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ABSTRACT

Despite their power as general sequence processors, Transformers systematically
fail at simple sequential arithmetic tasks like counting. While Chain-of-Thought
(CoT) prompting circumvents the Transformer’s architectural limits for such it-
erative computations, its practical application is plagued by brittleness over long
sequences. We propose a new perspective on this failure, identifying an archi-
tectural conflict we term State-Update Interference (SUI). We posit that self-
attention’s inductive bias for global, semantic association can disrupt the localized,
state-dependent updates required by procedural algorithms. Paradoxically, CoT
may exacerbate this by unrolling the entire computational history, creating an
ever-growing set of distractors that are semantically similar but logically irrelevant,
thereby corrupting the state-update process. To investigate this hypothesis, we
introduce Sequential State Quarantining (SSQ), a diagnostic instrument designed
to isolate this failure mode. SSQ periodically forces the model to compress its rea-
soning trace into a compact state while discarding the preceding context, surgically
enforcing the narrow information bottleneck required for procedural logic. On a
suite of algorithmic tasks, SSQ yields dramatic performance gains, with accuracy
scaling monotonically with the frequency of this intervention. Our findings suggest
that a primary bottleneck for procedural reasoning is architectural: a failure of
context management that is distinct from general limitations of context length
or logical capacity. This reframes the problem, suggesting a need for models that
can learn to actively manage their long context. Our source code is provided at an
anonymous link.

1 INTRODUCTION

Sequential arithmetic tasks such as counting and computing running sums are foundational to
algorithmic intelligence (Delétang et al., 2023). Their computational structure is defined by a strict,
iterative state-transition dynamic: the state at step ¢ depends exclusively on the state at step ¢t — 1
(Fischer et al., |1968; [Ibarra et al., 2002). This requirement for localized, iterative updates creates a
fundamental conflict with the core architectural strength of Transformers (?)—their inductive bias for
global, long-distance association, which is essential for tasks like open-domain question answering
but becomes a liability for procedural reasoning (Figure|T)).

Transformers implement a fixed-depth computation, a trait that makes them architecturally unsuited
for algorithms requiring a number of sequential updates that scales with input length (Delétang
et al., [2023; [Zhang et al., 2024). Chain-of-Thought (CoT) prompting (Wei et al., 2022)) offers an
elegant workaround by shifting the locus of computation from the model’s latent weights to its
textual output space. By externalizing intermediate steps, CoT enables Transformers to simulate the
recurrence needed for these otherwise intractable tasks and even grants them the theoretical capacity
for Turing-complete computation (Li et al., 2024c).

Chain-of-Thought (CoT) prompting (Wei et al.||2022) cleverly circumvents this limitation by shifting
the locus of computation from the model’s latent space to its textual output space (Zhang et al., [2024).
By externalizing intermediate reasoning steps, CoT allows Transformers to simulate the recurrent
computations needed for tasks that would otherwise be architecturally intractable. Theoretical work
has even shown that, under idealized conditions, CoT-augmented LLMs possess the capacity to
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simulate Turing-complete computations (Li et al., 2024c)), suggesting their upper-bound capabilities
are immense.

Yet, a stark gap persists between this theoretical potential and empirical reality. On long-sequence
arithmetic tasks, LLMs still fail systematically. We posit this failure stems from a core architectural
conflict we term State-Update Interference (SUI). The self-attention mechanism, designed to
form a fully-connected graph over its context, cannot easily learn to ignore the vast, logically
irrelevant history of prior calculations. Instead of focusing computation on the current state update,
attention “leaks” to semantically similar past states, forming spurious dependencies that corrupt the
delicate arithmetic logic. Paradoxically, standard CoT exacerbates this vulnerability by unrolling the
entire computational history into the context, providing an ever-larger set of distractors that actively
misdirects computation.

While prior work has identified general failure modes in long contexts, such as context dilution” or
“positional decay” (Liu et al., 2023} |Li et al., | 2024a; An et al., 2024)), our SUI hypothesis proposes
a specific and active mechanism that is particularly acute for procedural tasks. SUI complements
theories of passive information loss by describing an active misdirection of computation, where the
model’s associative bias forms high-confidence connections to logically irrelevant past states, directly
poisoning the state-update process.

To test our hypothesis, we introduce Sequential State Quarantining (SSQ), a diagnostic instrument
designed to create a near-perfect, surgically-ablated information bottleneck. It is crucial to distinguish
the intent of SSQ from performance-oriented heuristics like sliding-window context management.
Whereas such methods are efficiency-driven approximations that do not guarantee the preservation of
the logical state, SSQ is an experimental intervention. At periodic intervals, we prompt the LLM to
compress its verbose reasoning trace into a compact, canonical state, discard the preceding context,
and resume computation conditioned only on this quarantined state. The goal is not to propose a
practical method, but to create a controlled condition that manually enforces the narrow dependency
frontier required by iterative algorithms, thereby isolating the effects of SUI.

