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ABSTRACT

Federated fine-tuning enables Large Language Models (LLMs) to adapt to down-
stream tasks while preserving data privacy, but its resource-intensive nature
severely limits deployment on edge devices. In this paper, we introduce Devel-
opmental Federated Tuning (DEVFT), a resource-efficient approach inspired by
cognitive development that progressively builds a powerful LLM from a com-
pact foundation. DEVFT decomposes the fine-tuning process into developmental
stages, each optimizing a submodel with increasing parameter capacity. Knowl-
edge acquired in earlier stages is transferred to subsequent submodels, provid-
ing optimized initialization parameters that prevent convergence to local min-
ima and accelerate training. This paradigm mirrors human learning, gradually
constructing a comprehensive knowledge structure while refining existing skills.
To efficiently build stage-specific submodels, DEVFT introduces deconfliction-
guided layer grouping and differential-based layer fusion to distill essential in-
formation and construct representative layers. Evaluations across multiple bench-
marks demonstrate that DEVFT significantly outperforms state-of-the-art meth-
ods, achieving up to 4.59× faster convergence, 10.67× reduction in communica-
tion overhead, and 9.07% average performance improvement, while maintaining
compatibility with existing federated fine-tuning approaches.

1 INTRODUCTION

Large Language Models (LLMs) exhibit exceptional capabilities across diverse domains (Yuan
et al., 2024; Xu et al., 2025; 2024b). While fine-tuning effectively adapts these models to specific
tasks (Han et al., 2024), it demands substantial task-specific data. This data often resides privately on
edge devices, making centralized collection impractical. Federated fine-tuning (Zhang et al., 2024a)
offers a privacy-preserving alternative for collaborative adaptation. Nevertheless, deploying massive
LLMs for federated fine-tuning on resource-limited edge devices is challenging due to hardware and
communication constraints (Wu et al., 2025a; Tam et al., 2024; Tian et al., 2024a; 2022).
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Figure 1: Computational overhead
for one-step fine-tuning of different
language models using LoRA.

To address these challenges, researchers have pro-
posed various parameter-efficient federated fine-tuning ap-
proaches (Wu et al., 2025c), with LoRA-based methods gar-
nering significant attention due to their efficiency and flex-
ibility (Guo et al., 2025; Tian et al., 2024b). However,
existing LoRA-based methods typically fine-tune LLMs
end-to-end, which remains computationally prohibitive for
edge devices compared to small language models such as
BERT (Devlin et al., 2019). Figure 1 quantifies this gap by
comparing the computational cost of a single fine-tuning step
across LLaMA (Touvron et al., 2023) variants and BERT.
Even the relatively compact TinyLLaMA (Zhang et al.,
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Figure 2: Workflow comparison between existing works and DEVFT.

2024b) demands 9.3× more FLOPs than BERT, while LLaMA2-13B (Touvron et al., 2023) re-
quires an overwhelming 415.2 TFLOPs, which is 112.2× that of BERT. Such substantial compu-
tational requirements fundamentally challenge the practical deployment of federated fine-tuning on
resource-constrained devices, even with current parameter-efficient techniques.

Inspired by human cognitive development (Bengio et al., 2009; Sweller, 2008; McArdle & Wood-
cock, 2014), where learning unfolds progressively rather than instantaneously, we propose Develop-
mental Federated Tuning (DEVFT), a resource-efficient federated fine-tuning approach that allevi-
ates computational burdens by gradually cultivating a capable LLM from a compact foundation. As
illustrated in Figure 2, instead of updating the full LLM throughout the entire federated fine-tuning
process, DEVFT decomposes learning into a sequence of developmental stages. Specifically, the
learning journey begins with a compact submodel (analogous to a child), and upon mastering stage-
specific competencies, we strategically expand the submodel capacity (mimicking human growth),
while transferring the acquired knowledge to initialize the submodel of the next stage. This growth-
and-transfer process repeats until the model reaches its target capacity (analogous to an adult).

This developmental paradigm, starting with compact models, offers several inherent advantages.
Smaller models generally exhibit smoother loss landscapes, reducing the risk of convergence to
poor local minima. Moreover, the knowledge distilled during early stages serves as a well-informed
initialization for larger architectures, enhancing performance in subsequent stages. Compared to
end-to-end LLM fine-tuning, DEVFT ’s progressive capacity growth substantially accelerates fed-
erated fine-tuning while lowering both computation and communication overheads. However, a
critical challenge lies in: How to architect stage-specific submodels to ensure effective knowledge
transfer across consecutive stages while optimizing overall performance?

To address this challenge, DEVFT introduces two novel techniques. The deconfliction-guided layer
grouping mechanism initially clusters layers based on parameter similarity, thereby grouping layers
with minimal parameter conflicts together. Subsequently, the differential-based layer fusion strat-
egy strategically distills and integrates the distinctive semantic information of each layer through
arithmetic operations, yielding a representative layer for each group that encapsulates the group’s
collective knowledge and core functionality. These representative layers are then concatenated se-
quentially to construct the stage-specific submodel for federated fine-tuning. Due to the functional
homogeneity within groups, layers can directly inherit knowledge from their corresponding repre-
sentative layers, thereby facilitating seamless knowledge transfer across developmental stages.

In order to empirically validate the effectiveness of DEVFT and its advantages, we conduct extensive
experiments on multiple benchmarks. DEVFT significantly outperforms state-of-the-art methods,
achieving up to 4.59× faster convergence, 10.67× reduction in communication overhead, and 9.07%
average performance improvement, while maintaining compatibility with existing approaches.

2 BACKGROUND AND MOTIVATION

2.1 EXISTING PARAMETER-EFFICIENT FEDERATED FINE-TUNING

Parameter-efficient federated fine-tuning presents a compelling strategy to mitigate resource de-
mands in distributed learning by freezing most pre-trained model parameters and updating only a
small, task-specific subset (Wu et al., 2025c). These methods generally fall into the following cate-
gories. Prompt-based techniques (Guo et al., 2023; Yang et al., 2023; Su et al., 2024) utilize carefully
designed soft prompts to guide model behavior without altering the pre-trained weights. Adapter-

2



Published as a conference paper at ICLR 2026

1

Deconfliction-guided Layer Grouping

Differential-based Layer Fusion

Step 1: Stage Submodel Construction

2 3 L...

1 2 3 L...

1 2&3 L...

Step 2: Collaborative Optimization

Local Fine-tuning

Local Fine-tuning

Local Fine-tuning

Local Fine-tuning

Step 3: Knowledge Transfer

1 2&3 L...

2 31 L...

Serves as the foundation for 
building the next stage 

submodel

Update the 
global model

Figure 3: Overview of DEVFT: The server first constructs the stage-specific submodel (step ①),
followed by collaborative optimization across edge devices (step ②). After each stage, the acquired
knowledge is employed to update the global model, which serves as the foundation for building the
subsequent stage submodel (step ③).

based methods (Cai et al., 2022; Liu et al., 2023; Li et al., 2022) insert lightweight adapter layers
into the network, allowing for task adaptation with minimal modifications. Notably, LoRA-based
approaches have garnered significant interest due to their effectiveness (Guo et al., 2025).

