interventions in other RLVR domains from code generation
to scientific reasoning.
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A ADDITIONAL PRELIMINARY

Group Sequential Policy Optimization. Recently, Zheng et al. (2025) introduce group sequence
policy optimization (GSPO), a new reinforcement learning algorithm for training large language
models. Following the basic principle of importance sampling, GSPO defines importance ratios
based on sequence likelihood and performs sequence-level clipping, rewarding, and optimization.
The GSPO objective JGSPO(θ) is then defined as:

E
(x,a)∼D

{yi}G
i=1∼πθold (·|x)

[ 1∑G
i=1

G∑
i=1

min
(
si(θ)Âi,k, Âi,k · clip (si(θ), 1− ε, 1 + ε)

)]
(7)

where the defined the importance ratio si(θ) is based on sequential likelihood:

si(θ) = (
πθ(yi|x)
πθold(yi|x)

)
1

|yi| = exp(
1

|yi|

|yi|∑
k=1

γi,k(θ)) (8)

The token-level objective variant of GSPO, namely JGSPO-token(θ) allows token-wise advantage
customization and is defined as:

E
(x,a)∼D

{yi}G
i=1∼πθold (·|x)

 1

G

G∑
i=1

1

|yi|

|yi|∑
k=1

min
(
si,k(θ)Âi,k, clip(si,k(θ), 1− ϵ, 1 + ϵ)Âi,k

) , (9)

where

si,k(θ) = sg[si(θ)] ·
πθ(yi,k|x,yi,<k)

sg[πθ(yi,k|x,yi,<k)]
, (10)

and sg[·] denotes only taking the numerical value but stopping the gradient, corresponding to the
detach operation in PyTorch. The gradient of GSPO-token can be derived as:

GSPO demonstrates notably superior training stability, efficiency, and performance compared to
GRPO and exhibits particular efficacy for the large-scale RL training of MoE models. To be specific,

B ADDITIONAL EXPERIMENT DETAILS.

Additional Details for Qwen2.5-0.5B-Ins: For the 0.5B model, training is conducted on two A6000
GPUs with a batch size of 32, a maximum rollout length of 2500 tokens, a learning rate of 5e−7, and
a mini-batch size of 16—resulting in two iteration updates per training step. For the greedy decoding
performance, we report the best accuracy across multiple checkpoints due to significant fluctuations
during training. For all other settings, we report the performance at the final checkpoint. In addition
to high-THR tokens, we also include those within the top 20% highest-entropy tokens that do not
overlap with high-THR (approximate 4.1 % tokens), and keep their advantage unchanged being Âi,k.
For formatting, we follow Zeng et al. (2025), adopting simple prompts since the model struggles with
complex instructions. We use p = 0.2 and p = −0.2 for exploitation and exploration respectively.

Additional Details for Qwen-Math: The Qwen-Math model Yang et al. (2024) uses its full context
length of 3072 tokens for rollouts. For format, we folow Zeng et al. (2025) to use Qwen Chat template
and require final answer to be enclosed in a latex command \boxed{}. Unless otherwise specified,
we set p = 0.1 for exploitation and p = −0.1 for exploration.
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Base Model Method AIME25 AIME24 AMC23 MATH500 Minerva Olympiad Avg.

Qwen2.5-Math-1.5B

Base 0.0 3.3 20.0 39.6 7.7 24.9 15.9
GRPO 3.3 13.3 57.5 71.8 29.0 34.1 34.8
Pos Only 3.3 10.0 57.5 70.6 30.1 31.0 33.8
THR (p = 0.1) 3.3 13.3 62.5 71.4 33.1 34.5 36.3

Table 5: Exploitation Results. Pass@1 accuracy (%) using greedy decoding across different methods
and datasets. Bold indicates the best performance, while underline marks the second-best.

Additional Training Details for Llama: For the Llama3.2-3B-Instruct Dubey et al. (2024) model,
training is carried out on 8 A100 GPUs with a batch size of 256, a maximum rollout length of 3000
tokens, a learning rate of 1× 10−6, and a mini-batch size of 16. For greedy decoding, we report the
best accuracy across multiple checkpoints due to the substantial fluctuations observed during training,
while for all other settings we report results from the final checkpoint. In addition to high-THR
tokens, we also include those within the top 20% highest-entropy tokens that do not overlap with
high-THR (approximate 3.5 % tokens ), and fix their keep their advantage unchanged being Âi,k.
For formatting, we follow Zeng et al. (2025), adopting simple prompts since the model struggles with
complex instructions.

C ADDITIONAL EXPERIMENTS

C.1 ABLATION STUDY ON POSITIVE AND NEGATIVE-ONLY TRAINING.

