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Abstract

Cross-document event coreference resolution
(CD-ECR) is a task of clustering event men-
tions across multiple documents that refer to
the same real-world events. Previous studies
usually model the CD-ECR task as a pairwise
similarity comparison problem by using differ-
ent event mention features, and consider the
highly similar event mention pairs in the same
cluster as coreferent. In general, most of them
only consider the local context of event men-
tions and ignore their implicit global informa-
tion, thus failing to capture the interactions of
long-distance event mentions. To address the
above issue, we regard discourse structure as
global information to further improve CD-ECR.
First, we use a discourse rhetorical structure
constructor to construct tree structures to rep-
resent documents. Then, we obtain shortest
dependency paths from the tree structures to
represent interactions between event mention
pairs. Finally, we feed the above information
to a multi-layer perceptron to capture the sim-
ilarities of event mention pairs for resolving
coreferent events. Experimental results on the
ECB+ dataset show that our proposed model
outperforms several baselines and achieves the
competitive performance with the start-of-the-
art baselines.

1 Introduction

In real-world texts, there are usually a large number
of sentences that describe the same event in reality,
and an event will be mentioned repeatedly in mul-
tiple documents. When multiple event mentions
(an instance of a specific event in texts) point to
the same event ontology, these event mentions are
coreferent. Event coreference resolution is useful
for many natural language processing (NLP) appli-
cations, such as information extraction (Liu et al.,
2017), topic detection (Wayne, 1998), and question
answering (Weissenborn et al., 2017). Depend-
ing on whether the event mentions are in the same
document, this task can be further divided into

within-document (WD-ECR) and cross-document
(CD-ECR) event coreference resolution. This paper
focuses on the cross-document task CD-ECR.

Events mainly consist of triggers and arguments.
Since triggers are the main words that can most
clearly express the occurrence of events, each event
can be represented as its corresponding trigger.
Consider the following two event mentions as ex-
amples:

S1: The court would hand down a ruling on
whether the former president will remain detained
for three more months before the current extension
expires.

S2: The former president detainment was previ-
ously extended for three months in July.

The event triggers in the event sentences S1 and
S2 are “detained” and “detainment”, respectively.
Although these two triggers have different forms,
they both refer to the same judicial type Arrest.
Therefore, “detained” in S1 and “detainment” in S2
have a coreference relationship and can be aggre-
gated to form a coreferent chain.

Previous studies on WD-ECR or CD-ECR typi-
cally took a pair of event mentions with their event
sentences as input and then predicted whether they
are coreferent using a binary classifier (Chen and
Ji, 2009; Lu et al., 2016; Lu and Ng, 2017). To
this end, an important step in their models was to
extract discriminative features of event mentions
and then used encoding method to represent event
mentions as vectors. Simultaneously, almost all
previous studies considered the task of event coref-
erence resolution as a similarity model and focused
on how to calculate the feature similarities between
event mention pairs (Liu et al., 2014; Lu and Ng,
2017). Besides, some studies also focused on data
augmentation (Nguyen et al., 2016; Choubey and
Huang, 2018; Huang et al., 2019; Barhom et al.,
2019; Fang and Li, 2020), which boost event coref-
erence resolution on additional raw data.

In the CD-ECR task, there is a limitation that
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EDU1:Over 300 Russian police search for assailants after attack on tourists

EDU2:Over 300 police officers were fanning out

EDU3:who attacked Moscow tourists in the Russian city of Nizhny Novgorod

Figure 1: An example of discourse tree. The three
underlined words are event mention triggers.

two event mentions in a pair may be scattered
across one or more documents and have a long
distance. Previous studies on both CD-ECR and
WD-ECR have attempted to extract the context fea-
tures, which only represented event mentions from
the local perspective (Kenyon-Dean et al., 2018;
Barhom et al., 2019) and the information from the
global perspective was neglected.

To address the above issue, we introduce dis-
course structure to extract global information of
event mentions and then apply them to CD-ECR.
Discourse structure is a tree structure (called “dis-
course tree” below). Generally, discourse tree is
constructed by discourse rhetorical structure (Mann
and Thompson, 1998) (DRS) constructor, which
aims to represent input text as a tree structure like
the example in Figure 1, where the leaf nodes are el-
ementary discourse units (EDU) and it has smaller
fine-grained units than event sentences. The dis-
course tree can clearly express the rhetorical rela-
tion and nuclearity relation (e.g., NS-Summary) of
each EDU, which can provide useful information
for associating those long-distance event mention
pairs.

