
Optimistic Online-to-Batch Conversions
for Accelerated Convergence and Universality

Yu-Hu Yan, Peng Zhao, Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University, China

School of Artificial Intelligence, Nanjing University, China
{yanyh, zhaop, zhouzh}@lamda.nju.edu.cn

Abstract

In this work, we study offline convex optimization with smooth objectives, where
the classical Nesterov’s Accelerated Gradient (NAG) method achieves the opti-
mal accelerated convergence. Extensive research has aimed to understand NAG
from various perspectives, and a recent line of work approaches this from the
viewpoint of online learning and online-to-batch conversion, emphasizing the
role of optimistic online algorithms for acceleration. In this work, we contribute
to this perspective by proposing novel optimistic online-to-batch conversions that
incorporate optimism theoretically into the analysis, thereby significantly sim-
plifying the online algorithm design while preserving the optimal convergence
rates. Specifically, we demonstrate the effectiveness of our conversions through
the following results: (i) when combined with simple online gradient descent,
our optimistic conversion achieves the optimal accelerated convergence; (ii) our
conversion also applies to strongly convex objectives, and by leveraging both opti-
mistic online-to-batch conversion and optimistic online algorithms, we achieve the
optimal accelerated convergence rate for strongly convex and smooth objectives,
for the first time through the lens of online-to-batch conversion; (iii) our optimistic
conversion can achieve universality to smoothness — applicable to both smooth
and non-smooth objectives without requiring knowledge of the smoothness coeffi-
cient — and remains efficient as non-universal methods by using only one gradient
query in each iteration. Finally, we highlight the effectiveness of our optimistic
online-to-batch conversions by a precise correspondence with NAG.

1 Introduction

Convex optimization [Boyd and Vandenberghe, 2004, Nesterov, 2018] is a core problem in optimiza-
tion theory. Its simple theoretical foundations and algorithms have made it essential for solving a
wide range of real-world problems. Specifically, we focus on the simplest and most standard form:

min
x∈X

f(x), (1)

where f(·) is a convex objective function and X ⊆ Rd is the feasible domain. In this paper, we
focus on the function-value convergence. Specifically, we aim to minimize the suboptimality gap
f(XT)−minx∈X f(x), where XT denotes the final output of an algorithm after T iterations.

1.1 Accelerated Convergence

When the objective function f(·) is Lipschitz-continuous, the simple Gradient Descent (GD) is
sufficient to achieve the optimal convergence rates, specifically, O(T−1/2) for convex functions and

∗Correspondence: Peng Zhao <zhaop@lamda.nju.edu.cn>

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

O(T−1) for strongly convex functions [Nemirovski and Yudin, 1983]. However, GD is still not fully
capable of handling convex smooth optimization.

In convex smooth optimization, the pioneering Nesterov’s Accelerated Gradient method (NAG) [Nes-
terov, 1983, 2018] achieves an accelerated and optimal convergence rate of O(T−2). NAG consists
of two steps — a gradient descent step and an extrapolation step, formalized below:

yt = ΠX [zt−1 − θt−1∇f(zt−1)] , zt = yt + βt(yt − yt−1), (2)

where ΠX [·] represents the Euclidean projection onto X , βt is the extrapolation parameter and θt
denotes the step size. NAG with carefully chosen parameters is able to achieve the optimal conver-
gence rate of O(T−2) for convex functions and O(exp(−T/

√
κ)) for strongly convex functions,

respectively, where κ represents the condition number [Nesterov, 1983].

1.2 Online-to-Batch Conversion for Acceleration

Due to the significant success of NAG and acceleration methods, numerous studies have sought to
understand them from various perspectives, including ordinary differential equations [Su et al., 2016],
game theory [Wang and Abernethy, 2018], and online learning [Cutkosky, 2019], among others. In
this work, we focus on understanding NAG and acceleration from the perspective of online learning.

From the online learning perspective, a classic approach is through the well-known online-to-batch
conversion (O2B conversion) [Cesa-Bianchi et al., 2004, Shalev-Shwartz, 2012], which leverages
online learning algorithms [Hazan, 2016, Orabona, 2019] to address offline optimization tasks.
Formally, online learning is a versatile framework that models the interaction between a learner
and the environment over time. In the t-th round, the learner selects a decision wt from a convex
compact set W ⊆ Rd. Simultaneously, the environment adversarially chooses a convex loss function
ℓt : W → R. Subsequently, the learner incurs a loss ℓt(wt), receives feedback of the function ℓt(·),
and updates her decision to wt+1. In online learning, the learner aims to minimize the game-theoretic
performance measure known as regret [Cesa-Bianchi and Lugosi, 2006], which is formally defined as

REGT ≜
T∑
t=1

ℓt(wt)− min
w∈W

T∑
t=1

ℓt(w). (3)

It represents the learner’s excess cumulative loss compared with the best fixed comparator in hindsight.

The vanilla O2B conversion is able to achieve the optimal convergence rate for convex Lipschitz-
continuous objectives via a black-box use of online learning algorithms. For example, the simple
online gradient descent [Zinkevich, 2003] along with the O2B conversion is sufficient to achieve the
optimal convergence rate of O(T−1/2) [Nemirovski and Yudin, 1983].

While the vanilla conversion proves effective for Lipschitz objectives, it encounters limitations in
convex smooth optimization. To address this challenge, Cutkosky [2019] introduced a key algo-
rithmic modification — evaluating the gradient at the averaged decision along the optimization
trajectory rather than at the current decision in each iteration, as the averaged trajectory exhibits
greater stability. Therefore, we refer to this enhanced approach as the stabilized O2B conversion
throughout this paper. To utilize the stability of the averaged trajectory, Cutkosky [2019] incorporated
optimistic online algorithms [Chiang et al., 2012, Rakhlin and Sridharan, 2013], a powerful tech-
nique in modern online learning [Orabona, 2019]. This integration has inspired a growing body of
research that leverages the adaptivity of optimistic online learning algorithms to achieve accelerated
convergence [Cutkosky, 2019, Kavis et al., 2019, Joulani et al., 2020b, Zhao et al., 2025]. We provide
a comprehensive overview of these recent developments in Section 2.2.

1.3 Our Contributions

With stabilized O2B conversion, Cutkosky [2019], Kavis et al. [2019], Joulani et al. [2020b] have
demonstrated that optimistic algorithms [Nemirovski, 2004] are essential for acceleration [Nesterov,
1983] in convex smooth optimization. Interestingly, in game theory, recent studies reveal a stark
separation of the ability of optimism: optimistic methods are necessary for convergence, while
non-optimistic methods invariably diverge [Mertikopoulos et al., 2018]. This fundamental difference
prompts an important question regarding the role of optimism across broader optimization contexts.

2

Table 1: Comparison of the stabilized O2B conversion [Cutkosky, 2019] with our optimistic O2B conversion
regarding the ability for acceleration. Our optimistic O2B conversion incorporates optimism directly, enabling
look-ahead online learning regret, where a non-optimistic algorithm achieves the optimal accelerated rate.

Property Stabilized Ours (Optimistic)
Online Learning Regret Standard Look-ahead
Optimism in Conversion ✗ ✓

Optimism in Algorithm ✓ ✗

Convergence Rate O(T−2) O(T−2)

Motivated by this question, we further investigate the role of optimism in convex smooth optimization.
We find that while optimism is essential for acceleration, it does not need to be exclusively achieved
via online learning algorithms, but can also be realized through the O2B conversion mechanism.
Specifically, we propose an optimistic O2B conversion, which can implicitly incorporate optimistic
capabilities in theoretical analysis. Interestingly, this shows that optimism not only plays a crucial
role in online learning and game theory, but also in the offline optimization, making it a fundamental
principle across different optimization contexts. Our work is inspired by Wang and Abernethy [2018]
but takes a fundamentally different approach: we abandon the game-theoretic interpretation and
instead develop a novel optimistic O2B conversion framework that directly incorporates optimism
into the conversion mechanism. While we arrive at the same intermediate result (in Theorem 1), our
framework provides a more direct and unified understanding of how optimism enables acceleration.
As a first application, our framework re-derives the algorithm from Wang and Abernethy [2018] (our
Algorithm 2), offering new insights on its effectiveness.

Our optimistic conversion can also be extended to strongly convex and smooth objectives, achieving
the optimal convergence rate for the first time through O2B conversion. Notably, while optimism
remains essential in this challenging setup, it is now distributed between the O2B conversion and the
online learning algorithm, and their cooperation makes the optimal convergence attainable.

Furthermore, we consider making our method universal [Nesterov, 2015]. An optimization algorithm
is called universal if it can automatically achieve the best possible convergence guarantees under
smoothness and non-smoothness, without requiring the smoothness parameter. To this end, a natural
idea is to leverage the AdaGrad-type step sizes [Duchi et al., 2011] following Kavis et al. [2019].
However, this generally requires querying the gradient oracle twice in each iteration, which is not
as efficient as non-universal methods such as NAG (2) and is also not efficient enough when the
gradient evaluation is costly. The same concern also appears in the work of Kavis et al. [2019]. To
this end, building on our first optimistic conversion, we propose a further enhanced optimistic O2B
conversion, which is able to achieve the optimal and universal convergence rates, while maintaining
only one gradient query per iteration, making it as efficient as non-universal methods in terms of the
gradient query complexity. Our results can also be extended to the stochastic optimization setting
with high-probability guarantees, which we defer to Appendix C due to space constraints.

Table 1 presents the comparison between the stabilized O2B conversion of Cutkosky [2019] and
our optimistic conversion regarding the ability for acceleration. The core message is — both O2B
conversion and online learning algorithms are essential in achieving acceleration. Our optimistic O2B
conversion incorporates the optimistic ability theoretically in the analysis and thus enables look-ahead
online learning regret, which can liberate the algorithm design. Therefore, even the simple online
gradient descent algorithm can achieve the accelerated convergence.

Finally, we highlight the equivalence of the algorithm update trajectory between the optimistic-O2B-
induced algorithm and the classical NAG (2) in unconstrained settings under specific parameter
configurations, offering an interpretation of NAG through the lens of optimistic online learning.
Conversely, this observation also offers an intuitive explanation for the effectiveness of our optimistic
conversion because of its profound connection with NAG. Furthermore, we demonstrate that previous
works implementing optimistic algorithms [Cutkosky, 2019, Kavis et al., 2019, Joulani et al., 2020b]
can be viewed as variants of Polyak’s Heavy-Ball method [Polyak, 1964], enhanced with carefully
designed corrected gradients.

To conclude, our contributions are mainly threefold, summarized as follows:

3

• We propose an optimistic O2B conversion framework, which implicitly incorporates optimism in
theoretical analysis. Our optimistic conversion re-derives the algorithm from Wang and Abernethy
[2018], while from the perspective of online-to-batch conversion, offering new insights on the
relationship between the game-theoretic and the O2B-theoretic interpretations.

• Our optimistic conversion extends to strongly convex and smooth objectives. This marks the
first time that the optimal convergence rate for strongly convex and smooth objectives has been
achieved through O2B conversion.

• We further enhance our optimistic conversion to achieve the optimal and universal convergence
with only one gradient query per iteration, making it as efficient as non-universal methods in terms
of the gradient query complexity, which is validated by the numerical evaluation in Section 5.

Organization. The rest of the paper is organized as follows. Section 2 introduces the preliminaries
and reviews related work. Section 3 presents our optimistic O2B conversions with accelerated and
universal convergence. Section 4 compares O2B methods with classical approaches. Section 5
provides the numerical experiments to evaluate the performance of the proposed methods. Finally,
Section 6 concludes the paper. All proofs are provided in appendices.

2 Preliminary

In this section, we introduce some preliminary knowledge, including notations, assumptions, and
recent advancements in convex smooth optimization via the stabilized O2B conversion.

2.1 Notations and Assumptions

In the following, we introduce the notations and assumptions used in this work.