Our experiments yield compelling results. SSQ dramatically improves accuracy on long arithmetic
sequences, with performance scaling monotonically with the frequency of quarantining. These
findings provide strong evidence that the dominant bottleneck is architectural—a conflict between
the model’s design and the task’s structure—rather than a deficiency in latent logical capacity. This
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Figure 1: A conceptual distinction between two classes of reasoning tasks. (A) Long-Distance
Dependence Reasoning, such as open-domain question answering, requires retaining a broad, non-
local historical context to synthesize information from multiple, distant points in a sequence. (B)
Iterative Inductive Reasoning, the focus of this paper, involves tasks with iterative procedural
properties where the next state depends only on the current state. While models are expected to
leverage broad context for tasks in (A), we argue that for tasks in (B), this same architectural bias
for global association becomes a liability, causing State-Update Interference (SUI) by attending to
logically irrelevant history.
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diagnosis points toward new research directions, such as training models with regularization that
encourages learned state compression or designing architectures that manage context via disciplined
abstraction.

The primary contributions of this paper are therefore:

* We identify and formalize State-Update Interference (SUI) as a specific, architecturally-
grounded failure mode limiting the effectiveness of CoT on long sequential arithmetic
tasks.

* We introduce Sequential State Quarantining (SSQ), a diagnostic instrument designed as a
targeted experimental intervention to empirically validate our SUT hypothesis.

* We provide strong evidence that the core limitation is not an inability to perform the
underlying logic but rather the architectural bias of self-attention, offering a new perspective
to guide the development of more robust procedural reasoning models.

2 ARCHITECTURAL LIMITS ON SEQUENTIAL COMPUTATION

The challenge of teaching neural networks to perform algorithmic reasoning is not merely a matter of
scale, but one that reveals deep-seated architectural conflicts (Chang & Biskl 2024)). The systematic
failures of modern Transformers on these tasks are not accidental but are a direct consequence of an
architectural design that is fundamentally misaligned with the nature of sequential, state-dependent
computation. This section dissects this misalignment by contrasting the Transformer’s design with
that of recurrent architectures, thereby establishing the necessary precursors for the State-Update
Interference phenomenon we diagnose.

2.1 THE RECURRENT INDUCTIVE BIAS FOR ALGORITHMIC TASKS

Recurrent Neural Networks (RNNs) and their variants, such as LSTMs, possess a strong inductive
bias for sequential processing. Their architecture natively implements the state-transition dynamics
Str1 = f(St, x¢) through a recurrent update rule:

he = fo(hi—1,2¢). Q)

This structure provides a natural mechanism for maintaining and updating a compact, internal
state h;. Early work demonstrated that RNNs could learn to recognize regular languages like
a™b", which implicitly requires counting (Rodriguez et al.,[1999). LSTMs were later shown to
handle more complex dynamic counting, such as balancing brackets, by leveraging their gating
mechanisms (Suzgun et al.,[2019).

Theoretically, this recurrent connection acts as an information bottleneck, forcing the model to
compress all relevant history into the state vector h;_1. This architectural prior is crucial for learning
generalizable algorithms. As models are trained on longer sequences, they can undergo an implicit
representational merger, where hidden states from functionally equivalent histories converge,
effectively learning a compact deterministic finite automaton (DFA) within their latent space
(Weiss et al.l 2018)). This allows them to achieve robust generalization far beyond their training data.

2.2 THE CONSTANT-DEPTH LIMITATION OF TRANSFORMERS

In stark contrast, Transformers lack an intrinsic recurrent state. As systematically demonstrated
by [Delétang et al.| (2023), Transformers consistently fail at basic counting and arithmetic tasks
where RNNs and LSTMs succeed. This failure is not accidental but is a direct consequence of their
architecture. A Transformer’s computational depth is fixed by its number of layers, L, regardless
of the input sequence length N (Li et al.,|2024b; [Zhang et al., [2024). This creates a fundamental
mismatch between the model’s fixed-depth parallel processing (Dryansformer = O(L) = O(1)) and the
linear sequential depth required by algorithmic tasks (Dsx = O (V).

This limitation places vanilla Transformers in the complexity class TC®, rendering them theoretically
incapable of solving even basic counting tasks that require unbounded sequential updates (L1 et al.|
2024b). More critically, the self-attention mechanism endows the model with an unconstrained,
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Figure 2: A diagnostic framework for State-Update Interference (SUI). We contrast two settings. (A)
Control (Unconstrained CoT): In the standard setting, reasoning unfolds as a continuous chain,
where spurious self-attention connections (dotted lines) to the full history can corrupt the current
state. (B) Intervention (Sequential State Quarantining): Our diagnostic method enforces discrete
state transitions. A compact state is expanded for the current reasoning step and then re-compressed
into a new state, explicitly discarding the intermediate context. This quarantining process ablates
historical distractors, allowing us to isolate and measure the performance degradation caused by SUIL.

fully-connected computation graph at each layer. While this is a powerful feature for capturing
non-local dependencies in language, it becomes a liability for procedural tasks. The architecture
has no native mechanism to enforce the computational locality of a state update; instead, it has an
overwhelming bias toward forming global associations, laying the groundwork for interference.

2.3 CHAIN-OF-THOUGHT: SIMULATING RECURRENCE AT THE COST OF INTERFERENCE

Chain-of-Thought (CoT) prompting is an ingenious method to overcome the Transformer’s fixed-
depth limitation (Wei et al., [2022). It allows the model to simulate recurrence by externalizing its
computational trace into the context window, effectively trading temporal depth for spatial width.
The state update hy = ®y(h;_1,x;) is approximated through a generate-and-reprocess loop:

h, | — o, —— hy 2)

where the latent state h;_; is decoded into textual thoughts o;, which are appended to the context
and re-processed to form the next state. While theoretically Turing-complete under ideal conditions
(L1 et al., 2024c), this simulation strategy is empirically brittle due to its architectural consequences.

