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A Unimodal Valence-Arousal Driven Contrastive Learning
Framework for Multimodal Multi-Label Emotion Recognition

Anonymous Authors
ABSTRACT
Multimodal Multi-Label Emotion Recognition (MMER) aims to iden-
tify one or more emotion categories expressed by an utterance of a
speaker. Despite obtaining promising results, previous studies on
MMER represent each emotion category using a one-hot vector and
ignore the intrinsic relations between emotions. Moreover, existing
works mainly learn the unimodal representation based on the mul-
timodal supervision signal of a single sample, failing to explicitly
capture the unique emotional state of each modality as well as its
emotional correlation between samples. To overcome these issues,
we propose a Unimodal Valence-Arousal driven contrastive learn-
ing framework (UniVA) for the MMER task. Specifically, we adopt
the valence-arousal (VA) space to represent each emotion category
and regard the emotion correlation in the VA space as priors to
learn the emotion category representation. Moreover, we employ
pre-trained unimodal VA models to obtain the VA scores for each
modality of the training samples, and then leverage the VA scores
to construct positive and negative samples, followed by applying
supervised contrastive learning to learn the VA-aware unimodal
representations for multi-label emotion prediction. Experimental
results on two benchmark datasets MOSEI and M3ED show that the
proposed UniVA framework consistently outperforms a number of
existing methods for the MMER task.

CCS CONCEPTS
• Information systems→ Sentiment analysis; • Computing
methodologies→ Natural language processing.

KEYWORDS
Multimodal Emotion Recognition, Multimodal Multi-Label Learn-
ing, Contrastive Learning

1 INTRODUCTION
Multimodal Emotion Recognition has recently attracted consid-
erable attention [15], as emotions play a great impact on human
cognition, decision-making, and social interactions. Given that an
utterance of a speaker in conversations or videos may naturally
express more than one emotion category, recent studies attempt to
explore the Multimodal Multi-label Emotion Recognition (MMER)
task, which aims to integrate multimodal information sources, i.e.,
text, vision, and audio, to identify one or more emotion categories
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expressed by an utterance of a speaker such as happy and an-
gry [16, 26].

Existing studies typically model the MMER task as a multi-label
classification problem. One line of work focuses on designing dif-
ferent inter-modal interaction mechanism to obtain the multimodal
representation and capturing its dependency on each emotion cat-
egory [16, 69, 70]. Another line of work focuses on modeling the
dependency between the emotion categories by proposing a label-
aware Transformer decoder [26] or different multi-label loss func-
tions [3, 16].

Despite obtaining promising results on several benchmark datasets
for the MMER task, most existing studies still suffer from several
limitation. First, most existing MMER studies [26, 68] represent
each emotion category using a one-hot vector and regard it as an
independent label, ignoring the intrinsic relationship between dif-
ferent emotion categories. For example, happiness and surprise are
often encoded as distinct positive emotions, without considering
their shared characteristic of conveying high emotional intensity.
Similarly, sadness and boredom are both encoded as distinct neg-
ative labels, ignoring their commonality in terms of lower emo-
tional intensity. Second, some studies [19, 66, 70] have recognized
the importance of learning a modality-specific representation for
each modality, e.g., Yu et al. [66] utilize multimodal annotations to
generate unimodal labels. However, they primarily learn the repre-
sentation of each modality based on the multimodal supervision
signals, failing to explicitly capture the unique emotional state of
each modality. For example, in Sample 1 of Fig. 1, although the
multi-label ground truth is (disgust, happy) and the visual modal-
ity clearly displays happy, the emotion displayed by the textual
modality tends towards neutral. Such unimodal emotional state,
used to mitigate the polarity of emotions expressed by other modal-
ity and to prevent prediction biases caused by overreliance on the
polarized emotional modality, is difficult to obtain solely relying
on multimodal supervision signals. The work [65] attempted to
manually annotate each unimodal label for the single-label emo-
tion recognition task. Nevertheless, it leads to a high cost. Lastly,
existing methods mainly focus on learning the multimodal repre-
sentation with the supervision signal of a single sample, ignoring
the emotion correlations between different samples. For instance,
as shown in the acoustic modality of Fig. 1, if two samples have
similar emotional states in one modality, their representations in
that modality tend to be similar.

To address the aforementioned limitations, we propose aUnimodal
Valence-Arousal driven contrastive learning framework named
UniVA for the MMER task. Specifically, to capture the intrinsic
relationship between emotion categories, we adopt the widely-used
valence-arousal (VA) space [5] to represent each emotion category
with a dimensional valence score and a dimensional arousal score.
As illustrated in Figure 1 (a), the valence measures the positivity
or negativity of an emotion and the arousal indicates its intensity,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Ⅰ
High-Arousal

Positive-Valence

multi-label GT: disgust, happy 

visual modality:

VA scores: (0.75, 0.30)

textual modality:
Like for a situation or for an event 
the way this woman would...   
VA scores: (0.05, -0.14)

acoustic modality:

VA scores: (-0.80, 0.11)

Sample 1

multi-label GT: disgust, angry

Sample 2

textual modality:

VA scores: (-0.43, 0.65)

Not only was it cheesy, but the 
storyline {sigh} was just dumb.

