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ABSTRACT

Reinforcement learning with verifiable rewards has significantly advanced the
reasoning capabilities of large language models, yet how to explicitly steer training
toward exploration or exploitation remains an open problem. We introduce Token
Hidden Reward (THR), a token-level metric that quantifies each token’s influence
on the likelihood of correct responses under Group Relative Policy Optimization
(GRPO). We find that training dynamics are dominated by a small subset of to-
kens with high absolute THR values. Most interestingly, tokens with positive
THR strengthen confidence in correct outputs, thus favoring exploitation, while
tokens with negative THR preserve probability mass for alternative outputs, en-
abling exploration. This insight suggests a natural intervention: a THR-guided
reweighting algorithm that modulates GRPO’s learning signals to explicitly bias
training toward exploitation or exploration. We validate the efficacy of this algo-
rithm on diverse math reasoning benchmarks. By amplifying tokens with positive
THR value and weakening negative ones, our algorithm improves greedy-decoding
accuracy, favoring exploitation. The reverse strategy yields consistent gains in
Pass@K accuracy, favoring exploration. We further demonstrate that our algorithm
integrates seamlessly with other RL objectives such as GSPO and generalizes
across architectures including Llama. These findings establish THR as a prin-
cipled and fine-grained mechanism for dynamically controlling exploration and
exploitation in RL-tuned LLMs, providing new tools for targeted fine-tuning in
reasoning-intensive applications.

1 INTRODUCTION

The integration of reinforcement learning with verifiable rewards (RLVR) has significantly advanced
the reasoning capabilities of large language models (LLMs) (Guo et al.| 2025} Jaech et al., [2024;
Team et al., 2023)). Group Relative Policy Optimization (GRPO) (Shao et al.,[2024)) and its variants
(i.e., GSPO [Zheng et al.|(2025)) have emerged as a widely adopted and empirically successful
method for training LLMs on complex reasoning tasks. Models like DeepSeek-R1 (Guo et al.|
2025)), DeepSeek-Math (Shao et al., 2024), Med-R1 (Lai et al., [2025), and Search-R1 (Jin et al.,
2025)) have leveraged GRPO to achieve state-of-the-art performance across diverse domains. Despite
these successes, a central and persistent challenge in RL-driven LLM training is managing the
inherent exploration-exploitation trade-off (Tang et al., 2024; Harris & Slivkins} 2025). Exploration,
sampling uncertain actions to acquire novel information, is crucial for tasks demanding creativity (Lu
et al.| [2024)) and enabling generalization to unseen test cases via scaling algorithms (Snell et al.|
2024). Conversely, exploitation prioritizes optimal decision-making based on current knowledge,
a preference in applications requiring high-confidence, low-variance responses, such as medical
diagnosis (Wu et al.,|2025). However, effectively shifting the training objective between exploration
and exploitation remains an underexplored challenge.

Recent work has begun addressing this pressing challenge through various approaches. |Chow
et al.| (2024)) examine how to steer the balance between exploration and exploitation via a best-of-
n training objective, but their approach relies on an external verifier to select the best candidate
among n generations. Contemporaneous works (Chen et al.| [2025; Mahdavi et al., 2025 Walder|
& Karkhanis| 2025) introduce Pass @K-training to encourage exploration, though their methods
primarily reweight questions based on hardness. Similarly, contemporaneous work (Cui et al.,
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2025) steers exploration by controlling entropy, but the analysis is limited to a token’s influence
on itself. In parallel, Deng et al.| (2025) examines the learning dynamics of GRPO, showing how
training alters the confidence of correct responses. By downweighting penalties on tokens that
reduce this confidence, their method improves greedy decoding performance better exploiting model
capabilities. However, their analysis is limited to negative gradients and their role in exploitation.

Motivated by [Deng et al| (2023), we examine the intrinsic E"P'°‘tif‘i:‘r“ifp'°’a‘i°” (Qwen?2.5-Math-1.58)
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e We introduce Token Hidden Reward (THR) and conduct a thorough analysis, uncovering that a
small subset of tokens disproportionately influences training and that the sign of THR correlates with
the exploration-exploitation trade-off.

e We propose a THR-guided advantage reweighting strategy that effectively directs the fine-tuning
process, enabling targeted emphasis on either exploitation or exploration. Fig. [I]for visualization.

e Empirical evaluations on math benchmarks confirm the effectiveness of THR-guided reweighting,
resulting in the successful realization of desired performance improvements.

2 RELATED WORK

Reinforcement Learning for LLM Reasoning. Recent works have explored the use of model-
generated solutions as a form of bootstrapping to strengthen the reasoning capabilities of large
language models (LLMs)(Jaech et al.} [2024; Guo et al., 2025} Team et al., 2025). These methods
typically generate candidate solutions using a pre-trained model, then filter them based on intermediate
correctness signals(Setlur et al.}[2024)) or final answer correctness (Guo et al., 2025} |Team et al., 2025)),
producing high-quality data to train a new model. Building on the success of reinforcement learning
from human feedback (RLHF) (Ouyang et al.,2022), follow-up works such as GRPO (Shao et al.,
2024;|Guo et al.| [2025)) use online training to further enhance reasoning. Moreover, reinforcement
learning directly incorporates the model’s incorrect outputs into training, which has been found
to further boost reasoning performance (Seed et al.l [2025). Despite these advances, the role of
model-generated outputs during training remains underexplored.

Optimizing for inference time objectives. An increasing number of finetuning methods seek to
align training with inference-time objectives. Some approaches treat inference-time computation
as a flexible post-hoc design choice (Snell et al., [2024])), while others explicitly optimize best-of-n
performance during training (Huang et al., [2025). The latter, however, depends on an external verifier
to select the best output, which complicates scalability. Another direction emphasizes exploitation:
Deng et al.| (2025) reduce penalties on tokens in incorrect responses that positively contribute to
correct responses, thereby strengthening the model’s most confident predictions. Their analysis,
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however, is restricted to negative gradients and does not address exploration. In parallel, several works
focus on exploration. Pass@K training (Chen et al.,2025; |Mahdavi et al., 2025} |Walder & Karkhanis,
2025) encourages exploration by reweighting questions based on hardness, but operates only at the
question level and overlooks token-level dynamics. Similarly, entropy-based regularization methods
such as COV-KL (Cui et al.,2025) promote exploration by adjusting token entropy, yet they model
only a token’s self-influence. By contrast, our work directly targets token-level contributions and
cross-token interactions, showing how they govern the exploration—exploitation balance in GRPO.

3 PRELIMINARY

Notations. W, w., and h_. denote token unembedding matrix, unembedding of a token z € V, and
hidden embedding of token-sequence z € V*. zj is the k-th token in z and z. is the first £ — 1
tokens in z. For question , the old policy 7y, generates a group of G positive/negative responses

({y;r}ie[NJr]» {y; tiepv-)) with Nt 4+ N~ =G. Lastly, e, € RVl is one-hot vector for token z.

3.1 GROUP RELATIVE POLICY OPTIMIZATION

Group relative policy optimization, introduced in DeepSeek-Math (Guo et al., 2025)) and DeepSeek-
R1 (Shao et al., 2024), simplifies RLVR by eliminating the value function estimation required in
PPO (Schulman et al.,|2017). Instead of learning a separate value network, GRPO computes group-
relative rewards within each training batch, reducing training complexity while maintaining stable
policy updates. For a query pair @, the policy s samples G responses {y; }$ ;. Each y; consists of a
sequence of |y;| tokens. Given rewards r; € {0, 1} for each response, GRPO computes normalized
advantages /Lk = Tk

rewards. Specifically for binary rewards r; € {0, 1}, denoting ¢ = N+ /G the fraction of correct
(r; = 1) responses per group, GRPO’s advantage scores become:

A VEL i =1,
Ay = ! (1

_ /9 ifr =
g if r; = 0.

Note that this is constant across all tokens k = 1, ..., |y;| in the i-th response. GRPO minimizes:
G il
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where € is a clipping hyperparameter, clip(-) is the clipping operation, and -, ;(0) =
o (Yi. k|2, Yi, <k)

oy (0r 605 1) is the likelihood ratio between the current policy 7y and the old policy g

old *

3.2 LIKELIHOOD CHANGE OF CORRECT RESPONSE IN GRPO

A recent study (Deng et al.,|2025) analyzed the learning dynamics of GRPO, examining how the
likelihood of correct responses y;~ evolves during training. They proved the following theorem using
the unconstrained features framework (Yang et al.,|2017; [Mixon et al.| 2022; Razin et al., [2024):
Theorem 3.1. For any question x, at any time t > 0 of training, and any correct response
y;” ,i € [NT], in addition to its dependence on the token unembeddings, the likelihood change
i Inmy(s) (y;" |&) decreases as the following quantity increases:

[y | N vy ly | Nt Ly
DI
Qe al - h . (3
q ZZ Z kK’ wy.j:<k <k’ kK" m’y;_<k//> ( )
k=1j=1k'=1 k=1i=1k"=1 -
Negative Token Hidden Reward Positive Token Hidden Reward

Here, the weights a,ﬁ w quantify the similarity of token-level prediction errors across responses:
g = <eyifk — o) (- | way;&k)’ey;yk,, — 7o) (- | 2, Y5 ),
Oy = <eyifk — o) (- | $7y;f<k),ey;k, — 7oy (- | T, Y5 )5 )-

where gt = \/(1—q)/q, ¢~ = \/a/(1 — q), and recall g = N* /G.