Theoretically, this mechanism is exceptionally powerful. Under ideal assumptions—such as perfect
state-to-token fidelity and an unlimited token budget—this externalization loop can simulate un-
bounded computational depth, making CoT-augmented autoregressive models Turing-complete (L1
et al.,2024c). However, the architectural consequences of this simulation strategy make it empirically
brittle.

First, by performing a spatial unrolling of the entire temporal process, the model is never forced to
learn a compressed, abstract state representation. At each step ¢, it generates a new textual state y(*)
and appends it to an ever-growing history:

= Fo(Bmb(y " @y & 0y 7V)), 3)

where Fy is the full Transformer forward pass. Retaining the full history prevents the representa-
tional merger required to form a robust, generalizable automaton, a process that occurs naturally in
recurrent models due to their architectural information bottleneck.

Second, and most critically for our diagnosis, this strategy of simulating temporal depth with spatial
length lays the entire computational history bare before the self-attention mechanism. This design
is not a neutral trade-off; it directly creates the necessary preconditions for the interference we
diagnose in this paper. It transforms the model’s capacity for global association from a feature into a
fundamental flaw for sequential tasks, setting the stage for systematic failure.
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The Architectural Limits

There is a fundamental conflict in architectural design. RNNs succeed on sequential tasks
by leveraging an enforced computational management via their recurrent bottleneck. In
contrast, constant-depth Transformers must simulate recurrence by spatially unrolling the
computational trace via CoT. This simulation exposes the entire reasoning history, creating a
structural vulnerability to the very interference our work investigates.

3 THE HYPOTHESIS: STATE-UPDATE INTERFERENCE

The strategy of simulating recurrence on a spatial canvas gives rise to a specific and pernicious failure
mode. While CoT provides the means to perform sequential computation, the Transformer’s core
architectural bias systematically corrupts the process. In this section, we formalize our hypothesis
of State-Update Interference (SUI), arguing that it is an unavoidable consequence of applying a
globally associative architecture to a task that demands locally focused computation.

3.1 THE DICHOTOMY OF SEQUENTIAL REASONING

Reasoning tasks processed by Large Language Models (LLMs) can be broadly categorized into
two computational paradigms, which place fundamentally different demands on the underlying
architecture.

1. Long-Horizon Associative Reasoning. This class of tasks, including open-domain question
answering and document summarization, requires the model to identify and synthesize information
from disparate, non-contiguous segments of a vast context. The computation at any given step may
depend on a complex, non-local subset of the entire history. Formally, generating an output token
Y 1s a function of a sparse set of past hidden states, y; ~ p(-|fo({h;}icz)), where the index set
7 C{1,...,t—1} can be arbitrarily distributed. The Transformer architecture, with its self-attention
mechanism creating a fully-connected graph over the context at each layer, possesses a strong
inductive bias for this paradigm. Its strength lies in its ability to draw global associations, making it
exceptionally well-suited for these tasks.

2. Iterative Inductive Reasoning. This class, the focus of our work, encompasses algorithmic and
procedural tasks like counting, parity checking, and running sums. These tasks are characterized by a
strict, often Markovian, state-transition structure. The valid state at step ¢, denoted s; € S where S is
the state space, depends exclusively on the immediately preceding state s;_; and the current input
element z;. This defines a recurrent computation:

5t = (I)(5t—17$t) @

where ® : § x X — S is the state update function. For an LLM to succeed, it must learn to
approximate this localized computational graph. However, its innate architectural bias for global
association becomes a liability. The model must learn to actively ignore the vast, logically irrelevant
history, a discipline that runs counter to its core design. This architectural mismatch is the primary
source of systematic failure on long-horizon inductive tasks.

3.2 FORMALIZING STATE-UPDATE INTERFERENCE (SUI) HYPOTHESIS

We posit that the empirical brittleness of CoT on iterative tasks stems from this fundamental conflict.
The CoT process approximates the state transition s; = ®(s;_1, z;) by unrolling it into a latent-to-
text-to-latent cycle. This can be viewed as composing a decoder Dy : H — T * (mapping latent
states to text) and an encoder & : T* — H (re-embedding the text into a latent state). The successful
simulation of one step requires the model to faithfully compute:

ht ~ (59 (¢] Dg)(htfl) (5)

For this simulation to be robust, the self-attention mechanism must learn to create a virtual informa-
tion bottleneck. That is, when computing h,, it must isolate its focus, attending almost exclusively
to the tokens representing the most recent state s;_; and ignoring all prior history. However, the
Transformer’s associative inductive bias makes this attentional discipline difficult to maintain, leading
to State-Update Interference (SUI).
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Attentional Leakage. The query-key similarity at the heart of self-attention is optimized to find
semantic, not procedural, relationships. In tasks like counting, textual representations of adjacent
states are often highly similar (e.g., “"The count is 42”¢ vs. “"The count is 41”“). Let the full context
at step ¢ be a sequence of tokens partitioned into disjoint sets {Ck}Z;B, where each Cy, contains the
token indices for the textual representation of state s;. When computing the next state, a query vector
q generated from the current context will exhibit high similarity not only with keys {k;};cc,_, from
the correct antecedent state but also with keys from older, logically irrelevant states {kj } FECH k<t—1-

This causes the attention distribution to ”leak” across the desired computational boundary. Instead
of retrieving information solely from the values associated with C,_1, the resulting representation
becomes a contaminated mixture. The output of an attention head, z, can be decomposed as:

t—2
zZ = Z a5V, + Z Z ijVj (6)

1€Ct—1 k=0 j€Cy

Target State Information ~ Interference Term: esyy

The resulting state is not a clean update but is polluted by the interference term egyy, a weighted
average of logically invalid prior states. This directly corrupts the fidelity of the simulated recurrence.