LoRA-based methods (Wang et al., 2024; Sun et al., 2024; Wu et al., 2025b) introduce low-rank
adaptations to weight updates, effectively preserving the expressiveness of the original model while
significantly reducing the number of trainable parameters. To accommodate heterogeneous re-
sources, approaches like HETLoRA (Cho et al., 2024) and FlexLoRA (Bai et al., 2024) assign
varying LoRA ranks to different devices. Fed-pilot (Zhang et al., 2024c) and Fed-HeLLo (Zhang
et al., 2025) optimize LoRA allocation through layer contribution quantification and resource-aware
importance scoring. Moreover, FwdLLM (Xu et al., 2023) and FedKSeed (Qin et al., 2023) employ
zeroth-order optimization to mitigate resource consumption. Furthermore, FeDeRA (Yan et al.,
2024) addresses data heterogeneity by initializing LoRA via singular value decomposition on pre-
trained parameters. While these methods have shown promise in their respective domains, they often
do not fully tackle the fundamental issue of the substantial computational requirements imposed by
end-to-end LLM fine-tuning. This persistent challenge motivates our proposed approach.

2.2 MOTIVATION FOR DEVELOPMENTAL FEDERATED TUNING

To address the persistent challenge of substantial computational burdens, we propose a different
paradigm. Unlike existing works that update the LLM in an end-to-end manner, which can be
resource-intensive, our approach progressively builds a capable model from a compact foundation.
Drawing inspiration from human cognitive development (Bengio et al., 2009; Sweller, 2008), where
learning progresses incrementally rather than instantaneously, we aim to mitigate these computa-
tional burdens by progressively cultivating a more capable LLM from a compact foundation.

Specifically, we decompose the fine-tuning process into S stages, each with multiple rounds, mim-
icking different periods in human learning. The submodel capacity (i.e., the number of layers) at
each stage is denoted as {L1, L2, . . . , LS}, forming a strictly monotonically increasing sequence
where Ls1 < Ls2 for any s1 < s2. The final stage capacity LS equals L, encompassing all layers of
the LLM. Additionally, the knowledge acquired in each stage seamlessly transfers to the submodel
of the subsequent stage, providing optimized initialization parameters. Compared to end-to-end fine-
tuning, this developmental paradigm significantly reduces resource overhead for edge devices while
achieving superior performance through a smoother optimization trajectory. In this way, DEVFT
enables participating devices to efficiently fine-tune an L-layer LLM for downstream tasks.

3 DEVELOPMENTAL FEDERATED TUNING (DEVFT)

3.1 OVERVIEW

Figure 3 illustrates the overall framework of DEVFT, which proceeds through three key steps.
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Figure 4: An illustration of layer vectors and layer arithmetic operations.

• Step ①: Stage Submodel Construction. Prior to the commencement of each stage, the server
constructs a stage-specific submodel. Specifically, the server utilizes the deconfliction-guided layer
grouping (DGLG) mechanism (Section 3.2) to cluster layers exhibiting minimal parameter con-
flicts. Subsequently, the differential-based layer fusion (DBLF) strategy (Section 3.3) is applied to
integrate intra-group information, generating a representative layer for each group. Finally, these
representative layers are concatenated sequentially to assemble the stage-specific submodel.

• Step ②: Collaborative Optimization. Once the submodel is constructed, the federated fine-
tuning process commences, wherein devices collaboratively train the submodel on their local data.

• Step ③: Knowledge Transfer. Upon completion of the current stage, the acquired knowledge
is synchronized to update the global model and is seamlessly transferred to initialize the submodel
for the subsequent stage (Section 3.4). This progressive model training process continues until the
completion of the S-th stage.

3.2 DECONFLICTION-GUIDED LAYER GROUPING

As shown in Figure 4(a), parameters of each layer can be represented as corresponding layer vectors,
with varying degrees of parameter conflict across layers. When constructing representative layers
for each group, strong parameter conflicts between layers can lead to severe information loss, as
parameters with opposite signs may neutralize each other’s unique contributions during the layer
fusion process. This cancellation results in a low-fidelity representative layer that fails to capture the
distinct functions of the original layers. Therefore, ensuring high intra-group similarity is critical to
minimize this loss and preserve representational fidelity. To achieve this, we propose a deconfliction-
guided layer grouping (DGLG) mechanism that clusters layers with minimal parameter conflicts into
the same group to preserve their respective knowledge. Specifically, the server initially calculates
inter-layer parameter similarity using Equation 1:

sim(θi, θj) =
⟨θi, θj⟩
∥θi∥∥θj∥

, (1)

where θi and θj denote the parameters of layers i and j, respectively, including their associated
LoRA parameters. This computation yields a layer similarity matrix W, where each entry wij mea-
sures the parameter similarity between layers i and j. Higher similarity values indicate lower param-
eter conflicts, suggesting these layers should be grouped together. Conversely, lower similarity val-
ues signify more severe parameter conflicts, necessitating the assignment of these layers to different
groups. Based on the similarity matrix W, we construct a complete undirected graph G = (V, E),
where V = {v1, v2, ..., vL} represents the set of layers and E = {sim(vi, vj)|vi, vj ∈ V, wij = wji}
denotes the set of edges weighted by layer similarities. The objective is to partition graph G into Ls

non-overlapping groups {gn}Ls
n=1 for stage s, which can be formally expressed as:

min
{g1,g2,...,gLs}

Ls∑
n=1

∑
m̸=n

cut(gn, gm),where cut(gn, gm) =
∑
p∈gn

∑
q∈gm

wpq,

s.t. ∀m,n ∈ {1, 2, ..., Ls},m ̸= n ⇒ gm ∩ gn = ∅ and
Ls⋃
n=1

gn = V.

(2)

To solve the optimization problem in Equation 2, we first construct the degree matrix D =

diag(d1, . . . , dL), where di =
∑L

j=1 wij denotes the sum of weights connected to vertex vi. We
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then compute the Laplacian matrix as L = D − W and perform eigenvalue decomposition on L
to obtain the eigenvectors corresponding to the Ls smallest eigenvalues. These eigenvectors are
stacked column by column to form the embedding matrix E ∈ RL×Ls . Finally, k-means clustering
is applied to E to partition the vertex set into Ls disjoint groups. This process can be formulated as:

{g1, . . . , gLs} = k-means (E, Ls) , E = [v1, . . . ,vLs ],

where L = D−W, D = diag

(
L∑

j=1

w1j , . . . ,

L∑
j=1

wLj

)
,

Lvt = λtvt, ∀t ∈ {1, . . . , Ls}, s.t. λ1 ≤ λ2 ≤ · · · ≤ λLs ,

(3)

where λt and vt represent the t-th eigenvalue and corresponding eigenvector of L. Through this
deconfliction-guided layer grouping mechanism, we can partition the L layers of the global model
into Ls groups {gn}Ls

n=1, where layers within each group exhibit minimal parameter conflicts.