We further investigate the impact of training with only positive or negative tokens by modifying Âi,k.
In the “Pos Only” setting, we set all values where Âi,k < 0 to 0, thereby increasing the confidence of
correct responses only. Conversely, in the “Neg Only” setting, we set all values where Âi,k > 0 to
0, which reduces the confidence of incorrect responses without reinforcing correct ones. As shown
in Table 5, “Pos Only” results in a 1.3% drop in average performance compared to GRPO, indicating
that negative gradients also contribute to boosting confidence in correct responses.

Method Qwen2.5-0.5B-Instruct Pass@K Qwen2.5-Math-1.5B Pass@K
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

AIME 2025
GRPO 0.2 0.4 0.6 1.2 2.5 4.8 9.2 17.1 30.0 5.9 9.9 15.0 20.5 26.5 33.6 41.5 49.8 56.7
Neg Only 0.2 0.4 0.7 1.4 2.8 5.3 9.5 16.2 26.7 4.7 8.1 12.7 17.8 23.4 30.2 38.2 46.2 56.7
THR (p < 0) 0.2 0.3 0.6 1.1 2.3 4.6 9.0 17.5 33.3 6.0 10.1 15.3 20.9 26.8 33.9 41.7 50.0 60.0
AIME 2024
GRPO 0.4 0.8 1.5 2.9 5.4 10.0 17.2 27.3 36.7 11.4 17.7 24.3 30.5 36.7 43.4 50.0 56.0 63.3
Neg Only 0.2 0.5 0.9 1.8 3.3 5.9 9.7 14.9 23.3 9.9 16.0 23.1 30.2 36.7 42.8 48.1 52.9 56.7
THR (p < 0) 0.4 0.8 1.5 2.9 5.4 9.4 14.9 21.5 30.0 11.9 18.2 24.9 31.2 37.9 45.3 52.9 61.2 70.0
AMC23
GRPO 11.4 18.7 28.3 39.7 52.3 64.5 74.9 81.8 85.0 46.6 59.1 70.0 78.9 85.5 90.2 93.7 96.0 97.5
Neg Only 7.7 13.7 22.6 34.4 48.4 63.2 76.6 87.5 95.0 44.0 56.9 68.0 76.5 83.0 88.5 92.3 94.3 95.0
THR (p < 0) 12.0 20.1 30.6 42.7 56.5 70.8 82.7 89.6 92.5 47.9 61.0 72.2 81.1 87.3 91.6 95.1 98.0 100.0
Average
GRPO 4.0 6.6 10.1 14.6 20.1 26.4 33.8 42.1 50.6 21.3 28.9 36.4 43.3 49.6 55.7 61.7 67.3 72.5
Neg Only 2.7 4.9 8.1 12.5 18.2 24.8 31.9 39.5 48.3 9.5 27.0 34.6 41.5 47.7 53.8 59.5 64.5 68.4
THR (p < 0) 4.9 7.4 11.6 15.6 21.4 28.3 35.5 43.5 51.9 21.9 29.8 37.5 44.4 50.7 57.3 63.2 69.7 76.7

Table 6: Comparing exploration ability with Pass@K. Results for Qwen2.5-Math-1.5B and Qwen2.5-
Math-7B are reported on the AIME 2024, AIME 2025, and AMC23 datasets, along with their average.
Bold indicates the best performance.

As also shown in Table 6, “Neg Only” underperforms in most cases. For example, on AMC23 with
Qwen2.5-Math-1.5B, it achieves a Pass@256 of 56.7%, compared to 63.3% for both GRPO and vanilla
THR. While “Neg Only” yields moderate improvements over the Base model on average—indicating
that suppressing incorrect responses provides some exploratory value—positive tokens still play a
critical role in enhancing exploration. By selectively incorporating informative tokens, THR with
p < 0 achieves substantially better exploration performance than “Neg Only” alone.
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Method Qwen2.5-Math-1.5B Pass@K

1 2 4 8 16 32 64 128 256

AIME 2025
GSPO 5.2 9.0 13.9 19.3 24.9 31.0 36.9 41.4 46.7
GSPO+THR 4.4 7.8 12.5 18.0 23.9 31.1 39.0 46.4 50.0
GSPO+THR (p = −0.1) 5.1 8.9 14.3 20.4 26.6 33.3 39.9 46.9 53.3

AIME 2024
GSPO 10.4 16.8 24.1 31.3 38.5 45.6 52.4 59.4 66.7
GSPO+THR 10.0 16.2 23.6 30.8 37.7 44.8 52.8 60.8 66.7
GSPO+THR (p = −0.1) 11.0 17.2 24.2 31.0 37.8 44.9 51.8 59.1 66.7

AMC 2023
GSPO 44.9 58.0 69.0 77.7 84.3 89.1 92.0 93.6 95.0
GSPO+THR 44.9 58.0 68.7 77.0 83.5 88.8 93.3 97.2 100.0
GSPO+THR (p = −0.1) 45.4 58.2 69.1 77.9 84.6 90.1 95.0 98.7 100.0

Average
GSPO 20.2 27.9 35.7 42.8 49.2 55.2 60.4 64.8 69.5
GSPO+THR 19.8 27.3 34.9 41.9 48.4 54.9 61.7 68.1 72.2
GSPO+THR (p = −0.1) 20.5 28.1 35.9 43.1 49.7 56.1 62.2 68.2 73.3

Table 7: Performance with GSPO

Figure 6: Response length dynamics
of Llama3.2-3B-Instruct across different
stages of GRPO training.