Compounding Distraction via Spatial Unrolling. The CoT methodology inadvertently creates the
ideal conditions for this failure. By spatially unrolling the entire computational history, CoT provides
an ever-growing set of distractors. At each step ¢, the number of historical token sets, |{Ck}}2—:20 ,
grows linearly. This increases both the probability and the potential magnitude of the interference
term egyy. Paradoxically, the very mechanism that grants the Transformer its theoretical power for
sequential computation is also what systematically undermines it in practice. The model is not just
failing to attend correctly; it is being architecturally compelled to integrate a growing history of
distracting information that poisons the delicate state-update logic.

Ruling Out Alternative Explanations. Our SUI hypothesis is distinct from other potential failure
modes. It is not merely the accumulation of serialization errors (i.e., imperfectly writing a state
to text), but a flaw in the computational process itself; even with perfect state representation, self-
attention would still form spurious connections. Nor is it a problem of context window limits or
passive information decay. SUI is an active misdirection of computation that arises from a qualitative
failure of context mismanagement, often occurring long before the context window is exhausted. The
act of extending the context via CoT actively exacerbates the problem by providing more distractors,
making attentional misdirection increasingly likely.

The Hypothesis

State-Update Interference (SUI) is an architectural failure mode arising from the conflict
between a Transformer’s associative bias and the demands of localized, sequential logic.
When simulating recurrence via CoT, the model fails to maintain a virtual information
bottleneck. Its attention leaks to semantically similar but logically irrelevant past states,
contaminating the state-update operation with an interference term egyy. This is a fundamental
failure of attentional discipline, not memory capacity or representational fidelity.

4 A DIAGNOSTIC FRAMEWORK FOR QUANTIFYING INTERFERENCE

To empirically validate the State-Update Interference (SUI) hypothesis, we introduce a diagnostic
framework designed to quantify its impact by surgically manipulating the conditions under which
it occurs. The core of this framework is an experimental intervention we call Sequential State
Quarantining (SSQ), used not as a novel performance-enhancing method, but as a diagnostic probe
to test our hypothesis. By systematically ablating the historical context—the very substrate of
interference—we can measure the performance gap attributable to this architectural flaw and test
whether the model’s underlying logical capacity is sound when its biases are constrained.
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4.1 METHODOLOGY: CONTROL VS. INTERVENTION

Our framework contrasts two conditions to isolate the effect of interference.

Control (Unconstrained CoT): The baseline condition uses a standard Chain-of-Thought process.
The model’s reasoning unfolds in a single, continuous chain, where the context buffer is recursively
extended: C, = Cr,—1 @ yi. This ever-expanding history maximizes the potential for interference, as
self-attention is free to form spurious associations with any past state.

Intervention (SSQ): Our intervention, Sequential State Quarantining, transforms the reasoning
process into a discrete-time state transition system, manually enforcing the information bottleneck
that Transformers architecturally lack. The process unfolds in a two-phase cycle: a State Expansion
phase, where the model generates a reasoning trace conditioned only on the previously quarantined
state ;1 and the current input chunk X} ; and a State Compaction phase, where this verbose trace
is immediately distilled into a new state s;. In our experiments, the state compression operator o is
implemented via a simple, fixed-template prompt that instructs the model to summarize the outcome
of the preceding trace into a canonical format (e.g., “The current count is now X”). The goal is
not to engineer an optimal compression scheme, but to create a reliable information bottleneck for
diagnostic purposes. This cycle (formalized in Algorithm[I)) surgically severs the model’s access to
its own distracting history, shielding each computational step from interference.

4.2 MEASURING THE INTERFERENCE EFFECT

We quantify the performance cost of SUI by measuring the accuracy gap between our intervention
(SSQ) and the baseline (CoT). This interference effect, Agyy, is defined as the average difference in
accuracy:

Agsur = Egsk [Accuracy(SSQ) — Accuracy(CoT)] . @)

The Diagnosis

A large, positive Agy; would provide strong evidence that State-Update Interference,
rather than a general deficit in reasoning, is the dominant bottleneck for Transformers
on long-sequence procedural tasks.

4.3 EXPERIMENTAL DESIGN

To empirically dissect the State-Update Interference (SUI) hypothesis, we designed a diagnostic
stress test for Transformers. Our methodology uses a “’clean room” of synthetic algorithmic tasks to
isolate the architectural friction caused by unconstrained historical context, allowing us to directly
measure the model’s procedural reasoning capabilities when its associative biases are challenged.

We selected three canonical procedural algorithms (Delétang et al.,2023) designed to be maximally
susceptible to the hypothesized interference: COUNT, which tests the fidelity of iterative arithmetic
updates; PARITY CHECK, which tests the stable maintenance of a categorical state; and CYCLE
NAVIGATION, which tests adherence to rule-based state transformations. For each task, an input of
length L demands exactly L correct state transitions, making L a direct proxy for the length of the
reasoning chain and the cumulative potential for interference.