3.3 DIFFERENTIAL-BASED LAYER FUSION

After obtaining the partitioned groups, we construct a representative layer for each group. To effec-
tively synthesize these representative layers, we introduce the differential-based layer fusion (DBLF)
strategy, which integrates layer information within each group through well-defined arithmetic oper-
ations. As illustrated in Figure 4(b), the layer addition operation merges knowledge from two layers,
producing a composite layer that encapsulates the semantic information of both source components.
Figure 4(c) shows the layer subtraction operation, which distills the unique information present in
one layer relative to another. For any given layers i and j, these operations are defined as follows:

τj+i = θj + θi,

τj−i = θj − θi,
(4)

where τj+i and τj−i denote the resulting parameter vectors after addition and subtraction operations,
respectively. These operations enable fine-grained knowledge editing in the parameter space. A
naive approach for intra-group information integration involves performing the addition operation
on all layers. However, this introduces significant information redundancy, as layers within the same
group gn typically share similar functional characteristics. This redundancy limits the submodel’s
capability to capture diverse and meaningful representations.

To address this challenge, instead of indiscriminately merging all information, DBLF selectively
integrates the unique semantic information of each layer. Specifically, it designates the first layer of
each group as the anchor layer and computes the information differentials of other layers relative
to this anchor layer through the layer subtraction operation. During layer fusion, only the informa-
tion differentials are encapsulated into the anchor layer, thereby effectively preserving each layer’s
essential information while eliminating redundancy. This fusion process can be formulated as:

ϑgn = θanchor + β
∑
j∈gn

(θj − θanchor), (5)

where β is a weighting factor, θanchor represents the parameters of the anchor layer, and ϑgn stands
for the representative layer of group gn, encapsulating the distinctive features of all layers within
the group. These derived representative layers are then concatenated sequentially to construct the
stage-specific submodel for federated fine-tuning.

3.4 KNOWLEDGE TRANSFER

Cross-stage knowledge transfer is critical for cultivating high-performance LLMs, analogous to hu-
man cognition where new knowledge builds upon established foundations. At each stage, the ac-
quired knowledge provides optimized initialization for the next-stage submodel, thereby accelerat-
ing convergence and improving overall performance by avoiding poor local minima. Through strate-
gic layer clustering and representative layer construction, the encoded knowledge in {ϑgn}Ls

n=1 can
be directly utilized to update all layers within their respective groups {gn}Ls

n=1 (step 3 in Figure 3).
The rationale is that functionally similar layers inherently exhibit similar parameter distributions
and learning patterns. Notably, we only update the LoRA parameters of each layer. This transfer
process yields an updated global model that serves as the foundation for constructing the next-stage
submodel, ensuring seamless knowledge inheritance across stages. A practical implementation ex-
ample is detailed in Appendix A.
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Table 1: Performance evaluation of DEVFT against baseline methods on instruction tuning tasks.
Bold and underlined values denote the best and second-best results, respectively.

Method Close-Ended Benchmark ↑ Open-Ended Benchmark ↑
TruthfulQA MMLU IFEval BBH Average Vicuna MT-1 MT-2 Average

LLaMA2-7B (INT4) (Touvron et al., 2023)

FedIT 47.57 42.45 31.76 39.28 40.27 8.18 4.77 1.98 4.98
DoFIT 48.32 43.04 32.62 39.59 40.89 8.19 4.92 2.13 5.08
C2A 46.71 41.83 29.45 36.07 38.52 7.66 3.97 1.88 4.50
ProgFed 48.60 43.14 32.54 39.73 41.00 8.20 4.88 2.19 5.09
FLoRA 47.76 42.64 32.08 39.25 40.43 8.21 4.85 2.02 5.03
FedSA-LoRA 48.24 42.91 32.71 39.36 40.81 8.26 5.09 2.31 5.22
DEVFT 50.28 44.15 33.97 40.93 42.33 8.41 5.76 2.92 5.70

LLaMA3.1-8B (INT4) (Grattafiori et al., 2024)

FedIT 48.07 63.31 47.32 62.69 55.35 8.89 6.54 5.03 6.82
DoFIT 49.12 65.17 51.66 65.21 57.79 9.01 6.72 5.22 6.98
C2A 48.99 63.76 46.10 61.85 55.18 8.74 6.67 4.98 6.80
ProgFed 53.12 66.77 54.55 66.03 60.12 9.07 6.85 5.08 7.00
FLoRA 50.23 64.95 50.47 64.93 57.65 8.96 6.75 5.11 6.94
FedSA-LoRA 53.29 66.87 56.17 67.56 60.97 9.03 6.92 5.41 7.12
DEVFT 55.23 68.42 62.29 71.04 64.25 9.18 7.63 6.57 7.79

LLaMA2-13B (INT4) (Touvron et al., 2023)

FedIT 52.40 55.45 40.33 46.14 48.58 8.37 5.17 3.01 5.52
DoFIT 54.77 56.09 41.68 46.41 49.74 8.37 5.19 3.34 5.63
C2A 53.91 54.33 38.96 45.06 48.07 8.05 5.08 3.26 5.46
ProgFed 55.01 57.38 42.13 46.36 50.22 8.38 5.28 3.07 5.58
FLoRA 54.26 56.23 41.49 46.32 49.58 8.40 5.22 3.15 5.59
FedSA-LoRA 55.73 57.51 43.21 46.91 50.84 8.49 5.39 3.45 5.78
DEVFT 57.19 58.74 46.45 48.70 52.77 8.67 6.18 4.52 6.46

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Datasets. Following OpenFedLLM (Ye et al., 2024), we evaluate DEVFT on three
LLaMA-based models: LLaMA2-7B (Touvron et al., 2023), LLaMA3.1-8B (Grattafiori et al.,
2024), and LLaMA2-13B. All models are fine-tuned on the Alpaca-GPT4 dataset (Peng et al., 2023),
and are evaluated on both close-ended and open-ended benchmarks. Specifically, the close-ended
benchmarks include TruthfulQA (Lin et al., 2022), MMLU (Hendrycks et al., 2020), IFEval (Zhou
et al., 2023), and BBH (Suzgun et al., 2022), which assess the models’ capabilities in honesty and
truthfulness, knowledge coverage, instruction following, and reasoning, respectively. The open-
ended benchmarks, including Vicuna-Bench (Chiang et al., 2023) and MT-Bench (Zheng et al.,
2024), evaluate the models’ performance in multi-turn dialogue scenarios.

Implementation Details. The fine-tuning process is divided into four stages (S = 4) for all models,
with each stage’s submodel receiving an equal number of federated fine-tuning rounds. The capacity
of the submodels doubles at each stage. Specifically, for LLaMA2-7B and LLaMA3.1-8B, the
submodel capacities across the four stages are {4, 8, 16, 32}, whereas for LLaMA2-13B, they are
{5, 10, 20, 40}. We set the hyperparameter β to 0.1 for LLaMA2-7B and LLaMA3.1-8B, and 0.15
for LLaMA2-13B. Additional implementation details are provided in Appendix B.

4.2 BASELINES

Resource-Unaware Methods. FedIT (Zhang et al., 2024a) integrates LoRA with FedAvg to enable
federated instruction tuning. DoFIT (Xu et al., 2024a) employs specialized LoRA initialization and
aggregation strategies to mitigate catastrophic forgetting. C2A (Kim et al., 2023) addresses data
heterogeneity through a hypernetwork that dynamically generates device-specific adapters.

Resource-Aware Methods. ProgFed (Wang et al., 2022) partitions the global model into blocks
and gradually incorporates them for training. FLoRA (Wang et al., 2024) allocates different LoRA
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Figure 5: Comparative analysis of cumulative local training time across different methods.
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Figure 6: Comparative analysis of total communication overhead across different methods.

ranks to devices based on their resources. FedSA-LoRA (Guo et al., 2025) only shares matrices A
with the server to reduce resource costs.