VA scores: (-0.69, 0.18)

visual modality:

acoustic modality:

VA scores: (-0.74, -0.09)

acoustic VA space

visual VA space

textual VA space

(a) Valence-Arousal space (b) Two examples of MMER

Figure 1: For VA space, based on the positivity or negativity of valence and the high or low levels of arousal, it is divided into
four quadrants, each containing several discrete emotion categories.

which well map emotions in a manner that reflects their inherent
similarities or differences. Thus, we derive the correlation between
emotion categories from the VA space and use it as priors to learn
the emotion category representation. Secondly, to explicitly model
the emotional state of each modality, we propose to obtain the
valence and arousal scores for each modality based on the unimodal
models that are pre-trained on existing VA datasets. By utilizing
VA scores, we can gain a detailed understanding of the emotional
dynamics among different modalities and how each modality con-
tributes to and influences the multimodal prediction. Moreover, to
consider the emotion correlations among different samples, we first
measure the similarity between each modality of a pair of training
samples based on their unimodal VA scores, and then leverage the
similarity score to construct positive and negative sample pairs for
each sample. With the positive and negative sample pairs, we apply
a supervised contrastive learning model to obtain the VA-aware
unimodal representations, and integrate them as the multimodal
representation for multi-label emotion prediction.

The main contributions in this work can be summarized as fol-
lows:

• We propose to represent each emotion category with the valence-
arousal (VA) space to capture the correlation between emotion
categories and use it as priors to learn the emotion category
representation for the MMER task.

• We design a unimodal VA-driven contrastive learning algorithm,
which first obtains the VA scores for each modality based on
pre-trained models, and then utilize these VA scores to con-
struct positive and negative samples for supervised contrastive
learning.

• Extensive evaluation on two benchmark MMER datasets MOSEI
and M3ED demonstrate the superiority of the proposed frame-
work UniVA over many previous multimodal methods and the
effectiveness of each component in UniVA on different multi-
label evaluation metrics.

2 RELATEDWORK
2.1 Emotion Recognition
Single-Label Emotion Recognition (SLER) is an important task
in the field of affective computing. According to input sources,
SLER is divided into textual SLER and multimodal SLER. For tex-
tual SLER, modeling contextual dependencies has become a widely
discussed topic for emotion recognition in conversations [42, 52].
Some works [40, 51] also attempt to model speaker dependencies.
Moreover, researchers [17, 34] are interested in improving perfor-
mance by introducing commonsense and analyzing the speaker’s
mental states. With the emergence of large language models (LLMs)
like ChatGPT [58, 73], there has been a series of works that combine
these LLMs [31, 38, 71]. Recently, the development of multimedia
has drawn attention to multimodal SLER [49]. Some researchers
focus on the importance of different modalities [8, 27, 63] and chal-
lenge of multimodal fusion [22, 25, 46]. Also, some works focus
on the field of conversation [18, 23, 32], and some researchers are
focusing on proposing robust approaches [21, 33, 35].

Multi-Label Emotion Recognition (MLER) is a task of identi-
fying one or more emotions in a given text or video. Existing studies
can be divided into Textual MLER and Multimodal MLER. Firstly,
for Textual MLER [12, 77], considering intrinsic relations between
emotions, Wang and Zong [62] and Huang et al. [24] model emo-
tional dependencies within text representations. Meanwhile, such
as Fei et al. [13] and Ma et al. [41], focus on distinguishing similar
labels and learning distinct semantic representations for different
labels. Furthermore, Fei et al. [14] consider the prior emotion distri-
bution in sentences and capture the context information relevant
to those emotions. Recently, some researches, such as [26, 68–70],
have begun to delve into Multimodal MLER. Akhtar et al. [1] de-
sign a multi-task learning approach to enhance performance of
model. Anand et al. [3] propose multimodal distillation loss to
improve the generalization ability. Srivastava et al. [53] design
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multimodal method to understand emotions and mental states of
characters in movie scenes.

2.2 Valence-Arousal Application
In the field of affective computing, application of multi-dimensional
valence and arousal [20, 78] is increasingly widespread due to its
ability to provide a more detailed understanding of emotions, com-
pared to discrete emotion categories. To further explore the corre-
lation between discrete and dimensional emotions, several studies
have introduced datasets for multi-task learning, such as IEMO-
CAP [7] and MER2023 [36]. With these datasets, many multi-task
learning methods have been proposed by [9, 47]. Considering the
broad application prospects of continuous emotion prediction in
real scenarios, various workshops and competitions have been intro-
duced, such as AVEC [50, 59], MuSe [2], and ABAW [29]. Moreover,
some works have employed the NRC-VAD lexicon [44] as an exter-
nal knowledge base for the emotion recognition task [64, 75] and
the empathetic response generation task [10, 76].

3 METHODOLOGY
In this section, we first introduce the task definition and the overview
of our UniVA framework. We then describe the details of each mod-
ule in UniVA.