This theorem provides the theoretical foundation of our analysis by explaining how individual tokens
of both correct and incorrect responses influence training dynamics of correct response likelihood.
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4 TOKEN HIDDEN REWARD

Using the log-likelihood change % In Wg(t)(y;" | ) as a proxy for the GRPO objective, we now
introduce Token Hidden Reward (THR) to isolate and quantify each token’s specific contribution to
the model’s confidence in correct outputs. We then establish how THR values encode exploration-
exploitation dynamics in model training.

4.1 DEFINITION OF THR
Definition 4.1. Given a question x and a correct response y;", for any token y; 1/, k' € [y;|] in
another (positive or negative) response y;, the THR quantifies that token’s contribution to the change

% In 7y (y; | x) in the likelihood of the correct response. Formally, the hidden reward for the
k'-th token is defined as:

ly;" |
THR(yj_7y]3 k/) = (27’] - 1) ' Z 77N T <hx7y;r,<k7hx,ij<k/> .

Note the negative sign for incorrect responses (r(y) = 0) reflecting that GRPO penalizes those
responses. In view of Theorem [3.1] a higher THR is associated with a larger increase in likelihood.

Since GRPO operates on groups of responses (thus, there can be multiple correct answers), we extend

THR to the group setting by marginalizing over all positive responses:

Corollary 4.2. Given a question x and the set of correct responses {y;" } -+, for any token y; s in

a response y; (where y; € {y;‘—}ie[Nﬂ UA{y, tie(n-1) the token hidden reward is defined as its
+

contribution to the likelihood change of the group of correct responses Zf\[:l ﬁ % In 7o) (y; | ).

Formally, the k'-th token’s contribution to likelihood change of the group of correct responses is:

THR, ;v £ THR(y;, k Z v +|THR iy k).

In Corollary the magnitude of THR ;- quantifies the strength of each token’s influence on the
likelihood. The sign of THR; ;- indicates whether a token positively or negatively contributes to the
likelihood of generating the correct response.

4.2 CONNECTING THR WITH EXPLORATION AND EXPLOITATION.

Since the likelihood of correct responses reflects Correct Respanses THR Density Incorrect Responses THR Density
the model’s confidence, we interpret changes in
this likelihood, driven by token-level contribu-
tions, as signals of exploitation or exploration.
In our context, we define these as follows: ; ’

Exploration is encouraged by a lower increase
in the likelihood of observed correct responses
since this preserves some probability mass for ol ‘ _
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alternative Outputs . THR THR.
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Exploitation is encourages by a higher increase )
in the Tikelihood of observed correct responses, Figure 2: Density of THR scores for Qwen2.5-

since this strengthens confidence in those ob- Math-1.5B. For both correct responses (a) and in-
served correct outputs. correct responses (b), we observe that only a small

) . . subset of tokens exhibits significantly high THR
Since THR values quantify the amount by which  y;1yes. Notably, both types of responses contain

likelihood of correct responses increases,.we can  okens with both positive and negative THR scores.
modulate the trade-off between exploration and

exploitation through reweighting THR tokens: Amplifying positive THR tokens (by increasing their
advantage weights) reduces the quantity in Eq. (3), boosting correct response likelihood and favoring
exploitation. Conversely, amplifying negative THR tokens increases this quantity, reducing correct
response likelihood and encouraging exploration. We validate these insights through our detailed
analysis in Section [5|and exhaustive experiments in Section [6]

4
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5 THR-GUIDED TOKEN ADVANTAGE ADJUSTMENT

In this section, we first analyze tokens’ THR values and then propose a THR-based adjustment of
token advantages to steer exploitation and exploration.

THR Analysis. Having defined THR, we now analyze its behavior in practice by examining the
distribution of token-level THR scores in Fig. [2| where we observe:

Dominant Tokens. For both correct and incorrect responses, the majority of tokens have THR scores
clustered around zero. However, a small subset of tokens exhibit significantly larger THR values,
indicating that these tokens dominate the training dynamics.

Sign of THR. Both correct responses (a) and incorrect responses (b) contain tokens with both positive
and negative THR scores, revealing that tokens in either response type can either strengthen or weaken
confidence in correct outputs.

Then we use THR to guide the training from two complementary perspectives: magnitude, by
focusing on the most influential tokens, and sign, by steering exploration versus exploitation.

Dominant Token Training. We define dominant tokens as those whose absolute THR score exceeds
a threshold, i.e., THR > 7. We detail the selection of 7 in Section[6] To isolate the contribution of
these tokens, we construct a training objective that masks out all others by setting their advantage to
zero. The modified foken-level advantage becomes:

ATI® = 1[|THR; 4| > 7] - Aj 5. )

We refer to this setup as THR-only training. As shown in Table [T} this strategy achieves similar
performance to the original GRPO method, which utilizes all tokens. This observation supports our
claim that a small set of highly influential tokens largely determines performance.

Steering Exploration and Exploitation via THR Sign. To further exploit the information captured
by THR, we introduce a token-level reweighting strategy that adapts training dynamics based on the
sign of each token’s THR score. Specifically, we modulate the advantage based on whether a token
positively or negatively contributes to the correct response. To encourage exploitation, we increase
the weight of tokens with positive THR and reduce that of tokens with negative THR. Conversely, to
promote exploration, we reverse this weighting. This yields foken-level reweighted advantages:

AZ,?R@) = 1[|THR, x| > 7] - (1 + sign(THR; 1) - p) - A - )

When p > 0, this scheme boosts positive THR tokens while dampening negative THR tokens, thus
reinforcing exploitation. In contrast, setting p < 0 reverses this behavior, shifting the training focus
toward exploration. Experimental results for this reweighting approach are reported in Section
See also Fig. [T|for visualization of the tradeoff.

6 EXPERIMENTS & ANALYSIS

We evaluate THR’s empirical effectiveness through comprehensive experiments across four dimen-
sions: (1) Demonstrating exploitation (p > 0) and exploration (p < 0) capabilities as measured by
greedy accuracy and Pass @K performance, (2) comparing our fine-grained token-level control against
coarser-grained question-level baselines, (3) analyzing the relationship between THR and prediction
entropy, and (4) validating generalizability across a GRPO variant (i.e., GSPO-token (Zheng et al.,
2025) and Llama architectures.

Experimental settings. For all experiments, we follow |Zeng et al.| (2025} and train on the MATH
dataset (levels 3—5) (Hendrycks et al.,[2021). To accelerate training, we adopt dynamic sampling (Yu
et al.| 2025)), which discards samples with zero advantage and resamples until a full batch is formed.
Unless otherwise specified, all models and methods are fine-tuned with identical reinforcement
learning hyperparameters. Specifically, we use four A100 GPUs with a prompt batch size of 256 and
8 rollouts per prompt. We use a learning rate of 1e~°, and a mini-batch size of 64, resulting in 32
gradient updates per step. Training runs for 40 steps, which corresponds to more than two effective
epochs given the higher throughput from dynamic sampling. We set the sampling temperature to
1.0, the clipping ratio to 0.2, and the KL loss coefficient to 1 x 10~%. For the threshold 7, we follow
Deng et al.| (2025 Eq. (8)), defining it as the average influence of the i’-th correct response’s tokens
on the likelihoods of other correct responses. Additional details are provided in Appendix
Evaluation setup. Since exploitation focuses on making the best decisions based on existing
knowledge (Harris & Slivkins| [2025), we assess exploitation ability of fine-tuned models by
measuring their greedy decoding accuracy. Here we adopt six widely used math benchmarks:
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three “Hard datasets” (AIME 2025, AIME 2024 (Veeraboinal, 2023), AMC23) and three “Stan-
dard datasets” (MATHS500 (Hendrycks et al., 2021), Olympiad (He et al., [2024), and Minerva
Math (Lewkowycz et al) [2022)). To evaluate exploration, we report the unbiased PassQK ac-
curacy (Chen et al., 2021) using temperature 1.0 on the challenging AIME2024, AIME2025 and
AMC?23 datasets, which require more exploration during attempts. The Pass@QK metrix is defined

as PassQK = E,.p [1 - (MI;C)/(A;)} , where M > K is the number of generated responses per

question x, and C denotes the number of correct responses. For all Pass@QK evaluations, we use
M = 256 and report results for K = 218,

