
Imitating Task and Motion Planning with
Visuomotor Transformers

Anonymous Author(s)
Affiliation
Address
email

Abstract: Imitation learning is a powerful tool for training robot manipulation1

policies, allowing them to learn from expert demonstrations without manual pro-2

gramming or trial-and-error. However, common methods of data collection, such as3

human supervision, scale poorly, as they are time-consuming and labor-intensive. In4

contrast, Task and Motion Planning (TAMP) can autonomously generate large-scale5

datasets of diverse demonstrations. In this work, we show that the combination6

of large-scale datasets generated by TAMP supervisors and flexible Transformer7

models to fit them is a powerful paradigm for robot manipulation. We present a8

novel imitation learning system called OPTIMUS that trains large-scale visuomotor9

Transformer policies by imitating a TAMP agent. We conduct a thorough study of10

the design decisions required to imitate TAMP and demonstrate that OPTIMUS11

can solve a wide variety of challenging vision-based manipulation tasks with over12

70 different objects, ranging from long-horizon pick-and-place tasks, to shelf and13

articulated object manipulation, achieving 70 to 80% success rates. Video results14

and code at https://optimustransformer.github.io/15

Keywords: Imitation Learning, Task and Motion Planning, Transformers16

1 Introduction17

Large-scale data-driven learning, powered by the Transformer architecture [1], has transformed the18

fields of natural language processing (NLP) and computer vision (CV). Large models at the scale19

of billions of parameters, trained on massive corpi [2, 3, 4] exhibit powerful capabilities such as20

writing coherently [2, 5], answering questions [6], and image classification [7, 8] and generation [9].21

Although there is recent work applying large Transformers to robot learning [10, 11, 12], the22

recipe of large-scale data-driven learning and Transformers has not yet achieved the same level of23

widespread success in robotic manipulation. One significant bottleneck is a lack of useful data – data24

collection is especially challenging because it requires the robot to interact in real-time with the25

world. Furthermore, not all data is useful: the collected interactions should be relevant for solving26

manipulation tasks of interest. Finally, for learned policies to be broadly applicable, they require27

access to a diverse set of task instances, which necessitates a scalable data collection pipeline.28

Prior work has used human teleoperation [13, 14, 15, 16, 17, 18, 19] to collect large robot manipu-29

lation datasets, enabling training large scale models [20, 10]. However, this can require significant30

human time and labor – RT-1 [10] required 1.5 years of data collection. Other works have used31

reinforcement learning (RL) – this has the potential to scale more efficiently via autonomous data32

collection, but it is prohibitively expensive to run in terms of robot time due to its sample ineffi-33

ciency [21, 22, 23, 24], and requires significant computation time and human reward engineering34

[25, 26]. In this work, we consider an alternative form of supervision, Task and Motion Planning35

(TAMP) [27], which addresses some key limitations of prior data-collection techniques. TAMP plans36

a discrete sequence of objects to interact with and how to manipulate them, and continuous motions37

that safely and correctly facilitate these interactions. TAMP supervision is beneficial because it:38

1) collects data autonomously and 2) efficiently generates demonstrations by leveraging privileged39

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

https://optimustransformer.github.io/

Figure 1: Long-horizon task visualization. We visualize the initial state and each intermediate pick state for
the pick-and-place task. Note there is significant variation in geometry across each object, requiring the agent to
perform a diverse series of grasps to complete the task.

information. TAMP can generate supervision on a wide distribution of task instances, producing task40

relevant, diverse, large-scale datasets for robot-learning.41

However, TAMP on its own requires accurate estimation of the scene geometry and its state, is42

not reactive, and can spend significant time on planning. Instead, we propose to imitate TAMP43

across a wide range of tasks using closed-loop, visuomotor Transformer policies. As a result, we44

obtain fast-to-execute, reactive agents that can solve long horizon manipulation tasks without state45

estimation. Furthermore, by training on large, diverse datasets of successful trajectories, we show in46

our experimental evaluation that large Transformer policies have the capability of improving beyond47

TAMP performance. Finally, we note that while McDonald et al. [28] have also learned closed-loop48

policies from TAMP supervision, we perform an extensive study of the challenges in imitating49

TAMP, evaluate models across a wide range of tasks, and demonstrate novel capabilities including50

high-frequency end-to-end visuomotor control, task plan adaptation and scene generalization. Some51

challenges in imitating TAMP include learning from decisions made based on privileged information52

and multimodal demonstrations [29, 15].53

To address these challenges, we propose Offline Pretrained TAMP Imitation System, or OPTIMUS,54

a system for training visuomotor Transformer policies via imitation learning. Our contributions are:55

• a novel framework for training visuomotor Transformer policies for high-frequency (30-50Hz)56

low-level control by taking advantage of TAMP supervision57

• an empirically validated data-generation pipeline and study of the insights required to imitate TAMP58