4.3 PERFORMANCE EVALUATION

Table 1 presents the comprehensive performance comparison. DEVFT consistently outperforms
baseline methods across all settings, demonstrating its effectiveness and robustness.

1) Comparison with Resource-Unaware Methods. Resource-unaware methods uniformly demon-
strate inferior performance. On close-ended benchmarks, FedIT suffers average performance drops
of 2.06%, 8.9%, and 4.19% on LLaMA2-7B, LLaMA3.1-8B, and LLaMA2-13B, respectively. For
open-ended benchmarks, the gaps are 0.72, 0.97, and 0.94. This degradation primarily arises from
noise introduced by FedIT’s independent aggregation of matrices A and B. DoFIT achieves moder-
ate gains through specialized initialization and aggregation strategies but still lags behind DEVFT,
with a gap of up to 10.63% on LLaMA3.1-8B. Similarly, C2A performs notably worse than DEVFT,
with average performance drops of up to 9.07% and 1.2 in close-ended and open-ended benchmarks,
respectively, underscoring the inherent limitations of adapter-based methods.

2) Comparison with Resource-Aware Methods. Resource-aware methods generally outperform
resource-unaware counterparts, but still fall short of DEVFT. ProgFed shows average performance
degradation of 1.33% and 0.61 on LLaMA2-7B, 4.13% and 0.79 on LLaMA3.1-8B, and 2.55% and
0.88 on LLaMA2-13B for close-ended and open-ended benchmarks, respectively. FedSA-LoRA
exhibits similar performance degradation patterns to ProgFed, while FLoRA demonstrates more
significant performance deterioration. In particular, for close-ended benchmarks, FedSA-LoRA
shows average performance decrements ranging from 1.52% to 3.28% across these models, whereas
FLoRA exhibits more substantial degradation, with decrements spanning from 1.9% to 6.6%. The
superiority of DEVFT stems from its developmental paradigm, which progressively builds a power-
ful LLM from a compact foundation, effectively preventing convergence to local minima.

4.4 EFFICIENCY EVALUATION

In this section, we evaluate the efficiency of DEVFT from both computational and communica-
tion perspectives. Furthermore, we present a detailed analysis of training overhead across different
developmental stages to understand how DEVFT effectively optimizes resource utilization.

Computation Efficiency. Instead of using floating-point operations per second (FLOPs) to evaluate
computation efficiency, we employ wall-clock training time to provide a more intuitive reflection of
real-world deployment efficiency for each method. Specifically, we measure the cumulative local
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Figure 7: Resource consumption analysis of a device per round: training time, communication
overhead, and memory usage for LLaMA2-7B.

training time required for each method to reach convergence, with results shown in Figure 5. Our
experimental results demonstrate that DEVFT significantly accelerates model convergence across all
model architectures. Notably, for LLaMA2-7B, DEVFT achieves up to 4.59× speedup in conver-
gence time. This improvement can be attributed to the developmental training paradigm of DEVFT:
early fine-tuning on compact submodels significantly reduces computational overhead, while cross-
stage knowledge transfer further expedites convergence when scaling to larger submodels.

Communication Efficiency. Figure 6 illustrates the total communication overhead required for each
method to reach convergence. DEVFT consistently achieves convergence with minimal communi-
cation costs across all experimental settings, reducing communication overhead by up to 10.67×
on LLaMA2-13B. This communication efficiency stems from the fact that DEVFT only transmits a
small number of LoRA parameters to the server during the initial S − 1 stages.

Detailed Overhead Analysis. To gain a deeper understanding of DEVFT’s efficiency, Figure 7 re-
ports the per-round resource consumption on each device for FedIT and DEVFT, including training
time, communication overhead, and memory usage. FedIT consistently incurs high resource costs
throughout fine-tuning. In contrast, DEVFT exhibits a more efficient pattern, with resource require-
ments gradually increasing as the submodel capacity expands, thereby substantially reducing over-
all training overhead. In the early stages, particularly the first stage, DEVFT achieves significant
resource savings compared to FedIT, reducing per-round training time by 10.3×, communication
overhead by 4×, and memory usage by 4×. Intriguingly, we discover that fine-tuning the recon-
structed models of DEVFT at each stage also yields acceleration compared to directly fine-tuning
pre-trained models. For example, even in the fourth stage where the submodel grows to match the
target model size, DEVFT still delivers a 1.44× speedup per round.

Table 2: Ablation study on different layer
grouping strategies.

Method Close-Ended Benchmark ↑
TruthfulQA MMLU IFEval BBH Average

LLaMA2-7B (INT4) (Touvron et al., 2023)

DGLG 50.28 44.15 33.97 40.93 42.33
RANDOM 47.89 42.09 29.18 38.45 39.90 (↓ 2.43)
EVEN 45.41 39.83 25.04 36.73 36.25 (↓ 6.08)

LLaMA3.1-8B (INT4) (Touvron et al., 2023)

DGLG 55.23 68.42 62.29 71.04 64.25
RANDOM 51.02 66.74 54.89 70.11 60.69 (↓ 3.56)
EVEN 48.51 62.50 50.01 70.03 57.76 (↓ 6.49)

Table 3: Ablation study on different representa-
tive layer construction methods.

Method Close-Ended Benchmark ↑
TruthfulQA MMLU IFEval BBH Average

LLaMA2-7B (INT4) (Touvron et al., 2023)

DBLF 50.28 44.15 33.97 40.93 42.33
R-ONE 46.75 40.13 26.38 37.62 37.72 (↓ 4.61)
SUM 48.15 42.91 30.69 39.84 40.90 (↓ 1.43)

LLaMA3.1-8B (INT4) (Touvron et al., 2023)

DBLF 55.23 68.42 62.29 71.04 64.25
R-ONE 47.51 57.33 50.21 58.09 53.29 (↓ 10.96)
SUM 52.74 65.18 58.47 68.39 61.20 (↓ 3.05)

4.5 ABLATION STUDY

Effect of the Deconfliction-Guided Layer Grouping Mechanism. To understand the significance
of the deconfliction-guided layer grouping (DGLG), we compare it with two baselines: random
grouping (RANDOM) and even grouping (EVEN). Table 2 shows that DGLG consistently outper-
forms both baselines across all settings. For LLaMA2-7B, RANDOM and EVEN incur average per-
formance drops of 2.43% and 6.08%, respectively, relative to DGLG. Similar trends are observed on
LLaMA3.1-8B, where the degradations reach 3.56% and 6.49%, respectively. These results demon-
strate that DGLG effectively enhances the layer fusion process by clustering layers with minimal
parameter conflicts into the same group, thereby preserving more informative representations.
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Table 4: Evaluation of DEVFT’s compatibility with existing methods.