3.1 Task Definition and Framework Overview
Given a MMER corpus D =

{
(𝑢𝑖 , 𝑦𝑖 )

}𝑁
𝑖=1, the input of each sample

𝑢𝑖=
{
𝑢𝑖𝑡 , 𝑢

𝑖
𝑣, 𝑢

𝑖
𝑎

}
is an utterance that contains information from three

modalities, i.e., text, vision, and audio, denoted by {𝑡, 𝑣, 𝑎}. The
output 𝑦𝑖=

{
𝑦1
𝑖
, 𝑦2
𝑖
, ..., 𝑦𝐶

𝑖

}
is a pre-defined label sequence with 𝐶

emotions, where 𝑦 𝑗
𝑖
∈ {0, 1} indicates whether or not 𝑢𝑖 contains

the 𝑗-th emotion. The goal of MMER task is to learn a mapping
function F = (𝑢𝑖𝑡 , 𝑢𝑖𝑣, 𝑢𝑖𝑎) → 𝑦𝑖 to predict the occurrence of each
emotion category.

Figure 2 shows the overview of UniVA that contains three key
modules, i.e., VA Scores Acquisition, VA-DrivenContrastive Learning-
based Unimodal Representation, and Multi-Label Prediction with
VA-Driven Emotion Correlation Priors. Specifically, we adopt the
widely-used VA space [5], and use either a NRC-VAD lexicon [44]
or pre-trained VA models to obtain the VA scores for each emotion
category and each modality of the training samples. The second
module then leverages the VA scores to construct positive and neg-
ative sample pairs for each sample, which are then used to train
a supervised constrastive learning model to obtain the VA-aware
unimodal representations. Lastly, the third module integrates the
unimodal representations and incorporates the correlation prior
between emotion categories in the VA space as a regularization
term for multi-label emotion prediction.

3.2 VA Scores Acquisition
Given an utterance 𝑢𝑖 and its multi-label annotation 𝑦𝑖 , we obtain
the VA scores for 𝑦𝑖 and three modalities

{
𝑢𝑖𝑡 , 𝑢

𝑖
𝑣, 𝑢

𝑖
𝑎

}
as follows:

Label.Given an emotion𝑦 𝑗
𝑖
of𝑦𝑖 , we directly obtain the valence and

arousal scores (V 𝑗
𝑒 ,A

𝑗
𝑒 ) from the NRC-VAD lexicon [44], which

provides reliable human ratings of valence, arousal, and dominance
for 20,000 English terms.

Text. We fine-tune a RoBERTabase model [37] on the EmoBank
dataset [6] and feed the textual input𝑢𝑖𝑡 into the model for inference.
We then obtain a valence scoreV𝑖

𝑡 ∈ [−1, 1] and an arousal score
A𝑖
𝑡 ∈ [−1, 1].

Vision. For the visual input 𝑢𝑖𝑣 , we first extract its facial sequence
𝒔 𝒊 and feed it into the EmoFAN model [56], which has been trained
on the AffectNet dataset [45]. We then obtain a valence score and
an arousal score for each face, and average the valence and arousal
scores across the facial sequence to derive the overall valence score
V𝑖
𝑣 ∈ [−1, 1] and arousal score A𝑖

𝑣 ∈ [−1, 1].
Audio. For the acoustic input 𝑢𝑖𝑎 , we feed it into the Wav2Vec2-
Large-Robust model [61], whichwas fine-tuned on theMSP-Podcast
dataset [39] and has been shown to exhibit excellent generalization
and robustness, to obtain a valence score V𝑖

𝑎 ∈ [−1, 1] and an
arousal score A𝑖

𝑎 ∈ [−1, 1].

3.3 VA-Driven Contrastive Learning-based
Unimodal Representation

In this subsection, we introduce the details of learning the unimodal
representation based on VA-Driven Contrastive Learning.

3.3.1 Unimodal Feature Extraction. For an utterance𝑢𝑖 =
{
𝑢𝑖𝑡 , 𝑢

𝑖
𝑣, 𝑢

𝑖
𝑎

}
,

we employ existing feature extraction methods to obtain the textual,
visual, and acoustic features, i.e., X𝑡 ∈ R𝑙𝑡×𝑘𝑡 , X𝑣 ∈ R𝑙𝑣×𝑘𝑣 , and
X𝑎 ∈ R𝑙𝑎×𝑘𝑎 . Here 𝑙𝑚∈{𝑡,𝑣,𝑎} denotes the sequence length of each
modality, and 𝑘𝑚∈{𝑡,𝑣,𝑎} is the feature dimension.

Specifically, for the textual input 𝑢𝑖𝑡 , we utilize either Glove [48]
or RoBERTa [37] to obtain the word representation. For Glove, we
directly input 𝑢𝑖𝑡 to obtain the text representation X𝑡 . For RoBERTa,
we first concatenate the text from all clips in the current video by
inserting special tokens ⟨/𝑠⟩, and then feed them into the model to
obtain X𝑡 .

For the audio input𝑢𝑖𝑎 sampled at 16kHz, Wav2Vec2.0 model [11]
is utilized to extract low-level acoustic features X𝑎 .