On the other hand, the DRS constructor gener-
ally performs tree construction on single document.
In the CD-ECR task, if two event mentions in the
same document, we can directly input the docu-
ment to DRS constructor to obtain discourse tree,
and then extract the global information of the two
event mentions. However, if the query is a cross-
document event mention pair, and the models send
their documents to the DRS constructor separately,
the global information of this event mention pair
cannot be obtained directly. Therefore, we also
propose a construction strategy of cross-document
discourse tree, which is helpful to obtain the global
information of cross-document event mention pairs.
We summarize the contributions of our work as fol-
lows.

• We extract global information from discourse

tree which can provide useful information for
associating those long-distance event mention
pairs.

• We propose a strategy for constructing the
cross-document discourse tree. To the best of
our knowledge, we are the first to apply the
cross-document discourse tree to the CD-ECR
task.

• Our model outperforms several baselines and
achieves the competitive performance with the
start-of-the-art baseline.

2 Related Work

Research on event coreference resolution mainly
draws on the method of entity coreference resolu-
tion, which aims to resolve noun phrases/mentions
for entities (Raghunathan et al., 2010; Ng, 2010;
Durrett and Klein, 2013; Lee et al., 2017; Joshi
et al., 2019). Since event mentions have more com-
plex structures than entity mentions, event coref-
erence resolution is a more challenging task than
entity coreference resolution (Yang et al., 2015).

Early research on event coreference resolution
mainly applied machine learning methods (Chen
and Ji, 2009; Bejan and Harabagiu, 2010; Liu
et al., 2014). Some researchers incorporated vari-
ous kinds of regular methods into machine learning
methods and improved the performance of event
coreference resolution (Nicolae and Nicolae, 2006;
Sangeetha and Arock, 2012; Liu et al., 2018). Since
these methods relied heavily on manual annotation
features, some studies paid more attention to raw
text event coreference resolution (Araki and Mi-
tamura, 2015; Peng et al., 2016; Lu et al., 2016;
Chen and Ng, 2016; Lu and Ng, 2017).

Recently, deep learning work has been applied to
both WD-ECR (Nguyen et al., 2016; Choubey and
Huang, 2018; Fang et al., 2018; Huang et al., 2019;
Cheng et al., 2019; Lu et al., 2020; Choubey et al.,
2020; Lu and Ng, 2021) and CD-ECR (Kenyon-
Dean et al., 2018; Barhom et al., 2019; Zeng et al.,
2020; Cattan et al., 2021; Yu et al., 2022). In WD-
ECR, Krause et al. (2016) used convolutional neu-
ral networks to mine event features for event coref-
erence resolution. Huang et al. (2019) incorporated
argument compatibility knowledge from a large
number of the unlabeled corpus. Lu and Ng (2021)
investigated span-based models for event coref-
erence resolution. In CD-ECR, argument infor-
mation was introduced into event representations
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Figure 2: The overall framework of our CD-ECR model.

(Barhom et al., 2019; Zeng et al., 2020; Yu et al.,
2022), Barhom et al. (2019) jointly learned en-
tity and event coreference resolution and leveraged
predicate-argument structures. Zeng et al. (2020)
integrated event-specific paraphrases and argument-
aware semantic embeddings for CD-ECR. Yu et al.
(2022) augmented pairwise representation with
structured argument features to improve CD-ECR
performance. Caciularu et al. (2021) pretrained
a cross-document language model via sets of re-
lated documents for CD-ECR. Held et al. (2021)
extracted event mentions features from the local
perspective and trained a fine-grained classifier to
improve CD-ECR performance.

Compared with previous deep learning work for
CD-ECR, we present a novel global information
representation for event mentions to enhance the
interaction between long-distance event mentions.

3 Model

Formally, given a set of documents D =
{d1, d2, ..., d|D|}, whose element di consists of a
series of sentences {si1, si2, ..., si|di|}}, and a set
of event mentions M = {m1,m2, ...,m|M |}, these
event mentions in M can be distributed in different
documents in D. CD-ECR aims to discover the
event mentions in M from different documents in
D that refer to the same event ontology in the real
world and gather them into the same cluster. ECB+
is the most popular corpus for CD-ECR and our
work is also performed on this corpus.