Our experimental setup creates a controlled opposition between two conditions. The Control condi-
tion employs standard Chain-of-Thought (CoT), where the model generates a continuous reasoning
trace. This method maximally exposes the model to SUI, as the ever-growing history provides a
fertile ground for spurious attentional links. In contrast, the Intervention applies our Sequential
State Quarantining (SSQ) procedure. Here, the reasoning process is fractured into discrete updates;
after each step, the state is compacted and the intermediate trace is discarded, thereby enforcing a
recurrent-like information bottleneck that starves the attention mechanism of historical distractors.
We test our hypothesis on two powerful, instruction-tuned LLMs, Qwen2.5-72B-Instruct
(Team), 2024; Yang et al.,[2024a)) and DeepSeek-R1-Distill-70B (DeepSeek-AlL [2025)), to
demonstrate that SUI is a general architectural phenomenon.
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Table 1: Accuracy comparison between Standard CoT (Control) and Sequential State Quarantining
(SSQ, Intervention). The Agyy row for each model explicitly calculates the performance change,
quantifying the impact of State-Update Interference. Positive values (green) indicate that mitigating
interference improves performance. SSQ results correspond to Ny = 2 decomposition steps.

Model Method Count Parity Check Cycle Navigation Avg.

L=50 L=80 L=100 L=50 L=80 L=100 L=50 L=80 L =100

Standard CoT 0.739 0.374 0.229 0.669 0.575 0.507 0.577 0.232 0.203 0.456
Qwen2.5-72B-Instruct SSQ(Ns=2) 0874 0.700 0.496 0.828 0.673 0.559 0.659 0.527 0.378 0.633

Asur 10.135  10.326 10.267 10.159  10.098 10.052 10.082  10.295 10.175  10.177
Standard CoT 0.615 0.124 0.062 0.644 0.301 0.231 0.377 0.062 0.051 0.274
DeepSeek-R1-Distill-70B  SSQ (N, =2)  0.845 0.608 0.352 0.745 0.570 0.479 0.551 0.317 0.172 0.515
Asur 10.230  10.484 10.290 10.101 10.269 10.248 10.174  10.255 10.121 10.241
Standard CoT (Control) Sequential State Quarantining
Seq Len: 50 Seq Len: 60 Seq Len: 70
1.0 N
> 0.8
£ 0.6
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0.2
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Figure 3: Accuracy as a function of input length L for Qwen2.5-72B-Instruct. The perfor-
mance of standard CoT degrades sharply as length increases, consistent with the SUI hypothesis that
a longer history provides more opportunities for interference.

5 RESULTS AND DIAGNOSIS VALIDATION

Our experiments yield decisive evidence supporting the SUI diagnosis. The results demonstrate
that SUI is not a marginal effect but a dominant performance bottleneck in procedural reasoning.
We establish this through two key findings: (1) surgically ablating historical distractors unlocks
massive performance gains, and (2) a clear dose-response relationship exists, where more aggressive
mitigation of interference leads to monotonically higher accuracy.

5.1 SUI 1S THE DOMINANT PERFORMANCE BOTTLENECK

As shown in Table[I] enforcing an information bottleneck with SSQ yields consistent improvements
over the unconstrained CoT baseline. The performance gap, Asy;, which quantifies the cost of
interference, is substantial across all tasks. For Qwen2 .5-72B-Instruct, the average accuracy
gain is +17.7 points, while for DeepSeek-R1-Disti11-70B, the recovery is an even more
striking +24.1 points.

This evidence suggests that the primary limitation of these models is not a deficit in their underlying
logical “hardware.” Rather, their reasoning capabilities are actively suppressed by their architectural
design. The catastrophic performance collapse of standard CoT at longer sequence lengths (e.g.,
DeepSeek’s accuracy on COUNT dropping from 61.5% at L = 50 to just 6.2% at L = 100) aligns
perfectly with the SUI hypothesis. As the computational history lengthens, the accumulation of
semantically similar distractors overwhelms the attention mechanism, leading to a cascade of errors.
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Table 2: Scalability of SSQ with quarantining frequency (V;). Accuracy on
Qwen2.5-72B-Instruct for tasks at lengths L = 80 and L = 100. The dedicated Agyy
row for each [V, setting shows the absolute accuracy improvement over the Standard CoT baseline.
The monotonic increase in these values confirms a strong dose-response relationship between the
frequency of interference mitigation and performance.

Method Count Cycle Navigation Parity Check  Overall Avg.
L=8 L=100 L=80 L=100 L=80 L =100

Standard CoT  0.374 0.229  0.232 0.203  0.575 0.507 0.353

SSQ (Vs =2)  0.700 0.496  0.527 0.378  0.673 0.559 0.556

Asur 10.326 10.267  10.295 10.175  10.098 10.052 10.203

SSQ (Vg =5)  0.803 0.686  0.715 0.367  0.825 0.711 0.685

Asur 10429 10457 10483  10.164 10.250 10204  10.332

SSQ (Vs = 10)  0.994 0994  0.937 0.864  0.988 0.921 0.950

Asur 10.620 10765 10.705  10.661 10413 10414 10.597
. Seq Len: 40 . Seq Len: 50_ e Seq Len: 60 I Seq Len: 70 o Seq Len: 80 . Seq Len: 90 5 Seq Len: 100
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Figure 4: Accuracy as a function of quarantining frequency Ny on Qwen2.5-72B-Instruct,
averaged across tasks. The strong monotonic improvement demonstrates a clear dose-response
relationship, providing robust evidence for the SUI hypothesis.