Base Model Method Hard Datasets Standard Datasets Total Avg.
AIME25 AIME24 AMC23 Hard Avg. MATHS500 Minerva Olympiad Standard Avg.
Base 0.0 0.0 2.5 0.8 334 4.4 7.0 14.9 79
GRPO 0.0 0.0 7.5 2.5 33.8 8.8 9.9 17.5 10.0
Qwen2.5-0.5B-Ins THR 0.0 0.0 15.0 5.0 34.6 8.1 7.6 16.8 10.9
THR (p = —0.2) 0.0 0.0 20.0 6.7 34.0 9.9 8.9 17.6 12.1
THR (p = 0.2) 0.0 0.0 175 5.8 35.6 11.0 6.5 17.7 11.8
Base 0.0 33 20.0 7.8 39.6 7.7 249 24.1 159
GRPO 33 133 57.5 24.7 71.8 29.0 34.1 45.0 34.8
Qwen2.5-Math-1.5B THR 33 13.3 55.0 23.9 70.8 324 34.1 458 34.8
THR (p = —0.1) 10.0 13.3 60.0 27.8 70.6 32.0 327 45.1 36.4
THR (p = 0.1) 33 133 62.5 264 714 33.1 345 46.3 36.3
Base 133 6.7 425 20.8 64.6 15.8 26.7 357 283
GRPO 13.3 10.0 62.5 28.6 82.2 46.0 42.1 56.8 427
Qwen2.5-Math-7B. THR 10.0 16.7 65.0 30.6 80.8 44.1 43.1 56.0 433
THR (p = —0.1) 23.3 16.7 62.5 339 82.2 36.8 42.4 53.8 44.0
THR (p = 0.1) 20.0 16.7 75.0 37.2 82.2 434 434 56.3 46.8

Table 1: Exploitation Results on hard and standard math datasets. Pass@1 accuracy (%) using greedy
decoding across different methods and datasets. Bold is best performance, underline is second-best.

Method Qwen2.5-0.5B-Instruct Pass@K Qwen2.5-Math-1.5B Pass@K Qwen2.5-Math-7B Pass@K
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
AIME 2025
Base 0.1 0.2 0.3 0.6 1.2 25 50 100 200 1.3 2.6 4.9 8.6 139 199 262 334 400 2.7 5.0 89 147 217 295 374 445 500
GRPO 02 04 06 2 25 48 92 171 300 59 99 150 205 265 336 415 498 567 105 164 232 302 374 439 497 556 633
THR 02 03 06 2 25 48 92 171 300 54 92 141 194 250 317 395 480 567 9.6 152 21.9 292 362 426 498 583 633
1

1
1
THR(p<0) 02 03 06 1. 23 46 90 175 333 60 101 153 209 268 339 417 500 60.0 117 179 249 321 389 447 507 579 66.7
THR (p > 0) 0.1 03 05 09 19 37 73 142 267 46 80 128 187 256 337 43.0 525 60.0 93 152 224 299 365 424 485 559 633

AIME 2024
Base 00 02 04 08 16 31 56 98 167 33 63 113 185 274 364 443 496 533 75 135 220 320 410 479 537 594 667
GRPO 04 08 15 29 54 100 172 273 367 114 177 243 305 367 434 500 560 633 144 207 27.5 347 420 496 581 613 767
THR 04 07 15 29 54 97 157 220 267 106 167 234 302 372 448 519 585 633 157 213 27.3 347 432 514 584 636 667
THR(p<0) 04 08 15 29 54 94 149 215 300 119 182 249 312 379 453 529 612 700 173 226 285 355 432 513 588 663 733
THR(p>0) 04 07 14 26 47 81 129 199 300 84 136 200 270 347 431 508 57.6 633 136 190 249 318 399 488 573 642 700
AMC23

Base 41 78 140 234 361 506 644 754 825 153 267 421 586 723 819 888 943 975 250 406 582 729 828 887 926 962 100.0
GRPO 114 187 283 397 523 645 749 818 850 466 S59.1 70.0 789 855 902 937 960 97.5 608 727 813 868 898 920 942 959 975
THR 120 202 308 430 56.1 686 795 88.0 925 448 578 69.1 782 851 90.1 936 959 975 581 713 80.7 871 909 935 959 983 100.0
THR(p<0) 120 201 306 427 565 708 827 896 925 479 610 722 8LI 873 916 951 980 1000 602 722 807 859 895 928 959 983 100.0
THR(p>0) 111 188 292 419 560 693 80.1 875 925 414 548 668 766 842 89.5 932 958 975 570 700 798 868 912 940 96.1 973 975
Average

Base 14 27 49 83 130 187 250 317 397 66 119 194 286 379 461 531 590 636 117 197 207 399 485 554 612 667 722
GRPO 40 66 101 146 201 264 338 421 506 213 289 364 433 496 557 617 673 725 286 366 440 506 564 618 673 729 792

THR 49 74 117 157 213 277 348 424 497 203 280 355 426 49.1 555 617 675 725 278 359 437 503 568 625 67.8 727 76.7
THR(p<0) 49 74 11.6 156 214 283 355 435 519 219 298 375 444 507 573 632 697 767 297 37.6 447 512 572 629 685 742 80.0
THR(p>0) 49 66 104 151 209 270 334 405 497 181 255 332 408 482 554 623 686 73.6 266 347 424 495 559 617 673 725 769

Table 2: Exploration Results. Pass@K results for Qwen2.5-0.5B-Instruct, Qwen2.5-Math-1.5B, and
Qwen2.5-Math-7B are reported on the AIME (24,25) and AMC23 datasets, along with their average.

6.1 EFFECTIVENESS OF THR IN EXPLOITATION AND EXPLORATION

We use varying-sized Qwen2.5 models (Yang et al.,2024): 0.5B-Ins, Math-1.5B, Math-7B.
Impact of Dominant Tokens. Training exclusively with THR-dominant tokens (Eq. (@), results
in performance comparable to original GRPO. In Table[I] vanilla THR (p = 0) matches GRPO in
greedy accuracy across models. Similarly, in Table [2]it also performs on par with GRPO with respect
to Pass@K . Thus, THR-dominant tokens play a critical role in guiding the training process.
Exploitation (p > 0). Setting p > 0 amplifies positive THR tokens while suppressing negative ones.
As shown in Table[I] THR(p = 0.1) increases the total average greedy accuracy over vanilla THR
(p = 0) by 1.9% on Qwen2.5-Math-1.5B and 3.5% on Qwen2.5-Math-7B. It further outperforms
GRPO by 1.1% and 4.0% on the same models, highlighting p > 0 as the most effective configuration
for exploitation. Moreover, despite prioritizing exploitation, p > 0 maintains competitive Pass@K
results at larger K, staying close to both vanilla THR and GRPO (Table[2).

Exploration (p < 0). To encourage exploration, we upweight tokens with negative THR values
while down-weighting positive ones, leaving more probability mass for alternative generations. As
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shown in Table[2} p < O consistently delivers strong Pass @K performance across all model sizes. For
example, on Qwen2.5-Math-1.5B, THR(p = —0.1) surpasses the best baseline by 2.4% at Pass@ 128
and 5.0% at Pass@256, while Qwen2.5-Math-7B shows steady gains of about 1% on average across
all K. In addition, p < 0 maintains competitive greedy accuracy, outperforming vanilla THR and
GRPO on several datasets (Table . Although weaker than p > 0 on standard benchmarks, it excels
on hard datasets such as AIME and AMC, with Qwen2.5-Math-1.5B even exceeding the p > 0
configuration. This suggests that allowing greater exploration can be beneficial for hard datasets.

6.2 THR vs. PASS@K TRAINING: TOKEN-LEVEL VS. QUESTION-LEVEL REWEIGHTING

Pass@K Training as Question-Level Reweighting. |Chen et al.| (2025); Mahdavi et al.| (2025);
Walder & Karkhanis| (2025) develop RLVR objectives that directly target Pass@K optimization.
For GRPO, these amount to re-weightings of the advantage scores in a way that favors “rare suc-
cesses’—i.e., responses associated with “hard” questions. Crucially, the reweighting is uniform
across all tokens and responses for a given question, which we term question-level reweighting. To
be concrete, As we show in Appendix [D.1] that|Chen et al.|(2025)’s question-level reweighting of
vanilla GRPO advantages takes the following simplified form (assuming G > K):

N\ /(G

(K)/(K) . q 'A'k 6)
N\ /(G _ bk
(/O Vi

In practice, we adopt a convex combination ¢ - Ai,k +(1—gq)- A?,f of vanilla GRPO advantage and
the above Pass@K advantage, termed Pass @ K-mixed (Chen et al., 2025), to avoid overly suppressing
easy questions and preserve valuable learning signals. Empirically, Pass@K-mixed outperforms

GRPO on both Qwen2.5-Math-1.5B (Table[3) and Llama3.2-3B-Instruct (Table 0. For training, we
use K = 4, G = 8 throughout our experiments.