Figure 2 shows an overview of our CD-ECR
model, which includes three main components: 1)
Local Information Representation (LIR) to obtain

local perspective information of event mentions
from EDU embeddings, 2) Global Information Rep-
resentation (GIR) to extract global information rep-
resentation from the discourse tree constructed by
the DRS Constructor, 3) Event Coreference Predic-
tion (ECP) to receive the global and local repre-
sentations of event mention pairs and predict the
probability that two event mentions are coreferent.

3.1 Local Information Representation

Generally, previous pairwise model on the
CD-ECR task took the concatenated vector
R(mi,mj) = [v(mi), v(mj), v(mi) ◦ v(mj)] as
the base representation of event pairs, where ◦ is
element-wise multiplication, the v(mi) and v(mj)
are feature vector of the event mention mi and
mj , respectively. They obtained the feature vec-
tor v(·) through encoding the event sentence by a
pre-trained language model (e.g., BERT (Xu et al.,
2019), RoBERTa (Liu et al., 2019)) and then con-
sider the word embedding of trigger or trigger con-
text tokens as the feature vector v(·).

Different from previous work, we incorporate
EDU representation in R(mi,mj) where event
mention located. Specifically, we first encode each
document using RoBERTaLARGE inspired by Cat-
tan et al. (2021), which splits long documents into
non-overlapping segments of up to 512 word-piece
tokens and encodes them independently. Differ-
ently, when the document exceeds 512 tokens, in
order to preserve the integrity of the EDU informa-
tion where the trigger is located, we just split it into
multiple segments of entire EDUs and not just 512
tokens.
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After encoded by RoBERTa, we extract the trig-
ger pair feature t(mi,mj) and the EDU pair feature
e(mi,mj) from word embeddings for the event
mention pair (mi,mj), the local information rep-
resentation Rlocal(i, j) is obtained as follows.

t(mi,mj) = [ti, tj , ti ◦ tj ],
e(mi,mj) = [ei, ej , ei ◦ ej ],
Rlocal(i, j) = [t(mi,mj), e(mi,mj)],

(1)

where ti, tj denotes the trigger tokens embeddings
of mi, mj , and ei, ej denotes the EDU tokens
embeddings of mi, mj .

3.2 Global Information Representation
GIR aims to obtain the global information repre-
sentation of event mention pair from discourse tree.
Figure 3(a) shows the discourse tree construction
step for both within-document (WD) and cross-
document (CD) event mention pairs.

Generally, a DRS constructor consists of two
main components: Segmentor and DRS parser. The
segmentor receives an article with several sentences
and splits it into a set of EDU sequences [EDU1,
EDU2,...,EDUn], where all EDUs are leaf nodes of
the discourse tree. Then, the DRS parser predicts
a specific rhetoric and nuclearity relation between
two adjacent EDUs, and then forms a superior DU,
which links to others EDUs or DUs to obtain a
discourse tree.

Specifically, we first prepare the input data for
the DRS constructor. Since the two event mentions
in a given input event mention pair (mi,mj) may
come from different documents, we process it in

two ways as shown in Figure 3(a). If (mi,mj)
is a within-document event mention pair, we feed
whole document directly to the DRS constructor
to obtain a discourse tree. If (mi,mj) is a cross-
document event mention pair, we extract the two
event sentences that mi and mj are located respec-
tively, then the other texts are sent to T5BASE (Raffel
et al., 2020) for compression. The compressed texts
are concatenated with two event sentences by their
origin order to form the input document for the
DRS constructor. Finally, the cross-document dis-
course tree is obtained. In our work, we utilize the
state-of-the-art discourse rhetoric structure parser
(DRS) (Zhang et al., 2021) to construct discourse
trees for the CD-ECR task-specific corpus.