Method Close-Ended Benchmark ↑ Resource ↓
TruthfulQA MMLU IFEval BBH Average Time (h) Comm. (GB)

LLaMA2-7B (INT4) (Touvron et al., 2023)

FedIT 47.57 42.45 31.76 39.28 40.27 2.49 5.03
FedIT+DEVFT 49.86 43.87 33.65 40.79 42.04 (↑ 1.77) 0.83 (×3.00) 2.36 (×2.13)
FedSA-LoRA 48.24 42.91 32.71 39.36 40.81 2.38 2.52
FedSA-LoRA+DEVFT 50.42 44.57 40.92 41.36 44.32 (↑ 3.51) 0.72 (×3.31) 1.18 (×2.14)

LLaMA2-13B (INT4) (Touvron et al., 2023)

FedIT 52.40 55.45 40.33 46.14 48.58 6.67 8.39
FedIT+DEVFT 56.84 58.26 45.49 48.52 52.28 (↑ 3.70) 2.30 (×2.90) 3.93 (×2.13)
FedSA-LoRA 55.73 57.51 43.21 46.91 50.84 6.42 4.20
FedSA-LoRA+DEVFT 57.61 59.25 47.63 49.13 53.41 (↑ 2.57) 2.19 (×2.93) 1.97 (×2.13)

Table 5: Performance analysis of different ini-
tial submodel capacities.

Initial Close-Ended Benchmark ↑
Capacity TruthfulQA MMLU IFEval BBH Average

LLaMA3.1-8B (INT4) (Touvron et al., 2023)

1 52.45 66.85 56.83 70.12 61.56 (↓ 2.69)
2 53.87 67.31 59.45 70.50 62.78 (↓ 1.47)
4 55.23 68.42 62.29 71.04 64.25
8 53.21 67.12 58.35 70.65 62.33 (↓ 1.92)

16 51.08 65.89 54.12 70.01 60.28 (↓ 3.97)
32 48.79 64.49 49.75 69.33 58.09 (↓ 6.16)

Table 6: Performance analysis under varying
submodel growth rates.

Growth Close-Ended Benchmark ↑
Rate TruthfulQA MMLU IFEval BBH Average

LLaMA2-7B (INT4) (Touvron et al., 2023)

2 50.28 44.15 33.97 40.93 42.33
4 47.96 42.56 29.87 38.79 39.80 (↓ 2.53)
8 45.68 40.07 25.63 36.92 37.08 (↓ 5.25)

LLaMA2-13B (INT4) (Touvron et al., 2023)

2 57.19 58.74 46.45 48.70 52.77
4 52.23 56.78 34.56 42.29 46.47 (↓ 6.3)
8 48.12 52.33 26.78 37.45 41.17 (↓ 11.6)

Effect of the Differential-Based Layer Fusion Strategy. To evaluate the effectiveness of the
differential-based layer fusion (DBLF), we compare it against two baselines: R-ONE, which ran-
domly selects one layer from each group as the representative layer, and SUM, which directly per-
forms the addition operation on all layers within each group to generate the representative layer.
As shown in Table 3, DBLF consistently outperforms both baselines. On LLaMA2-7B, R-ONE and
SUM incur average performance drops of 4.61% and 1.43%, respectively, relative to DBLF. The per-
formance gap widens on LLaMA3.1-8B, with degradations reaching 10.96% for R-ONE and 3.05%
for SUM. These results confirm that DBLF can effectively capture and integrate the unique semantic
information from layers within each group, leading to superior representative layer construction.

4.6 ANALYSIS

Compatibility with Existing Methods. We further validate the compatibility of DEVFT with ex-
isting approaches by integrating it with FedIT and FedSA-LoRA. Table 4 shows that incorporating
DEVFT consistently improves model performance and system efficiency. For example, combining
DEVFT with FedIT on LLaMA2-13B yields a 3.7% average performance gain, 2.9× faster conver-
gence, and a 2.13× reduction in communication overhead. Similar improvements are observed when
integrating DEVFT with FedSA-LoRA. These results indicate that DEVFT functions as a general
framework that seamlessly enhances existing methods while preserving their inherent strengths.

Impact of Initial Submodel Capacity. We also conduct experiments to investigate how the initial
capacity of submodels influences the overall model performance. Specifically, we experiment with
LLaMA3.1-8B and set different initial capacities {1,2,4,8,16,32}, while maintaining the same total
training budget. The submodel capacity also doubles progressively until reaching the full model
capacity. Table 5 shows that the model achieves optimal performance when the initial capacity is
set to 4, while either smaller or larger initial capacities result in performance degradation. This phe-
nomenon is analogous to human learning, where starting from either too early (infancy) or too late
(adulthood) may lead to suboptimal outcomes due to premature or delayed cognitive development.

Impact of Submodel Growth Rate. We explore how different submodel growth rates affect over-
all performance. Specifically, we experiment with diverse capacity scaling multipliers {2,4,8}.
For instance, a multiplier of 4 indicates that the submodel capacity quadruples at each stage un-
til reaching the full capacity. This generates capacity sequences of {4→16→32} for LLaMA2-7B
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Table 7: Scalability and robustness analysis of DevFT on text classification tasks.

Method Evaluation Benchmark ↑

YELP-P AGNEWS YAHOO 20NEWS Average

BERT (Devlin et al., 2019)

FedIT 83.12 87.05 68.34 76.89 78.85
DEVFT 84.53 90.91 70.67 80.06 81.54 (↑2.69)

RoBERTa (Liu et al., 2019)

FedIT 82.93 87.86 68.21 77.32 79.08
DEVFT 84.02 90.27 71.35 79.83 81.37 (↑2.29)

and {5→20→40} for LLaMA2-13B. Table 6 demonstrates that higher growth rates significantly
compromise model performance. For LLaMA2-7B, scaling multipliers of 4 and 8 lead to average
performance drops of 2.53% and 5.25%, respectively. The degradation is even more pronounced on
LLaMA2-13B, with decreases of 6.3% and 11.6%. This deterioration can be attributed to abrupt ca-
pacity transitions, which may disrupt the construction of the knowledge structure. This phenomenon
mirrors natural learning processes, where steady, incremental development typically yields better
long-term outcomes compared to the aggressive pursuit of short-term performance gains.

Scalability and Robustness Analysis. To assess DEVFT’s scalability across varying device popu-
lations and its robustness to data heterogeneity, we conduct additional experiments on text classifi-
cation tasks partitioned via a Dirichlet distribution (α = 1). Our experimental setup spans a wide
range of scales, including 100 devices for 20NEWS (Lang, 1995), 1,000 for AGNEWS (Zhang et al.,
2015) and YELP-P (Zhang et al., 2015), and up to 10,000 devices for YAHOO (Zhang et al., 2015),
utilizing BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) as global models. The results
in Table 7 indicate that DEVFT consistently outperforms the baseline in these heterogeneous set-
tings, achieving an average performance gain of up to 2.69% on BERT. This success underscores the
scalability and robustness of our method, which stems from our developmental training paradigm:
by initiating training with smaller, less complex submodels, DEVFT effectively mitigates the risk of
client drift and overfitting to local data distributions during the critical early phases.

5 FUTURE WORK

The developmental analogy underlying DEVFT can be interpreted through two distinct lenses: a
Capacity Curriculum (mirroring the physical development of the brain) and a Data Curriculum (mir-
roring the progression from simple to complex knowledge) (Soviany et al., 2022). In this work,
DEVFT strategically prioritizes the Capacity Curriculum to address the immediate and prohibitive
hardware bottlenecks prevalent in resource-constrained federated edge environments. However, we
recognize that integrating a Data Curriculum represents a logical and promising evolution of the
framework. Future research could explore synergizing model-level growth with data-level curricu-
lum learning—for instance, feeding simpler instructions to early-stage submodels while reserving
complex reasoning tasks for the fully matured model—to fully realize the cognitive metaphor.