Notations. For simplicity, we use ∥ · ∥ for ∥ · ∥2 by default and write a ≲ b or a = O(b) if there
exists a constant C <∞ such that a/b ≤ C. When there is no ambiguity, we abbreviate

∑
t and {·}t

for
∑T
t=1 and {·}Tt=1, respectively. We adopt ΠX [z] = argminx∈X ∥z− x∥ to denote the Euclidean

projection onto X . Given sequences of O2B conversion weights {αt}t and decisions of the online
algorithm {xt}t, we use At ≜

∑t
s=1 αs to represent the weights’ summation and define

x̃t ≜
1

At

(
t−1∑
s=1

αsxs + αtxt−1

)
, and x̄t ≜

1

At

(
t−1∑
s=1

αsxs + αtxt

)
(4)

to be two kinds of weighted decisions. The two expressions differ only in the decision associated
with αt, while all other terms remain the same.

Assumption 1 (Domain Boundedness). For any x,y ∈ X ⊆ Rd, the domain satisfies ∥x− y∥ ≤ D.

Assumption 2 (Smoothness). The objective function f(·) is L-smooth, i.e., ∥∇f(x)−∇f(y)∥ ≤
L∥x− y∥ holds for any x,y ∈ Rd.

Both assumptions are standard in the optimization literature. Specifically, Assumption 1 is common
in constrained optimization [Cutkosky, 2019, Kavis et al., 2019, Joulani et al., 2020b]. Note that
the boundedness assumption is only required when designing a universal method in Section 3.3.
Additionally, Assumption 2 is necessary for the accelerated convergence [Nesterov, 1983, 2018].

2.2 (Stabilized) Online-to-Batch Conversion

In this part, we introduce the vanilla online-to-batch conversion [Cesa-Bianchi et al., 2004, Shalev-
Shwartz, 2012] and the enhanced stabilized conversion [Cutkosky, 2019].

First, we formalize the vanilla O2B conversion in Algorithm 1, where in each iteration, the learner
queries the gradient feedback of ∇f(xt), and feeds αt∇f(xt) into the black-box online learning
algorithm to generate the next decision xt+1. By doing this, the suboptimality gap of the final
decision x̄T , defined in Eq. (4), satisfies f(x̄T)− f(x⋆) ≤ 1

AT

∑
t⟨αt∇f(xt),xt − x⋆⟩. The above

property is sufficient to attain the optimal convergence rates for Lipschitz-continuous objectives,
i.e., O(T−1/2) for convex and O(T−1) for strongly convex functions [Lacoste-Julien et al., 2012],

4

Algorithm 1 Vanilla/Stabilized Online-to-Batch Conversion
Input: Online learning algorithm AOL, weights {αt}Tt=1 with αt > 0.
1: Initialize: x1 = x0 ∈ X
2: for t = 1 to T do
3: Query the gradient feedback gt, where

gt =

{
∇f(xt), (vanilla O2B conversion)
∇f(x̄t), (stabilized O2B conversion)

4: Define ℓt(x) ≜ ⟨αtgt,x⟩ as the t-th round online function for AOL

5: Get xt+1 from AOL(x1, {ℓs(·)}ts=1)
6: end for
7: Output: x̄T = 1

AT

∑T
t=1 αtxt

matching the known lower bounds [Nemirovski and Yudin, 1983]. Despite its simplicity, vanilla
conversion has not yet been shown to yield accelerated rates in smooth convex optimization problems.

To this end, Cutkosky [2019] introduced the more powerful stabilized O2B conversion. The key idea
is to query the gradient of the averaged decision x̄t rather than xt in each iteration. The suboptimality
gap of the final decision x̄T satisfies f(x̄T)− f(x⋆) ≤ 1

AT

∑
t⟨αt∇f(x̄t),xt − x⋆⟩. Although the

only algorithmic difference between vanilla and stabilized conversion is where the gradient is taken,
this is the key reason why stabilized conversion outperforms the vanilla one in terms of acceleration.
To exploit the power of the stabilized O2B conversion, Cutkosky [2019] leveraged the optimistic
online learning techniques, which follows the two-step update rule below:

wt = ΠW [ŵt − ηtMt] , ŵt+1 = ΠW [ŵt − ηt∇ℓt(wt)] , (5)

where ηt > 0 is a time-varying step size and ŵt is an intermediate variable. In each iteration, before
receiving the gradient feedback, the learner first updates using an optimistic estimate Mt (called
an optimism) of the future gradient ∇ℓt(wt) and then updates using the true gradient ∇ℓt(wt). By
doing this, optimistic methods can achieve the following regret bound with adaptivity for any u ∈ W :

T∑
t=1

[ℓt(wt)− ℓt(u)] ≤ O
(

1

ηT
+

T∑
t=1

ηt∥∇ℓt(wt)−Mt∥22 −
T∑
t=2

1

ηt−1
∥wt −wt−1∥22

)
, (6)

which can result in favorable regret guarantees when the optimistic term ∥∇ℓt(wt)−Mt∥ is small.
In the context of offline convex optimization, ∇ℓt(wt) equals αt∇f(x̄t). Subsequently, Cutkosky
[2019] chooses Mt = αt∇f(x̄t−1) as the optimism (also known as gradient-variation regret in
online learning [Chiang et al., 2012]) such that the optimistic term depends on ∥x̄t − x̄t−1∥ under
smoothness, because the combined decisions {x̄t}t is stable. To illustrate this, we focus on a key
equation proposed therein: At−1(x̄t−1 − x̄t) = αt(x̄t − xt). When the domain is bounded by
Assumption 1, the variation of ∥x̄t − x̄t−1∥ ≈ αt/At = 1/t using αt = 1. Cutkosky [2019]
employed this key stability property to achieve an O(T−3/2) rate in the constrained setup and
O(log T · T−2) for unconstrained optimization.

Consequently, Kavis et al. [2019] leveraged optimistic online learning (5) with optimism Mt =
αt∇f(x̃t), where x̃t is another form of weighted combination, as defined in Eq. (4). By doing so, the
optimistic quantity ∥∇ℓt(wt)−Mt∥2 is of the same order as L2∥xt − xt−1∥2 when αt = t, which
therefore can be canceled by the intrinsic negative stability terms in the analysis of optimistic algo-
rithms, as shown in Eq. (6), resulting in the optimal rate of O(T−2). Joulani et al. [2020b] obtained
the same optimal convergence rate but with a different optimism configuration of Mt = αt∇f(x̄t−1)
and extended the results to composite and variance-reduced optimization. For a comprehensive
understanding of the connection between optimistic online learning and acceleration in smooth
optimization, one may refer to Zhao [2025].

3 Optimistic Online-to-Batch Conversions for Acceleration and Universality

In this section, we introduce our optimistic online-to-batch conversions. Specifically, Section 3.1
proposes the first optimistic conversion for acceleration. Subsequently, Section 3.2 extends our

5

Stabilized Conversion:

Optimistic Conversion:

Figure 1: Comparison of the update between the optimistic and stabilized conversions, where
gO
t = αt∇f(x̃t) and gS

t = αt∇f(x̄t) represent the losses faced by the optimistic and stabilized
conversions, and x

g−→ y denotes updating from x to y using the information g. Compared with the
stabilized conversion, ours can update with the information of the upcoming losses.

conversion to strongly convex objectives. Finally, Section 3.3 proposes a further enhanced optimistic
O2B conversion to achieve universality while maintaining efficiency.

3.1 Acceleration for Smooth and Convex Functions

In this part, we propose our first optimistic O2B conversion below, which is general as it only requires
the convexity of the objective function. The proof is presented in Appendix B.1.
Theorem 1. If the objective function f(·) is convex, then we have

AT [f(x̄T)− f(x⋆)] ≤
T∑
t=1

⟨αt∇f(x̃t),xt − x⋆⟩+
T∑
t=1

αt⟨∇f(x̄t)−∇f(x̃t),xt − xt−1⟩, (7)

where x̃t ≜ 1
At

(∑t−1
s=1 αsxs + αtxt−1

)
and x̄t ≜ 1

At

(∑t−1
s=1 αsxs + αtxt

)
.

Comparison to Stablized O2B Conversion [Cutkosky, 2019]. Compared with the stabilized O2B
conversion, which exhibits the property of AT [f(x̄T)− f(x⋆)] ≤

∑
t⟨αt∇f(x̄t),xt − x⋆⟩, our

optimistic O2B conversion in Theorem 1 differs in two aspects:
(i) The first term in the right-hand side of Eq. (7) is an algorithm-related look-ahead online learning

regret that allows a clairvoyant-type update because the algorithm can first observe the loss of the
t-th iteration, i.e., αt∇f(x̃t), and then updates from xt−1 to xt. Intuitively, this look-ahead online
learning problem is easier to handle than the standard online learning problem. For stabilized
conversion, clairvoyant-type updates are forbidden because x̄t contains the information of the
current decision xt. Figure 1 illustrates the aforementioned difference.

(ii) The second term in Eq. (7) serves as an optimistic quantity in the analysis, which can therefore
preserve the potential for acceleration. The difference from the stabilized conversion of Cutkosky
[2019] is that our conversion introduces the optimistic term directly in the analysis, whereas the
stabilized conversion requires an optimistic algorithm (5) explicitly to achieve the same effect.

Our technical approach differs from the stabilized-O2B-conversion-based methods [Cutkosky, 2019,
Kavis et al., 2019, Joulani et al., 2020b] from two aspects: (i) Previous works analyze αt[f(x̄t)−
f(x⋆)] as an intermediate quantity, while we focus on αt[f(x̃t) − f(x⋆)]; (ii) Previous works
rely on the key equation At−1(x̄t−1 − x̄t) = αt(x̄t − xt), while we employ a novel equation
At−1 (x̄t−1 − x̃t) = αt(x̃t − xt−1), which proves crucial for our final guarantee. Interested readers
can refer to Appendix A for more useful equations in the O2B conversion.

Connection to Game-theoretic Interpretation [Wang and Abernethy, 2018]. The authors pro-
vided an alternative game-theoretic perspective to understand acceleration in convex optimization.
Specifically, they reformulated the convex optimization problem (1) as a two-player Fenchel game:
g(x,y) = ⟨y,x⟩ − f∗(y) [Abernethy et al., 2018], where f∗(·) is the Fenchel conjugate of f(·).
The performance measure f(x̄T)− f(x⋆) is then expressed as the gap towards the Nash equilibrium:
supy g(x̄T ,y)− infx supy g(x,y). Crucially, their analysis incorporated the idea of optimism from
online learning into the game-theoretic framework. In contrast, our work reformulates these tech-
niques by removing the game-theoretic interpretation and instead provides a direct O2B conversion
perspective. Notably, the technical core of our Theorem 1 closely parallels Theorem 1 in their
work, and our framework can also re-derive their Algorithm 2 (our Algorithm 2). We believe that
O2B conversion provides a more general and accessible lens for understanding offline optimization
compared to game theory. Importantly, our analysis reveals that optimism is essential for acceleration.

6

Algorithm 2 Optimistic Online-to-Batch Conversion with Online Gradient Descent
Input: Online-to-batch weights {αt}Tt=1 and step size ηt
1: Initialize: x0 ∈ X
2: for t = 0 to T − 1 do
3: Query ∇f(x̃t+1) where x̃t+1 = 1

At+1

(∑t
s=1 αsxs + αt+1xt

)
4: Update xt+1 = ΠX [xt − ηtαt+1∇f(x̃t+1)]
5: end for
6: Output: x̄T (in Corollaries 1, 2) or x̃T (in Theorem 5)

Interestingly, optimism also plays a critical role in the game-theoretic approach [Syrgkanis et al.,
2015, Zhang et al., 2022], suggesting that optimism may be a fundamental principle across online
learning, game theory, and offline optimization.