For the video clip 𝑢𝑖𝑣 , we first employ the method [74] to ex-
tract facial sequence 𝒔 𝒊 =

{
𝑠𝑖1, 𝑠

𝑖
2, ..., 𝑠

𝑖
𝑞

}
, where 𝑞 denotes the total

number of faces. These facial images are then fed to the Inception-
ResNetv1 model [54] to obtain frame-level visual features X𝑣 .
Intra-Modal Interaction. For the textual modality, we employ
a fully connected (FC) layer and additive attention (AddAtt) map-
ping [4] to obtain the utterance-level representation:

H𝑡 = AddAtt(FC(X𝑡 )), (1)

where H𝑡 ∈ R𝑑𝑡 and 𝑑𝑡 is the hidden dimension.
For visual and acoustic modalities, we respectively feed X𝑣 and

X𝑎 into two separate Self-Attention (SAT) layers, followed by the
additive attention mapping to obtain the utterance-level visual and
acoustic representations as follows:

H𝑚∈{𝑣,𝑎} = AddAtt(SAT(X𝑚∈{𝑣,𝑎} )), (2)

where H𝑣 ∈ R𝑑𝑣 and H𝑎 ∈ R𝑑𝑎 .

3.3.2 VA-Driven Contrastive Learning. Inspired by the supervised
contrastive learning (SupCon) introduced by Khosla et al. [28],
we utilize the VA scores of each modality as supervision signals to
consider the relationship between samples to enhance the unimodal
representation.
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Figure 2: The overview of our proposed Unimodal Valence-Arousal driven contrastive learning framework (UniVA).

Positive and Negative Sample Construction. For an anchor
sample 𝒙𝑖 , the key question in supervised contrastive learning is
how to obtain samples semantically similar to (or different from)
𝒙𝑖 , which are called positive samples 𝒙+

𝑖
(or negative samples 𝒙−

𝑖
).

In previous studies, since SupCon is applied in the single-label
classification task, we can obtain positive samples 𝒙+

𝑖
and negative

samples 𝒙−
𝑖
based on the labels of samples. However, since there

are many co-occurred emotions in the MMER task, it is hard to
construct 𝒙+

𝑖
and 𝒙−

𝑖
based on the emotion labels.

The VA space provides a rich, continuous spectrum of emotional
states, allowing for a more precise and meaningful categorization of
emotional similarity and difference. Therefore, we propose to utilize
the VA scores of each modality to construct the positive and nega-
tive samples. In this way, positive samples 𝒙+

𝑖
are not merely those

sharing the same categorical label with the anchor, but rather those
whose VA scores indicate a close emotional proximity. Conversely,
negative samples 𝒙−

𝑖
are identified through significant divergences

in their VA scores from the anchor, reflecting a fundamental emo-
tional disparity. This method acknowledges the multidimensional
nature of emotions, recognizing that two samples could share a
label (e.g., happy) while embodying different intensities or nuances
of that emotion.

Specifically, for any modality𝑚 ∈ {𝑡, 𝑣, 𝑎}, assuming the batch
size is 𝐵, we are given two samples 𝑢𝑖𝑚 and 𝑢

𝑗
𝑚 , where 𝑖, 𝑗 ∈ 𝐵,

and their VA scores are (V𝑖
𝑚,A𝑖

𝑚) and (V 𝑗
𝑚,A

𝑗
𝑚), respectively. We

first measure their similarity based on their Euclidean distance in
the VA space below:

𝑑 (𝑢𝑖𝑚, 𝑢
𝑗
𝑚) =

√︃
(V𝑖
𝑚 −V 𝑗

𝑚)2 + (A𝑖
𝑚 − A 𝑗

𝑚)2 . (3)

Based on the similarity score 𝑑 , we then determine whether the
two samples form a positive or negative pair with a predefined
threshold 𝛿 . If 𝑑 < 𝛿 , 𝑢𝑖𝑚 and 𝑢 𝑗𝑚 are considered as a positive pair;
otherwise, they are deemed as a negative pair.

To prevent the scenario where a batch consists entirely of nega-
tive pairs, we duplicate H𝑚∈{𝑡,𝑣,𝑎} and obtain multi-view unimodal
representations H̃𝑚 = [H𝑚,H𝑚]. Finally, for each anchor sample
𝒙𝑖 ∈ 𝑿 ≡ {𝒙1, 𝒙2, . . . , 𝒙𝐵}, the loss of the VA-driven contrastive
learning is defined as follows:

L𝐶𝐿𝑚 =
∑︁
𝒙𝑖 ∈𝑿

−1
|𝑃 (𝒙𝑖 ) |

∑︁
𝒙𝑝 ∈𝑃 (𝒙𝑖 )

sim(𝒙𝑝 , 𝒙𝑖 ), (4)

sim(𝒙𝑝 , 𝒙𝑖 ) = log
exp((H̃𝑖𝑚 · H̃𝑝𝑚)/𝜏)∑

𝒙𝑎∈𝐴(𝒙𝑖 ) exp((H̃𝑖𝑚 · H̃𝑎𝑚)/𝜏)
, (5)

where 𝑃 (𝒙𝑖 ) = {𝒙 𝑗 ∈ 𝐴(𝒙𝑖 ) | 𝑑 (𝑢𝑖 , 𝑢 𝑗 ) < 𝛿, 𝑗 ≠ 𝑖} represents the
set of all positive samples paired with anchor 𝒙𝑖 , 𝐴(𝒙𝑖 ) ≡ 𝑿 \ {𝒙𝑖 },
and 𝜏 ∈ R+ is a scalar temperature parameter.
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3.4 Multi-Label Prediction with VA-Driven
Emotion Correlation Priors