6 CONCLUSION

In this paper, we introduce DEVFT, an innovative federated fine-tuning framework that substan-
tially reduces the resource consumption of LLM adaptation through cognitive developmental train-
ing. DEVFT decomposes the fine-tuning process into several developmental stages, where each
stage adapts a submodel with increasing parameter capacity. To efficiently architect these stage-
specific submodels, DEVFT integrates two key techniques: a deconfliction-guided layer grouping
mechanism and a differential-based layer fusion strategy. Extensive evaluations across multiple
benchmarks demonstrate that DEVFT achieves superior performance with significantly enhanced
efficiency. Moreover, it maintains high compatibility with existing federated fine-tuning methods,
offering a robust and versatile enhancement to the current ecosystem.
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A A CONCRETE EXAMPLE OF DEVFT IN PRACTICE

Assume the full model consists of six layers: [θ1, θ2, θ3, θ4, θ5, θ6], and DEVFT proceeds in three
stages with sub-model capacities: {2 → 4 → 6}.

Stage 1 (Capacity = 2):

• DGLG partitions the layers into two groups: [{θ1, θ2, θ3}, {θ4, θ5, θ6}].
• DBLF produces two representative layers: {θ1, θ2, θ3} → ϑg1 ; {θ4, θ5, θ6} → ϑg2 .

• These two representative layers form the sub-model [ϑg1 , ϑg2 ] for the current stage.

• After completing the current stage, we perform knowledge transfer as follows: ϑg1 →
θ1,2,3;ϑ

g2 → θ4,5,6.

• All layers are updated, and the resulting global model then serves as the foundation for
constructing the submodel in the next stage.

Stage 2 (Capacity = 4):

• DGLG partitions the layers into four groups: [{θ1}, {θ2, θ3}, {θ4, θ5}, {θ6}].
• DBLF produces four representative layers: {θ1} → ϑg1 ; {θ2, θ3} → ϑg2 ; {θ4, θ5} →
ϑg3 ; {θ6} → ϑg4 .

• These four representative layers form the sub-model [ϑg1 , ϑg2 , ϑg3 , ϑg4 ] for the current
stage.

• After completing the current stage, we perform knowledge transfer as follows: ϑg1 →
θ1;ϑ

g2 → θ2,3;ϑ
g3 → θ4,5;ϑ

g4 → θ6.

• All layers are updated, and the resulting global model then serves as the foundation for
constructing the submodel in the next stage.

Stage 3 (Capacity = 6):

• The submodel now encompasses all six layers, reaching the model’s full capacity and en-
abling end-to-end fine-tuning of the global model to complete the training process.

This example serves as a simplified illustration to intuitively demonstrate the multi-stage group-
ing concept. Empirically, we observe that neighboring layers often exhibit high similarity in both
function and parameters due to the hierarchical nature of information processing in Transformers.
Consequently, these layers are frequently clustered together by DGLG. Thus, while DGLG operates
independently of layer positions, this contiguous grouping serves as a representative and intuitive
visualization of the actual process.

B ADDITIONAL IMPLEMENTATION DETAILS

Our DEVFT is implemented using PyTorch with the support of HuggingFace Transformers li-
brary (Wolf, 2019) for model and dataset management. Following the experimental setup of Open-
FedLLM (Ye et al., 2024), we randomly distribute the Alpaca-GPT4 dataset across 20 devices, with
10% of devices randomly sampled for participation in each training round. Each selected device
performs 10 local training iterations with a batch size of 16. The local fine-tuning process utilizes
the AdamW optimizer coupled with a cosine learning rate scheduler. We adopt a staged learning rate
strategy, starting at 1e-6 and incrementing by a factor of 10 at each subsequent stage until reaching
1e-4. Additionally, we exclusively apply LoRA to Wq and Wv matrices in the attention layers (Xu
et al., 2026a;b) and configure the LoRA module with a rank of 32. The maximum sequence length
is set to 512 tokens (Ye et al., 2024). The total number of federated fine-tuning rounds is set to 300
for LLaMA2-7B and LLaMA3.1-8B, and increases to 400 for LLaMA2-13B. Moreover, to improve
computational efficiency, we apply INT4 quantization (Ye et al., 2024) to all models and conduct
experiments on a single NVIDIA H800 GPU. To ensure the reliability of our results, all experiments
are repeated multiple times, with the averaged values reported as the final results.
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C THEORETICAL CONVERGENCE ANALYSIS

We analyze DEVFT under standard nonconvex FL assumptions (Li et al., 2019; Wang et al., 2022;
Wu et al., 2024). The analysis is aligned with the actual pipeline: at each stage, the current full model
is regrouped, DBLF constructs representative-layer initialization, the stage submodel is trained by
FedAvg, and the trained submodel is mapped back to the full model by group-wise replication.

C.1 PRELIMINARIES AND STAGE TRANSITION

Full objective. Let Θ ∈ Rd denote full-model trainable parameters (L layers). For client i ∈ [N ]:

fi(Θ) = Eξ∼Di [ℓ(Θ; ξ)], f(Θ) =
1

N

N∑
i=1

fi(Θ), finf := inf
Θ

f(Θ) > −∞. (6)

Use block norm ∥Θ∥2 =
∑L

j=1 ∥θj∥2.

Stage-wise dynamic grouping. At stage s ∈ [S], grouping is recomputed from the previous fused
full model Θ(s−1)

fuse (for s = 1, Θ(0)
fuse is the given initialization):

Πs = {g(s)n }Ls
n=1 = DGLG

(
Θ

(s−1)
fuse

)
, L1 < · · · < LS = L.

Let ms := maxn |g(s)n | and ds = Lsdlayer.

Stage-start DBLF construction (full → submodel). For each group g
(s)
n with anchor a(n), define

representative block

u
(s)
0,n = θ

(s−1)
fuse,a(n) + β

∑
j∈g

(s)
n

(
θ
(s−1)
fuse,j − θ

(s−1)
fuse,a(n)

)
, β ∈ (0, 1]. (7)

Stacking {u(s)
0,n}

Ls
n=1 gives

u
(s)
0 = (u

(s)
0,1, . . . , u

(s)
0,Ls

) ∈ Rds .

Stage embedding and objective. Define replication embedding EΠs
s : Rds → Rd: for any j ∈

g
(s)
n , [EΠs

s (u)]j = un. Equivalently, EΠs
s (u) = Asu, where

∥As∥22 = ms. (8)

Define stage objective

Fs(u; Πs) :=
1

N

N∑
i=1

fi
(
EΠs
s (u)

)
, F ∗

s (Πs) := inf
u

Fs(u; Πs). (9)

If each fi is Lf -smooth in Θ, then Fs(·; Πs) is (Lfms)-smooth. Let

L̄ := Lf max
s∈[S]

ms, (10)

so every stage objective is L̄-smooth.

Stage-end map-back (submodel → full). After stage-s training obtains u(s)
Ts

, define

Θ
(s)
fuse := EΠs

s

(
u
(s)
Ts

)
. (11)

This is pure replication (broadcast) and introduces no extra fusion perturbation.