Convergence Guarantee. Consequently, we present a simple yet optimal algorithm for convex
smooth optimization. Our algorithm template is summarized in Algorithm 2. In Line 3, unlike the
stabilized O2B conversion, we query the gradient ∇f(x̃t+1) rather than ∇f(x̄t) from the oracle. In
Line 4, the learner first observes the loss vector of the next round, αt+1∇f(x̃t+1), and then updates
its decision from xt to xt+1. This approach differs from classical online learning, where the learner
makes her decision first and then observes the loss. This represents the key algorithmic difference
between our optimistic O2B conversion and the stabilized conversion. We intentionally leave the step
size ηt, online-to-batch weights {αt}Tt=1, and final output unspecified in Algorithm 2 for flexibility.

In the following, we offer the convergence rate of Algorithm 2 and defer the proof to Appendix B.2.

Corollary 1. Under Assumption 2, if f(·) is convex and X = Rd, Algorithm 2 with weights αt = t
and step size ηt = 1

4L for any t ∈ [T] ensures: f(x̄T)− f(x⋆) ≤ O(L∥x0 − x⋆∥2/T 2).

Note that the convergence rate scales with the initial distance to the minimizer ∥x0 − x⋆∥, and we
do not require the feasible domain to be bounded here, i.e., without Assumption 1. Observe that
Algorithm 2 coincides with Algorithm 2 in Wang and Abernethy [2018]; both analyses isolate the
same underlying online learning subproblem (Theorem 1). Our contribution is not to introduce a new
algorithm, but to showcase how the online-to-batch framework furnishes a fresh route to this effective
method and, more importantly, unlocks the new results in Section 3.3.

3.2 Acceleration for Smooth and Strongly Convex Functions

In this part, we extend our optimistic O2B conversion in Section 3.1 to strongly convex objectives,
where a strongly convex function is formally defined as follows.

Definition 1 (Strong Convexity). A function f(·) is λ-strongly convex over X if f(x) − f(y) ≤
⟨∇f(x),x− y⟩ − λ

2 · ∥x− y∥2 for any x,y ∈ X .

Since strong convexity is a specialization of convexity, we apply our general stabilized O2B conver-
sion analysis to the convex surrogate f̂(x) ≜ f(x)− λ

2 ∥x∥
2, and then reconcile the gap between

f̂(·) and the original objective f(·). We present the resulting optimistic O2B conversion for strongly
convex objectives in Theorem 2, with the proof deferred to Appendix B.3.

Theorem 2. If the objective function f(·) is λ-strongly convex (in Definition 1), then we have

AT [f(x̄T)− f(x⋆)] ≤
T∑
t=1

αt [ht(xt)− ht(x
⋆)] +

T∑
t=1

αt⟨∇f̂(x̄t)−∇f̂(x̃t),xt − xt−1⟩, (8)

where f̂(·) ≜ f(·)− λ
2 ∥ · ∥

2 and ht(·) ≜ ⟨∇f̂(x̃t), ·⟩+ λ
2 ∥ · ∥

2 is a λ-strongly convex surrogate.

Building on Theorem 2, we leverage the one-step variant of optimistic online gradient descent [Joulani
et al., 2020a] as the online learning algorithm with carefully designed optimisms to achieve the
optimal accelerated convergence. We present the update rule and its guarantee in Theorem 3, with
the proof deferred to Appendix B.4.

7

Theorem 3. Under Assumption 2, suppose the objective f(·) is λ-strongly convex and X = Rd. If
the algorithm updates as

xt+1 = xt −
1

λAt
(∇ft(xt)−Mt +Mt+1) , Mt =

{
α1∇f̂(x̃1) + α1x1, t = 1

αt∇f̂(x̃t) + αtxt−1, t ≥ 2
,

with α1 = 1 and αt = 1
4
√
κ
At−1 for t ≥ 2, then it holds that

f(x̄T)− f(x⋆) ≤ O
(
λ ∥x1 − x⋆∥2 · exp

(
− T − 1

1 + 2
√
κ

))
,

where κ ≜ L/λ represents the condition number.

Theorem 2 achieves the optimal convergence rate for strongly convex and smooth objectives, scaling
optimally with both the iteration number T and condition number κ. Notably, this is the first time that
the optimal convergence rate for strongly convex and smooth objectives has been achieved through
online-to-batch conversion.

We note that while optimism remains essential for achieving optimality in strongly convex opti-
mization, the key insight is that the optimistic mechanisms are now distributed between the O2B
conversion and the online learning algorithm, making the optimal convergence attainable through
their cooperative interaction.

3.3 Universality to Smooth and Non-smooth Functions

In this part, we focus on making our optimistic O2B conversion universal to smoothness to enhance
its robustness while maintaining computational efficiency comparable to non-universal methods.
Universality means the method can adapt to both smooth and non-smooth objectives without requiring
prior knowledge of the smoothness parameter. This problem has received considerable attention in
the literature [Nesterov, 2015, Kavis et al., 2019, Kreisler et al., 2024, Rodomanov et al., 2024, Li and
Lan, 2025] as the smoothness parameter is often unknown and challenging to estimate in practice.

To begin with, we demonstrate that Algorithm 2 can be made universal by simply using an AdaGrad-
type step size [Duchi et al., 2011], also known as self-confident tuning in the online learning
literature [Auer et al., 2002]. The proof is deferred to Appendix B.5.
Corollary 2. Under Assumption 1, if the objective f(·) is convex, Algorithm 2 with weights αt = t
and step sizes

ηt =
D√∑t

s=1 α
2
s∥∇f(x̄s)−∇f(x̃s)∥2

, (9)

guarantees f(x̄T)−f(x⋆) ≤ O(LD2/T 2) under Assumption 2, and f(x̄T)−f(x⋆) ≤ O(GD/
√
T)

when the objective is non-smooth with ∥∇f(·)∥ ≤ G.

Although Algorithm 2 with an AdaGrad-type step size is theoretically optimal and universal, its
efficiency is limited by requiring two gradient evaluations, ∇f(x̃s) and ∇f(x̄s). This is less efficient
than non-universal methods such as Theorem 1 and NAG (2), which require only one gradient query
per iteration. Furthermore, this inefficiency becomes problematic when gradient evaluation is costly,
such as in nuclear norm optimization [Ji and Ye, 2009] and mini-batch optimization [Li et al., 2014].
The same limitation appears in the work of Kavis et al. [2019].

In the following, we demonstrate that it is possible to achieve the same optimal convergence rate
using only one gradient query per iteration through a further improved optimistic O2B conversion.
The proof is deferred to Appendix B.6.
Theorem 4. If the objective f(·) is convex, when α1 = 1 and αT = 0, the final term of
AT [f(x̃T)− f(x⋆)] can be bounded by

T∑
t=1

⟨αt∇f(x̃t),xt−x⋆⟩+
T−1∑
t=1

αt⟨∇f(x̃t+1)−∇f(x̃t),xt−xt−1⟩−
T∑
t=2

At−1Df (x̃t−1, x̃t), (10)

where Df (x,y) ≜ f(x)− f(y)− ⟨∇f(y),x− y⟩ is the Bregman divergence associated with f(·).

8

Remark 1 (Technical Comparison). The main technical difference from previous conversions is that
Theorem 4 leverages a novel equation: At−1 (x̃t − x̃t−1) = αt (xt−1 − x̃t) + αt−1 (xt−1 − xt−2).
This analytical approach completely eliminates ∇f(x̄t) from our derivation, ensuring that the
algorithm requires only ∇f(x̃t) evaluation at each iteration. Readers can refer to Appendix A for the
proof of this equation. ◁

In Theorem 5 below, we present that the above conversion along with online gradient descent can
achieve universal optimal rates using only one gradient query per iteration. The corresponding proof
is deferred to Appendix B.7.
Theorem 5. Under Assumption 1, if the objective f(·) is convex, using weights αt = t for t ∈ [T −1],
αT = 0, and the step size of

ηt =
D√∑t

s=1 α
2
s∥∇f(x̃s+1)−∇f(x̃s)∥2

, (11)

Algorithm 2 enjoys f(x̃T) − f(x⋆) ≤ O(LD2/T 2) under Assumption 2, and f(x̃T) − f(x⋆) ≤
O(GD/

√
T) when the objective is non-smooth with ∥∇f(·)∥ ≤ G.

Theorem 4 leverages the simple online gradient descent to achieve the universal optimal convergence
rates, while requiring only one gradient query per iteration, making it as efficient as non-universal
methods such as NAG (2) and the method in Corollary 1. Furthermore, we note that our results can
be straightforwardly extended to the stochastic optimization setting with high-probability rates, which
we defer to Appendix C due to page limits. Below we remark two limitations of Theorem 5.
Remark 2 (Boundedness Assumption). Theorem 5 requires bounded feasible domains, i.e., only
suitable for constrained optimization. We focus on the constrained setup because online learning is
naturally suited for handling constraints. Designing universal methods with accelerated convergence
in the unconstrained case is highly challenging. Recent work of Kreisler et al. [2024] has made some
progress in this direction in the context of “parameter-free” optimization2 by combining the methods
of Kavis et al. [2019] for acceleration and Ivgi et al. [2023] for parameter-freeness. Extending our
method to the unconstrained case is highly non-trivial and thus left as an important future direction. ◁

Another limitation of our method is that the weight of the final round αT must be chosen as αT = 0,
which means that the algorithm requires the iteration number T at the beginning.

Finally, we note that achieving the optimal universal rates with strongly convex objectives is still
open and cannot be directly solved via the universal method proposed in this part. To see this, in
Theorem 3, the online-to-batch conversion weight αt depends on the smoothness L. Therefore, in the
universal setup where L is unknown, it is more challenging than the convex case because the method
needs to estimate the smoothness parameter on the fly, making this problem highly non-trivial.

4 Discussions of Conversion-based Methods

In this section, we illuminate the effectiveness of recent O2B conversion methods [Kavis et al.,
2019, Joulani et al., 2020b], including ours, by comparing them with classic approaches in convex
optimization. Specifically, we first highlight that our algorithm trajectory coincides with NAG in
Section 4.1. Then we find that stabilized-O2B-conversion-based methods can be interpreted as
variants of Polyak’s Heavy-Ball in Section 4.2.

4.1 Comparing Algorithm 2 with Nesterov’s Accelerated Gradient

Our method is algorithmically equivalent to Nesterov’s accelerated gradient (NAG) in Eq. (2), under
certain parameter configurations. To show this, we leverage a result from Wang and Abernethy
[2018], with a self-contained proof in Appendix D.
Proposition 1 (Theorem 4 of Wang and Abernethy [2018]). If X = Rd, our Algorithm 2 with step
size ηt = t+1

t · 1
8L is equivalent to NAG (2) with θt = 1

4L and βt = t−1
t+2 such that yt = x̄t and

2The main parameter in our method is the domain diameter D, as shown in Eq. (11) in Theorem 5. Therefore,
extending our method to unconstrained setup is equivalent to achieving parameter-freeness with acceleration.

9

zt = x̃t+1. Our method can be rewritten as the following equivalent form:
x̄t = x̄t−1 + βt−1 (x̄t−1 − x̄t−2)− 1

4L∇f (x̄t−1 + βt−1(x̄t−1 − x̄t−2)) ,

which is exactly Nesterov’s accelerated gradient method in a one-step update formulation.