The large, positive Agyy values confirm that SSQ is not teaching the model new skills but is simply
un-jamming a capable reasoning module that was being drowned in attentional noise.

5.2 A DOSE-RESPONSE RELATIONSHIP CONFIRMS THE CAUSAL LINK

The most compelling evidence for our diagnosis comes from the clear dose-response relationship
between the frequency of interference mitigation and task performance. By varying the quarantining
frequency (controlled by the hyperparameter Ny, the number of steps per quarantine), we can
effectively titrate” the level of historical interference the model is exposed to.

As predicted, performance scales monotonically with the frequency of intervention. Table [2| and
Figure [ show this effect with striking clarity. For Qwen2.5-72B-Instruct on COUNT at
length L = 100, increasing the quarantining frequency from a low dose (Vs = 2) to a high dose
(Ns = 10) elevates accuracy from a modest 49.6% to a near-perfect 99.4%. This is not merely an
improvement; it is a phase transition in capability. The strong, monotonic increase in Agyy as Ny
increases confirms a causal link: more aggressive quarantining of historical context directly translates
to higher computational fidelity. This finding solidifies our diagnosis that the primary bottleneck is
not an innate inability to perform multi-step reasoning, but rather an architectural predisposition to be
distracted by the very computational history that CoT aims to leverage.

6 CONCLUSION

In this work, we identified and empirically validated State-Update Interference (SUI) as a core
failure mode limiting the procedural reasoning capabilities of LLMs. Our diagnostic intervention,
Sequential State Quarantining (SSQ), demonstrates that this is not a deficit in logical capacity
but an architectural conflict: the Transformer’s intrinsic global attention bias corrupts the local,
state-dependent computations required by iterative algorithms. This reframing points toward future
work beyond prompting heuristics, focusing on architectures with explicit context management or
regularization techniques to foster more disciplined and robust sequential reasoning.
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7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The models used in our
experiments, Qwen2.5-72B-Instruct and DeepSeek-R1-Distill-70B, are publicly accessible. Our
experiments are conducted on a suite of synthetic algorithmic tasks—COUNT, PARITY CHECK,
and CYCLE NAVIGATION—which are based on canonical algorithms from prior work. The
methodology for generating these tasks is fully described in Section 4.3, allowing for their exact
replication. The implementation details of our proposed diagnostic framework, including the control
(Unconstrained CoT) and intervention (Sequential State Quarantining) conditions, are described in
Section 4. Key hyperparameters, such as the quarantining frequency (/Ny), are detailed in Section
5. To facilitate replication, we will release the source code and experiment scripts upon publication.
Together, these resources are intended to ensure that our results can be independently verified and our
work extended.
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A APPENDIX

A.1 RELATED WORK

Architectural Limits and In-Context Recurrence. The fixed-depth, feedforward architecture
of Transformers is fundamentally misaligned with the unbounded, iterative nature of many algo-
rithms (Delétang et al.||2023]; Zhang et al.,|2024). Unlike recurrent models, which naturally scale their
computational depth with sequence length, Transformers lack native mechanisms for state persistence
or true recursion (Dziri et al., [2024; [Valmeekam et al.l 2022). Chain-of-Thought (CoT) prompt-
ing (Wei et al.} 2022) and its derivatives (Yao et al., 2023} Nye et al.l 2021; Kojima et al.,[2022) have
emerged as a powerful paradigm to circumvent this limitation. By externalizing the computational
trace into the context window, these methods allow the model to simulate recurrence. Theoretical
work has shown that this approach grants Transformers the capacity to simulate Turing machines
under idealized conditions (Pérez et al.| 2021} [Li et al.| 2024c), suggesting immense computational
potential. However, our work investigates the practical breakdown of this simulation, positing that
the very mechanism of in-context unrolling creates the conditions for the attentional failures we term
SUIL

Diagnosing Failures in Long-Context Reasoning. The performance degradation of LLMs over
long sequences is a widely recognized problem. Much prior work attributes this to passive information
loss, such as the “lost in the middle” phenomenon where models struggle to retrieve information
from the center of their context window (Liu et al., |2023), or a general decay in attentional acuity
over distance (Li et al.| [2024a; |An et al., 2024)). These failure modes, often studied in the context of
information retrieval or summarization, characterize the problem as a passive decay of signal. Our
State-Update Interference (SUI) hypothesis complements these findings by proposing a more active
failure mechanism that is particularly acute in procedural tasks. We argue that the problem is not just
that the model loses the correct state, but that it is actively misdirected by its own architectural biases
to incorporate irrelevant past states into the computation. This distinction is critical: for sequential
arithmetic, successful reasoning requires actively ignoring historical context, a direct contradiction to
the associative capabilities needed for tasks like multi-hop QA (Biran et al.| 2024} |Yang et al., 2024b;
Yoran et al., 2023 where synthesizing distant information is paramount.