Federated protocol. Each round samples M = qN clients (q ∈ (0, 1]), each selected client
performs K local SGD steps (stepsize η), then server averages (FedAvg (McMahan et al., 2017)).
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Assumptions.
Assumption C.1 (Smoothness). ∥∇fi(Θ)−∇fi(Θ

′)∥ ≤ Lf∥Θ−Θ′∥, ∀i,Θ,Θ′.

Assumption C.2 (Unbiased stochastic gradients, bounded variance). E[gi(Θ; ξ)] = ∇fi(Θ) and
E∥gi(Θ; ξ)−∇fi(Θ)∥2 ≤ σ2.

Assumption C.3 (Bounded heterogeneity). 1
N

∑N
i=1 ∥∇fi(Θ)∥2 ≤ ∥∇f(Θ)∥2 +G2, ∀Θ.

C.2 PER-STAGE CONVERGENCE

Theorem C.4 (Per-stage stationarity). Fix stage s and condition on grouping Πs. Under Assump-
tions C.1–C.3, run FedAvg on Fs(·; Πs) for Ts rounds, K local steps each round, and M = qN
participants each round. If ηs ≤ 1

4L̄K
, then

1

Ts

Ts−1∑
t=0

E
[
∥∇Fs(u

(s)
t ; Πs)∥2 | Πs

]
≤

2
(
Fs(u

(s)
0 ; Πs)− F ∗

s (Πs)
)

ηsKTs
+

L̄ ηs σ
2

qN
+ c1L̄

2η2sK
2G2,

(12)
where c1 > 0 is an absolute constant.

Corollary C.5 (Per-stage O(1/
√
Ts)). If ηs = c0

K
√
Ts

with c0 ≤ 1
4L̄

, then

1

Ts

Ts−1∑
t=0

E
[
∥∇Fs(u

(s)
t ; Πs)∥2 | Πs

]
≤ O

(
Fs(u

(s)
0 ; Πs)− F ∗

s (Πs)√
Ts

)
+O

(
1

qN K
√
Ts

)
+O

(
1

Ts

)
.

(13)

C.3 DBLF CONSTRUCTION PERTURBATION BOUND

DBLF perturbation occurs at stage start (Eq. 7).

Lemma C.6 (Stage-start DBLF perturbation). Define the pre-construction intra-group diameter

δpres−1 := max
n

max
j,k∈g

(s)
n

∥∥∥θ(s−1)
fuse,j − θ

(s−1)
fuse,k

∥∥∥ . (14)

Then for any group g
(s)
n and any j ∈ g

(s)
n ,∥∥∥u(s)

0,n − θ
(s−1)
fuse,j

∥∥∥ ≤
(
1 + β(|g(s)n | − 1)

)
δpres−1 ≤ (1 + βms)δ

pre
s−1. (15)

Let Θ̃(s)
0 := EΠs

s (u
(s)
0 ). Then∥∥∥Θ̃(s)

0 −Θ
(s−1)
fuse

∥∥∥ ≤
√
L (1 + βms)δ

pre
s−1. (16)

Proof. From Eq. 7,

u
(s)
0,n − θ

(s−1)
fuse,j =

(
θ
(s−1)
fuse,a(n) − θ

(s−1)
fuse,j

)
+ β

∑
k∈g

(s)
n

(
θ
(s−1)
fuse,k − θ

(s−1)
fuse,a(n)

)
.

Applying triangle inequality and the definition of δpres−1 gives Eq. 15. Summing squared block devi-
ations over L layers yields Eq. 16.

C.4 FINAL-STAGE FULL-OBJECTIVE GUARANTEE

At stage S, LS = L, and thus FS(·; ΠS) ≡ f(·). By construction,

Θ
(S)
0 = Θ

(S−1)
fuse . (17)

Also define the DBLF-replicated start point

Θ̃
(S)
0 := EΠS

S (u
(S)
0 ),
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Table 8: Assessing the generalization capability of DEVFT in centralized training scenarios.

Method Close-Ended Benchmark ↑ Time (h) ↓
TruthfulQA MMLU IFEval BBH Average

LLaMA2-7B (INT4) (Touvron et al., 2023)

End-to-End 48.36 43.27 32.64 39.54 40.95 1.77
DEVFT 52.39 47.59 35.86 42.25 44.52 (↑ 3.57) 0.55 (×3.22)

LLaMA2-13B (INT4) (Touvron et al., 2023)

End-to-End 54.68 57.32 42.51 46.98 50.37 4.28
DEVFT 59.38 61.82 48.57 49.95 54.93 (↑ 4.56) 1.41 (×3.04)

for which Lemma C.6 gives

∥Θ̃(S)
0 −Θ

(S)
0 ∥ ≤

√
L (1 + βmS)δ

pre
S−1. (18)

Using Lf -smoothness and Young’s inequality, for any α > 0:

f(Θ +∆) ≤ f(Θ) +
1

2α
∥∇f(Θ)∥2 + α+ Lf

2
∥∆∥2. (19)

Theorem C.7 (Final-stage convergence on full objective). Under Assumptions C.1–C.3, run stage
S for TS rounds with K local steps, participation rate q, and ηS ≤ 1

4L̄K
. Then

1

TS

TS−1∑
t=0

E∥∇f(Θ
(S)
t )∥2 ≤

2
(
f(Θ

(S)
0 )− finf

)
ηSKTS

+
L̄ ηS σ2

qN
+ c1L̄

2η2SK
2G2. (20)

Moreover, for any α > 0,

f(Θ̃
(S)
0 )− finf ≤

(
f(Θ

(S)
0 )− finf

)
+

1

2α
∥∇f(Θ

(S)
0 )∥2 + α+ Lf

2
L (1 + βmS)

2
(
δpreS−1

)2
. (21)

Proof. Eq. 20 is Theorem C.4 applied to stage S, where FS = f . Eq. 21 follows from Eq. 19 with
Θ = Θ

(S)
0 , ∆ = Θ̃

(S)
0 −Θ

(S)
0 , and Eq. 18.

Corollary C.8 (Final-stage O(1/
√
TS)). If ηS = c0

K
√
TS

with c0 ≤ 1
4L̄

, then

1

TS

TS−1∑
t=0

E∥∇f(Θ
(S)
t )∥2 ≤ O

(
f(Θ

(S)
0 )− finf√

TS

)
+O

(
1

qN K
√
TS

)
+O

(
1

TS

)
. (22)

In addition, Eq. 21 shows an explicit DBLF construction perturbation term
O
(
L(1 + βmS)

2(δpreS−1)
2
)
.

Conclusion. The proof now matches the exact stage flow: regroup →
DBLF construct submodel → FedAvg train → map back to full model, repeated across
stages. Per-stage guarantees are established on the corresponding stage objectives, and the final
guarantee is stated on a single full objective f , without telescoping across incompatible objectives.

D MORE EXPERIMENTS

D.1 GENERALIZABILITY ANALYSIS: CENTRALIZED TRAINING

We further evaluate the generalizability of DEVFT under centralized training. To this end, we
conduct additional experiments using the same stage-wise training strategy, with end-to-end fine-
tuning as the baseline. As shown in Table 8, DEVFT consistently outperforms end-to-end fine-tuning
across all benchmarks. On LLaMA2-7B, DEVFT improves performance by 4.03%, 4.32%, 3.22%,
and 2.71% on TruthfulQA, MMLU, IFEval, and BBH, respectively, while accelerating convergence
by 3.22×. On the larger LLaMA2-13B, DEVFT maintains this advantage, yielding an average
performance gain of 4.56% and a 3.04× speedup.
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Table 9: Performance comparison under heterogeneous resource constraints on LLaMA2-7B
(INT4).