4.2 Comparing Previous Methods with Polyak’s Heavy-Ball

Kavis et al. [2019], Joulani et al. [2020b] in this thread both adopted the optimistic online learning
framework, as shown in Eq. (5), but with slightly different configurations. Specifically, ∇ℓt(wt)
equals αt∇f(x̄t) in offline convex optimization. Differently, Kavis et al. [2019] chose the optimism
Mt = αt∇f(x̃t) whereas Joulani et al. [2020b] usedMt = αt∇f(x̄t−1). For clarity, their optimistic
updates can be rewritten in a one-step formulation [Joulani et al., 2020a]:

xt+1 = xt − ηtgt, gt =

{
−αt∇f(x̃t) + αt∇f(x̄t) + αt+1∇f(x̃t+1) [Kavis et al., 2019],

−αt∇f(x̄t−1) + αt∇f(x̄t) + αt+1∇f(x̄t) [Joulani et al., 2020b],
where gt is a multi-step gradient. Furthermore, due to simple derivations, the above one-step update
is equivalent to the following rule in terms of {x̄t}t:

x̄t = x̄t−1 + βt−1 (x̄t−1 − x̄t−2)− ηt−1 ·
(
αt

At
gt−1

)
, where βt−1 = αtAt−2

Atαt−1
. (12)

On the other hand, a classic method in convex optimization named Polyak’s Heavy-Ball (HB) [Polyak,
1964] equips gradient descent with momentum and updates as

zt = zt−1 − β′
t−1(zt−1 − zt−2)− η′t−1∇f(zt−1), (13)

where β′
t denotes the momentum parameter and η′t is the step size. Comparing Eq. (12) with HB (13),

we can find that the trajectories of {x̄t}t and {zt}t are similar except that HB uses the gradient of
∇f(zt−1) while Eq. (12) adopts a corrected gradient of αt

At
gt−1. Note that although HB itself cannot

achieve acceleration for general convex smooth objectives, its variants with corrected gradients can
do this for (strongly) convex and smooth objectives [Wei and Chen, 2025]. Therefore, previous
stabilized-conversion-based methods can be treated as variants of HB with corrected gradients, which
might explain their success in achieving acceleration.

5 Experiments

In this section, we conduct numerical experiments to validate the effectiveness of our proposed
methods. We evaluate our methods in the squared loss minimization and logistic regression tasks
across multiple LIBSVM datasets under both non-universal and universal settings, comparing against
classic methods including NAG, gradient descent, UniXGrad [Kavis et al., 2019], and the method
in Joulani et al. [2020b]. The results demonstrate that our method achieves comparable or superior
convergence performance while maintaining competitive computational efficiency. Detailed setup
descriptions and experimental results can be found in Appendix E.

6 Conclusion

In this paper, we focus on convex smooth optimization and study the role of optimism for achieving
acceleration. Previous state-of-the-art methods rely on the stabilized O2B conversion and achieve the
ability of acceleration via optimistic online learning algorithms. In this work, we propose optimistic
online-to-batch conversions that introduce optimism implicitly in the analysis, allowing acceleration
using the simple online gradient descent. Our optimistic online-to-batch conversion can also be
extended to the strongly convex case with the optimal convergence therein. Furthermore, we consider
making our method universal to smoothness and introduce an improved optimistic online-to-batch
conversion method that only requires one gradient query per iteration, making it as efficient as non-
universal methods, while maintaining the optimal convergence rates. We also conduct the numerical
experiments to evaluate the performance of the proposed methods.

Two directions are worth future exploration. The first is to extend our method to unconstrained
domains, which is highly non-trivial and challenging. Recent advances in parameter-free stochastic
optimization [Ivgi et al., 2023] or using ensemble ideas for a bounded-to-unbounded reduction [Luo
et al., 2022] might prove useful. The second direction is investigate the power of our optimistic online-
to-batch conversions in more practical tasks, such as real-world deep learning training, following the
recent advance of Defazio et al. [2024].

10

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Acknowledgements

This research was supported by National Science and Technology Major Project (2022ZD0114802)
and NSFC (62176117). Peng Zhao would like to thank Jun-Kun Wang for the helpful discussions.
The authors also thank the reviewers for their valuable suggestions, which helped improve this paper.

References
J. D. Abernethy, K. A. Lai, K. Y. Levy, and J. Wang. Faster rates for convex-concave games. In

Proceedings of the 31st Annual Conference on Learning Theory (COLT), pages 1595–1625, 2018.

P. Auer, N. Cesa-Bianchi, and C. Gentile. Adaptive and self-confident on-line learning algorithms.
Journal of Computer and System Sciences, 64(1):48–75, 2002.

S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge university press, 2004.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,
2006.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning
algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

C. Chiang, T. Yang, C. Lee, M. Mahdavi, C. Lu, R. Jin, and S. Zhu. Online optimization with gradual
variations. In Proceedings of the 25th Annual Conference on Learning Theory (COLT), pages
6.1–6.20, 2012.

A. Cutkosky. Anytime online-to-batch, optimism and acceleration. In Proceedings of the 36th
International Conference on Machine Learning (ICML), pages 1446–1454, 2019.

A. Defazio, X. Yang, A. Khaled, K. Mishchenko, H. Mehta, and A. Cutkosky. The road less scheduled.
In Advances in Neural Information Processing Systems 37 (NeurIPS), pages 9974–10007, 2024.

J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

E. Hazan. Introduction to Online Convex Optimization. Foundations and Trends in Optimization, 2
(3-4):157–325, 2016.

M. Ivgi, O. Hinder, and Y. Carmon. Dog is SGD’s best friend: A parameter-free dynamic step size
schedule. In Proceedings of the 40th International Conference on Machine Learning (ICML),
pages 14465–14499, 2023.

S. Ji and J. Ye. An accelerated gradient method for trace norm minimization. In Proceedings of the
26th International Conference on Machine Learning (ICML), pages 457–464, 2009.

P. Joulani, A. György, and C. Szepesvári. A modular analysis of adaptive (non-)convex optimization:
Optimism, composite objectives, variance reduction, and variational bounds. Theoretical Computer
Science, 808:108–138, 2020a.

P. Joulani, A. Raj, A. Gyorgy, and C. Szepesvári. A simpler approach to accelerated optimization:
Iterative averaging meets optimism. In Proceedings of the 37th International Conference on
Machine Learning (ICML), pages 4984–4993, 2020b.

A. Kavis, K. Y. Levy, F. R. Bach, and V. Cevher. UniXGrad: A universal, adaptive algorithm with
optimal guarantees for constrained optimization. In Advances in Neural Information Processing
Systems 32 (NeurIPS), pages 6257–6266, 2019.

I. Kreisler, M. Ivgi, O. Hinder, and Y. Carmon. Accelerated parameter-free stochastic optimization.
In Proceedings of the 37th Annual Conference on Learning Theory (COLT), pages 3257–3324,
2024.

S. Lacoste-Julien, M. Schmidt, and F. Bach. A simpler approach to obtaining an O(1/t) convergence
rate for the projected stochastic subgradient method. arXiv preprint, arXiv:1212.2002, 2012.

11

M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-batch training for stochastic optimization.
In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD), pages 661–670, 2014.

T. Li and G. Lan. A simple uniformly optimal method without line search for convex optimization.
Mathematical Programming, pages 1–38, 2025.

H. Luo, M. Zhang, P. Zhao, and Z.-H. Zhou. Corralling a larger band of bandits: A case study on
switching regret for linear bandits. In Proceedings of the 35th Conference on Learning Theory
(COLT), pages 3635–3684, 2022.

P. Mertikopoulos, C. H. Papadimitriou, and G. Piliouras. Cycles in adversarial regularized learning.
In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2703–2717, 2018.

A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM
Journal on Optimization, 15(1):229–251, 2004.

A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization. 1983.

Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2).
Proceedings of the USSR Academy of Sciences, 269:543, 1983.

Y. Nesterov. Lectures on Convex Optimization, volume 137. Springer, 2018.

Y. E. Nesterov. Universal gradient methods for convex optimization problems. Mathematical
Programming, 152(1-2):381–404, 2015.

F. Orabona. A modern introduction to online learning. arXiv preprint, arXiv:1912.13213, 2019.

B. T. Polyak. Some methods of speeding up the convergence of iteration methods. Ussr Computational
Mathematics and Mathematical Physics, 4(5):1–17, 1964.

A. Rakhlin and K. Sridharan. Online learning with predictable sequences. In Proceedings of the 26th
Annual Conference on Learning Theory (COLT), pages 993–1019, 2013.

A. Rodomanov, A. Kavis, Y. Wu, K. Antonakopoulos, and V. Cevher. Universal gradient methods for
stochastic convex optimization. In Proceedings of the 41st International Conference on Machine
Learning (ICML), 2024.

S. Shalev-Shwartz. Online Learning and Online Convex Optimization. Foundations and Trends in
Machine Learning, 4(2):107–194, 2012.

N. Srebro, K. Sridharan, and A. Tewari. Smoothness, low noise and fast rates. In Advances in Neural
Information Processing Systems 23 (NIPS), pages 2199–2207, 2010.

W. Su, S. P. Boyd, and E. J. Candès. A differential equation for modeling nesterov’s accelerated
gradient method: Theory and insights. Journal of Machine Learning Research, 17:153:1–153:43,
2016.

V. Syrgkanis, A. Agarwal, H. Luo, and R. E. Schapire. Fast convergence of regularized learning in
games. In Advances in Neural Information Processing Systems 28 (NIPS), pages 2989–2997, 2015.

J. Wang and J. D. Abernethy. Acceleration through optimistic no-regret dynamics. In Advances in
Neural Information Processing Systems 31 (NeurIPS), pages 3828–3838, 2018.

J. Wei and L. Chen. Accelerated over-relaxation heavy-ball method: Achieving global accelerated
convergence with broad generalization. In Proceedings of the 13rd International Conference on
Learning Representations (ICLR), 2025.

M. Zhang, P. Zhao, H. Luo, and Z.-H. Zhou. No-regret learning in time-varying zero-sum games.
In Proceedings of the 39th International Conference on Machine Learning (ICML), pages 26772–
26808, 2022.

12

P. Zhao. Lecture Notes for Advanced Optimization, 2025. URL https://www.pengzhao-ml.com/
course/AOptLectureNote/. Lecture 9. Optimism for Acceleration.

P. Zhao, Y.-J. Zhang, L. Zhang, and Z.-H. Zhou. Adaptivity and non-stationarity: Problem-dependent
dynamic regret for online convex optimization. Journal of Machine Learning Research, 25(98):1 –
52, 2024.

Y. Zhao, Y.-H. Yan, K. Y. Levy, and P. Zhao. Gradient-variation online adaptivity for accelerated
optimization with Hölder smoothness. In Advances in Neural Information Processing Systems 38
(NeurIPS), page to appear, 2025.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning (ICML), pages 928–936,
2003.

13

https://www.pengzhao-ml.com/course/AOptLectureNote/
https://www.pengzhao-ml.com/course/AOptLectureNote/

A Useful Equations in Online-to-Batch Conversion

In this section, we provide some useful equations in the online-to-batch conversion. We define
A0 = 0 for completeness and assume α1 = 1 (thus x̃1 = x0 and x̄1 = x1) for simplicity.

At−1(x̄t−1 − x̄t) = αt(x̄t − xt), (14)
At(x̃t − x̄t) = αt(xt−1 − xt), (15)

At−1 (x̄t−1 − x̃t) = αt(x̃t − xt−1), (16)
At−1 (x̃t − x̃t−1) = αt (xt−1 − x̃t) + αt−1 (xt−1 − xt−2) . (17)

Eq. (14) is the key equation in the analysis of Cutkosky [2019], Eq. (15) is essential for the analysis
of Kavis et al. [2019], and the last two equations are the key equations in our analysis. For boundary
cases, Eq. (14)-Eq. (16) holds from t = 1 and Eq. (17) holds from t = 2.

In the following, we provide the corresponding proofs of Eq. (14)-Eq. (17).

Proof of Eq. (16). For t = 1, it holds trivially as A0(x̄0 − x̃1) = α1(x̃1 − x0) = 0. For t ≥ 2,

At−1 (x̄t−1 − x̃t) = At−1

(
1

At−1

(
t−1∑
s=1

αsxs

)
− 1

At

(
t−1∑
s=1

αsxs + αtxt−1

))

=

t−1∑
s=1

αsxs −
At−1

At

(
t−1∑
s=1

αsxs + αtxt−1

)

=

(
t−1∑
s=1

αsxs + αtxt−1

)
− At−1

At

(
t−1∑
s=1

αsxs + αtxt−1

)
− αtxt−1

=
αt
At

(
t−1∑
s=1

αsxs + αtxt−1

)
− αtxt−1 = αt(x̃t − xt−1),

which finishes the proof.