Method Qwen2.5-Math-1.5B Pass@K Qwen2.5-Math-7B Pass@K

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
AIME 2025
GRPO 59 99 150 205 265 336 415 498 567 105 164 232 302 374 439 497 556 633
Pass @K-mixed 56 96 146 201 261 333 417 500 567 106 165 23.1 30.1 37.1 433 489 563 66.7
THR (p < 0) 6.0 101 153 209 268 339 417 500 600 117 179 249 321 389 447 507 579 66.7
THR(p < 0) +Passk-Mixed 48 83 129 181 236 302 379 465 567 101 158 223 29.1 360 422 479 546 633
THR(p < 0)+xPassk+(1 — x\)GRPO 57 9.6 144 193 247 319 409 512 633 11.1 174 247 319 384 446 509 572 633
AIME 2024
GRPO 114 177 243 305 367 434 500 560 633 144 207 275 347 420 496 581 673 76.7
Pass@K-mixed 106 167 235 303 37.1 443 512 575 633 149 207 268 338 412 49.1 580 679 76.7
THR (p < 0) 11.9 182 249 312 379 453 529 612 700 173 226 285 355 432 513 588 663 733
THR(p < 0) +Passk-Mixed 104 165 234 300 364 41.8 498 590 700 137 194 257 332 41.6 498 573 648 733
THR(p < 0)+xPassk+(1 — x\)GRPO 11.0 17.0 238 304 370 442 520 598 667 181 243 312 384 455 526 60.7 69.8 76.7
AMC23
GRPO 466 59.1 700 789 855 902 937 960 975 60.8 727 813 868 89.8 920 942 959 975
Pass@K-mixed 452 581 694 784 852 908 952 985 1000 613 735 813 858 881 89.6 91.1 931 950
THR (p < 0) 479 610 722 811 873 916 951 980 1000 602 722 80.7 859 89.5 928 959 983 100.0
THR(p < 0) +Passk-Mixed 439 575 692 78.6 859 914 956 983 1000 58.0 712 805 864 90.1 93.0 96.0 98.7 100.0
THR(p < 0)+xPassk+(1 — x\)GRPO 46.8 59.6 706 794 864 918 958 98.6 100.0 614 723 802 853 888 920 951 97.1 975
Average
GRPO 213 289 364 433 496 557 61.7 673 725 286 366 440 506 564 618 673 729 792
Pass@K-mixed 205 28.1 358 429 495 56.1 627 687 733 289 369 437 499 555 60.7 66.0 724 795
THR (p < 0) 219 298 375 444 507 573 632 697 767 297 376 447 512 572 629 685 742  80.0

THR(p < 0)+Passk-Mixed 19.7 274 352 422 486 545 611 679 756 273 355 428 496 559 61.7 67.1 727 89
THR(p < 0)+xPassk+(1 — x\)GRPO 21.2 287 363 43.0 494 560 629 699 767 302 380 454 519 57.6 631 689 747 792

Table 3: Comparing exploration ability with Pass@QK . Results for Qwen2.5-Math-1.5B and Qwen2.5-
Math-7B are reported on the AIME 2024, AIME 2025, and AMC23 datasets, along with their average.

THR as Token-Level Modification within a Question. Contrasting to the question-level reweighting
in Eq. (6), our THR algorithms in Eq. (@) and Eq. (5) operate at the token-level by reweighting the
advantage with factors that are specific to tokens across responses within a question x. As formalized
in Corollary THR adjusts the advantage of each token based on whether it contributes positively
or negatively to the likelihood. By setting p < 0 in Eq. (3), THR effectively reserves probability
mass for alternative responses within the same question, thereby encouraging exploration.
Comparing THR with Pass@K training. We compare the performance of THR with p < 0 to
Pass @K-mixed training. THR consistently outperforms Pass@K-mixed across all Pass@K metrics
on Qwen models. With average improvement > 1.1% across most K values on both Qwen2.5-Math-
1.5B and Qwen2.5-Math-7B, this highlights THR’s stronger ability to promote exploration.
Directly combining THR with Pass@K training is Suboptimal. We also investigate whether
directly combining THR(p < 0) with Pass@K-mixed yields additional benefits but found it underper-
forms compared to plain THR(p < 0). We hypothesize that this is because Pass @K-mixed tends
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to assign excessively low weights to “easy” questions (for those, N ~ and thus the first reweighting
factor in Eq. (6) is small), thereby weakening THR’s ability to explore still-present and valuable
token-level variations within them. To validate this hypothesis, we combine THR with a “static”
version of Pass@K-mixed training where advantages become: x - Pass@QK + (1 — x) - GRPO, for
constant (question-independent) x. Setting x = 0.2 helps preserve the influence of easy questions.
This modification leads to consistent improvements over THR(p < 0)+Pass@K-mixed and even
outperforms THR (p < 0) on Qwen2.5-Math-7B, with Pass@K performance increases by up to
0.7% for K = 4,8 and shows steady gains across i = 2'7. These results suggest that while
Pass@K training and THR target different aspects of exploration, maintaining adequate weight for
easy questions allows THR to complement Pass @K training effectively.

In summary, both THR and Pass@K training employ what|Chen et al.|(2025) term implicit advantage
design to steer exploration. However, THR provides more fine-grained control by operating at the
token level, enabling more targeted and effective exploration management.

6.3 ON THE RELATION OF THR WITH ENTROPY

In this section, we study the relation between THR and entropy because entropy has long served as a
proxy for exploration in RL (Wang et al., 2018} |Cui et al., 2025).

Qwen2.5-Math-1.5B Pass@K Qwen2.5-Math-7B Pass@K

Method
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

AIME 2025

Cov-KL 53 91 140 194 251 314 378 442 500 115 17.5 241 308 37.6 436 489 542 60.0
THR(p<0) 6.0 101 153 209 268 339 417 500 600 11.7 17.9 249 321 389 447 507 579 66.7
AIME 2024

Cov-KL 11.0 17.1 238 302 36.6 43.1 49.1 546 600 147 204 267 339 415 487 551 616 700
THR (p<0) 119 182 249 312 379 453 529 612 700 173 22.6 285 355 432 513 588 663 733
AMC23

Cov-KL 468 593 703 793 86.1 912 948 968 975 623 735 814 867 899 922 945 962 975
THR(p<0) 479 61.0 722 811 873 91.6 951 98.0 100.0 602 722 80.7 859 895 928 959 983 100.0
Average

Cov-KL 21.0 285 360 430 493 552 60.6 652 692 295 371 441 505 563 615 662 707 758
THR (p <0) 219 298 375 444 50.7 573 632 69.7 767 29.7 37.6 447 512 572 629 685 742 80.0

Table 4: Comparing exploration ability with PassQK . Results for Qwen2.5-Math-1.5B and Qwen2.5-
Math-7B are reported on the AIME 2024, AIME 2025, and AMC23 datasets, along with their average.

Incorrect Responses THR & Entropy Overlapping

Dominant tokens overlaps with high entropy to-
kens. For a confident (low-entropy) token e,,, —
7(-|x, Yy<r) has small magnitude, thus the resulting
a. i+ in Definition tends to be close to zero, lead-
ing to a low THR. We analyze the overlap between
tokens with high THR scores and those with high
entropy. For each sample, we select the same number
of high-entropy tokens as high-THR tokens, compute
their overlap rate, and plot the kernel density esti-
mate (Chenl 2017) of the resulting overlap scores in
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Fig.[3] We find consistently high overlap ratio, often
around 90%, indicating a strong correlation between
THR and entropy. This finding is consistent with the
observation of contemporaneous work (Wang et al.,
2025)), demonstrating that training on only the top
20% of high-entropy tokens is sufficient to achieve
performance on par with GRPO using all tokens.

Figure 3: Overlap between high THR and
high entropy tokens. For each sample, we
quantify the overlap between tokens with high
THR and high entropy, and plot the resulting
density. The distribution shows a pronounced
peak near 90%, highlighting a strong token-
level association between these two metrics.

Relation between THR and entropy regularization. In Appendix we establish, under mild
assumptions, a link between reweighting p and entropy regularization at the token level. In particular,
reweighting token advantages with THR implicitly regulates the dynamics of token entropy, with
both strength and direction determined by the hyper-parameter p{ﬂ Besides the conceptual similarity,
we argue below that THR is a more efficient alternative to entropy-based methods.