Method Close-Ended Benchmark ↑

TruthfulQA MMLU IFEval BBH Average

FedIT 41.96 40.82 26.38 37.13 36.57 (-2.87)
DoFIT 43.74 41.53 28.71 38.45 38.11 (-1.33)
C2A 41.78 40.63 26.21 36.98 36.40 (-3.04)
ProgFed 45.04 41.67 29.26 38.51 38.62 (-0.82)
FLoRA 43.58 41.35 28.06 37.94 37.73 (-1.71)
FedSA-LoRA 45.27 41.77 29.60 38.62 38.82 (-0.62)
DEVFT 45.86 42.35 30.54 39.01 39.44

These gains arise from DEVFT ’s developmental training paradigm, which incrementally expands
model capacity during fine-tuning. Progressive scaling smooths the loss landscape and mitigates
poor local minima, while compact early-stage submodels reduce computation. The knowledge
learned at each stage is then reused to initialize subsequent larger models, thereby accelerating
convergence. Overall, these results demonstrate the generalizability of DEVFT beyond the feder-
ated setting, underscoring its potential as an efficient and scalable fine-tuning framework even under
centralized training.

D.2 ROBUSTNESS UNDER HETEROGENEOUS RESOURCE CONSTRAINTS

To evaluate the robustness of DEVFT in realistic edge environments, we simulate a heterogeneous
setting where device memory budgets range from 3GB to 9GB. In this setup, resource-constrained
devices (e.g., those with 3GB memory) participate exclusively in the early, less resource-intensive
developmental stages. Experimental results in Table 9 demonstrate that DEVFT outperforms all
baselines, achieving an average performance improvement of up to 3.04%. This performance boost
is attributed to the inclusive nature of DEVFT: unlike baselines that exclude low-memory devices
entirely, DEVFT enables these devices to contribute their valuable local data to the model’s founda-
tional knowledge during the early stages.

D.3 COMPARISON WITH STATE-OF-THE-ART LORA OPTIMIZATION METHODS

To further validate the effectiveness of DEVFT, we conduct a comprehensive comparison against
recent state-of-the-art LoRA optimization methods, including Fed-pilot (Zhang et al., 2024c), Fed-
HeLLo (Zhang et al., 2025), FlexLoRA (Bai et al., 2024), and HETLoRA (Cho et al., 2024), using
the LLaMA2-7B. As summarized in Table 10, DEVFT demonstrates superior performance across
all evaluated benchmarks, achieving an average accuracy gain of up to 1.99% over baselines. We
attribute this improvement to DEVFT’s developmental training paradigm, which effectively navi-
gates the optimization landscape to discover a superior convergence trajectory. It is important to
note that these baselines primarily focus on optimizing LoRA module allocation or rank adaptation.
In contrast, DEVFT targets the training process. Consequently, our method is not mutually exclu-
sive but rather complementary to these approaches. DEVFT can potentially be combined with these
LoRA-optimization techniques to further enhance federated fine-tuning performance.

E DISCUSSION

Analysis of Peak Memory Efficiency. Peak GPU memory usage constitutes a pivotal constraint
governing device eligibility in FL training. While DEVFT is primarily architected to optimize cu-
mulative system efficiency, it concurrently alleviates peak memory burdens. As evidenced in Fig-
ure 7, peak memory usage in DEVFT’s early phases is substantially mitigated—reduced by up to
4×—relative to baseline methods. Although peak memory in the final stage matches the baseline,
the total resource savings over the entire training process are considerable. Furthermore, DEVFT
remains orthogonal to specific peak-memory reduction techniques, such as Fed-pilot (Zhang et al.,
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Table 10: Performance comparison with LoRA optimization methods on LLaMA2-7B (INT4).

Method Close-Ended Benchmark ↑

TruthfulQA MMLU IFEval BBH Average

Fed-pilot 48.15 42.84 32.24 39.41 40.66 (-1.67)
Fed-HeLLo 48.23 42.96 32.37 39.54 40.78 (-1.55)
FlexLoRA 47.83 42.72 32.15 39.36 40.52 (-1.81)
HETLoRA 47.71 42.58 31.96 39.12 40.34 (-1.99)
DEVFT 50.28 44.15 33.97 40.93 42.33

2024c). Since each DEVFT stage adheres to standard FL protocols, these optimization methods can
be seamlessly integrated to further lower hardware barriers.

Adaptive Scheduling Strategy. In this work, we employ a globally fixed scheduling strategy.
This design choice is motivated by the need for a controlled evaluation of DEVFT ’s core con-
tributions—specifically the developmental training paradigm, deconfliction-guided layer grouping
(DGLG), and differential-based layer fusion (DBLF)—ensuring both reproducibility and fair com-
parison against baselines. This approach aligns with established protocols in resource-efficient FL
literature, such as ProgFed (Wang et al., 2022). Notably, even with this fixed schedule, DEVFT
demonstrates significant performance gains, achieving up to 4.59× faster convergence and 10.67×
greater communication efficiency (as illustrated in Figures 5 and 6). However, we recognize that
adaptively scheduling each stage represents a promising avenue for further optimization. As a gen-
eral and extensible framework, DEVFT readily supports the integration of such adaptive mecha-
nisms, which we leave for future exploration.

Distinction from Continual Learning. While the concept of dynamic model capacity has been
explored in Continual Learning (CL) (Hung et al., 2019), our objective differs fundamentally from
this paradigm. The primary goal of CL is to mitigate catastrophic forgetting by expanding the model
to accommodate a sequence of distinct tasks. In contrast, DEVFT employs developmental growth
as a resource-efficient training strategy for a single downstream task within a constrained federated
environment. Rather than serving as a mechanism to preserve knowledge across different tasks, our
approach leverages dynamic capacity specifically to navigate hardware bottlenecks on edge devices.

F THE USE OF LARGE LANGUAGE MODELS

A large language model was used solely as a general-purpose tool for linguistic polishing (e.g.,
grammar, wording, and clarity). The LLM did not generate research ideas, design experiments,
write substantive sections, produce or analyze data, or create code. All technical content, claims,
and conclusions were authored and verified by the human authors, who take full responsibility for
the manuscript. Suggested edits from the LLM were reviewed and post-edited to avoid plagiarism,
inaccuracies, or fabricated statements. The LLM is not an author.

G LIMITATIONS

While our proposed DEVFT demonstrates superior performance, several limitations warrant ac-
knowledgment. First, our current research primarily focuses on federated learning within a single
organization. Extending our method to cross-organizational collaborative scenarios, where address-
ing incentive mechanisms, trust establishment, and privacy concerns becomes paramount, represents
a significant yet valuable direction for future investigation. Second, although our approach substan-
tially reduces computational requirements compared to traditional methods, the overall environmen-
tal footprint of training LLMs remains considerable. Future work should more comprehensively
quantify the carbon emission reductions achieved through our developmental paradigm and explore
additional algorithmic and system-level optimizations to further minimize environmental impact.
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