Proof of Eq. (17). For t = 2, it holds trivially as A1(x̃2 − x̃1) = α2(x1 − x̃2) + α1(x1 − x0). For
t > 2, this can be proved by directly using the definitions of x̃t and x̄t in (4):

At−1 (x̃t − x̃t−1) = At−1

(
1

At

(
t−1∑
s=1

αsxs + αtxt−1

)
− 1

At−1

(
t−2∑
s=1

αsxs + αt−1xt−2

))

=
At−1

At

(
t−1∑
s=1

αsxs + αtxt−1

)
−

(
t−2∑
s=1

αsxs + αt−1xt−2

)

=

(
At−1

At
− 1

)(t−1∑
s=1

αsxs + αtxt−1

)
+ (αt−1xt−1 − αt−1xt−2 + αtxt−1)

= − αtx̃t + (αt−1xt−1 − αt−1xt−2 + αtxt−1)

= αt (xt−1 − x̃t) + αt−1 (xt−1 − xt−2) .

Besides, it can also be proved by combining Eq. (16) and Eq. (15):

At−1 (x̃t − x̃t−1) = At−1 (x̃t − x̄t−1) +At−1 (x̄t−1 − x̃t−1)

= αt (xt−1 − x̃t) + αt−1 (xt−1 − xt−2) ,

which finishes the proof.

B Proof for Section 3

In this section, we provide the omitted proofs for Section 3, including Theorem 1, Corollary 1,
Proposition 1, and Theorem 2.

14

B.1 Proofs of Theorem 1

Proof. We start with the analysis with the following quantity:

αt [f(x̃t)− f(x⋆)] ≤ ⟨αt∇f(x̃t),xt−1 − x⋆⟩+ ⟨αt∇f(x̃t), x̃t − xt−1⟩,
using the convexity of f(·). Later, we analyze the second term above. Specifically, using the definition
of x̃t and x̄t defined in Eq. (4), we have At−1 (x̄t−1 − x̃t) = αt(x̃t − xt−1). A detailed derivation
of this equation is given in Appendix A. Therefore, using the convexity of f(·): f(x̃t)− f(x̄t−1) ≤
⟨∇f(x̃t), x̃t − x̄t−1⟩, it holds that

αt [f(x̃t)− f(x⋆)] ≤ ⟨αt∇f(x̃t),xt−1 − x⋆⟩+At−1 [f(x̄t−1)− f(x̃t)] .

Summing over t ∈ [T], we have

−AT f(x
⋆) ≤

T∑
t=1

⟨αt∇f(x̃t),xt−1 − x⋆⟩+
T∑
t=1

[At−1f(x̄t−1)−Atf(x̃t)]

=

T∑
t=1

⟨αt∇f(x̃t),xt−1 − x⋆⟩+
T∑
t=1

[At−1f(x̄t−1)−Atf(x̄t)] +

T∑
t=1

[Atf(x̄t)−Atf(x̃t)]

=

T∑
t=1

⟨αt∇f(x̃t),xt−1 − x⋆⟩ −AT f(x̄T) +

T∑
t=1

[Atf(x̄t)−Atf(x̃t)] .

Using the convexity as f(x̄t)− f(x̃t) ≤ ⟨∇f(x̄t), x̄t − x̃t⟩ again, it is equivalent to

AT [f(x̄T)− f(x⋆)] ≤
T∑
t=1

⟨αt∇f(x̃t),xt−1 − x⋆⟩+
T∑
t=1

⟨At∇f(x̄t), x̄t − x̃t⟩

=

T∑
t=1

⟨αt∇f(x̃t),xt−1 − x⋆⟩+
T∑
t=1

⟨αt∇f(x̄t),xt − xt−1⟩

=

T∑
t=1

⟨αt∇f(x̃t),xt − x⋆⟩+
T∑
t=1

⟨αt∇f(x̄t)−∇f(x̃t),xt − xt−1⟩,

where the second step is due to At(x̃t − x̄t) = αt(xt−1 − xt) from the definitions of x̃t and x̄t. The
proof is completed.

B.2 Proof of Corollary 1

Before providing the proof, we list a useful lemma for online mirror descent.
Lemma 1 (Lemma 4 of Zhao et al. [2024]). Let X be a convex set in a Banach space, and f : X 7→ R
be a closed proper convex function on X . Given a convex regularizer ψ : X 7→ R, with its
corresponding Bregman divergence denoted by Dψ(·, ·). Then any update of the form

xt = argmin
x∈X

{h(x) +Dψ(x,xt−1)}

satisfies the following inequality for any u ∈ X ,

h(xt)− h(u) ≤ Dψ(u,xt−1)−Dψ(u,xt)−Dψ(xt,xt−1).

Proof of Corollary 1. We start from the intermediate result of Theorem 1:

AT [f(x̄T)− f(x⋆)] ≤
T∑
t=1

⟨αt∇f(x̃t),xt − x⋆⟩︸ ︷︷ ︸
TERM (A)

+

T∑
t=1

αt⟨∇f(x̄t)−∇f(x̃t),xt − xt−1⟩︸ ︷︷ ︸
TERM (B)

.

For TERM (A), using the update rule of xt+1 = ΠX [xt − ηtαt+1∇f(x̃t+1)] with step size ηt = η =
1
4L as shown in Algorithm 2, via Lemma 1, we obtain

TERM (A) ≤
T∑
t=1

1

2ηt−1

(
∥xt−1 − x⋆∥2 − ∥xt − x⋆∥2

)
−

T∑
t=1

1

2ηt−1
∥xt − xt−1∥2

15

≤ 1

2η

T∑
t=1

(
∥xt−1 − x⋆∥2 − ∥xt − x⋆∥2

)
− 1

2η

T∑
t=1

∥xt − xt−1∥2

≤ ∥x0 − x⋆∥2

2η
− 1

2η

T∑
t=1

∥xt − xt−1∥2.

For TERM (B), using the smoothness assumption and the observation ofAt(x̃t− x̄t) = αt(xt−1−xt)
as shown in Eq. (15), we have

TERM (B) ≤ L

T∑
t=1

αt∥x̄t − x̃t∥∥xt − xt−1∥ = L

T∑
t=1

α2
t

At
∥xt − xt−1∥2.

Combining the two terms, we have

AT [f(x̄T)− f(x⋆)] ≤ ∥x0 − x⋆∥2

2η
+

T∑
t=1

(
Lα2

t

At
− 1

2η

)
∥xt − xt−1∥2 ≤ 2L∥x0 − x⋆∥2.

Finally, using AT = Θ(T 2) completes the proof.

B.3 Proof of Theorem 2

Proof. We first define f̂(x) ≜ f(x)− λ
2 ∥x∥

2. Since f(·) is λ-strongly convex, f̂(·) is convex. As a
result, we directly reuse Theorem 1 for convex objectives:

AT

[
f̂(x̄T)− f̂(x⋆)

]
≤

T∑
t=1

⟨αt∇f̂(x̃t),xt − x⋆⟩+
T∑
t=1

αt⟨∇f̂(x̄t)−∇f̂(x̃t),xt − xt−1⟩.

The left-hand side of the above inequality can be expanded as

AT

[
f̂(x̄T)− f̂(x⋆)

]
= AT [f(x̄T)− f(x⋆)]− λ

2
AT ∥x̄T ∥2 +

λ

2
AT ∥x⋆∥2.

Moving the last two terms into the right-hand side, we have

AT [f(x̄T)− f(x⋆)] ≤
T∑
t=1

⟨αt∇f̂(x̃t),xt − x⋆⟩+ λ

2
AT ∥x̄T ∥2 −

λ

2
AT ∥x⋆∥2︸ ︷︷ ︸

REGT

+

T∑
t=1

αt⟨∇f̂(x̄t)−∇f̂(x̃t),xt − xt−1⟩︸ ︷︷ ︸
ADAPTIVITY

.

In the following, we focus on the REGT term. Specifically, because

AT ∥x̄T ∥2 =
1

AT

∥∥∥∥∥
T∑
t=1

αtxt

∥∥∥∥∥
2

≤ 1

AT

(
T∑
t=1

αt∥xt∥

)2

=
1

AT

(
T∑
t=1

√
αt ·

√
αt∥xt∥

)2

≤
T∑
t=1

αt∥xt∥2,

where the last step uses the Cauchy-Schwarz inequality, this term can be rewritten as

REGT ≤
T∑
t=1

αt

(
⟨∇f̂(x̃t),xt⟩+

λ

2
∥xt∥2

)
−

T∑
t=1

αt

(
⟨∇f̂(x̃t),x⋆⟩+

λ

2
∥x⋆∥2

)

=

T∑
t=1

αt [ht(xt)− ht(x
⋆)] ,

where the last step defines the surrogate loss function of

ht(x) ≜ ⟨∇f̂(x̃t),x⟩+
λ

2
∥x∥2,

finishing the proof.

16

B.4 Proof of Theorem 3

For strongly convex objective, we use the one-step variant of optimistic online gradient descent as the
optimization algorithm, whose guarantee is presented below.

Lemma 2. The one-step optimistic online gradient descent algorithm updating as

xt+1 = xt − ηt (∇ft(xt)−Mt +Mt+1) , (18)

ensures that
T∑
t=1

⟨∇ft(xt),xt − x⋆⟩ ≤
T∑
t=1

(
⟨∇ft(xt)−Mt,xt − xt+1⟩ −

1

2ηt
∥xt − xt+1∥2

)

+

T∑
t=1

(
1

2ηt
− 1

2ηt−1

)
∥xt − x⋆∥2 + 1

2η1
∥x1 − x⋆∥2 .

Proof of Theorem 3. For the regret part of
∑T
t=1 αt [ht(xt)− ht(x

⋆)] in Theorem 2, using λ-strong
convexity, we have

T∑
t=1

αt [ht(xt)− ht(x
⋆)] ≤

T∑
t=1

⟨αt∇ht(xt),xt − x⋆⟩ − λ

2

T∑
t=1

αt∥xt − x⋆∥2.

Due to Lemma 2, the linearized term above can be controlled as

T∑
t=1

⟨αt∇ht(xt),xt − x⋆⟩ ≤
T∑
t=1

(
⟨αt∇ht(xt)−Mt,xt − xt+1⟩ −

C1

2ηt
∥xt − xt+1∥2

)
︸ ︷︷ ︸

TERM (A)

+

T∑
t=1

(
1

2ηt
− 1

2ηt−1

)
∥xt − x⋆∥2 + 1

2η1
∥x1 − x⋆∥2︸ ︷︷ ︸

TERM (B)

−
T∑
t=1

1− C1

2ηt
∥xt − xt+1∥2︸ ︷︷ ︸

TERM (C)

,

where C1 ∈ (0, 1) is an arbitrary constant in the analysis that will be specified later. By choosing the
optimism as Mt = αt∇f̂(x̃t) + αtxt−1 for t ≥ 2 and M1 = α1∇f̂(x̃1) + α1x1,3 we have

TERM (A) ≤
T∑
t=1

ηt
2C0

∥αt∇ht(xt)−Mt∥2 +
T∑
t=1

2C0 − C1

2ηt
∥xt − xt+1∥2

=

T∑
t=2

λ2ηtα
2
t

2C0
∥xt − xt−1∥2 +

T∑
t=1

2C0 − C1

2ηt
∥xt − xt+1∥2

≤
T∑
t=2

(
λ2ηtα

2
t

2C0
+

2C0 − C1

2ηt−1

)
∥xt − xt−1∥2.