Comparison with Cov-KL.|Cui et al.|(2025) propose COV-KL as an entropy-based regularization
approach focusing on how each token affects the update of itself during training. In contrast, THR, as
formalized in Definition [d.1] explicitly captures the cross-foken interactions that arise throughout the

'The strength and direction are controlled by the value and sign of hyper-parameter p
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Pass@K Average Performance with GSPO (Qwen2.5-Math-1.5B)
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Figure 4: Mean of AIME 2024, AIME 2025, and AMC23 datasets’ Pass@K performance of THR on
GSPO using Qwen2.5-Math-1.5B across different K.

Pass@K Average Performance (Llama3.2-3B-Instruct)
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Figure 5: Mean of AIME 2024, AIME 2025, and AMC23 datasets’ Pass@K performance of different
methods on Llama3.2-3B-Instruct across different K.

learning process. As shown in Table[d, THR(p < 0) consistently outperforms COv-KL in all Pass@K
settings, underscoring the importance of modeling cross-token influence for guiding exploration.

6.4 GENERALIZING THR TO OTHER RL OBJECTIVES AND MODEL FAMILIES

Combining with other RL objectives. We further show that THR can be seamlessly integrated
with other group relative RL objectives. For demonstation, we apply THR to the token level variant
of group sequence policy optimization (GSPO-token) (Zheng et al.l 2025)), which optimizes at the
sequence level while allowing token level advantage adjustment (details in Appendix [A). Fig. [
shows that THR(p < 0) boosts Pass@K performance across all K with an average improvement
~0.9% to THR(p = 0) and 1.4% to GSPO. See Apx. for detailed results.

Performance on Llama. To further demonstrate the generality of THR across model families, we
evaluate it on Llama3.2-3B-Instruct. Unlike Qwen, Llama exhibits weaker mathematical knowledge,
limited cognitive behaviors (Gandhi et al.;[2025)), and faces reduced reasoning length during training.
Despite this, as shown in Fig. [5] THR still substantially boosts exploration, achieving up to a 7%
Pass@K improvement compared to GRPO. Setting p < 0 amplifies these exploration gains even
further. While baselines such as COV-KL and Pass @K-mixed also provide exploration improvements,
they consistently underperform relative to THR. Reduced response length, results on exploitation,
exploration results on each dataset, and more training details are provided in Appendix [C.3]

7 CONCLUSION

We introduced THR, demonstrating that fine-grained analysis of learning dynamics can yield novel
practical algorithmic insights steering exploration-exploitation in RLVR. Our findings suggest that
RL for LLMs benefits from token-level interventions that leverage the unique structure of language
generation, revealing new opportunities for principled algorithmic design. Our analysis connects
THR with contemporaneous approaches, from Pass@K optimization’s question-level reweighting to
entropy-based exploration methods, reinforcing that multiple perspectives on the same underlying
dynamics can complement and inform each other. As the field matures, combining insights from
different analytical lenses (dynamics-based, entropy-based, objective-based) could yield even more
sophisticated training methods. Specifically, our dynamics-first approach opens several promising
directions itself, such as adaptive tuning of THR’s parameter p based on training progress or question
difficulty and exploring similar token-level interventions in other RLVR domains from code generation
to scientific reasoning.
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A ADDITIONAL PRELIMINARY

Group Sequential Policy Optimization. Recently, [Zheng et al.| (2025) introduce group sequence
policy optimization (GSPO), a new reinforcement learning algorithm for training large language
models. Following the basic principle of importance sampling, GSPO defines importance ratios
based on sequence likelihood and performs sequence-level clipping, rewarding, and optimization.
The GSPO objective Jgspo(0) is then defined as:

G
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The token-level objective variant of GSPO, namely JGspo-token(f) allows token-wise advantage
customization and is defined as:
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and sg[-] denotes only taking the numerical value but stopping the gradient, corresponding to the
detach operation in PyTorch. The gradient of GSPO-token can be derived as:

GSPO demonstrates notably superior training stability, efficiency, and performance compared to
GRPO and exhibits particular efficacy for the large-scale RL training of MoE models. To be specific,

B ADDITIONAL EXPERIMENT DETAILS.

Additional Details for Qwen2.5-0.5B-Ins: For the 0.5B model, training is conducted on two A6000
GPUs with a batch size of 32, a maximum rollout length of 2500 tokens, a learning rate of 5¢~7, and
a mini-batch size of 16—resulting in two iteration updates per training step. For the greedy decoding
performance, we report the best accuracy across multiple checkpoints due to significant fluctuations
during training. For all other settings, we report the performance at the final checkpoint. In addition
to high-THR tokens, we also include those within the top 20% highest-entropy tokens that do not
overlap with high-THR (approximate 4.1 % tokens), and keep their advantage unchanged being 1211-7 k-
For formatting, we follow |Zeng et al.| (2025)), adopting simple prompts since the model struggles with
complex instructions. We use p = 0.2 and p = —0.2 for exploitation and exploration respectively.

Additional Details for Qwen-Math: The Qwen-Math model |Yang et al.|(2024) uses its full context
length of 3072 tokens for rollouts. For format, we folow Zeng et al.|(2025) to use Qwen Chat template
and require final answer to be enclosed in a latex command \boxed{ }. Unless otherwise specified,
we set p = 0.1 for exploitation and p = —0.1 for exploration.
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Base Model Method AIME25 AIME24 AMC23 MATH500 Minerva Olympiad Avg.
Base 0.0 33 20.0 39.6 7.7 249 15.9
GRPO 33 13.3 57.5 71.8 29.0 34.1 34.8
Qwen2.5-Math-1.5B  Pos Only 33 10.0 57.5 70.6 30.1 31.0 33.8
THR (p = 0.1) 33 13.3 62.5 71.4 33.1 34.5 36.3

Table 5: Exploitation Results. Pass@1 accuracy (%) using greedy decoding across different methods
and datasets. Bold indicates the best performance, while underline marks the second-best.

Additional Training Details for Llama: For the Llama3.2-3B-Instruct[Dubey et al.| (2024)) model,
training is carried out on 8 A100 GPUs with a batch size of 256, a maximum rollout length of 3000
tokens, a learning rate of 1 x 109, and a mini-batch size of 16. For greedy decoding, we report the
best accuracy across multiple checkpoints due to the substantial fluctuations observed during training,
while for all other settings we report results from the final checkpoint. In addition to high-THR
tokens, we also include those within the top 20% highest-entropy tokens that do not overlap with
high-THR (approximate 3.5 % tokens ), and fix their keep their advantage unchanged being fli k-
For formatting, we follow Zeng et al.| (2025), adopting simple prompts since the model struggles with
complex instructions.

C ADDITIONAL EXPERIMENTS

C.1 ABLATION STUDY ON POSITIVE AND NEGATIVE-ONLY TRAINING.

We further investigate the impact of training with only positive or negative tokens by modifying flm.
In the “Pos Only” setting, we set all values where AZ & < 0 to 0, thereby increasing the confidence of
correct responses only. Conversely, in the “Neg Only” setting, we set all values where AL r>0to
0, which reduces the confidence of incorrect responses without reinforcing correct ones. As shown
in Table[5] “Pos Only” results in a 1.3% drop in average performance compared to GRPO, indicating
that negative gradients also contribute to boosting confidence in correct responses.

Method Qwen2.5-0.5B-Instruct Pass@K Qwen2.5-Math-1.5B Pass @K

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
AIME 2025
GRPO 0.2 0.4 0.6 12 2.5 4.8 92 17.1 300 59 99 150 205 265 33.6 415 498 56.7
Neg Only 0.2 0.4 0.7 1.4 2.8 53 9.5 162 267 4.7 8.1 127 17.8 234 302 382 462 56.7
THR(p<0) 02 03 06 1.1 23 46 90 175 333 6.0 101 153 209 268 339 417 50.0 60.0
AIME 2024
GRPO 04 08 15 29 54 100 172 273 367 114 177 243 305 36.7 434 500 56.0 633
Neg Only 02 05 09 18 33 59 97 149 233 99 160 23.1 302 367 428 481 529 567
THR(p<0) 04 08 15 29 54 94 149 215 300 119 182 249 312 379 453 529 612 70.0
AMC23
GRPO 114 187 283 39.7 523 645 749 818 850 46.6 59.1 700 789 855 902 937 96.0 975
Neg Only 77 137 226 344 484 632 766 875 950 440 569 68.0 765 83.0 885 923 943 950
THR (p<0) 12.0 20.1 30.6 42.7 56.5 70.8 827 89.6 925 479 61.0 722 811 873 91.6 951 98.0 100.0
Average
GRPO 4.0 6.6 10.1 146 20.1 264 338 421 506 213 289 364 433 49.6 557 617 673 725
Neg Only 2.7 4.9 8.1 125 182 248 319 395 483 95 270 346 415 477 538 595 645 684

THR(p<0) 49 74 11.6 156 214 283 355 435 519 219 298 375 444 50.7 573 632 69.7 76.7

Table 6: Comparing exploration ability with PassQK . Results for Qwen2.5-Math-1.5B and Qwen2.5-
Math-7B are reported on the AIME 2024, AIME 2025, and AMC23 datasets, along with their average.
Bold indicates the best performance.