Figure 7: Word cloud of the top 50 tokens ranked by
THR, generated from Qwen2.5-Math-7B on AMC23.
Font size is proportional to each token’s average
THR. Tokens with high THR represent the key rea-
soning steps most critical in the model’s problem-
solving process.

C.2 ADDITIONAL RESULTS ON GSPO

We further show that THR can be seamlessly integrated with other group relative reinforcement
learning objectives. In particular, we apply THR to token level variant of group sequence policy
optimization (GSPO-token) Zheng et al. (2025), which optimizes at the sequence level through
clipping, rewarding, and optimization while allow token level advantage adjustment (more details in
Appendix Appendix A). As reported in Table 7, incorporating THR with p < 0 yields substantial
improvements, boosting Pass@K performance across all K with an average improvement by around
0.9% to THR and 1.4% to GSPO.

C.3 ADDITIONAL RESULTS ON LLAMA.

Reduced response length. As shown in Fig. 6, the response length of Llama3.2-3B declines rapidly
after a few epochs, with the average length dropping from about 1.5K tokens to roughly 650. This
reduction may stem from the model’s limited cognitive behaviors Gandhi et al. (2025). Exploitation
Results on Llama We report the greedy decoding performance of Llama in Table 8. As shown in
table, while GRPO achieves the best performance, setting p > 0 can improve the greedy decoding
performance compared with vanilla THR by 1.1%.
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Base Model Method AIME25 AIME24 AMC23 MATH500 Minerva Olympiad Avg.

Llama3.2-3B-Instruct

Base 0.0 3.3 22.5 40.2 16.5 11.9 15.7
GRPO 0.0 26.7 30.0 54.4 22.1 18.1 25.2
THR 0.0 13.3 32.5 51.8 22.1 19.9 23.3
THR (p = −0.2) 3.3 6.7 27.5 51.4 20.6 16.3 21.0
THR (p = 0.05) 3.3 13.3 40.0 50.6 22.4 16.7 24.4

Table 8: Exploitation Results. Pass@1 accuracy (%) using greedy decoding across different methods
and datasets. Bold indicates the best performance, while underline marks the second-best.

Method Llama3.2-3B-Instruct Pass@K

1 2 4 8 16 32 64 128 256

AIME 2025
Base 0.2 0.3 0.6 1.2 2.4 4.6 8.45 14.2 20.0
GRPO 0.3 0.7 1.25 2.4 4.3 7.0 10.2 13.2 16.7
Cov KL 0.4 0.7 1.4 2.5 4.5 7.4 11.2 16.3 23.3
Pass@K-mixed 0.7 1.3 2.3 3.9 6.3 9.1 12.6 16.7 20.0
THR 1.0 1.8 3.4 5.7 8.6 12.0 16.7 24.0 30.0
THR (p = −0.1) 1.1 2.1 3.8 6.7 10.7 15.3 19.7 24.2 30.0
THR (p = −0.2) 0.5 0.9 1.8 3.4 6.4 11.1 17.8 26.3 36.7

AIME 2024
Base 1.4 2.6 4.8 8.3 13.4 20.3 28.4 35.9 40.0
GRPO 12.7 17.5 22.4 27.4 31.0 33.3 34.9 36.7 40.0
Cov KL 11.9 15.9 20.4 25.6 30.6 33.8 35.8 38.3 43.3
Pass@K-mixed 12.2 17.2 22.4 27.4 30.8 32.8 35.1 38.2 43.3
THR 9.8 15.0 20.5 25.7 29.8 32.6 35.0 38.2 43.3
THR (p = −0.1) 9.2 13.9 19.0 24.2 29.3 33.5 36.5 40.0 46.7
THR (p = −0.2) 9.4 13.6 18.2 23.1 27.9 32.5 37.1 41.6 46.7

AMC 2023
Base 9.6 17.0 27.7 41.0 55.7 69.2 80.1 86.4 90.0
GRPO 26.7 36.9 47.3 56.4 63.6 69.5 74.8 79.6 85.0
Cov KL 28.9 39.3 49.6 57.9 64.7 70.8 76.2 81.1 85.0
Pass@K-mixed 28.6 39.3 49.9 58.9 65.8 71.3 76.3 81.4 87.5
THR 26.8 37.9 48.5 57.9 67.0 75.2 82.3 87.5 90.0
THR (p = −0.1) 26.1 36.4 47.0 56.4 65.5 74.2 81.5 87.0 90.0
THR (p = −0.2) 26.5 36.7 47.6 57.8 66.9 74.4 80.2 84.3 87.5