Combining all terms, we obtain

T∑
t=1

αt [ht(xt)− ht(x
⋆)] ≤

T∑
t=2

(
λ2ηtα

2
t

2C0
+

2C0 − C1

2ηt−1

)
∥xt − xt−1∥2

+

T∑
t=1

(
1

2ηt
− 1

2ηt−1
− λαt

2

)
∥xt − x⋆∥2 + 1

2η1
∥x1 − x⋆∥2 −

T∑
t=1

1− C1

2ηt
∥xt − xt+1∥2

=

T∑
t=2

(
λα2

t

2C0At
+
λAt−1(2C0 − C1)

2

)
∥xt − xt−1∥2 +

λα1

2
∥x1 − x⋆∥2 −

T∑
t=1

(1− C1)λAt
2

∥xt − xt+1∥2

3We note that the choice of M1 relies on x1 because x1 is the initial point of the algorithm, which is known.

17

As for the other term of
∑T
t=1 αt⟨∇f̂(x̄t)−∇f̂(x̃t),xt − xt−1⟩ in Theorem 2, we have

T∑
t=1

αt⟨∇f̂(x̄t)−∇f̂(x̃t),xt − xt−1⟩ ≤
T∑
t=1

αt

∥∥∥∇f̂(x̄t)−∇f̂(x̃t)
∥∥∥ ∥xt − xt−1∥

=

T∑
t=1

αt ∥∇f(x̄t)−∇f(x̃t)− λx̄t + λx̃t∥ ∥xt − xt−1∥

≤
T∑
t=1

αt (∥∇f(x̄t)−∇f(x̃t)∥+ λ ∥x̄t − x̃t∥) ∥xt − xt−1∥

≤ 2L

T∑
t=1

αt ∥x̄t − x̃t∥ ∥xt − xt−1∥ = 2L

T∑
t=1

α2
t

At
∥xt − xt−1∥2

where the second step is because of the definition of f̂(·): ∇f̂(x) = ∇f(x)− λx for any x ∈ Rd,
the fourth step is due to smoothness (Assumption 2) and the fact of λ ≤ L, and the last step leverages
the useful equation of Eq. (15). Combining all terms, we obtain

AT [f(x̄T)− f(x⋆)] ≤
T∑
t=1

(
2Lα2

t

At
− (1− C1)λAt−1

2

)
∥xt − xt−1∥2 +

λα1

2
∥x1 − x⋆∥2

+

T∑
t=2

(
λα2

t

2C0At
+
λAt−1(2C0 − C1)

2

)
∥xt − xt−1∥2.

To cancel the positive terms in terms of ∥xt − xt−1∥2, their coefficients should satisfy the condition:
2Lα2

t

At
− (1− C1)λAt−1

2
≤ 0,

λα2
t

2C0At
+
λAt−1(2C0 − C1)

2
≤ 0,

which is equivalent to
α2
t

AtAt−1
≤ min

{
1− C1

4κ
, (C1 − 2C0)C0

}
. (19)

By setting C0 = C1

4 and C1 = −1+
√
1+2κ
κ , and because

min

{
1− C1

4κ
, (C1 − 2C0)C0

}
=

(−1 +
√
1 + 2κ)2

8κ2
,

by setting αt = CAt−1, the following inequality is a sufficient condition for (19):
α2
t

At−1At
=

C2

C + 1
=

(−1 +
√
1 + 2κ)2

8κ2
⇒ 8κ2C2−XC−X = 0, where X = (−1+

√
1 + 2κ)2.

Solving the quadratic equation, we have

C =
X +

√
X2 + 32κ2X

16κ2
.

Thus we have At = At−1 + αt = (C + 1)At−1 = (C + 1)t−1α1, i.e., α1/AT = (C + 1)−(T−1).
More specifically, for any t ∈ [T], we have(

1

C + 1

)t
=

(
1

1 + X+
√
X2+32κ2X
16κ2

)t
=

(
16κ2

16κ2 +X +
√
X2 + 32κ2X

)t

=

(
1− X +

√
X2 + 32κ2X

16κ2 +X +
√
X2 + 32κ2X

)t
≤ exp

(
−t

1 + 16κ2

X+
√
X2+32κ2X

)

≤ exp

(
− t

1 + 16κ2√
32κ2X

)
= exp

(
− t

1 + 4κ√
2X

)

= exp

− t

1 + 4κ√
2(−1+

√
1+2κ)2

 ≤ exp

− t

1 + 4κ√
2(1+2κ)

 ≤ exp

(
− t

1 + 2
√
κ

)
.

which completes the proof.

18

B.5 Proof of Corollary 2

Before providing the proof, we list two useful lemmas for the AdaGrad-type step size.
Lemma 3 (Lemma 3.5 of Auer et al. [2002]). Let a1, a2, . . . , aT and δ be non-negative real numbers.
Then, it holds that

T∑
t=1

at√
δ +

∑t
s=1 as

≤ 2

√√√√δ +

T∑
t=1

at, where 0/
√
0 = 0.

Lemma 4 (Lemma 27 of Kreisler et al. [2024]). For any positive number c1 and c2, for any t ≥ 0,
and for any sequence of of non-negative numbers B0, B1, B2, . . ., we have

c1

√√√√ t∑
s=0

B2
s −

t∑
s=0

B2
s

c2

√√√√ s∑
k=0

B2
k ≤ 2c

3/2
1 c

1/2
2 .

Proof of Corollary 2. For completeness, we restate the main results of Theorem 1 as follows:

AT [f(x̄T)− f(x⋆)] ≤
T∑
t=1

⟨αt∇f(x̃t),xt − x⋆⟩︸ ︷︷ ︸
TERM (A)

+

T∑
t=1

αt⟨∇f(x̃t)−∇f(x̄t),xt−1 − xt⟩︸ ︷︷ ︸
TERM (B)

.

For TERM (B), we decompose it into two parts:

TERM (B) ≤
T∑
t=1

ηtα
2
t ∥∇f(x̃t)−∇f(x̄t)∥2 +

T∑
t=1

1

4ηt
∥xt − xt−1∥2,

using AM-GM inequality:
√
xy ≤ x

2a + ay
2 for any x, y, a > 0. For TERM (A), using the Bregman

proximal inequality Lemma 1, we have

TERM (A) ≤
T∑
t=1

1

2ηt−1

(
∥xt−1 − x⋆∥2 − ∥xt − x⋆∥2

)
−

T∑
t=1

1

2ηt−1
∥xt − xt−1∥2

≤
T−1∑
t=1

(
1

2ηt
− 1

2ηt−1

)
∥xt − x⋆∥2 −

T∑
t=1

1

2ηt
∥xt − xt−1∥2 +

T∑
t=1

(
1

2ηt
− 1

2ηt−1

)
∥xt − xt−1∥2

≤ D2

ηT
−

T∑
t=1

1

2ηt
∥xt − xt−1∥2,

where the last step uses the boundedness of the domain (Assumption 1). Combining both terms,

AT [f(x̄T)− f(x⋆)] ≤ D2

ηT
+

T∑
t=1

ηtα
2
t ∥∇f(x̃t)−∇f(x̄t)∥2 −

T∑
t=1

1

4ηt
∥xt − xt−1∥2. (20)

In the following, we consider smooth and non-smooth cases separately.

Smoothness Case. Using smoothness (Assumption 2) and the setup of αt = t, we have

∥∇f(x̃t)−∇f(x̄t)∥2 ≤ L2∥x̃t − x̄t∥2 =
L2α2

t

A2
t

∥xt − xt−1∥2 =
4L2t2

t2(t+ 1)2
∥xt − xt−1∥2

=
4L2

α2
t+1

∥xt − xt−1∥2 ≤ 4L2

α2
t

∥xt − xt−1∥2,

where the second step uses the useful equation of Eq. (15). Consequently, we obtain

AT [f(x̄T)− f(x⋆)] ≤ D2

ηT
+

T∑
t=1

(
ηt −

1

16L2ηt

)
α2
t ∥∇f(x̃t)−∇f(x̄t)∥2

19

≤ 3D

√√√√ T∑
t=1

α2
t ∥∇f(x̃t)−∇f(x̄t)∥2 −

T∑
t=1

α2
t ∥∇f(x̃t)−∇f(x̄t)∥2

16L2D

√√√√ t∑
s=1

α2
s∥∇f(x̃s)−∇f(x̄s)∥2

≤ O
(
LD2

)
,

where the second step uses Lemma 3 and the last step uses Lemma 4 with c1 = 3D and c2 = 16L2D,
resulting in the final bound of O

(
LD2/T 2

)
.

Non-Smoothness Case. Starting from (20), we have

AT [f(x̄T)− f(x⋆)] ≤ D2

ηT
+

T∑
t=1

ηtα
2
t ∥∇f(x̃t)−∇f(x̄t)∥2 ≤ 3D

√√√√ T∑
t=1

α2
t ∥∇f(x̃t)−∇f(x̄t)∥2

≤ 3D

√√√√2G2

T∑
t=1

α2
t = O

(
GDT 3/2

)
.

where the second step uses Lemma 3, the third step uses the assumption of bounded gradients:
∥∇f(·)∥ ≤ G, and the last step is due to the fact of

∑T
t=1 α

2
t =

∑T
t=1 t

2 = O(T 3). Diving both
sides by AT = Θ(T 2), we obtain the final bound of O(GD/

√
T), completing the proof.

B.6 Proof of Theorem 4

Proof. To start with, we analyze the intermediate term of:
T∑
t=1

αt [f(x̃t)− f(x⋆)] ≤
T∑
t=1

⟨αt∇f(x̃t),xt−1 − x⋆⟩+
T∑
t=2

⟨αt∇f(x̃t), x̃t − xt−1⟩, (21)

where we omit the index of t = 1 because x̃1 = x0. Via the useful equation of At−1 (x̃t − x̃t−1) =
αt (xt−1 − x̃t) + αt−1 (xt−1 − xt−2) (a detailed derivation is deferred to Appendix A due to page
limits), the second term above can be bounded as

T∑
t=2

⟨αt∇f(x̃t), x̃t − xt−1⟩ =
T∑
t=2

At−1⟨∇f(x̃t), x̃t−1 − x̃t⟩+
T∑
t=2

⟨αt−1∇f(x̃t),xt−1 − xt−2⟩

≤
T∑
t=2

At−1 [f(x̃t−1)− f(x̃t)] +

T∑
t=2

⟨αt−1∇f(x̃t),xt−1 − xt−2⟩ −
T∑
t=2

At−1Df (x̃t−1, x̃t),

where the last step uses the definition of Bregman divergence. Plugging the above back into (21),

A1f(x̃1)−AT f(x
⋆) ≤

T∑
t=1

⟨αt∇f(x̃t),xt−1 − x⋆⟩+
T∑
t=2

[At−1f(x̃t−1)−Atf(x̃t)]

+

T∑
t=2

⟨αt−1∇f(x̃t),xt−1 − xt−2⟩ −
T∑
t=2

At−1Df (x̃t−1, x̃t).

As a result, we can upper-bound AT [f(x̃T)− f(x⋆)] by
T∑
t=1

⟨αt∇f(x̃t),xt−1 − x⋆⟩+
T∑
t=2

⟨αt−1∇f(x̃t),xt−1 − xt−2⟩ −
T∑
t=2

At−1Df (x̃t−1, x̃t).

Compared with the final result in Theorem 4, we need to handle the differential terms of
T∑
t=1

⟨αt∇f(x̃t),xt−1 − xt⟩+
T∑
t=2

⟨αt−1∇f(x̃t),xt−1 − xt−2⟩ =
T∑
t=1

⟨αt∇f(x̃t),xt−1 − xt⟩

+

T−1∑
t=1

⟨αt∇f(x̃t+1),xt − xt−1⟩ =
T−1∑
t=1

αt⟨∇f(x̃t+1)−∇f(x̃t),xt − xt−1⟩,

where the second step shifts the time index, and the last step is because of αT = 0.