As also shown in Table[6] “Neg Only” underperforms in most cases. For example, on AMC23 with
Qwen2.5-Math-1.5B, it achieves a Pass@256 of 56.7%, compared to 63.3% for both GRPO and vanilla
THR. While “Neg Only” yields moderate improvements over the Base model on average—indicating
that suppressing incorrect responses provides some exploratory value—positive tokens still play a
critical role in enhancing exploration. By selectively incorporating informative tokens, THR with
p < 0 achieves substantially better exploration performance than “Neg Only” alone.
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Method Qwen2.5-Math-1.5B Pass@K
1 2 4 8 16 32 64 128 256
AIME 2025
GSPO 52 9.0 139 193 249 310 369 414 46.7
GSPO+THR 44 7.8 125 18.0 239 31.1 390 464 50.0
GSPO+THR (p = —0.1) 5.1 89 143 204 266 333 399 469 533
AIME 2024
GSPO 104 168 24.1 313 385 456 524 594 66.7
GSPO+THR 100 162 23.6 308 377 448 528 60.8 66.7
GSPO+THR (p = —-0.1) 11.0 17.2 242 310 37.8 449 518 59.1 66.7
AMC 2023
GSPO 449 58.0 69.0 7777 843 89.1 92.0 93.6 950
GSPO+THR 449 58.0 68.7 770 835 888 933 972 1000
GSPO+THR (p = —0.1) 454 582 69.1 779 84.6 90.1 950 987 100.0
Average
GSPO 20.2 279 357 428 492 552 604 648 695
GSPO+THR 19.8 273 349 419 484 549 61.7 68.1 722

GSPO+THR (p = -0.1) 20.5 281 359 431 49.7 56.1 622 682 733

Table 7: Performance with GSPO
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AN s Figure 7: Word cloud of the top 50 tokens ranked by
10 20 % THR, generated from Qwen2.5-Math-7B on AMC23.
Font size is proportional to each token’s average
THR. Tokens with high THR represent the key rea-
soning steps most critical in the model’s problem-
solving process.

Figure 6: Response length dynamics
of Llama3.2-3B-Instruct across different
stages of GRPO training.

C.2 ADDITIONAL RESULTS ON GSPO

We further show that THR can be seamlessly integrated with other group relative reinforcement
learning objectives. In particular, we apply THR to token level variant of group sequence policy
optimization (GSPO-token) Zheng et al.| (2025), which optimizes at the sequence level through
clipping, rewarding, and optimization while allow token level advantage adjustment (more details in
Appendix Appendix [A). As reported in Table[7] incorporating THR with p < 0 yields substantial
improvements, boosting Pass @K performance across all K with an average improvement by around
0.9% to THR and 1.4% to GSPO.

C.3 ADDITIONAL RESULTS ON LLAMA.

Reduced response length. As shown in Fig. [6] the response length of Llama3.2-3B declines rapidly
after a few epochs, with the average length dropping from about 1.5K tokens to roughly 650. This
reduction may stem from the model’s limited cognitive behaviors|Gandhi et al.|(2025). Exploitation
Results on Llama We report the greedy decoding performance of Llama in Table[8] As shown in
table, while GRPO achieves the best performance, setting p > 0 can improve the greedy decoding
performance compared with vanilla THR by 1.1%.
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Base Model Method AIME25 AIME24 AMC23 MATHS500 Minerva Olympiad Avg.
Base 0.0 33 225 402 65 1.9 5.7
GRPO 0.0 26.7 30.0 54.4 22.1 18.1 252
THR 0.0 13.3 325 51.8 2.1 19.9 233
Llama3.2-3B-Instruct  ppyp ) (9 33 6.7 27.5 514 20.6 163 21.0
THR (p = 0.05) 33 13.3 40.0 50.6 224 16.7 244

Table 8: Exploitation Results. Pass@1 accuracy (%) using greedy decoding across different methods
and datasets. Bold indicates the best performance, while underline marks the second-best.

Method Llama3.2-3B-Instruct Pass@K
1 2 4 8 16 32 64 128 256
AIME 2025
Base 02 03 0.6 12 24 46 845 142 200
GRPO 03 07 125 24 43 70 102 132 167
Cov KL 04 07 14 25 45 74 112 163 233
Pass @K-mixed 0.7 1.3 2.3 39 63 9.1 126 167 20.0
THR 1.0 1.8 34 57 86 120 16.7 240 30.0
THR (p = —-0.1) 1.1 2.1 3.8 6.7 107 153 19.7 242 300
THR(p=-0.2) 05 09 1.8 34 64 111 17.8 263 36.7
AIME 2024
Base 14 26 438 83 134 203 284 359 400
GRPO 127 175 224 274 310 333 349 367 400
Cov KL 11.9 159 204 256 30.6 338 358 383 433
Pass @K-mixed 122 172 224 274 30.8 328 351 382 433
THR 9.8 150 205 257 29.8 32,6 350 382 433

THR (p=-0.1) 92 139 190 242 293 335 365 40.0 46.7
THR (p=-0.2) 94 13.6 182 231 279 325 371 416 467

AMC 2023
Base 96 17.0 277 41.0 557 692 80.1 864 90.0
GRPO 267 369 473 564 636 695 748 79.6 850
Cov KL 289 393 496 579 647 708 762 8l.1 85.0
Pass@K-mixed  28.6 393 499 589 658 713 763 814 875
THR 268 379 485 579 670 752 823 875 90.0

THR (p = —-0.1) 26.1 364 470 564 655 742 815 87.0 90.0
THR (p = —-0.2) 265 367 476 578 669 744 802 843 875

Average
Base 37 66 11.0 168 238 314 390 455 500
GRPO 132 184 237 287 330 36.6 40.0 432 472
Cov KL 137 18.6 23.8 28.7 333 373 41.1 452 505
Pass @K-mixed 13.8 193 249 301 343 377 413 454 503
THR 125 182 241 29.8 351 399 447 499 544

THR (p =—-0.1) 12.1 175 233 291 352 410 459 504 55.6
THR (p =-0.2) 12.1 17.1 225 281 337 393 450 50.7 57.0

Table 9: Pass@K performance of different methods using Llama3.2-3B-Instruct .

Exploration Results on Llama As shown in Table[9] THR still substantially boosts exploration,
achieving over a 7% Pass@K improvement compared to GRPO. Setting p < 0 amplifies these
exploration gains even further. While baselines such as COV-KL and Pass @K-mixed also provide
exploration improvements, they consistently underperform relative to THR.

C.4 ADDITIONAL THR TOKEN ANALYSIS

We further analyze tokens with high THR values using a word cloud visualization, as shown in
Figure[/} The representative tokens can be organized into five functional categories that correspond
to step-by-step reasoning:

Stating the Given Information: tokens that capture the initial conditions or input facts (present,
data, paper).

Transformation and Operations: tokens that describe conversions, equivalence, or transfers of
knowledge (conversion, transfer, equivalent).

Constraints and Relationships: tokens indicating dependencies, limitations, or structural relations
(relative, intersects, amount, dimensions).

Decision and Selection: tokens reflecting choices among alternatives or branching reasoning paths
(determine, instead, alternating, altern, others).
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Verification and Conclusion: tokens signaling validation or consolidation of results (confirms,
systematic, answer).

C.5 RUNNING TIME OF EACH MODULE.

We also track the average time cost of each module during training, as reported in Table[T0] Notably,
the data generation (Data Gen) module that using dynamic sampling accounts for the majority of
the total training time. In contrast, the overhead introduced by THR is minimal, e.g. 37 seconds for
Qwen2.5-Math-1.5B, contributing only a small fraction to the overall cost.

Model+dataset Data Gen | Model Upd | THR | Ref | Old Prob | Total (Sec)
Qwen2.5-Math-1.5B 347 210 37 120 120 834
Qwen2.5-Math-7B 422 371 39 187 187 1206
Llama3.2-3B-Instruction 625 139 26 89 89 968

Table 10: Average running time (per step, in seconds) of each module for different models and tasks.