Approaches to Managing Context and State. A variety of techniques have been developed to
improve LLM performance on complex, multi-step tasks. One major line of research focuses on
scaling the context window length through architectural modifications like sparse attention (Beltagy
et al., 2020; Kitaev et al., 2020; Zaheer et al.l 2020) or more efficient key-value caching (Zhang
et al., 2023} [Fu et al.| 2024). These efforts primarily address the computational cost and memory
limits of long contexts, but they do not necessarily resolve the underlying issue of how attention is
allocated within that context. SUI can occur long before the context window is exhausted, suggesting
that simply extending the window size may not prevent logical errors. Another line of work seeks to
impose structure on the reasoning process through techniques like task decomposition (Zhou et al.,
2022; Khot et al.,2022; Drozdov et al.,[2022)) or by organizing thoughts into trees (Yao et al., [2024;
Long, [2023) and graphs (Besta et al., [2024; |Sel et al.| 2023). While these methods provide valuable
scaffolding for complex reasoning, they often treat the LLM’s step-by-step execution as a black
box. Our work differs by proposing a specific, mechanistic failure within that black box, and we use
Sequential State Quarantining (SSQ) not as a performance-enhancing heuristic, but as a diagnostic
tool to isolate and verify this internal failure mode.

A.2 EXPERIMENTAL TASKS FOR DIAGNOSING SUI

We evaluate our State-Update Interference (SUI) hypothesis using three procedural reasoning tasks.
These tasks, adapted from prior work on algorithmic reasoning (Delétang et al.,|2023)), are intention-
ally simple, requiring only basic arithmetic and state tracking. Their simplicity is a key feature of
our diagnostic approach; it ensures that model failures are attributable to architectural limitations in
handling iterative state updates, rather than a lack of complex problem-solving ability. Each task is
designed around a minimal, well-defined state that must be accurately propagated through a sequence
of operations, making them ideal for exposing the effects of attentional misdirection. Each task
embodies two key properties:
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1. Strict Iterative State Updates: All tasks follow a Markovian state-transition process, where
the state at step ¢ depends exclusively on the state at step ¢ — 1. This demands that the model
maintains a virtual information bottleneck, focusing its computation locally and ignoring
the long tail of historical context.

2. High Inter-State Similarity: In a standard Chain-of-Thought trace, the textual representa-
tions of consecutive states are highly repetitive and semantically similar (e.g., “the current
count is 417, “the current count is 42”). This creates a challenging scenario for self-attention,
providing a fertile ground for the attentional leakage SUI describes, where queries are likely
to form spurious connections with logically obsolete but textually similar past states.

Character Counting For this task, the objective is to count the occurrences of the character ’a’.
The state s, is a straightforward integer representing the cumulative count at the end of the k-th
cycle. The prompt provides the model with the count from the previous state, 5,1, and the current
sub-list of characters. The state projection operator, oy, then parses the model’s output trace 74, for
the concluding “’Result: jnumber;”* marker and extracts the updated integer count to serve as the
new quarantined state, sy.

Modular Arithmetic (Cycle Navigation) This task requires the model to track its position within a
5-state cycle. The state s, is an integer representing the agent’s position (from 0 to 4) after processing
the k-th chunk of movements. The model is prompted with its starting position from the prior state,
§k—1, and the list of movements for the current cycle. Similar to the counting task, o uses a regular
expression to extract the final integer position from the “’Result: jnumber;”* tag in the model’s
generation, which becomes the next quarantined state.

Parity Checking This task introduces a distinction between the state maintained by the SSQ
framework and the direct output of the LLM. The goal is to determine if the total count of ’a’s is
even or odd. The true state tracked by the SSQ protocol, s, remains the cumulative integer count.
In each cycle, the model receives the integer count from the previous state s5_1 and is instructed
to reason about the final parity, concluding with a boolean value (‘Result: True‘ for even, ‘Result:
False‘ for odd). This design specifically tests the model’s final logical inference step (the parity
judgment). The state projection operator o is responsible for extracting this boolean answer to score
correctness, while the SSQ framework updates its internal integer count based on the number of *a’s
in the current input chunk to produce s;, for the next iteration. This isolates the model’s parity logic
from the memory burden of tracking the long-range integer state, which is handled by the protocol
itself.

A.3 THE SSQ DIAGNOSTIC PROTOCOL: IMPLEMENTATION

This appendix details the implementation of our diagnostic protocol, Sequential State Quarantining
(SSQ), as specified in Algorithm[I] We elaborate on the core operators and the state-formatting logic
used to surgically control the model’s context and isolate the effects of State-Update Interference.

A.3.1 CORE OPERATORS

The SSQ protocol is orchestrated by two primary operators that manage the flow of information to
and from the language model.

LLM Generation Operator (Gg) This operator represents a single, stateless inference call to the
language model, which functions as the black-box reasoning engine under investigation. For our
experiments, Gy was an API call to the gpt-4-turbo-preview model. The operator takes a
formatted prompt string P as input and returns the model’s complete, uninterrupted textual generation
7. To ensure deterministic and reproducible reasoning paths, we set the sampling temperature to 0.0.

State Projection Operator (0,) This operator is the critical component that enforces the informa-
tion bottleneck. It is a deterministic, non-neural state projection function designed to surgically
extract a canonical representation of the computational state, 55, from the model’s verbose reasoning
trace, 7;. For the arithmetic tasks, this function was implemented as a rule-based parser that uses
regular expressions to locate a predefined answer marker (e.g., "{Result: }")and extract the
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subsequent value. Its deterministic, rule-based nature is essential for the integrity of the diagnostic,
as it introduces no new source of model-induced error and guarantees that only the intended state
variable is propagated between steps.