• strong results demonstrating that our trained policies can solve over 300 long-horizon manipulation59

tasks involving up to 8 stages and 72 different objects, achieving success rates of over 70%60

2 Preliminaries61

Related Work: OPTIMUS builds on a rich history of work in imitation learning and TAMP62

for robotic manipulation. In this work, we focus on the setting of offline learning via behavior63

cloning [30], in which a plethora of work has leveraged human demonstrations to learn effective64

policies [29, 31, 32, 33, 34, 35, 36, 37, 10, 20, 38, 39]. Our work instead relies on a TAMP supervisor,65

which can generate large, diverse datasets without human supervision. Furthermore, we build on66

recent work using Transformers for imitation [12, 40, 41, 10, 42, 43] by designing a fast to execute,67

visuomotor architecture operating over low-level control inputs. Finally, our system uses Task and68

Motion Planning [27, 44] to generate imitation data, a paradigm that has been recently explored in69

approaches that imitate planning [45, 46, 47] as well as TAMP directly [28]. In contrast to such70

prior work, our system adapts the TAMP data-generation process for improved imitation learning71

and uses a Transformer architecture that does not require any scene or task specific knowledge. See72

Appendix G for full related work.73

Background: We address Partially Observable Markov Decision Processes (POMDP)74

⟨S,A, T ,R, p0,Ω,O, γ⟩, where S is the set of environment states, A is the set of actions, T (s′ | s, a)75

is the transition probability distribution, R(s, a) is the reward function, p0 defines the distribution of76

the initial state s0 ∼ p0, Ω is the set of observations, O(o | s) is the observation distribution, and γ is77

the discount factor. We consider sparse reward POMDPs where R(s, a) ≡ −1s/∈S∗ is zero at terminal,78

goal states S∗ ⊆ S and elsewhere negative one. Solutions are policies πθ(ot, ht) that operate on79

the history ht = (o1, a1, ..., ot−1, at−1) of observations o ∈ Ω and actions a ∈ A, outputting the80

next action at = πθ(ot, ht). The objective is to find a policy πθ(ot, ht) that maximizes the expected81

2

3. Large-Scale
Behavior Cloning

4. Visuomotor
Policy Execution

1. Procedural Environment
Generation and TAMP Solution

2. Data Curation and
Filtering

Figure 2: OPTIMUS system. Column 1: We generate a variety of tasks with differing initial configurations
(left) and goals (right). Column 2: We transform TAMP joint space demonstrations to task space (top), go from
privileged scene knowledge in TAMP to visual observations (middle) and prune TAMP demonstrations based on
workspace constraints. Columns 3 and 4: We perform large-scale behavior cloning using a Transformer-based
architecture and execute the visuomotor policies.

policy return E[
∑∞

t=1 R(st, at)]. In this context, for behavior cloning, πθ(ot, ht) is trained to regress82

at from (ot, ht) from a dataset D consisting of trajectories τni = (oi1, a
i
1, ..., o

i
Ti
, aiTi

) produced by83

the expert, in which i is the i-th trajectory in the dataset, Ti is its length and n is the n-th MDP.84

Task and Motion Planning: TAMP algorithms address deterministic and observable, but hybrid,85

control problems [27]. In order to apply them to the POMDP for data collection, we grant them86

observability to the system state s. In simulation, this can be done through providing them access to87

the underlying simulator state. As a result, a TAMP policy πp(st) need only be a function of the state88

st, which is a sufficient statistic for the history ⟨ht, ot⟩. To construct this policy, we approximate89

the now observable POMDP with a deterministic model that can be effectively planned with [48].90

Then, a TAMP algorithm uses this approximate model to plan a sequence of object interactions, the91

constraints present in each interaction (e.g. grasps and placements), and finally safe joint motions92

that realize them. An automated policy is built around the TAMP algorithm by tracking plans with a93

high-frequency feedback controller that outputs actions a and periodically replanning [48].94

Consider an example TAMP problem in which the goal is to place a cup on a shelf (i.e.95

the Shelf task). The TAMP model has the following parameterized actions: move(q1, τ, q2)96

moves the robot from configuration q1 to configuration q2 via trajectory τ , pick(o, g, p, q)97

picks object o at placement pose p with grasp pose g when the robot is at configuration q,98

and place(o, g, p, q, o2) places object o at placement pose p on object o2 with grasp pose g99

when the robot is at configuration q. An example TAMP plan p for the Shelf task is: p =100

[move(q0, τ1, q1), pick(cup, g,p0, q1), move(q1, τ2, q2), place(cup, g, p, q2, shelf)] The values in101

bold, the initial configuration q0 and cup placement p0, are constants. The other values are free102

parameters. A TAMP algorithm searches to find both the plan skeleton, the sequence of parameterized103

actions, as well as values for grasp g, placement p, configurations q1, q2, and trajectories τ1, τ2 that104

satisfy grasp, stability, kinematic, and collision constraints.105

3 Designing a TAMP Imitation System106

In this section, we motivate and describe our TAMP imitation system, OPTIMUS. We distill a107

privileged TAMP policy into a neural network in order to obtain policies that do not require access108

to state information, are fast to execute, and react instantaneously. To design OPTIMUS, we apply109

a TAMP supervisor to a procedural problem generator to produce demonstrations across a diverse110

range of tasks. However, trajectories produced by TAMP are not necessarily straightforward for an111

agent to imitate, especially when the agent must learn without access to privileged state information.112