Average
Base 3.7 6.6 11.0 16.8 23.8 31.4 39.0 45.5 50.0
GRPO 13.2 18.4 23.7 28.7 33.0 36.6 40.0 43.2 47.2
Cov KL 13.7 18.6 23.8 28.7 33.3 37.3 41.1 45.2 50.5
Pass@K-mixed 13.8 19.3 24.9 30.1 34.3 37.7 41.3 45.4 50.3
THR 12.5 18.2 24.1 29.8 35.1 39.9 44.7 49.9 54.4
THR (p = −0.1) 12.1 17.5 23.3 29.1 35.2 41.0 45.9 50.4 55.6
THR (p = −0.2) 12.1 17.1 22.5 28.1 33.7 39.3 45.0 50.7 57.0

Table 9: Pass@K performance of different methods using Llama3.2-3B-Instruct .

Exploration Results on Llama As shown in Table 9, THR still substantially boosts exploration,
achieving over a 7% Pass@K improvement compared to GRPO. Setting p < 0 amplifies these
exploration gains even further. While baselines such as COV-KL and Pass@K-mixed also provide
exploration improvements, they consistently underperform relative to THR.

C.4 ADDITIONAL THR TOKEN ANALYSIS

We further analyze tokens with high THR values using a word cloud visualization, as shown in
Figure 7. The representative tokens can be organized into five functional categories that correspond
to step-by-step reasoning:
Stating the Given Information: tokens that capture the initial conditions or input facts (present,
data, paper).
Transformation and Operations: tokens that describe conversions, equivalence, or transfers of
knowledge (conversion, transfer, equivalent).
Constraints and Relationships: tokens indicating dependencies, limitations, or structural relations
(relative, intersects, amount, dimensions).
Decision and Selection: tokens reflecting choices among alternatives or branching reasoning paths
(determine, instead, alternating, altern, others).
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Verification and Conclusion: tokens signaling validation or consolidation of results (confirms,
systematic, answer).

C.5 RUNNING TIME OF EACH MODULE.

We also track the average time cost of each module during training, as reported in Table 10. Notably,
the data generation (Data Gen) module that using dynamic sampling accounts for the majority of
the total training time. In contrast, the overhead introduced by THR is minimal, e.g. 37 seconds for
Qwen2.5-Math-1.5B, contributing only a small fraction to the overall cost.

Model+dataset Data Gen Model Upd THR Ref Old Prob Total (Sec)
Qwen2.5-Math-1.5B 347 210 37 120 120 834
Qwen2.5-Math-7B 422 371 39 187 187 1206
Llama3.2-3B-Instruction 625 139 26 89 89 968

Table 10: Average running time (per step, in seconds) of each module for different models and tasks.

D DETAILED PROOFS

D.1 PASS@K AS THE QUESTION LEVEL REWEIGHTING

Chen et al. (2025); Mahdavi et al. (2025); Walder & Karkhanis (2025) develop RLVR objectives that
directly target Pass@K optimization. Starting with GRPO’s ancestor, REINFORCE, Mahdavi
et al. (2025); Walder & Karkhanis (2025) derive reward rescalings by directly optimizing the
Pass@K objective. Mahdavi et al. (2025) apply the same rescaling to advantages giving a GRPO
version of their approach. These rescalings upweight the gradient contribution of correct responses
that constitute “rare successes”—i.e., responses associated with “hard” questions. Crucially, the
reweighting is uniform across all tokens and responses for a given question, which we term question-
level reweighting. More recently, Chen et al. (2025) introduce an appealing alternative to optimizing
Pass@K by incorporating the design directly within GRPO’s group structure. Here, we simplify the
formulas in Chen et al. (2025) and arrive at an explicit formulation of advantage shaping that reveals
its question-level nature. Starting from the defined advantages in Chen et al. (2025):

R̄group = 1−
(
N−

K

)(
G
K

) , σgroup =
√
R̄group × (1− R̄group)

A@K
pos =

1− R̄group

σgroup , A@K
neg =

(
1− R̄group −

(
N−−1
K−1

)(
G−1
K−1

) )× (σgroup)−1.

Since N− = (1− q)G then we can obtain:

A@K
pos =

(
N−

K

)(
G
K

)
σgroup

=

∏K−1
i=0 ((1− q)G− i)∏k−1
i=0 (G− i)σgroup
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(
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then harder question will have a larger 1 − q thus larger advantage, then we derive the negative
advantage.