D DETAILED PROOFS

D.1 PASS@K AS THE QUESTION LEVEL REWEIGHTING

Chen et al.| (2025)); Mahdavi et al.| (2025)); Walder & Karkhanis| (2025)) develop RLVR objectives that
directly target Pass@K optimization. Starting with GRPO’s ancestor, REINFORCE, [Mahdavi
et al.| (2025); |Walder & Karkhanis| (2025) derive reward rescalings by directly optimizing the
Pass@K objective. Mahdavi et al.|(2025) apply the same rescaling to advantages giving a GRPO
version of their approach. These rescalings upweight the gradient contribution of correct responses
that constitute “rare successes”—i.e., responses associated with “hard” questions. Crucially, the
reweighting is uniform across all tokens and responses for a given question, which we term question-
level reweighting. More recently, |Chen et al.| (2025)) introduce an appealing alternative to optimizing
Pass@K by incorporating the design directly within GRPO’s group structure. Here, we simplify the
formulas in|Chen et al.| (2025)) and arrive at an explicit formulation of advantage shaping that reveals
its question-level nature. Starting from the defined advantages in|Chen et al.| (2025):
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then harder question will have a larger 1 — ¢ thus larger advantage, then we derive the negative
advantage.
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By combining Equation and Equation (12)), we arrive at Equation (6), completing the derivation.

D.2 RELATIONSHIP BETWEEN THR AND ENTROPY REGULARIZER

Under some mild assumptions, optimizing THR plays a similar role as regularizin the evolution of
the token entropy in a more efficient way. Because, as stated in the main context, THR considers
cross-token influence while current analysis on token entropy consider the influence of learning a
observing token on itself |Cui et al.|(2025). We start from Lemma 1 proposed in |Cui et al.| (2025)),
which is how the Cov-KL regularizer is derived.

Lemma 1 in Cui et al.|(2025): Let the actor policy 7y be a tabular softmax policy, the difference of
information entropy given states between two consecutive steps satisfy:

AH" £ H(mp(i41)) — H(mogr) = —CoVyrmy,y (fa) (l0gToy (y | ), 1F = 10), (13)

where 1 is the logits vector provided by the model after feeding the input . For notational simplicity,
we use the superscript ¢ to denote the training step, rather than an exponent. The equation above
holds as long as a first-order Taylor expansion is valid at the logits level, independent of the specific
model under consideration. In other words, this lemma is agnostic to the mechanism by which 1
evolves, which depends on the particular model architecture or parameterization.

Recall the definition of the covariance:

Covynrn (X,Y) =Eyr [ X - Y] —Eyr [ X|Eyr [Y].

’The strength and direction are controlled by the value and sign of hyper-parameter p
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Equation (T3] can then be written as:

AH (x) = =CoVymmy (o) (l0g Ty (y | x), 15 = 1)
= Ey""ﬂ'@(t) [IOg 7W(f.)(y ‘ X)]Ey/Nﬂe(t) [1;—”_1 - 1;/] - EyNﬂe(t) [(IZ+1 - l;) IOg 7T@(t)(y | X)]
= —H(mo(t)) Ey~rmyq, [IZ—H - lf/] —Eyorm [(ltyH - 1;) log o4 (y | X)]

v
= —H(mo) Y mo (v = v | )AL = 1)—
v=1
v
Zﬂ-e(t) (y=v]| X)(lf}Jrl —1) log mo(1) (y = v | X)
v=1
v
- ZW(t)(Z/ =v [ X)ITH 1) (H(mary) + log may (y = v | X))
v=1

— (M (o)) oy (- | X) + oy (- | x) @ log moy (- | x), 1F = 17)

1
— T | z) ®logm | @), 1 -1t
H(m(t)) 9(t)( | ) g G(t)( | z)

= —H(mo(t)) <7T0<t)(' [ x)+

V x1,defined as Q(x)
= c(=Q0x) = T (- | ), 1 () = 1'(x).) (14)

where the operator @ is the element-wise multiplication of two vectors, Y £ @,y is the context for
the prediction of the k-th token, and c is a constant for notation conciseness. In the last equation, we
reintroduce the input  to the notation to remind readers that the entire equation is conditioned on a
given context sequence . That is an important extension, because most existing works on entropy
regularization (e.g., |Cui et al|(2025)) only focus on the influence introduced by updating the
observing token on itself. In other words, the x for ) and 1 are identical. The Cov—-KL method
compared in Table [ just applies the quantity above to select tokens with high covariances, and then
uses the KL penalty to restrict the update of them.

We here connect THR to entropy in a more systematic way by showing that THR can control the rate
of entropy growth #! (%) through the choice of p. Beyond the simplified tabular softmax setting, our
analysis extends to more realistic models with shared parameters across tokens. In this case, THR
naturally captures the cross-token influences that arise throughout the learning process. In other
words, when tracking the confidence change of 7g(+)(y | x), THR accounts for the learning dynamics
of all other tokens across all responses, i.e., y; <, for varying 7 and k.

To make the notations concise, we follow the settings in|Ren & Sutherland| (2025) and use x, and x,,
to denote the “observing” token and “updating” context, respectively. Then, Equation (I4) becomes:

AHt(XO) =c <_Q(X0) - 7T6(1‘/)(' | Xo)s 1t+1(X0) - 1t(XO)> .

Following |Deng et al.|(2025)), and under the unconstrained features assumption Deng et al.| (2025));
Mixon et al. (2022), we then represent 1’(x,) = Wth,, where W € R"*< denotes the shared
read-out layer and h, € R?*! is the feature vector produced by the LLM backbone, conditioned
on the context sequence X./o = T, Yu/o,<k- NOte that while 1*(¢,) shares the same W, the
feature vector h differs across contexts due to variations in input sequences. The difference vector
141 (x,) — I*(xo) € RV*! can then be expressed as:

1t+1(X0) - lt(X()) = (WtJrl - Wt)ho = —UVWE(O’(Whu), eu)hm

where 1) is the learning rate, o () is the softmax function, and e, is the one-hot distribution determined
by the label of y,,. When the cross-entropy loss is considered, the equation above can be simplified to

IHI(XO) - lt(XO) = (ey — 7Té)(t)(' | Xu)) - h;—ho .
——

Vx1 1x1
Substituting this back to Equation (T4), we can get
AHt(XO) = C<_Q(X0) - 7"'G(t)(' | Xo), €u — 71'0(15)(' ‘ Xu)> ) hq;rho (15)
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Figure 8: The shape of —z log x for 2z € (0, 1), shown in both the original and logarithmic scales.
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Figure 9: Four examples of the distribution of 7, e, — 7 and @) + 7.

Now, recall our definition of THR in Deﬁnition@ where for each k in the summation, the term has
the format (h_ ut_ . hx,y<k_, ), which is just h,, h, above. Combining the definition of « and using
i, <

the notations in this section, we can rewrite the signed-THR as follows:

Sign(yu) : THR(ymyua k) = Z<eo - 770(1‘,)(' | Xo)» €y — 7T¢9(t)(' | Xu)> : h—urhov (16)

u

u

where sign(y,) depends on whether the completion is correct or not. Now, comparing the inner
product in Equation (15) and Equation (16), it is clear that the directional similarity between —Q(x,)
and e, determines the effect introduced by THR and the entropy regularizer.

We now show that, under mild assumptions (which typically hold during LLM fine-tuning), —Q(x,)
and e, point to a very similar direction (measured by their cosine similarity).

This observation follows from the shape of the function —z log «, illustrated in Fig. [8] In a distribution
where most probability mass is concentrated on few dimensions, the dominant entry of wg(t)(- |

Xo) @ log wg( £ (| xo) is significantly larger than the rest. To validate this, we randomly generate
distributions and compute the cosine similarity between —Q(x,) and e, in Fig. [9|and Fig. [I0] The
results show a clear trend: as both the vocabulary size and the peakiness of the distribution increase,
the alignment between the two vectors becomes stronger.

We now examine the relationship between THR and entropy. Recall that THR is defined as
AZER(p) = 1[|THR,; x| > 7] - (1 + sign(THR; ) - p) - /Lk

When p < 0, tokens with larger THR values receive stronger penalties. Since, in most cases, AH* (x)
and THR point in similar directions, this implies that tokens with higher potential entropy change are
penalized, closely aligning with the intuition behind Cov—-KL. However, as shown in our experiments,
THR achieves greater improvements in exploration performance because it explicitly accounts for
cross-token influence, rather than relying solely on entropy-based signals on a token’s self-influence,
as in COV-KL |Cui et al.|(2025)).
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Figure 10: We sweep the value of vocabulary size V' and argmax probability of the distribution 7*.
The distribution is generated by fixing 7* and randomly assign the extra probability mass to other
dimensions. The results show that the cosine similarity between e, — m and () + 7 is indeed very
large when V and 7* are large enough.

E MORE STUDIES

E.1 ABLATION STUDY ON p

In this section, we conduct ablation study on p.