Shortest Dependency Path (SDP) is widely used
in various NLP tasks (Xu et al., 2015; Cheng and
Miyao, 2017) to capture crucial interaction infor-
mation between sentences, we combine it with
discourse tree for our CD-ECR task, called DT-
SDP. As shown in Figure 3(b), we assume that the
event mentions mi and mj are located in EDU1
and EDU3, respectively, and the shortest path be-
tween them is marked in red. We express nodes on
the red line as the sequence [NS-R1,2, NS-R12,34,
NS-R3,4] to represent DT-SDP. All non-leaf nodes
contain the probability distributions information of
the rhetoric and nuclearity relation obtained by the
DRS parser. Since different event mention pairs
can obtain different length of DT-SDP, we apply Bi-
LSTM network to encode variable length sequence
DT-SDP, and take the output of last hidden layer as
DT-SDP representation, denoted as RDT−SDP .



Additionally, we also extract the lowest common
parent node LCP of two EDUs that the event men-
tions mi and mj are located from the discourse tree
(as shown by dark green node in the Figure 3(b)).
The probability distributions information of LCP
is denoted as RLCP . We finally obtain the global
information representation Rglobal(i, j) by concate-
nating RLCP and RDT−SDP as follows.

Rglobal(i, j) = [RLCP , RDT−SDP ]. (2)

3.3 Event Coreference Prediction
In this stage, we have obtained the global and lo-
cal information representations Rglobal(i, j) and
Rlocal(i, j) of the event mention pair (mi, mj).
We fuse the two features and send them to the
multi-layer perceptron (MLP) and sigmoid acti-
vation function to obtain the coreference score S
as follows.

θ = MLP (Rglobal(i, j), Rlocal(i, j)), (3)

S = Sigmoid(θ). (4)

3.4 Training and Inference
During training, we apply dropout in Bi-LSTM and
MLP networks, the training objective is to mini-
mize the binary cross-entropy loss L as follows.

L = − 1

N

∑N
i=1[yilogŷi+(1−yi)log(1−ŷi)], (5)

where N is the size of event mention pair samples
and y ∈ {0, 1} is a pair label.

During inference, we first reproduce the topic
predictor of Barhom et al. (2019) to perform doc-
ument clustering, and take event mention pairs in
the same document cluster as candidate coreferent
pairs. We then send these pairs to our CD-ECR
model to obtain the coreference score, and consider
the pairs whose score > 0.5 as coreferent pairs, oth-
erwise as non-coreferent. To handle the pairwise
event coreference predictions, we perform best-
first clustering (Huang et al., 2019) on the pairwise
scores to build the coreferent event clusters.

4 Experimentation

4.1 Experimental Settings
Dataset Following previous work (Cybulska and
Vossen, 2014), we use the ECB+ dataset to train
and test our model, which is the largest and most
popular dataset for CD-ECR. ECB+ is extended
from ECB (Bejan and Harabagiu, 2010), which

Train Dev Test
Topics 25 8 10
Documents 574 196 206
Sentences 1037 346 457
Event mentions 3808 1245 1780
Event Singletons 1116 280 623
Event Clusters 1527 409 805

Table 1: ECB+ statistics. We follow the data split by
Cybulska and Vossen (2015): train: 1, 3, 4, 6-11, 13-
17,19-20, 22, 24-33; dev: 2, 5, 12, 18, 21, 23, 34, 35;
test:36-45. Event Clusters include singletons.

annotated different but similar events as subtopics
for each ECB topic. We use gold event mentions for
both training and evaluation. The detailed statistics
are shown in Table 1.
Metrics Following the previous work (Barhom
et al., 2019; Cattan et al., 2021; Yu et al., 2022), we
use MUC (Vilain et al., 1995), B3 (Bagga, 1998),
and CEAFe (Luo, 2005) to evaluate the perfor-
mance of our model and also report the CoNLL
scores, which is the average of the above three
metrics. Among them, MUC is based on event
links to evaluate the performance of the model,
B3 compensates for MUC’s neglected evaluation
of non-coreferent events by using event nodes as
the computational target. CEAFe is similar to B3 ,
adding entities to evaluate the performance of event
coreference resolution. The comprehensive use of
the above three metrics and CoNLL can more ob-
jectively measure model performance.
Hyper Parameters We use the pre-trained lan-
guage model RoBERTaLARGE to embed event men-
tions with 1024 dimensions, the training epoch of
our model is set to 10, the learning rate is set to
10−5, Adam optimizer is used to update the param-
eters. The minimal and maximum output length of
T5BASE generator are set to 20% and 50% of the
input text, respectively. Additionally, in order to
make a fair comparison with the baseline of Caci-
ularu et al. (2021), which uses stronger encoder
LongformerBASE, we also use the LongformerBASE

to embed event mentions with 768 dimensions for
resolving coreferent events.