After obtaining the VA-aware unimodal representations, we con-
catenate them as the multimodal representation H𝑚𝑢𝑙𝑡𝑖 , and then
feed H𝑚𝑢𝑙𝑡𝑖 into a softmax layer to obtain the emotion distribution
𝑦 for multi-label emotion prediction:

H𝑚𝑢𝑙𝑡𝑖 = Concat(H𝑡 ,H𝑣,H𝑎), (6)

𝑦 = Softmax(WTH𝑚𝑢𝑙𝑡𝑖 + 𝑏), (7)

whereW and b are learnable parameters.
VA-Driven Emotion Correlation Priors. To further capture the
intrinsic relationship between emotion categories, we introduce a
VA-driven emotion correlation prior 𝜂 for 𝑦. Specifically, assuming
we have 𝐶 emotions, we first calculate their similarity in the VA
space to obtain the emotion similarity matrixM ∈ R𝐶×𝐶 as follows:

M𝑗𝑙 =
V 𝑗
𝑒 · V𝑙

𝑒 + A 𝑗
𝑒 · A𝑙

𝑒√︃
(V 𝑗

𝑒 )2 + (A 𝑗
𝑒 )2 ·

√︃
(V𝑙

𝑒 )2 + (A𝑙
𝑒 )2

(8)

where
(
V 𝑗
𝑒 ,A

𝑗
𝑒

)
and

(
V𝑙
𝑒 ,A𝑙

𝑒

)
respectively denote the VA scores

of the 𝑗-th emotion and the 𝑙-th emotion. We then incorporate the
emotion correlation prior into our model with the following loss 𝜂:

𝜂 =
1
𝑁

𝑁∑︁
𝑖=1

∑︁
𝑗,𝑙

M𝑗,𝑙

𝑦𝑖, 𝑗 − 𝑦𝑖,𝑙
2
2 (9)

where 𝑁 represents the number of total samples in the training set.
During the training process, we aim to minimize this 𝜂 with the
goal of making label predictions on similar emotion positions more
similar, and those on dissimilar emotion positions more distinct.

3.5 Model Training
For the main MMER task, we use KL divergence [30] as the multi-
label loss function:

L𝐾𝐿 (ŷ, y) =
𝐶∑︁
𝑖=1

y𝑖 log( y
𝑖

ŷ𝑖
) (10)

where ŷ denotes the model prediction, y denotes the ground truth
distribution. The full objective function of our UniVA framework is
a combination of the contrastive learning loss, the main task loss,
and the emotion correlation prior as follows:

L = 𝜆 ·∑𝑚∈{𝑡,𝑣,𝑎} L𝐶𝐿𝑚 + (1 − 𝜆) · L𝐾𝐿 + 𝜂, (11)

where 𝜆 is a trade-off parameter.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. To validate the effectiveness of our framework UniVA, we
conduct experiments on two benchmark datasets: MOSEI [67] and
M3ED [72]. MOSEI has 22,856 utterance-level video clips acquired
from YouTube. Each video clip is annotated with either one or
more of Ekman’s six basic emotions (i.e., happy, sad, anger, surprise,
disgust, and fear) or the neutral emotion. M3ED contains 24,447
utterances collected from 56 Chinese TV series. It is annotated
with six basic emotion categories and an additional neutral. Table 1

Table 1: The statistics of two benchmark datasets.

Dataset Split Multi-Label
Train Valid Test One Two & more

MOSEI 16,326 1,871 4,659 14,517 8,339

M3ED 17,425 2,821 4,201 21,791 2,656

shows the statistics of the samples with multiple labels of both
datasets.

Moreover, we introduce the three datasets used during the VA
scores acquisition phase. EmoBank is a corpus focused on social
media, consisting of 10,000 English sentences, each annotated with
valence and arousal. AffectNet is a large facial imagery dataset
containing over a million images, each face annotated with valence
and arousal scores. MSP-Podcast is a speech emotional dataset
containing over 150,000 speech segments from podcast recordings,
with each segment annotated for valence and arousal scores.
Implementation Details. For our UniVA framework, we employ
either Glove-300d or RoBERTa-base as the textual encoder. For
M3ED, we use RoBERTa-base in Chinese1. The visual encoder In-
ceptionResNet was fine-tuned on the CASIA-WebFace dataset. For
the acoustic modality, the acoustic encoder Wav2vec-English2 used
for MOSEI was fine-tuned on the Common Voice 6.1 dataset. Simi-
larly, Wav2vec-Chinese3 employed for M3ED was fine-tuned using
the Common Voice 6.1, CSS10, and ST-CMDS datasets. Given an
utterance in M3ED, since our textual VAmodel is trained on English
corpus, we translate the text into English using DeepL API4, and
then feed it into the VA model to obtain the textual VA scores. Re-
garding time overhead of VA models, the textual VA model requires
approximately 40 minutes for training on an NVIDIA RTX3090 GPU
and then performs inference on the target dataset. As for visual and
acoustic VA models, we directly perform model inference, hence
incurring negligible overhead.