Ablation Study on p > 0 for exploitation: For exploitation, we evaluated p € {0,0.05,0.1,0.2}.
The results in Table [IT]show that decreasing p from 0.1 to 0.05 achieves the higher greedy accuracy,
outperforming GRPO by 2.8%. This suggests that a milder exploitation strength is more suitable
for the Qwen2.5-Math-1.5B model. In contrast, increasing p to 0.2 leads to a slight drop in greedy
accuracy compared with p = 0.1, likely due to excessive exploitation.

Hard Datasets Standard Datasets

Base Model Method Total Avg.
AIME25 AIME24 AMC23 Hard Avg. MATH500 Minerva Olympiad Standard Avg.

Base 0.0 33 20.0 7.8 39.6 7.7 249 24.1 15.9
GRPO 33 13.3 57.5 24.7 71.8 29.0 34.1 45.0 34.8

Qwen2.5-Math-1.5B  THR 33 13.3 55.0 23.9 70.8 324 34.1 45.8 34.8
THR (p = -0.1)  10.0 133 60.0 278 70.6 32.0 32.7 45.1 364
THR (p = 0.05) 10.0 133 625 28.6 71.8 357 32.1 46.5 37.6
THR (p = 0.1) 33 13.3 625 26.4 714 33.1 345 46.3 36.3
THR (p = 0.2) 33 13.3 60.0 25.5 71.0 32.7 33.9 459 35.7

Table 11: Exploitation Results on hard and standard math datasets. Pass@1 accuracy (%) using
greedy decoding across different methods and datasets. Bold is best performance, underline is
second-best.

Ablation Study on p < 0 for exploration. For exploration, we evaluate p € {0, —0.05, —0.1, —0.2}.
As shown in Table[T2] we observe a consistent exploration trend where all three p can consistently
improve the pass@K performance over GRPO, thus reinforcing the conclusion that p < 0 can
enhance exploration.

E.2 GRADIENT STEPS AND CONVERGENCE

Effective Gradient Steps. We note that a “step” in our setup corresponds to 32 gradient steps. We
follow standard GRPO practice and with a prompt batch size of 256 and 8 rollouts per prompt. Then
we use a mini-batch size of 64, resulting in 32 gradient steps per step. Therefore, 40 steps corresponds
to 1280 gradient steps.

Validation accuracy along Steps. We show the convergence of training by demonstrating the
accuracy of validation dataset of MATH (levels 3-5)[Hendrycks et al (2021), as shown in Figure [TT]
the validation performance continues to improve gradually until around 30-35 steps, after which the
increasing is flat, indicating that the model is convergence, thus we use 40 steps for consistency.
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Method Qwen2.5-math-1.5B Pass@K
1 2 4 8 16 32 64 128 256
AIME 2025
GRPO 59 99 150 205 265 33.6 415 498 567
THR 54 92 141 194 250 31.7 395 480 567

THR (p = —-0.05) 59 10.1 155 21 :2 275 347 420 496 60.0
THR (p = —0.1) 6.0 10.1 153 209 268 339 417 500 60.0
THR (p = —0.2) 6.0 102 15.6 214 281 362 440 498 533

AIME 2024
GRPO 11.4 177 243 305 367 434 500 56.0 633
THR 10.6 167 234 302 372 448 519 585 633

THR (p = —0.05) 119 182 248 31.0 375 448 529 61.6 70.0
THR (p = —0.1) 11.9 182 249 312 379 453 529 612 70.0
THR (p=-0.2) 122 183 247 312 38.6 474 56.6 64.0 70.0

AMC 2023
GRPO 46.6 59.1 700 789 855 902 937 96.0 975
THR 448 578 69.1 782 851 90.1 936 959 975

THR (p = —0.05) 48.1 60.6 712 795 853 89.8 93.6 97.1 100.0
THR (p=-0.1) 479 610 722 811 873 91.6 951 98.0 100.0
THR (p=-0.2) 503 624 724 804 864 913 954 983 100.0

Average
GRPO 21.3 289 364 433 496 557 61.7 673 725
THR 203 28.0 355 426 49.1 555 61.7 675 725

THR (p= —0.05) 22.0 29.6 372 439 50. 564 628 694 76.7
THR (p=—0.1) 219 29.8 375 444 50.7 573 632 69.7 767
THR (p= —0.2) 228 303 37.6 443 510 583 653 707 744

Table 12: Pass@K performance of different p < 0 for Qwen2.5-math-1.5B.
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Figure 11: Validation accuracy along training of Qwen2.5-Math-1.5B and Qwen2.5-Math-7B

Reward along Steps. For completeness, we include the reward curves in Figure[T2] As shown, the
reward rises during the early phase and then stabilizes around 0.55 for the 1.5B model and 0.6 for
the 7B model, demonstrating that training remains stable throughout. Although dynamic filtering
prevents the reported reward from capturing the true correctness of model outputs, it remains a useful
proxy for assessing training stability.

E.3 COMPARISON WITH CLIP-HIGH

In this section, we compare against the clip-high baseline [Yu et al.|(2025)) using the recommended
clipping value of 0.28. As shown in Table[T3] clip-high improves exploration for K > 32 relative to
GRPO. Nevertheless, despite its strength, THR (p < 0) consistently surpasses clip-high across all K,
highlighting the effectiveness of THR (p < 0) in enhancing exploration.
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Figure 12: Reward (dynamic filtering applied) along training of Qwen2.5-Math-1.5B and Qwen2.5-
Math-7B.

Qwen2.5-Math-1.5B Pass@K

Method

1 2 4 8 16 32 64 128 256
AIME 2025
GRPO 59 99 150 205 265 33.6 415 498 56.7
Clip-High 56 9.6 148 205 266 337 41.6 484 533
THR(p<0) 6.0 101 153 209 268 339 41.7 50.0 60.0
AIME 2024
GRPO 114 177 243 305 36.7 434 500 560 633
Clip-High 10.8 167 232 298 36.5 440 521 607 700
THR(p<0) 119 182 249 312 379 453 529 612 70.0
AMC23
GRPO 46.6 59.1 700 789 855 902 937 960 975
Clip-High 473 599 705 788 849 89.8 93.8 973 100.0
THR(p<0) 479 610 722 81.1 873 916 951 98.0 100.0
Average
GRPO 21.3 289 364 433 496 557 617 673 725
Clip-High 212 287 362 430 493 558 625 688 744
THR(p<0) 219 298 375 444 50.7 573 632 69.7 76.7

Table 13: Comparing exploration ability with Pass@K on Qwen2.5-Math-1.5B across AIME 2024,
AIME 2025, and AMC23.

E.4 STUDY ON ERROR-CORRECTION BEHAVIOR.

In this section, we investigate how THR (p < 0) relates to corrective and self-verifying behaviors.
To quantify this, we compute the ratio of reflection-related tokens to the total number of generated
tokens. The full list of reflection-related words used for this analysis is provided in Table[T4]

Reflection Words
actually although alternating  but
correct despite error fix
however incorrect instead mistake
nevertheless  nonetheless note realize
realized rethink reconsider  still
thinking think though wait
whereas otherwise wrong yet
unless

Qwen2.5-Math-1.5B

Method #Reflection Token / #Token
GRPO 0.34%
THR 0.36%
THR (p = —0.1) 0.55%

Table 15: #Reflection Token / #To-

Table 14: List of reflection-related words.
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We then report the frequency of these tokens in Table T3] which shows that setting p < 0 increases
the presence of reflection tokens. This indicates that THR (p < 0) can encourage more verification
and correction behavior.

E.5 TOKENS RETAINED

The threshold 7 is inherently adaptive, as it is defined
as the average influence of a correct response’s to-

ken on the likelihoods of all correct responses. We Model Avg. Ratio Retained
report in Table [I6] the average proportion of tokens ~ Qwen2.5-Math-1.5B 18%
retained under this threshold for Qwen2.5-Math-1.5B Qwen?2.5-Math-7B 14%

and Qwen2.5-Math-7B. Notably, the 7B model re-

tains fewer high-THR tokens, which is expected: a Table 16: Average fraction of tokens retained
stronger model possesses more knowledge, is more under the adaptive threshold 7.

confident in its answers, and therefore relies on fewer influential tokens.

F USAGE OF LARGE LANGUAGE MODEL

In preparing this paper, we made limited use of ChatGPT to support writing and editing. Specifically,
LLMs were employed for language polishing, grammar refinement, and rephrasing sentences to
improve clarity and readability. Importantly, all technical content, including theoretical analysis,
algorithm design, and experimental results, was conceived, implemented, and validated by the
authors. LLM outputs were always critically reviewed, verified, and revised before inclusion. No
LLM-generated text, figures, or tables were incorporated without careful human oversight.
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