A@K
neg = (

(
N−

K

)(
G
K

) −
(
N−−1
K−1

)(
G−1
K−1

) )
1

σgroup

= (
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i=0 (N− − i)∏K−1
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)
1
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1
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= − q

1− q
A@K
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q
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)
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)
/
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) ·√ q
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) · Âneg (12)

By combining Equation (11) and Equation (12), we arrive at Equation (6), completing the derivation.

D.2 RELATIONSHIP BETWEEN THR AND ENTROPY REGULARIZER

Under some mild assumptions, optimizing THR plays a similar role as regularizing2 the evolution of
the token entropy in a more efficient way. Because, as stated in the main context, THR considers
cross-token influence while current analysis on token entropy consider the influence of learning a
observing token on itself Cui et al. (2025). We start from Lemma 1 proposed in Cui et al. (2025),
which is how the Cov-KL regularizer is derived.

Lemma 1 in Cui et al. (2025): Let the actor policy πθ be a tabular softmax policy, the difference of
information entropy given states between two consecutive steps satisfy:

∆Ht ≜ H(πθ(t+1))−H(πθ(t)) = −Covy∼πθ(t)(·|x)
(
log πθ(t)(y | x), lt+1

y − lty
)
, (13)

where l is the logits vector provided by the model after feeding the input x. For notational simplicity,
we use the superscript t to denote the training step, rather than an exponent. The equation above
holds as long as a first-order Taylor expansion is valid at the logits level, independent of the specific
model under consideration. In other words, this lemma is agnostic to the mechanism by which l
evolves, which depends on the particular model architecture or parameterization.

Recall the definition of the covariance:

Covy∼π(X,Y ) = Ey∼π[X · Y ]− Ey∼π[X]Ey′∼π[Y ].

2The strength and direction are controlled by the value and sign of hyper-parameter p
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Equation (13) can then be written as:

∆Ht(χ) = −Covy∼πθ(t)(·|χ)
(
log πθ(t)(y | χ), lt+1

y − lty
)

= Ey∼πθ(t)
[log πθ(t)(y | χ)]Ey′∼πθ(t)

[lt+1
y′ − lty′ ]− Ey∼πθ(t)

[
(lt+1

y − lty) log πθ(t)(y | χ)
]

= −H(πθ(t))Ey∼πθ(t)
[lt+1
y − lty]− Ey∼πθ(t)

[
(lt+1

y − lty) log πθ(t)(y | χ)
]

= −H(πθ(t))

V∑
v=1

πθ(t)(y = v | χ)(lt+1
v − ltv)−

V∑
v=1

πθ(t)(y = v | χ)(lt+1
v − ltv) log πθ(t)(y = v | χ)

= −
V∑

v=1

πθ(t)(y = v | χ)(lt+1
v + ltv)

(
H(πθ(t)) + log πθ(t)(y = v | χ)

)
= −

〈
H(πθ(t))πθ(t)(· | χ) + πθ(t)(· | χ)⊙ log πθ(t)(· | χ), lt+1 − lt

〉
= −H(πθ(t))

〈
πθ(t)(· | χ) +

1

H(πθ(t))
πθ(t)(· | x)⊙ log πθ(t)(· | x)︸ ︷︷ ︸
V×1,defined as Q(χ)

, lt+1 − lt

〉

= c
〈
−Q(χ)− πθ(t)(· | χ), lt+1(χ)− lt(χ).

〉
(14)

where the operator ⊙ is the element-wise multiplication of two vectors, χ ≜ x,y<k is the context for
the prediction of the k-th token, and c is a constant for notation conciseness. In the last equation, we
reintroduce the input χ to the notation to remind readers that the entire equation is conditioned on a
given context sequence χ. That is an important extension, because most existing works on entropy
regularization (e.g., Cui et al. (2025)) only focus on the influence introduced by updating the
observing token on itself. In other words, the χ for Q and l are identical. The Cov-KL method
compared in Table 4 just applies the quantity above to select tokens with high covariances, and then
uses the KL penalty to restrict the update of them.

We here connect THR to entropy in a more systematic way by showing that THR can control the rate
of entropy growth Ht(χ) through the choice of p. Beyond the simplified tabular softmax setting, our
analysis extends to more realistic models with shared parameters across tokens. In this case, THR
naturally captures the cross-token influences that arise throughout the learning process. In other
words, when tracking the confidence change of πθ(t)(y | χ), THR accounts for the learning dynamics
of all other tokens across all responses, i.e., yi,<k for varying i and k.

To make the notations concise, we follow the settings in Ren & Sutherland (2025) and use χo and χu

to denote the “observing” token and “updating” context, respectively. Then, Equation (14) becomes:

∆Ht(χo) = c
〈
−Q(χo)− πθ(t)(· | χo), l

t+1(χo)− lt(χo)
〉
.