The batch size for MOSEI and M3ED is set to 12 and 22, respec-
tively. The learning rate and the hidden size in each modality are
set to 5𝑒 − 5 and 768. The threshold 𝛿 for Euclidean distance of
contrastive learning is set to 0.1. During inference, we set an in-
ference threshold 𝜁 to 0.18 so that the emotion with scores higher
than 𝜁 is predicted as 1. Following previous works [69], we adopt
multi-label Accuracy (Acc), Hamming Loss (HL), Micro-F1 (miF1),
and Macro-F1 (maF1) scores as our evaluation metrics. We optimize
parameters with the AdamW optimizer and train our model on 4
NVIDIA RTX3090 GPUs.

4.2 Comparison Methods
We compare the proposed framework UniVA with the following
systems: MuIT [57] is a multimodal fusion algorithm that does not
require modality-aligned inputs and captures inter-modal interac-
tions with Cross-Modal Transformer.M3ER [43] uses canonical cor-
relational analysis andmultiplicative fusion formultimodal emotion

1https://huggingface.co/hfl/chinese-roberta-wwm-ext
2https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english
3https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn
4https://www.deepl.com/pro-api?cta=header-pro-api
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Table 2: Comparison results of different methods on the MOSEI and M3ED datasets. The baselines tagged with ♠ utilize Glove
as textual encoders, while those tagged with ♣ employ RoBERTa as textual encoders. Moreover, the baseline tagged with ★ only
uses textual and visual modalities, while other models use three modalities. The best results are marked in bold, while the
second best results are underlined.

Methods MOSEI M3ED
Acc (↑) HL (↓) miF1 (↑) maF1 (↑) Acc (↑) HL (↓) miF1 (↑) maF1 (↑)

MuIT♠ (Tsai et al. [57]) 44.5 0.190 53.1 34.4 - - - -
M3ER♠ (Mittal et al. [43]) 40.9 0.195 51.9 34.9 - - - -
HHMPN♠ (Zhang et al. [69]) 45.9 0.189 55.6 43.0 - - - -
TAILOR♠ (Zhang et al. [70]) 43.7 0.206 49.7 37.1 - - - -
RobMMR♠ (Ge et al. [16]) 48.4 0.185 56.9 41.7 45.8 0.168 46.3 33.5
MDI♣ (Zhao et al. [72]) 49.9 0.186 50.2 10.9 47.6 0.159 51.9 33.6
FacialMMT♣ (Zheng et al. [74]) 50.1 0.190 59.1 40.8 48.7 0.154 51.7 37.9
Gemini (zero-shot)★ (Team et al. [55]) 11.2 0.268 23.9 20.6 18.6 0.198 24.1 19.1
UniVA-Glove 49.0 0.187 57.2 41.9 46.7 0.164 47.9 34.2
UniVA-RoBERTa 51.4 0.185 60.1 43.5 50.6 0.149 53.4 40.2

recognition. HHMPN [69] models the feature-to-label, modality-
to-label, and label-to-label dependencies via heterogeneous graph
message passing. TAILOR [70] enhances the multimodal diversity
with adversarial learning to obtain the shared and private represen-
tations of each modality. RobMMR [16] introduces two adversarial
training strategies, temporal masking and parameter perturbation,
to learn a more robust multimodal representation.MDI [72] consid-
ers emotional dependency of context in dialogues and proposes a
dialogue-aware interaction framework. FacialMMT [74] improves
the importance of visual modality by extracting the facial sequence
of the real speaker in conversations. Gemini5 [55] is a large multi-
modal model that exhibits remarkable capabilities in multimodal
understanding.

Note that since MDI and FacialMMT is designed for the single-
label emotion recognition task, we replace the Cross-Entropy loss
used in thesemethodswith the sameKL loss as used in our approach.
For Gemini, we first extract five video frames from each video clip,
and then feed these intoGemini-Vision to obtain video captions with
emotion, which are then concatenated with the textual and spoken
content and fed into Gemini to generate one or more emotions from
the pre-defined emotion list. The prompt fed to Gemini is shown in
supplementary materials.

4.3 Main Results
In Table 2, we report the results of UniVA and all comparison meth-
ods on the two datasets.

First, we can find that the performance of multimodal fusion
methods such as MuIT and M3ER is relatively poor due to their
insufficient consideration of the dependencies among emotions.
HHMPN and TAILOR achieve better results, because of modeling the
both modality-emotion and emotion-emotion dependencies in their
models. Moreover, RobMMR which focuses on the model robustness
attains on the best performance on the HL metric, while MDI and
FacialMMT achieve significant improvements on metrics like Acc
and miF1. In addition, the performance of Gemini is rather limited,

5In this work, the Pro version is used.

revealing that existing large multimodal models may not be suitable
for themulti-label emotion recognition task due to the complexity of
the task. Lastly, it is clear that UniVA-RoBERTa consistently achieves
the best performance across all four metrics on both datasets, which
demonstrates the effectiveness of our proposed model. Additionally,
we find that using Glove instead of RoBERTa as the textual encoder
leads to a decrease in performance. When compared with baselines
that utilize Glove for text encoding, although slightly inferior to
RobMMR and HHMPN on the MOSEI dataset in the HL and maF1
metrics respectively, the proposedUniVA-Glove still achieves certain
advantages overall.