Input Partitioning The Partition(X, Ny) function is a straightforward utility that divides the
total input sequence X into N contiguous, non-overlapping sub-sequences. This partitions the
overall task into a series of smaller, state-dependent computations, with each partition X} being
processed in a distinct SSQ cycle.

Algorithm 1 Sequential State Quarantining (SSQ) Protocol

Require: Initial Prompt Py, Full Input X, Quarantine Frequency N,
Require: LLM Generation Operator Gy, State Projection Operator o
1: Initialize quarantined state: s < Gg(Pinit)
2: Partition input: { X, ..., Xy, } < Partition(X, Ny)
3:fork=1,...,Nsdo
4: > 1. State Expansion (Conditioned Generation)
5 Construct prompt from quarantined state: Py, <— Format(sx—1, Xx)
6: Generate reasoning trace from limited context: 75, <— Gg(Py)
7: > 2. State Compaction (Surgical Quarantine)
8 Project trace to new state, discarding context: s < o (7%)
9:

return Final state/answer sy,

A.3.2 PROMPTING AND STATE REPRESENTATION

At each step k of the protocol, the prompt Py, is dynamically instantiated from a template. This
template serves to contextualize the model for the current sub-task, conditioning it exclusively on the
most recent quarantined state s;_1 and the current input chunk X. The templates used are detailed
below, with {{variable}} denoting placeholders.

Task 1: Character Counting

Count the number appearances of ’"a’s in the list below,
starting with a count of ’{{count}}’. Think step by step.
Conclude your final answer with: {Result: } followed by the
counted number. For example, if the input list is

["a’, 'b’", "a’, "a’]l’, the final output should be concluded
with {Result: 3}.

Start count: {{count}}.
List: {{list}}

The {{count }} placeholder is populated by the quarantined state s;,_1, and {{1ist}} is populated
by the input chunk Xj.

Task 2: Modular Arithmetic

Given a list of movements on a cycle of length 5, start at
position ' {{position}}’ and compute the end position. The
movements are STAY, INCREASE, DECREASE and are represented
as {0, 1, 2}.

Please determine the agent’s final position after executing
all movements in the list. Think step by step.

Conclude your final answer with: {Result: } followed by the
final position. For example, if the input list is

(ror, 1, 2, 171’7, the final output should be concluded
with {Result: 1}.
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Start position: {{position}}
List: {{list}}

Here, {{position}} is replaced by the state sj_.

Task 3: Parity Checking

Determine whether the number of occurrences of letter ' {{letter}}’s
in the list below is even, starting with a count of ’{{count}}’.
Think step by step.

Conclude your final answer with: {Result: True} if the count is
even, {Result: False} if the count is odd. For example, if the
input list is [’a’, 'b’, ’'a’, "a’l’, the final output should be
concluded with {Result: True}.

Start count: {{count}}
List: {{list}}

This task requires careful state management by the framework. The true state tracked by the SSQ
protocol is the cumulative numeric count. However, the LLM is prompted to reason about parity and
output a boolean. The state projection operator oy extracts this boolean judgment. The framework
then updates its internal, ground-truth count based on this judgment, ensuring the state passed to the
next iteration (sy) is the correct integer count. This design isolates the LLM’s logical inference from
the protocol’s state-tracking machinery.

A.3.3 EXECUTION TRACE: CHARACTER COUNTING EXAMPLE

We trace one full cycle of the SSQ protocol for the character counting task to illustrate the information
flow.

1. Initialization: The protocol begins with an initial state s = 0. The full input list is
partitioned; assume the first partitionis X; = ["a’, 'c’, 'a’, 'a’'l.

2. Cycle 1: State Expansion & Generation: The prompt P; is constructed by populating the
template with s¢ and X :

Start count: O.
List: ['a’, 'c’, 'Ta’', 'a']

The operator Gy is invoked with Py, producing the reasoning trace 7 :

Okay, I will count the ’'a’s.

- Start with count = 0.

- First element is 'a’, count is now 1.

— Second element is ’c¢’, count 1is still 1.
— Third element is 'a’, count is now 2.

- Fourth element is ’"a’, count is now 3.
The final count for this list is 3.
{Result: 3}

3. Cycle 1: State Compaction & Quarantine: The state projection operator o4 parses the
trace 71. It matches the pattern {Result: 3} and extracts the integer 3. This value
becomes the new quarantined state, 5; = 3. The context from this cycle, including P; and
71, is now discarded entirely.

4. Cycle 2: Next Iteration: The protocol proceeds to the next input partition, Xy =
["b", "a’, 'd’, "a’]. A new prompt, P, is constructed using the newly quar-
antined state 51 = 3:

Start count: 3.
List: ['b’, ’'a’", 'd’, "a’']
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This cycle of expansion and compaction continues until all partitions are processed. The
final state, s, is the result.

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) served as assistive tools for improving the clarity and grammar of
our academic prose. Specifically, we leveraged GPT-4o for drafting and refining sections such as the
introduction and method. The authors retain full responsibility for all scientific content, including the
conception of the research questions, methodological contributions, and the validation of experimental
results.
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