Following Deng et al. (2025), and under the unconstrained features assumption Deng et al. (2025);
Mixon et al. (2022), we then represent lt(χo) = Wtho, where W ∈ RV×d denotes the shared
read-out layer and ho ∈ Rd×1 is the feature vector produced by the LLM backbone, conditioned
on the context sequence χu/o = x,yu/o,<k. Note that while lt(χo) shares the same Wt, the
feature vector h differs across contexts due to variations in input sequences. The difference vector
lt+1(χo)− lt(χo) ∈ RV×1 can then be expressed as:

lt+1(χo)− lt(χo) = (Wt+1 −Wt)ho = −η∇WL(σ(Whu), eu)ho,

where η is the learning rate, σ(·) is the softmax function, and eu is the one-hot distribution determined
by the label of yu. When the cross-entropy loss is considered, the equation above can be simplified to

lt+1(χo)− lt(χo) = (eu − πθ(t)(· | χu))︸ ︷︷ ︸
V×1

·h⊤
u ho︸ ︷︷ ︸
1×1

.

Substituting this back to Equation (14), we can get

∆Ht(χo) = c
〈
−Q(χo)− πθ(t)(· | χo), eu − πθ(t)(· | χu)

〉
· h⊤

u ho (15)
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Figure 8: The shape of −x log x for x ∈ (0, 1), shown in both the original and logarithmic scales.

Figure 9: Four examples of the distribution of π, eo − π and Q+ π.

Now, recall our definition of THR in Definition 4.1, where for each k in the summation, the term has
the format ⟨hx,y+

i,<k
,hx,y<k′ ⟩, which is just h⊤

u ho above. Combining the definition of α and using
the notations in this section, we can rewrite the signed-THR as follows:

sign(yu) · THR(yo,yu, k) =
∑
u

⟨eo − πθ(t)(· | χo), eu − πθ(t)(· | χu)⟩ · h⊤
u ho, (16)

where sign(yu) depends on whether the completion is correct or not. Now, comparing the inner
product in Equation (15) and Equation (16), it is clear that the directional similarity between −Q(χo)
and eo determines the effect introduced by THR and the entropy regularizer.

We now show that, under mild assumptions (which typically hold during LLM fine-tuning), −Q(χo)
and eo point to a very similar direction (measured by their cosine similarity).

This observation follows from the shape of the function −x log x, illustrated in Fig. 8. In a distribution
where most probability mass is concentrated on few dimensions, the dominant entry of πt

θ(t)(· |
χo)⊙ log πt

θ(t)(· | χo) is significantly larger than the rest. To validate this, we randomly generate
distributions and compute the cosine similarity between −Q(χo) and eo in Fig. 9 and Fig. 10. The
results show a clear trend: as both the vocabulary size and the peakiness of the distribution increase,
the alignment between the two vectors becomes stronger.

We now examine the relationship between THR and entropy. Recall that THR is defined as

Â
THR(p)
i,k = 1[|THRi,k| > τ ] · (1 + sign(THRi,k) · p) · Âi,k.

When p < 0, tokens with larger THR values receive stronger penalties. Since, in most cases, ∆Ht(χ)
and THR point in similar directions, this implies that tokens with higher potential entropy change are
penalized, closely aligning with the intuition behind Cov-KL. However, as shown in our experiments,
THR achieves greater improvements in exploration performance because it explicitly accounts for
cross-token influence, rather than relying solely on entropy-based signals on a token’s self-influence,
as in COV-KL Cui et al. (2025).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
V: vocabulary size

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
s s

im

0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85
0.95

0.2 0.4 0.6 0.8
Top1: max probability

0.5

0.6

0.7

0.8

0.9

1.0

Co
s s

im

mean of V:20-30
mean of V:30-40
mean of V:40-50
mean of V:50-60
mean of V:60-70
mean of V:70-80
mean of V:80-90
mean of V:90-100
mean of V:100-110
mean of V:110-120

Figure 10: We sweep the value of vocabulary size V and argmax probability of the distribution π∗.
The distribution is generated by fixing π∗ and randomly assign the extra probability mass to other
dimensions. The results show that the cosine similarity between eo − π and Q+ π is indeed very
large when V and π∗ are large enough.

E MORE STUDIES

E.1 ABLATION STUDY ON p

In this section, we conduct ablation study on p.

Ablation Study on p > 0 for exploitation: For exploitation, we evaluated p ∈ {0, 0.05, 0.1, 0.2}.
The results in Table 11 show that decreasing p from 0.1 to 0.05 achieves the higher greedy accuracy,
outperforming GRPO by 2.8%. This suggests that a milder exploitation strength is more suitable
for the Qwen2.5-Math-1.5B model. In contrast, increasing p to 0.2 leads to a slight drop in greedy
accuracy compared with p = 0.1, likely due to excessive exploitation.