4.4 Ablation Study
Effect of Each Component. Firstly, we conduct ablation studies
on two main components proposed in UniVA. As shown in Table 3,
removing the VA-driven contrastive learning (VA-CL) results in
an average reduction of 1.04 percentage points, especially in Acc
and miF1, with an average decrease of 1.55 percentage points and
1.35 percentage points, respectively. It indicates that by capturing
the unique emotional state of each modality and the emotional
correlations between samples, VA-CL enhances the emotion recog-
nition capability. Furthermore, removing the VA-driven Emotion
Correlation Prior (VA-ECP) leads to a decline in performance across
all metrics, particularly on the maF1, where there is a decrease of
0.7 percentage points on the MOSEI and 2 percentage points on the
M3ED. It suggests that VA-ECP strengthens the intrinsic relations
between different emotion categories.
Effect of Each Modality.We report the results of UniVA of remov-
ing each modality in Table 4. It is evident that removing one or two
modalities consistently leads to the performance drop, indicating
that each modality is indispensable for emotion prediction. Among
the three modalities, we find that the textual modality is much
more important than the other two on both datasets. More detailed
results are provided in supplementary materials.
Effect of Different Contrastive Learning. We compared our
proposed VA-CL with Supervised Contrastive Learning (Sup-CL)
and Self-supervised Contrastive Learning (Self-CL). In Sup-CL, we
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Table 3: Ablation study of our UniVA framework. VA-CL denotes VA-Driven contrastive learning, and VA-ECP denote VA-Driven
emotion correlation prior.

Methods MOSEI M3ED
Acc (↑) HL (↓) miF1 (↑) maF1 (↑) Acc (↑) HL (↓) miF1 (↑) maF1 (↑)

UniVA 51.4 0.185 60.1 43.5 50.6 0.149 53.4 40.2

- w/o VA-CL 50.0 0.189 59.3 43.2 48.9 0.157 51.5 39.2
- w/o VA-ECP 51.0 0.186 59.8 42.8 49.1 0.154 51.7 38.2
- w/o VA-CL, VA-ECP 49.7 0.189 58.2 39.0 48.0 0.160 51.4 37.6

Table 4: Ablation study of UniVA on different modalities for
MOSEI and M3ED.

Methods MOSEI M3ED
Acc miF1 Acc miF1

UniVA 51.4 60.1 50.6 53.4

- w/o Vision 51.1 59.9 49.2 52.0
- w/o Audio 49.7 58.1 48.4 51.4
- w/o Vision, Audio 50.6 59.4 48.0 51.6
- w/o Text, Vision 46.7 54.5 38.8 41.3
- w/o Text, Audio 42.3 48.2 40.8 40.7

Table 5: Ablation study of UniVA with different contrastive
learning algorithm. The "-r" indicates that the proposed VA-
CL is replaced with other algorithms.

Methods MOSEI M3ED
Acc miF1 Acc miF1

UniVA (VA-CL) 51.4 60.1 50.6 53.4

-r Sup-CL 50.3 59.0 48.8 52.7
-r Self-CL 49.6 58.2 46.2 50.1

determine positive and negative sample pairs based on whether
samples have exactly the same labels: samples with the same la-
bels constitute positive pairs, otherwise they form negative pairs.
As shown in Table 5, the results indicate that VA-CL outperforms
the other methods and demonstrate the effectiveness of VA-CL.
Moreover, we observed that UniVA_Sup-CL performs better than
UniVA_Self-CL, showing that utilizing label information to differen-
tiate between positive and negative sample pairs is beneficial. More
detailed results are provided in supplementary materials.

4.5 In-Depth Analysis
Visualization of VA-Aware Unimodal Representations. To
demonstrate the effectiveness of the VA-CL algorithm, we visual-
ize the unimodal representations on the training sets of MOSEI
and M3ED by t-SNE [60]. As shown in Figure 3, we can observe
that with the help of VA-CL, the representations of each modal-
ity become more distinguishable, and samples within the same
modality are more clustered. Specifically, compared to subfigure
(a), in subfigure (b) with the aid of VA-CL, samples within the visual
modality (green) and text modality (red) are clustered more closely

(a) MOSEI -w/o VA-CL (b) MOSEI -w VA-CL

(c) M3ED -w/o VA-CL (d) M3ED -w VA-CL

Figure 3: 2D visualization of each modality on the training
set for MOSEI and M3ED: (a)(c) and (b)(d) respectively display
unimodal representations without/with VA-CL. Red, green,
and blue circles denote text, vision, and audio modalities,
respectively.