20

B.7 Proof of Theorem 5

Before providing the proof, we present a useful property of smoothness.
Proposition 2 (Theorem 2.1.5 of Nesterov [2018]). f(·) is L-smooth over Rd if and only if

∥∇f(x)−∇f(y)∥2 ≤ 2L · Df (y,x), for any x,y ∈ Rd. (22)

Proof of Theorem 5. For completeness, we restate the main results of Theorem 4 as follows:

AT [f(x̃T)− f(x⋆)] ≤
T∑
t=1

⟨αt∇f(x̃t),xt − x⋆⟩︸ ︷︷ ︸
TERM (A)

+

T−1∑
t=1

αt⟨∇f(x̃t+1)−∇f(x̃t),xt − xt−1⟩︸ ︷︷ ︸
TERM (B)

−
T∑
t=2

At−1Df (x̃t−1, x̃t).

For TERM (B), it holds that

TERM (B) ≤ 1

2

T−1∑
t=1

ηtα
2
t ∥∇f(x̃t+1)−∇f(x̃t)∥2 +

T−1∑
t=1

1

2ηt
∥xt − xt−1∥2

≤ D

√√√√T−1∑
t=1

α2
t ∥∇f(x̃t+1)−∇f(x̃t)∥2 +

T−1∑
t=1

1

2ηt
∥xt − xt−1∥2,

where the first step uses AM-GM inequality and the second step holds due to the step sizes (11) and
the self-confident tuning lemma (Lemma 3). As for TERM (A), following the same analysis as in
Appendix B.5, using Lemma 1, it holds that

TERM (A) ≤ D2

ηT−1
−
T−1∑
t=1

1

2ηt
∥xt − xt−1∥2.

Combining the above results, it holds that

AT [f(x̃T)− f(x⋆)] ≤ 2D

√√√√T−1∑
t=1

α2
t ∥∇f(x̃t+1)−∇f(x̃t)∥2 −

T∑
t=2

At−1Df (x̃t−1, x̃t). (23)

In the following, we consider smooth and non-smooth cases separately.

Smoothness Case. Starting from (23), we obtain

AT [f(x̃T)− f(x⋆)] ≤ 2D

√√√√2L

T−1∑
t=1

α2
tDf (x̃t, x̃t+1)−

T−1∑
t=1

AtDf (x̃t, x̃t+1)

≤ 2γLD +

T−1∑
t=1

(
α2
tD

γ
−At

)
Df (x̃t, x̃t+1) ≤ O(LD2),

where the first step uses the property of smoothness in Proposition 2, the second step uses AM-
GM inequality

√
xy ≤ x

2γ + γy
2 for any x, y, γ > 0, and the last step holds by simply choosing

γ = 2D (this constant only appears in the analysis and thus can be choosen arbitrarily). Finally, since
AT = T (T−1)

2 = Θ(T 2), we achieve the optimal accelerated rate of O(LD2/T 2).

Non-Smoothness Case. Starting from (23), we have

AT [f(x̃T)− f(x⋆)] ≤ 2D

√√√√T−1∑
t=1

α2
t ∥∇f(x̃t+1)−∇f(x̃t)∥2 ≤ 4D

√√√√G2

T∑
t=1

α2
t = O

(
GDT 3/2

)
,

the second step uses the assumption of bounded gradients: ∥∇f(·)∥ ≤ G, and the last step is due to
the fact of

∑T
t=1 α

2
t =

∑T
t=1 t

2 = O(T 3). Diving both sides by AT = Θ(T 2), we obtain the final
bound of O(GD/

√
T), completing the proof.

21

C Extension to Stochastic Optimization

In this section, we extend our proposed methods to the stochastic optimization setting. In the
following, we first provide a formal description of the stochastic gradient oracle.
Assumption 3 (Stochastic Gradient Oracle). For the objective function f : X → R, we assume
access to a stochastic gradient oracle g(·) that satisfies:

(i) Unbiasedness: E[g(x) | x] = ∇f(x) for all x ∈ X ;

(ii) Bounded noise: ∥g(x)−∇f(x)∥ ≤ σ almost surely, where σ > 0 is the noise parameter.

Note that Assumption 3 leverages an almost-sure boundedness because we aim to achieve high-
probability rates, which is stronger than the expectation rates obtained by previous works [Cutkosky,
2019, Kavis et al., 2019, Joulani et al., 2020b], where a bounded-variance assumption suffices.

Below we present our result for the stochastic optimization setting.
Corollary 3. Under Assumptions 1 and 3, our Algorithm 2 with weights αt = t for t ∈ [T − 1],
αT = 0, and with step size

ηt =
D√∑t

s=1 α
2
s∥g(x̃s+1)− g(x̃s)∥2

, (24)

with probability at least 1− δ, guarantees

f(x̃T)− f(x∗) ≤


O
(
LD2

T 2 +
σD

√
θT,δ/3√
T

+
σDθT,δ/3

T

)
, if f(·) satisfies Assumption 2,

O
(
D(G+σ)√

T
+

σD
√
θT,δ/3√
T

+
σDθT,δ/3

T

)
, if ∥∇f(·)∥ ≤ G,

where θt,δ/3 = log 180 log(6t)
δ for any t ∈ [T] and δ > 0.

Before presenting the proof of Corollary 3, we import a useful lemma from Ivgi et al. [2023].
Lemma 5 (Lemma D.2 of Ivgi et al. [2023]). Let c > 0, {Xt} be a martingale difference sequence
adapted to filtration Ft with E[Xt] = 0 and |Xt| ≤ c, and {yt} be a non-negative and non-decreasing
sequence. Then, for any δ ∈ (0, 1), with probability at least 1− δ, we have∣∣∣∣∣

T∑
t=1

ytXt

∣∣∣∣∣ ≤ 8yT

√√√√θT,δ

T∑
t=1

X2
t + c2θ2T,δ,

where θt,δ ≜ log 60 log(6t)
δ .

Proof of Corollary 3. We start from the beginning of Theorem 5 and aim to analyze two main terms:

TERM (A) =

T∑
t=1

⟨αt∇f(x̃t),xt − x⋆⟩,

and TERM (B) =

T−1∑
t=1

αt⟨∇f(x̃t+1)−∇f(x̃t),xt − xt−1⟩.

For TERM (A), we further decompose it into two parts because we can only access the stochastic
gradient g(x̃t):

TERM (A) =

T∑
t=1

⟨αtg(x̃t),xt − x⋆⟩︸ ︷︷ ︸
TERM (A-I)

+

T−1∑
t=1

αt⟨∇f(x̃t)− g(x̃t),xt − x⋆⟩︸ ︷︷ ︸
TERM (A-II)

,

where TERM (A-II) only counts from t = 1 to t = T − 1 because we manually set αT = 0. For
TERM (A-I), we can use the Bregman proximal inequality (Lemma 1) to obtain

TERM (A-I) ≤ D2

ηT−1
−
T−1∑
t=1

1

2ηt
∥xt − xt−1∥2.

22

And for TERM (A-II), using the martingale concentration inequality (Lemma 5) with

Xt =

〈
∇f(x̃t)− g(x̃t),

xt − x⋆

D

〉
, yt = αtD, c = σ,

where (Ft)t≥0 denotes the filtration generated by the history up to round t, i.e., Ft =

σ
(
x0, {xs, x̃s,g(x̃s)}ts=1

)
, and {Xt}T−1

t=1 is a martingale difference sequence adapted to (Ft)t≥0;
with probability at least 1− δ/3,

TERM (A-II) ≤ 8(T − 1)D
√
θT,δ/3σ2(T − 1) + σ2θ2T,δ/3,

where θt,δ/3 = log 180 log(6t)
δ . For TERM (B), we can decompose it into two parts of

TERM (B-I) =

T−1∑
t=1

αt⟨g(x̃t+1)− g(x̃t),xt − xt−1⟩,

and TERM (B-II) =

T−1∑
t=1

αt⟨∇f(x̃t+1)− g(x̃t+1),xt − xt−1⟩+
T−1∑
t=1

⟨g(x̃t)−∇f(x̃t),xt − xt−1⟩.

For TERM (B-I), following the same analysis as Theorem 5, we have

TERM (B-I) ≤ D

√√√√T−1∑
t=1

α2
t ∥g(x̃t+1)− g(x̃t)∥2 +

T−1∑
t=1

1

2ηt
∥xt − xt−1∥2.

And for TERM (B-II), we can use the martingale concentration inequality (Lemma 5) again, where
we note that Xt = ⟨∇f(x̃t+1)− g(x̃t+1),xt − xt−1⟩/D is also a martingale difference sequence
adapted to the filtration (Ft)t≥0 because x̃t+1 only contains the information up to the t-th iteration.
Thus, with probability at least 1− 2δ/3, we have

TERM (B-II) ≤ 16(T − 1)D
√
θT−1,δ/3σ2(T − 1) + σ2θ2T−1,δ/3.

In the following, we consider smooth and non-smooth cases separately.

Smoothness Case. Combining TERM (A-I), TERM (B-I), and the negative Bregman divergence as
shown in Theorem 4, we have

2D

√√√√T−1∑
t=1

α2
t ∥g(x̃t+1)− g(x̃t)∥2 −

T−1∑
t=1

AtDf (x̃t, x̃t+1)

≤ 2D

√√√√3

T−1∑
t=1

α2
t ∥∇f(x̃t+1)−∇f(x̃t)∥2 + 6

T−1∑
t=1

α2
tσ

2 −
T−1∑
t=1

AtDf (x̃t, x̃t+1)

≲ LD2 + σT 3/2,

because of ∥∇f(x) − g(x)∥ ≤ σ for any x ∈ X and the fact of
∑T
t=1 α

2
t =

∑T
t=1 t

2 = O(T 3).
Finally, we can combine all the terms together to obtain the final bound of

f(x̃T)− f(x⋆) ≤ O

(
LD2

T 2
+
σD
√
θT,δ/3√
T

+
σDθT,δ/3

T

)
,

which matches the optimal rate of O(LD2/T 2 + σD/
√
T) with only a logarithmic factor overhead.

And note that the extra logarithmic factor always appears in high-probability bounds in the literature.

Non-Smoothness Case. Combining TERM (A-I) and TERM (B-I), we have

2D

√√√√T−1∑
t=1

α2
t ∥g(x̃t+1)− g(x̃t)∥2 ≤ 2D

√√√√3

T−1∑
t=1

α2
t ∥∇f(x̃t+1)−∇f(x̃t)∥2 + 6

T−1∑
t=1

α2
tσ

2

23

≤ 2D

√√√√6G2

T−1∑
t=1

α2
t + 6σ2

T−1∑
t=1

α2
t ≤ O

(
D(G+ σ)T 3/2

)
,

because of ∥∇f(x) − g(x)∥ ≤ σ for any x ∈ X and the fact of
∑T
t=1 α

2
t =

∑T
t=1 t

2 = O(T 3).
Finally, we can combine all the terms together to obtain the final bound of

f(x̃T)− f(x⋆) ≤ O

(
D(G+ σ)√

T
+
σD
√
θT,δ/3√
T

+
σDθT,δ/3

T

)
,

which matches the optimal rate of O(D(G+ σ)/
√
T) with only a logarithmic factor overhead. And

note that the extra logarithmic factor always appears in high-probability bounds in the literature.

D Proof of Proposition 1

Proof. We prove this by induction. To begin with, we aim to show y1 = x̄1. To see this, we provide
a fundamental analysis for Algorithm 2:

x̄t =
1

At
(At−1x̄t−1 + αtxt) =

1

At
[At−1x̄t−1 + αt (xt−1 − ηt−1αt∇f(x̃t))]

=
1

At

[
At−1x̄t−1 + αt

(
At−1x̄t−1 −At−2x̄t−2

αt−1
− ηt−1αt∇f(x̃t)

)]
= x̄t−1

(
At−1

At
+
αt(αt−1 +At−2)

Atαt−1

)
− x̄t−2

(
αtAt−2

Atαt−1

)
− ηt−1α

2
t

At
∇f(x̃t)

= x̄t−1 +
αtAt−2

Atαt−1
(x̄t−1 − x̄t−2)−

ηt−1α
2
t

At
∇f(x̃t)

= x̄t−1 −
1

4L
∇f(x̃t) +

t− 2

t+ 1
(x̄t−1 − x̄t−2) , (25)

where the second step uses the update rule, and the last step holds due to αt = t, ηt−1 = t+1
t · 1

8L .
For t = 1, At−2 = 0, we have x̄1 = x̄0 − 1

4L∇f(x̃1) = x0 − 1
4L∇f(x0) due to the initialization

of x̃1 = x̄0 = x0. Furthermore, for NAG (2), y1 = z0 − θ∇f(z0) = x0 − 1
4L∇f(x0) due to the

initialization of y0 = z0 = x0. To conclude, we have y1 = x̄1.