Base Model Method Hard Datasets Standard Datasets Total Avg.
AIME25 AIME24 AMC23 Hard Avg. MATH500 Minerva Olympiad Standard Avg.

Qwen2.5-Math-1.5B

Base 0.0 3.3 20.0 7.8 39.6 7.7 24.9 24.1 15.9
GRPO 3.3 13.3 57.5 24.7 71.8 29.0 34.1 45.0 34.8
THR 3.3 13.3 55.0 23.9 70.8 32.4 34.1 45.8 34.8
THR (p = −0.1) 10.0 13.3 60.0 27.8 70.6 32.0 32.7 45.1 36.4
THR (p = 0.05) 10.0 13.3 62.5 28.6 71.8 35.7 32.1 46.5 37.6
THR (p = 0.1) 3.3 13.3 62.5 26.4 71.4 33.1 34.5 46.3 36.3
THR (p = 0.2) 3.3 13.3 60.0 25.5 71.0 32.7 33.9 45.9 35.7

Table 11: Exploitation Results on hard and standard math datasets. Pass@1 accuracy (%) using
greedy decoding across different methods and datasets. Bold is best performance, underline is
second-best.
Ablation Study on p < 0 for exploration. For exploration, we evaluate p ∈ {0,−0.05,−0.1,−0.2}.
As shown in Table 12, we observe a consistent exploration trend where all three p can consistently
improve the pass@K performance over GRPO, thus reinforcing the conclusion that p < 0 can
enhance exploration.

E.2 GRADIENT STEPS AND CONVERGENCE

Effective Gradient Steps. We note that a “step” in our setup corresponds to 32 gradient steps. We
follow standard GRPO practice and with a prompt batch size of 256 and 8 rollouts per prompt. Then
we use a mini-batch size of 64, resulting in 32 gradient steps per step. Therefore, 40 steps corresponds
to 1280 gradient steps.

Validation accuracy along Steps. We show the convergence of training by demonstrating the
accuracy of validation dataset of MATH (levels 3–5) Hendrycks et al. (2021), as shown in Figure 11,
the validation performance continues to improve gradually until around 30-35 steps, after which the
increasing is flat, indicating that the model is convergence, thus we use 40 steps for consistency.
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Method Qwen2.5-math-1.5B Pass@K

1 2 4 8 16 32 64 128 256

AIME 2025
GRPO 5.9 9.9 15.0 20.5 26.5 33.6 41.5 49.8 56.7
THR 5.4 9.2 14.1 19.4 25.0 31.7 39.5 48.0 56.7
THR (p = −0.05) 5.9 10.1 15.5 21.2 27.5 34.7 42.0 49.6 60.0
THR (p = −0.1) 6.0 10.1 15.3 20.9 26.8 33.9 41.7 50.0 60.0
THR (p = −0.2) 6.0 10.2 15.6 21.4 28.1 36.2 44.0 49.8 53.3

AIME 2024
GRPO 11.4 17.7 24.3 30.5 36.7 43.4 50.0 56.0 63.3
THR 10.6 16.7 23.4 30.2 37.2 44.8 51.9 58.5 63.3
THR (p = −0.05) 11.9 18.2 24.8 31.0 37.5 44.8 52.9 61.6 70.0
THR (p = −0.1) 11.9 18.2 24.9 31.2 37.9 45.3 52.9 61.2 70.0
THR (p = −0.2) 12.2 18.3 24.7 31.2 38.6 47.4 56.6 64.0 70.0

AMC 2023
GRPO 46.6 59.1 70.0 78.9 85.5 90.2 93.7 96.0 97.5
THR 44.8 57.8 69.1 78.2 85.1 90.1 93.6 95.9 97.5
THR (p = −0.05) 48.1 60.6 71.2 79.5 85.3 89.8 93.6 97.1 100.0
THR (p = −0.1) 47.9 61.0 72.2 81.1 87.3 91.6 95.1 98.0 100.0
THR (p = −0.2) 50.3 62.4 72.4 80.4 86.4 91.3 95.4 98.3 100.0

Average
GRPO 21.3 28.9 36.4 43.3 49.6 55.7 61.7 67.3 72.5
THR 20.3 28.0 35.5 42.6 49.1 55.5 61.7 67.5 72.5
THR (p = −0.05) 22.0 29.6 37.2 43.9 50.1 56.4 62.8 69.4 76.7
THR (p = −0.1) 21.9 29.8 37.5 44.4 50.7 57.3 63.2 69.7 76.7
THR (p = −0.2) 22.8 30.3 37.6 44.3 51.0 58.3 65.3 70.7 74.4

Table 12: Pass@K performance of different p < 0 for Qwen2.5-math-1.5B.