4.2 Experimental Results
To verify the effectiveness of our model, we con-
duct the following strong baselines.

1) Barhom et al. (2019), which jointly learns en-
tity and event coreference resolution and leverages
predicate-argument structures;



Model
MUC B3 CEAFe CoNLL

P R F1 P R F1 P R F1 F1
Barhom et al. (2019) 84.5 77.6 80.9 85.1 76.1 80.3 73.8 81.0 77.3 79.5
Zeng et al. (2020) 85.6 89.3 87.5 77.6 89.7 83.2 84.5 80.1 82.3 84.3
Cattan et al. (2021) 81.9 85.1 83.5 82.7 82.1 82.4 78.9 75.2 77.0 81.0
Caciularu et al. (2021)* 89.2 87.1 88.1 87.9 84.9 86.4 81.2 83.3 82.2 85.6
Held et al. (2021) 88.1 87.0 87.5 87.7 85.6 86.6 85.8 80.3 82.9 85.7
Yu et al. (2022) 85.1 88.1 86.6 84.7 86.1 85.4 79.6 83.1 81.3 84.4
Ours(RoBERTa) 85.9 88.6 87.2 85.4 87.8 86.6 83.7 82.8 83.2 85.7
Ours(Longformer)* 87.2 89.4 88.3 86.4 88.3 87.3 84.0 83.2 83.6 86.4

Table 2: Performance comparision of different models on the ECB+ dataset, where “*” indicates that the models use
LongFormer as their encoders and the other models use BERT/RoBERTa as their encoders.

2) Zeng et al. (2020), which integrates event-
specific paraphrases and argument-aware semantic
embeddings for CD-ECR;

3) Cattan et al. (2021), which develops an end-
to-end baseline for CD-ECR;

4) Caciularu et al. (2021), which pretrains a lan-
guage model via a sets of related documents for
CD-ECR. Longformer was used for their encoder.

5) Held et al. (2021), which extracts event men-
tions features from the local perspective and trained
a fine-grained classifier for CD-ECR.

6) Yu et al. (2022), which augments pairwise
representation with structured argument features to
improve CD-ECR performance.

Table 2 reports the performance of the above six
baselines and our model on ECB+ with encoder
RoBERTa and Longformer, and the results show
that our model (Longformer) significantly (P<0.01)
outperforms the best Held et al. (2021), with the
improvement of 0.7 in the average score CoNLL,
and our model (RoBERTa) achieve the competitive
result with them. This result indicates the effective-
ness of our proposed model in resolving coreferent
event.

Formally, the common part of Barhom et al.
(2019), Zeng et al. (2020) and Yu et al. (2022)
is that their input feature of event mention
pairs can be represented as R(mi,mj) =
[v(mi), v(mj), v(mi) ◦ v(mj), f(mi,mj)], where
f(mi,mj) is additional pairwise feature. Barhom
et al. (2019) trains entity and event coreference to-
gether and takes argument features as f(mi,mj),
which outperforms several early CD-ECR models
(Cybulska and Vossen, 2015; Kenyon-Dean et al.,
2018). Zeng et al. (2020) not only uses the ar-
gument features but also integrates event-specific
paraphrases, significantly improving CoNLL by

4.8 over Barhom et al. (2019). Yu et al. (2022)
augments pairwise representation with structured
argument features, improving CoNLL by 4.9 over
Barhom et al. (2019) and achieving competitive
performance with Zeng et al. (2020). This sug-
gests that argument features are crucial for resolv-
ing coreferent events. However, using argument
features to calculate event similarity is from lo-
cal perspective, ignoring the global features of
events, which leads to the poor performance on
long-distance event mentions. Our model uses dis-
course trees to capture interactions between event
mentions, thus enhancing the representation of
event information and improving CD-ECR perfor-
mance.

Compared with Cattan et al. (2021), who develop
an end-to-end baseline for CD-ECR and only use
RoBERTa to encode event mentions without using
other features, our model improves the CoNLL
score by 4.7. It also shows the effectiveness of
global information in the discourse tree, since our
baseline is also RoBERTa.