Consequently, we assume yt−1 = x̄t−1 for some t > 1 and aim to prove zt−1 = x̃t. In NAG (2),
since zt−1 = yt−1 + t−2

t+1 (yt−1 − yt−2), we have zt−1 = x̄t−1 + t−2
t+1 (x̄t−1 − x̄t−2) due to

the induction hypothesis. To prove zt−1 = x̃t, since both of them are linear combinations of the
sequence {xs}t−1

s=1, we only need to prove that the coefficients of xs for all s ∈ [t− 1] are the same.
Specifically, for xt−1, its coefficient in zt−1 is αt−1

At−1
(1 + t−2

t+1) =
2(2t−1)
t(t+1) and its coefficient in x̃t is

1
At

(αt−1 + αt) =
2(2t−1)
t(t+1) , which are the same. For xs with s ∈ [t − 2], its coefficient in zt−1 is

αs

At−1
(1+ t−2

t+1)−
t−2
t+1

αs

At−2
= 2αs

t(t+1) and its coefficient in x̃t is αs

At
= 2αs

t(t+1) , which are the same. As
a result, we have proven zt−1 = x̃t.

Finally, we aim to prove yt = x̄t to finish the proof of induction. To see this, we combine the update
of NAG (2) into one step and use yt−1 = x̄t−1 and zt−1 = x̃t:

yt = zt−1 − θ∇f(zt−1) =

(
yt−1 +

t− 2

t+ 1
(yt−1 − yt−2)

)
− θ∇f(zt−1)

=

(
x̄t−1 +

t− 2

t+ 1
(x̄t−1 − x̄t−2)

)
− 1

4L
∇f(x̃t),

which is equivalent to (25), showing that yt = x̄t.

Finally, since we have proved x̃t = x̄t−1 +
t−2
t+1 (x̄t−1 − x̄t−2), denoting by βt−1 = t−2

t+1 , the update
rule of our algorithm can be rewritten as

x̄t = x̄t−1 + βt−1 (x̄t−1 − x̄t−2)−
1

4L
∇f (x̄t−1 + βt−1(x̄t−1 − x̄t−2)) ,

which is exactly Nesterov’s accelerated gradient method in a one-step update formulation.

24

E Experiments

In this section, we present the numerical experiments to evaluate the performance of the proposed
methods. We compare our methods with baseline algorithms across different problem settings
(non-universal and universal) on various datasets.

Contenders. In the non-universal setting, we compare our method (Algorithm 2 with step size
η = 1

4L) with: (i) the classic non-universal methods of NAG, as stated in Eq. (2); (ii) the standard
gradient descent GD; and (iii) the non-universal variant of UniXGrad [Kavis et al., 2019] (whose step
size is also set as η = 1

4L). And in the universal setting, we compare our methods — the two-gradient
version with adaptive step size Eq. (9) and the one-gradient improvement with adaptive step size
Eq. (11) — with the classic universal methods: (i) UniXGrad [Kavis et al., 2019] and (ii) the method
in Joulani et al. [2020b] (abbreviated as JRGS’20).

Setup. Our experiment setup is mainly inspired by Kavis et al. [2019]. We investigate two kinds of
convex smooth optimization problems: the squared loss task and the logistic regression task. For the
squared loss task, we take the least squares problem with L2-norm ball constraint for this setting, i.e.,
f(x) ≜ 1

2N ∥Ax − b∥22, where ∥x∥2 < R, A ∈ RN×d follows a normal distribution of N (0, σ2I)

and b = Ax⋆ + ε such that ε is a random vector ∼ N (0, 10−3). We pick N = 500 and d = 100.
The smoothness parameter L of the squared objective is 1

N σmax(A)
2, where σmax(A) is the largest

singular value of A.

For the logistic regression task, the performance is measured by the ℓ2-regularized logistic loss
f(x) ≜ 1

N

∑N
i=1 log(1 + exp(−bi · a⊤i x)) + µ∥x∥22, where at ∈ Rd and bt ∈ {−1,+1} are chosen

from a dataset {at, bt}Ni=1, µ = 0.005 is the parameter of the regularization term to prevent overfitting.
The smoothness parameter L of the logistic objective is 1

4N λmax(
∑N
i=1 aia

⊤
i), where λmax(·) is the

largest eigenvalue of the matrix. Here we use five LIBSVM datasets to initialize the logistic loss.

In the non-universal setting, all the methods can use the knowledge of the smoothness parameter L,
which is prohibited in the universal setting.

Results. We report average results of the suboptimality gap, i.e., f(·) − minx∈X f(x), in the
logarithmic scale, and time complexity with standard deviations of 5 independent runs. Only the
randomness of the initial point is preserved. All hyper-parameters are set to be theoretically optimal.

Figure 2 plots the suboptimality gap and time complexity of all methods, in the non-universal setting.
Our method (Algorithm 2) achieves a similar convergence behavior as NAG and UniXGrad while
being faster than GD. As for the time complexity, GD is the fastest one, UniXGrad is the slowest
because there are two gradient evaluations and projections per iteration, while our method and NAG
are comparable.

Figure 3 plots the suboptimality gap and time complexity of all methods, in the universal setting. Our
method (Algorithm 2) achieves comparable and sometimes better convergence behavior compared
with the other state-of-the-art methods. In terms of time complexity, our one-gradient improvement
has a similar performance as JRGS’20, and is faster than UniXGrad and our two-gradient version.
Note that the standard deviation of the convergence curves become large as the suboptimality gap
becomes small because the logarithm scale is used, making it sensitive to the small variations.

The results in Figure 2 and Figure 3 show the effectiveness of our simple method (Algorithm 2) when
compared with the classic non-universal methods (NAG and GD) and the classic universal methods
(UniXGrad and the method in Joulani et al. [2020b]), supporting our theoretical findings.

25

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

0 250 500 750 1000 1250 1500 1750 2000
Iteration

10
4

10
3

10
2

10
1

10
0

10
1

S
ub

op
tim

al
ity

 G
ap

NAG Ours GD UniXGrad

0

20

40

60

80

Tim
e (m

s)

(a) Squared

0 250 500 750 1000 1250 1500 1750 2000
Iteration

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

S
ub

op
tim

al
ity

 G
ap

NAG Ours GD UniXGrad

0

1000

2000

3000

4000

Tim
e (m

s)

(b) a1a

0 250 500 750 1000 1250 1500 1750 2000
Iteration

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

S
ub

op
tim

al
ity

 G
ap

NAG Ours GD UniXGrad

0

500

1000

1500

2000

2500

3000

3500

Tim
e (m

s)

(c) mushrooms

0 200 400 600 800 1000
Iteration

10
7

10
6

10
5

10
4

10
3

10
2

S
ub

op
tim

al
ity

 G
ap

NAG Ours GD UniXGrad

0

100

200

300

400

Tim
e (m

s)

(d) splice

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

S
ub

op
tim

al
ity

 G
ap

NAG Ours GD UniXGrad

0

100

200

300

400

Tim
e (m

s)

(e) splice-scale

0 200 400 600 800 1000 1200
Iteration

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

S
ub

op
tim

al
ity

 G
ap

NAG Ours GD UniXGrad

0

50

100

150

200

250

300

Tim
e (m

s)

(f) svmguide3

Figure 2: Comparison in the non-universal setting of the convergence curves and time complexity. Our method
(Ours) is compared with classic non-universal methods NAG (2), GD, and UniXGrad on one squared loss
task (Squared) and five ℓ2-regularized logistic regression tasks (a1a, mushrooms, splice, splice-scale
and svmguide3). Ours achieves similar convergence as NAG and UniXGrad while being faster than GD.

0 250 500 750 1000 1250 1500 1750 2000
Iteration

10
11

10
9

10
7

10
5

10
3

10
1

10
1

S
ub

op
tim

al
ity

 G
ap

UniXGrad JRGS'20 Ours (1Grad) Ours (2Grad)

0

50

100

150

200

250

Tim
e (m

s)

(a) Squared

0 250 500 750 1000 1250 1500 1750 2000
Iteration

10
11

10
9

10
7

10
5

10
3

10
1

S
ub

op
tim

al
ity

 G
ap

UniXGrad JRGS'20 Ours (1Grad) Ours (2Grad)

0

1000

2000

3000

4000

5000

6000

7000

Tim
e (m

s)

(b) a1a

0 250 500 750 1000 1250 1500 1750 2000
Iteration

10
11

10
9

10
7

10
5

10
3

10
1

S
ub

op
tim

al
ity

 G
ap

UniXGrad JRGS'20 Ours (1Grad) Ours (2Grad)

0

1000

2000

3000

4000

5000

Tim
e (m

s)

(c) mushrooms

0 200 400 600 800 1000
Iteration

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

S
ub

op
tim

al
ity

 G
ap

UniXGrad JRGS'20 Ours (1Grad) Ours (2Grad)

0

100

200

300

400

500

600

Tim
e (m

s)

(d) splice

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

S
ub

op
tim

al
ity

 G
ap

UniXGrad JRGS'20 Ours (1Grad) Ours (2Grad)

0

100

200

300

400

500

600

700

Tim
e (m

s)

(e) splice-scale

0 200 400 600 800 1000 1200
Iteration

10
11

10
9

10
7

10
5

10
3

10
1

S
ub

op
tim

al
ity

 G
ap

UniXGrad JRGS'20 Ours (1Grad) Ours (2Grad)

0

100

200

300

400

500

600

Tim
e (m

s)

(f) svmguide3

Figure 3: Comparison in the universal setting of the convergence curves and time complexity. Our methods —
Ours (1Grad) and Ours (2Grad) — are compared with classic universal methods UniXGrad and JRGS’20 on
one squared loss task (Squared) and five ℓ2-regularized logistic regression tasks (a1a, mushrooms, splice,
splice-scale and svmguide3). Our methods achieve comparable convergence behavior compared with the
other contenders. Ours (1Grad) is more efficient than Ours (2Grad) and UniXGrad.

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The statements after Theorem 5 have pointed out the limitations of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

27

Justification: Each of our theoretical results is accompanied by a complete set of assumptions
and a complete proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

28

Answer: [NA]
Justification: Our paper does not include experiments requiring code
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: Our paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Our paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

30

https://neurips.cc/public/EthicsGuidelines
https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

31

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

32

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

33

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Accelerated Convergence
	Online-to-Batch Conversion for Acceleration
	Our Contributions

	Preliminary
	Notations and Assumptions
	(Stabilized) Online-to-Batch Conversion

	Optimistic Online-to-Batch Conversions for Acceleration and Universality
	Acceleration for Smooth and Convex Functions
	Acceleration for Smooth and Strongly Convex Functions
	Universality to Smooth and Non-smooth Functions

	Discussions of Conversion-based Methods
	Comparing Algorithm 2 with Nesterov's Accelerated Gradient
	Comparing Previous Methods with Polyak's Heavy-Ball

	Experiments
	Conclusion
	Useful Equations in Online-to-Batch Conversion
	Proof for Section 3
	Proofs of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Corollary 2
	Proof of Theorem 4
	Proof of Theorem 5

	Extension to Stochastic Optimization
	Proof of Proposition 1
	Experiments