Figure 11: Validation accuracy along training of Qwen2.5-Math-1.5B and Qwen2.5-Math-7B

Reward along Steps. For completeness, we include the reward curves in Figure 12. As shown, the
reward rises during the early phase and then stabilizes around 0.55 for the 1.5B model and 0.6 for
the 7B model, demonstrating that training remains stable throughout. Although dynamic filtering
prevents the reported reward from capturing the true correctness of model outputs, it remains a useful
proxy for assessing training stability.

E.3 COMPARISON WITH CLIP-HIGH

In this section, we compare against the clip-high baseline Yu et al. (2025) using the recommended
clipping value of 0.28. As shown in Table 13, clip-high improves exploration for K ≥ 32 relative to
GRPO. Nevertheless, despite its strength, THR (p < 0) consistently surpasses clip-high across all K,
highlighting the effectiveness of THR (p < 0) in enhancing exploration.
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Figure 12: Reward (dynamic filtering applied) along training of Qwen2.5-Math-1.5B and Qwen2.5-
Math-7B.

Method Qwen2.5-Math-1.5B Pass@K
1 2 4 8 16 32 64 128 256

AIME 2025
GRPO 5.9 9.9 15.0 20.5 26.5 33.6 41.5 49.8 56.7
Clip-High 5.6 9.6 14.8 20.5 26.6 33.7 41.6 48.4 53.3
THR (p < 0) 6.0 10.1 15.3 20.9 26.8 33.9 41.7 50.0 60.0
AIME 2024
GRPO 11.4 17.7 24.3 30.5 36.7 43.4 50.0 56.0 63.3
Clip-High 10.8 16.7 23.2 29.8 36.5 44.0 52.1 60.7 70.0
THR (p < 0) 11.9 18.2 24.9 31.2 37.9 45.3 52.9 61.2 70.0
AMC23
GRPO 46.6 59.1 70.0 78.9 85.5 90.2 93.7 96.0 97.5
Clip-High 47.3 59.9 70.5 78.8 84.9 89.8 93.8 97.3 100.0
THR (p < 0) 47.9 61.0 72.2 81.1 87.3 91.6 95.1 98.0 100.0
Average
GRPO 21.3 28.9 36.4 43.3 49.6 55.7 61.7 67.3 72.5
Clip-High 21.2 28.7 36.2 43.0 49.3 55.8 62.5 68.8 74.4
THR (p < 0) 21.9 29.8 37.5 44.4 50.7 57.3 63.2 69.7 76.7

Table 13: Comparing exploration ability with Pass@K on Qwen2.5-Math-1.5B across AIME 2024,
AIME 2025, and AMC23.

E.4 STUDY ON ERROR-CORRECTION BEHAVIOR.

In this section, we investigate how THR (p < 0) relates to corrective and self-verifying behaviors.
To quantify this, we compute the ratio of reflection-related tokens to the total number of generated
tokens. The full list of reflection-related words used for this analysis is provided in Table 14.

Reflection Words

actually although alternating but
correct despite error fix
however incorrect instead mistake
nevertheless nonetheless note realize
realized rethink reconsider still
thinking think though wait
whereas otherwise wrong yet
unless

Table 14: List of reflection-related words.

Qwen2.5-Math-1.5B

Method #Reflection Token / #Token

GRPO 0.34%
THR 0.36%
THR (p = −0.1) 0.55%

Table 15: #Reflection Token / #To-
ken ratio for Qwen2.5-Math-1.5B.
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We then report the frequency of these tokens in Table 15, which shows that setting p < 0 increases
the presence of reflection tokens. This indicates that THR (p < 0) can encourage more verification
and correction behavior.

E.5 TOKENS RETAINED

Model Avg. Ratio Retained

Qwen2.5-Math-1.5B 18%
Qwen2.5-Math-7B 14%

Table 16: Average fraction of tokens retained
under the adaptive threshold τ .

The threshold τ is inherently adaptive, as it is defined
as the average influence of a correct response’s to-
ken on the likelihoods of all correct responses. We
report in Table 16 the average proportion of tokens
retained under this threshold for Qwen2.5-Math-1.5B
and Qwen2.5-Math-7B. Notably, the 7B model re-
tains fewer high-THR tokens, which is expected: a
stronger model possesses more knowledge, is more
confident in its answers, and therefore relies on fewer influential tokens.

F USAGE OF LARGE LANGUAGE MODEL

In preparing this paper, we made limited use of ChatGPT to support writing and editing. Specifically,
LLMs were employed for language polishing, grammar refinement, and rephrasing sentences to
improve clarity and readability. Importantly, all technical content, including theoretical analysis,
algorithm design, and experimental results, was conceived, implemented, and validated by the
authors. LLM outputs were always critically reviewed, verified, and revised before inclusion. No
LLM-generated text, figures, or tables were incorporated without careful human oversight.
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