Compared with Caciularu et al. (2021), who em-
ployed Longformer as the encoder. Since Long-
former is capable of encoding entire documents,
it outperforms other encoders in the event corefer-
ence resolution task. For fair comparison, we re-
place our text encoder RoBERTa with Longformer
and the experimental results shows that our model
outperforms Caciularu et al. (2021) with average
CoNLL score improvements of 0.8.

Compared with Held et al. (2021), both our
model (RoBERTa) and Held et al. (2021) achieve
the same CoNLL score 85.7. Held et al. (2021)
focuses on extracting event mentions features from
the local perspective and trains a fine-grained clas-
sifier. Compared with them, our model pays more



Model
MUC B3 CEAFe CoNLL

P R F1 P R F1 P R F1 F1

Ours
Corpus

singletons+ 85.9 88.6 87.2 85.4 87.8 86.6 83.7 82.8 83.2 85.7
singletons- 85.9 88.6 87.2 74.5 76.1 75.3 57.4 76.9 65.7 76.4

Topic
singletons+ 82.0 84.6 83.3 75.4 71.8 73.6 82.1 81.8 81.9 79.6
singletons- 82.0 84.6 83.3 57.8 58.0 57.9 48.7 65.4 55.8 65.7

Cattan
Corpus

singletons+ 81.9 85.1 83.5 82.7 82.1 82.4 78.9 75.2 77.0 81.0
singletons- 81.9 85.1 83.5 70.2 70.8 70.5 52.3 68.2 59.2 71.1

Topic
singletons+ 76.3 80.1 78.1 71.7 77.4 74.5 77.8 73.1 75.4 76.0
singletons- 76.3 80.1 78.1 54.1 63.4 58.4 44.2 56.3 49.5 62.0

Table 3: Performance comparison of corpus/topic level and with(singletons+)/without(singletons-) singletons.

attention to extracting event mention features from
the global perspective, which uses discourse tree to
capture the features of long-distance event mention
pairs. In a word, the performance improvement
of our model and Held et al. (2021) can be owned
to the intensive study of global and local features,
respectively.

Comapred with our model Ours(RoBERTa) us-
ing RoBERTa as encoder, Ours(Longformer) using
Longformer improves CoNLL by 0.7. This indo-
cates that LongFomer is a stronger encoder than
RoBERTa in the CD-ECR task.

In the above baselines, Cattan et al. (2021) eval-
uate their model not only at the corpus level with
singletons, but also at the topic level without single-
tons. We also report the result on these experiment
settings. The performance comparison with Cattan
et al. (2021) at the corpus/topic level with (single-
tons+)/without (singletons-) singletons are shown
in Table 3. The results show that our model sig-
nificantly outperforms Cattan et al. (2021) on both
corpus level and topic level with/without singletons
on all metrics.

5 Analysis

5.1 Impact of Global Information
We conduct ablation experiments to further eval-
uate the contribution of global information from
discourse tree and design the following simplified
models.

1) Baseline(RoBERTa), which resolves corefer-
ent events using local feature Rlocal(mi,mj) only;

2) +WD-LCP, which adds the global feature
Rglobal(mi,mj) of within-document event men-
tion pairs to baseline 1). However, Rglobal(mi,mj)
only contains RLCP ;

3) +CD-LCP, which adds the global feature
Rglobal(mi,mj) of cross-document event mention

pairs to baseline 2). However, Rglobal(mi,mj)
only contains RLCP ;

4) +SDP, which adds the feature RDT−SDP to
baseline 3).

The results are shown in Table 4. Since the pro-
cess of constructing cross-document discourse trees
is more complicated than that of within-document
discourse tree (mainly in the data preparation
stage), we compare the performance of adding the
cross-document LCP information separately due to
the other influencing factors such as data noise.

Compared with baseline(RoBERTa), +WD-LCP
improves CoNLL by 1.2 on the ECB+ dataset us-
ing the within-document LCP. This preliminarily
shows the effectiveness of the LCP information in
discourse tree. Compare with the baseline +WD-
LCP and +CD-LCP, the introduction of the cross-
document LCP leads to an improvement of 1.6 on
CoNLL. This indicates that LCP can alleviate the
long-distance problem which is poorly handled by
local information representation. The comparison
on +CD-LCP and +DT-SDP shows the significant
improvement of 1.8 on CoNLL and indicates that
DT-SDP is crucial to capture the interaction be-
tween long-distance event mentions.