(a) MOSEI (b) M3ED

Figure 4: The heatmap of VA-driven emotion correlation
matrix on the two benchmark datasets.

together within each modality, and the distinction between samples
across modalities is significantly enhanced, especially for the visual
modality. Similarly, compared with subfigure (c), after applying
the VA-CL algorithm, samples of the visual modality (green) are
more tightly clustered together in subfigure (d), and exhibit a clear
differentiation from the samples of the auditory modality (blue).
This illustrates that VA-CL captures the unique emotional states



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 6: Prediction comparison on four samples from the test sets of MOSEI and M3ED, where (a) and (b) come from the test set
of MOSEI, (c) and (d) are from the test set of M3ED.

Textual Modality (umm) Just some  untasteful 
things in the movie. disgust and a 

little anger

(a)
I would  definitely recommend 
this, like I said, it's one of the 
classics.

happy(b)
咱妈会 这么无聊 吗？

(c) disgust

( Would our mom be so bored? )
这叫 居心叵测.

angry and disgust(d)

( It's called an ulterior motive. )

Visual Modality

sad facedisgust face sad face sad face neutral face disgust face angry face angry face disgust face

Acoustic Modality

angry voice happy voice
neutral voice disgust voice angry voice

GT (disgust, angry, sad) (happy, sad) (neutral, disgust) (angry, disgust)

TAILOR (disgust, angry) × (happy, sad) ✓ (disgust) × (angry, disgust) ✓

FacialMMT (disgust, sad) × (happy) × (neutral, disgust) ✓ (angry, disgust) ✓

UniVA

(VA)textual Scores: (-0.43, 0.08) (VA)textual Scores: (0.80, 0.55) (VA)textual Scores: (-0.17, -0.33) (VA)textual Scores: (-0.26, -0.43)
(VA)visual Scores: (-0.36, -0.02) (VA)visual Scores: (-0.62, -0.27) (VA)visual Scores: (-0.09, -0.28) (VA)visual Scores: (-0.45, -0.47)
(VA)acoustic Scores: (-0.67, 0.51) (VA)acoustic Scores: (0.74, 0.59) (VA)acoustic Scores: (-0.23, -0.31) (VA)acoustic Scores: (-0.64, -0.72)
(disgust, angry, sad) ✓ (happy, sad) ✓ (neutral, disgust) ✓ (angry, disgust) ✓

of each modality as well as the emotional correlations between
different samples.
Visualization of VA-Driven Emotion Correlation Prior. In Fig-
ure 4, we show the derived correlation matrices between emotions,
i.e.,M in Eqn. (8) on the two datasets. For instance, emotions such as
happy and surprise, as well as disgust and anger, exhibit a relatively
high positive correlation, while happy and sad, along with neutral
and surprise, show a significantly high negative correlation. This
aligns with our commonsense understanding of these emotional
relationships.
Sensitivity Study of Threshold 𝛿 .Hyper-parameter 𝛿 determines
whether the sample pair is positive or negative. As shown in the
Figure 5, our UniVA achieves the best performance when 𝛿 is set
to 0.1; moreover, it is observed that at values of 0.05 and 0.15,
the model’s performance is approximately the same; additionally,
the performance of UniVA gradually decreases as the value of 𝛿
increases beyond 0.15.

4.6 Case Study
To better demonstrate the reasonability of the obtained VA scores
for each modality, we present four test examples along with predic-
tions from different methods. In Table 6 (a), due to the complexity
of the ground-truth emotion labels, both TAILOR and FacialMMT
missed one emotion and gave the incorrect prediction; for examples
(b) and (c), the emotional tendency displayed by the textual modal-
ity is exceedingly apparent. As a result, FacialMMT only accurately
predicted the dominant emotion reflected by the text in example
(b), while TAILOR made a similar error in example (c); for example
(d), all three models predicted correctly. In all cases, our uniVA cor-
rectly classified the multi-label emotion categories, which shows
the advantage of our framework by leveraging the VA scores from
each modality to design unimodal VA driven contrastive learning.
Moreover, with VA scores, we can clearly visualize the contribution
of each modality to the multimodal multi-label prediction.

MOSEI Acc

MOSEI HL

MOSEI miF1

MOSEI maF1

M3ED Acc

M3ED HL

M3ED miF1

M3ED maF1

49.6

50.2

50.8

51.4

51.0

52.0

53.0

54.0

57.8 58.6 59.4 60.2

40.8

41.6

42.4

43.2

48.6

49.2

49.8

50.4

64.0

65.0

66.0

67.0

50.851.652.453.2

37.8

38.6

39.4

40.2

=0.05 =0.1 =0.15 =0.3 =0.5

Figure 5: Sensitivity study of hyper-parameter 𝛿 . To better
illustrate the results, we have taken the reciprocal of the HL
metric and magnified it by 100 times.

5 CONCLUSION
In this paper, we proposed a Unimodal Valence-Arousal driven
contrastive learning framework (UniVA) for theMMER task. Specifi-
cally, UniVA employs pre-trained VAmodels to obtain VA scores for
each modality of all training samples, which are used to construct
positive and negative samples for contrastive learning to obtain
VA-aware unimodal representations. UniVA then integrates the
unimodal representations and incorporates the emotion correlation
prior in the VA space for emotion prediction. Experimental results
on two datasets show the effectiveness of our UniVA model.
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