5.2 Analysis on Construction Strategy for
Cross Document Discourse Structure

In order to deeply analyse the impact of different
construction strategies of the cross-document DRS
tree, we design two other cross-document DRS con-
struction strategies for comparison with the strategy
in our model as follows.

1) ES-comp, which takes event sentence and
other sentences compressed by T5 model as con-
structor input;

2) ES-only, which takes only event sentence as
constructor input without any other text;



Model
MUC B3 CEAFe CoNLL

P R F1 P R F1 P R F1 F1
Baseline(RoBERTa) 82 85.2 83.6 82.9 82.2 82.5 75.5 79.2 77.3 81.1
+WD-LCP 83.1 85.2 84.1 83.2 82.4 82.8 79.2 80.6 79.9 82.3
+CD-LCP 84.8 87.8 86.3 84.9 83.3 84.1 82 80.7 81.3 83.9
+DT-SDP 85.9 88.6 87.2 85.4 87.8 86.6 83.7 82.8 83.2 85.7

Table 4: An ablation study for discourse structure.

Strategy
MUC B3 CEAFe CoNLL

P R F1 P R F1 P R F1 F1

ES-comp
w/ DT-SDP 85.9 88.6 87.2 85.4 87.8 86.6 83.7 82.8 83.2 85.7
w/o DT-SDP 84.8 87.8 86.3 84.9 83.3 84.1 82.0 80.7 81.3 83.9

ES-only
w/ DT-SDP 84.8 86.6 85.7 84.0 82.7 83.3 78.3 81.3 79.8 82.9
w/o DT-SDP 84.5 86.3 85.4 83.9 82.5 83.2 78.0 81.1 79.5 82.7

Full-doc
w/ DT-SDP 85.2 86.7 85.9 84.2 86.1 85.1 81.1 82.2 81.6 84.2
w/o DT-SDP 83.7 85.6 84.6 80.5 84.2 82.3 77.5 80.2 78.8 81.9

Table 5: Results using different construction strategies of cross-document DRS tree.

3) Full-doc, which concatenates two documents
that contain the event mention pairs and then sends
them to the constructor.

The results are shown in Table 5. Regardless
of whether DT-SDP information is introduced, the
construction strategy ES-comp outperforms the two
other strategies. If we exclude DT-SDP, the Full-
doc strategy achieves the worst performance due to
the data noise introduced by irrelevant texts. The
ES-only strategy achieves the second worst perfor-
mance, which is slightly better than Full-doc. How-
ever, it is fails to outperform ES-comp because it
has no other contextual information to guide it.

Comparing each strategy with (w/) or without
(w/o) DT-SDP, we can see that the ES-only strategy
has the least performance improvement when DT-
SDP is included because the input text contains
only two event sentences, which is too short, and
the depth and breadth of the constructed discourse
tree are too small, leading to the short length of the
shortest path between two EDUs. Using the node
sequence to represent the path may only include
common parent nodes, which tends to exclude DT-
SDP. In contrast, the performance of the Full-doc
strategy achieves the most improvement. This is
because the long input text increases the depth and
breadth of the discourse tree, which also increases
the length of the shortest path and enriches the
representation of DT-SDP. However, the existence
of a large amount of noise also limits the increase
in performance so that it does not outperform ES-

comp. It shows that ES-comp is a compromise
strategy, because taking event sentences and other
compressed irrelevant texts as constructor input can
increase the positive impact so as to achieve the
best performance.

5.3 Case Study
In this subsection, we give the examples to anal-
yse the effectiveness of global information and the
strategy ES-comp in our model. Considering the
following two documents A and B as examples,
where the bolded texts represent event sentences
(S1 and S4, respectively), and the underlined words
indicate event mentions, the goal of our model is to
predict whether the event mentions “winning” and
“chosen” are coreferent.

A: (S1) Smith, 26, who played a young political
researcher in the show, will become the biggest
star of all after winning the role of the 11th Doc-
tor. (S2) Speaking to The Guardian, Buchan said
his old co-star would make an excellent Doctor
Who. “It s a sublime bit of casting. He’s got that
huge hair, a twinkle in his eye - Matt’s the king of
geek chic. He is possibly going to be one of the
best Doctors we’ve ever had.”

B: (S3) 26-year-old Matt Smith has been cast as
the next incarnation of the Doctor. Users on the
Facebook Doctor Who forum that I frequent mostly
had the same reaction: “ Who ’s Matt Smith?” (S4)
The guy is relatively unknown and the skeptics
wondered if the right person was chosen. (S5)
After all, everyone speculated that Paterson Joseph,



who had appeared on a couple episodes of the show,
was going to be the next Doctor and here we get
some no-name.

We utilize the ES-comp approach to generate
a discourse tree. Initially, we compress the three
non-bolded sections S2, S3, and S5, resulting in the
compressed texts C1, C2, and C3, respectively, as
follows.

C1: It’s a sublime bit of casting.
C2: Matt Smith has been cast as the next incar-

nation of the Doctor. ”Who ’s Matt Smith?”
C3: we get Paterson Joseph.
Then, the compressed documents A and B are

concatenated as [S1, C1, C2, S4, C3] and then are
fed to the DRS Constructor. The resulting EDU
sequence is displayed as follows.

EDU1: Smith, 26,
EDU2: who played a young political researcher

in the show,
EDU3: will become the biggest star of all
EDU4: after winning the role of the 11th Doctor
EDU5: It’s a sublime bit of casting.
EDU6: "Matt Smith has been cast as the next

incarnation of the Doctor.
EDU7: ” Who’s Matt Smith ? ”
EDU8: The guy is relatively unknown
EDU9: and the skeptics wondered
EDU10: if the right person was chosen
EDU11: we get Paterson Joseph .
Figure 4 illustrates the simplified discourse tree

produced by the ES-comp strategy. Notably, since
we solely examine the coreferent relation between
“winning” and “chosen”, Figure 4 excludes irrel-
evant nodes like EDU11. Furthermore, EDU1,
EDU2, and EDU3 are merged into EDU1-3 since
these three nodes are not part of DT-SDP. The DT-
SDP in this case is [NS-Elaborate, NS-Elaborate,
NS-Cause, SN-Span, SN-Cause].

Directly measuring the similarity between EDU4

and EDU10 to predict coreference relation would
result in misidentification due to their differing
contexts. Since the rhetorical relation nodes

NS-Elaborate

NS-Cause

NS-Elaborate

EDU1-3 EDU4 EDU5-7 EDU9EDU8 EDU10

SN-Cause

SN-Span

Figure 4: The cross-document discourse tree con-
structed by the strategy ES-comp.

“NS-Elaborate” in DT-SDP associate EDU4 with
EDU1-3, EDU1-3 can introduce the agent “Smith”
of the event mention “winning” to EDU4. “Smith”
can also be passed to the event mention “chosen”
in EDU10 using DT-SDP. This makes “Smith” ap-
parent in the tokens of “winning” and “chosen” and
facilitates accurate prediction.

In this case, if we use the strategy ES-only, the
node “NS-Elaborate” will be excluded in the ob-
tained DT-SDT and the common argument “Smith”
cannot be perceived. Finally, if we use the Full-doc
strategy, the pair still gets low coreference score,
because the tree structure becomes complicated
and the redundant information interferes with the
model’s perception of argument information.

6 Conclusion

In this paper, we propose a cross-document event
coreference resolution model. The novelty of our
model is twofold. First, we introduce the dis-
course structure that represents global informa-
tion for pairs of event mentions to provide support
for event coreference resolution. Second, we pro-
pose a strategy for constructing cross-document dis-
course trees, which allows cross-document coref-
erent event mentions to be easily identified by the
model. Experimental results on the ECB+ dataset
show that our proposed model outperforms several
baselines. In the future, we plan to extend our task
to cross-modal event coreference resolution.

Limitations

Our method still suffers from several shortcomings.
First, we focus only on the event coreference res-
olution step using annotated event mentions. The
upstream task event detection is also critical for
event coreference resolution. Second, although
the introduction of the discourse tree and global
information has a great performance boost, the in-
ference time of the DRS constructor is long. Last
but not least, there is still room for optimization in
the strategy of cross-document DRS construction.
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