3

Consequently, we carefully create a data curation pipeline and couple it with agent design decisions113

that maximize its ability to learn from TAMP trajectories and solve challenging manipulation tasks.114

We consider tasks with significant variation across objects, poses, and configurations. We design four115

environments: 1) block stacking, 2) single and multi-step pick and place, 3) shelf pick and place, and116

4) articulated object manipulation with microwaves. To obtain object diversity, we load objects from117

the ShapeNet dataset [49]. With a TAMP supervisor and diverse task distribution in place, we now118

describe the data collection pipeline and how we use it for policy learning.119

3.1 Cost-Minimizing TAMP120

We use the PDDLStream planning framework [50] to model the TAMP domain and the adaptive121

algorithm, a sampling-based algorithm, to plan. Our formulation makes use of samplers for grasp122

generation, placement sampling, inverse kinematics, and motion planning. The samplers can produce123

a large, if not infinitely large, set of diverse values. We implement the grasp generator using the124

ACRONYM grasp dataset [51] for ShapeNet objects. We use TRAC-IK [52] for inverse kinematics125

(IK), and bidirectional Rapidly-Exploring Random Trees (BiRRT) [53] for motion planning.126

When using TAMP solutions for imitation learning, it is essential to train on high-quality plan127

traces. Behavior cloning techniques typically are adverse to multi-modal policy behavior, so a TAMP128

demonstrator that takes several different actions at a particular state produces data is challenging to129

imitate. One way to reduce TAMP policy variability is to optimize for low-cost plans. Although130

a TAMP problem is not guaranteed to have a unique minimum cost solution, this strategy biases131

solutions to a consistent family of low-cost plans.132

We propose a two-stage approach to producing low-cost TAMP solutions. First, we use cost-sensitive133

PDDLStream planning that minimizes the joint-space distance traveled. Specifically, we define134

costs for move(q1, τ, q2) actions that limit ∞-norm (max) of the distance ||q1 − q2||∞ between135

configurations q1, q2. The straight-line distance between two configurations is a lower bound on136

the length of the shortest collision-free path between them. We optimize this lower bound before137

performing motion planning which is computationally expensive due to continuous collision checking.138

This PDDLStream algorithm is asymptotically optimal [54, 50], but it might take arbitrary long to139

find a plan below a target cost bound. In practice, we run the planner in an anytime mode with140

a computation budget of five seconds and return the best plan identified. In the second stage, we141

perform motion planning using BiRRT; however, it can produce motions that are jagged and locally142

sub-optimal. To smooth these trajectories, we post-process them using cubic spline short cutting with143

velocity and acceleration limits [55], which converges to a locally time-optimal trajectory.144

Finally, we aim to limit the variability in IK solutions. This is also advantageous for task-space145

control, which lacks the control authority to reach all IK solutions. We seed TRAC-IK’s optimization-146

based IK from a single configuration seed, the initial configuration, and optimize for the closest147

solution to the initial configuration within a 10 millisecond timeout. This also biases TAMP toward148

plans that stay near the initial configuration, typically accelerating the search for low-cost plans. By149

intentionally not exploiting the redundancy to explore diverse IK solutions, we limit the completeness150

of the TAMP algorithm for the benefit of downstream learning.151

3.2 Generating Imitation Data from TAMP152

Directly training on datasets collected by TAMP is a challenge for imitation learning, as the TAMP153

system operates with access to information unavailable to the learner, controls the robot in joint154

space, which can be difficult to learn in, and generates demonstrations that may not necessarily take155

the shortest path in task-space. To address these issues, we highlight design decisions regarding the156

observations and actions we produce from the TAMP data-generation process as well as how we157

select which demonstrations to train on.158

Imitating a Privileged Expert: TAMP operates over a privileged view of the world. It has access to159

information that is difficult to obtain from a perception system, such as environment geometry and160

object state. To address these issues, OPTIMUS operates over image observations by using multiple161

camera views in each task (1-2 fixed cameras and 1 wrist-mounted camera). We find that multiple162

4

views, in particular the wrist camera, help the agent to better perceive scene geometry [56] and align163

its actions with the privileged expert. By training over multi-view RGB observations, we provide the164

network with an observation space that is invariant to object symmetry, encodes 3D information, is165

efficient to train over, and enables simplicity of the architecture.166

Learning from TAMP Generated Actions: The TAMP system plans arm motions in configuration167

space, in which it can fully control each robot degree of freedom. However, training vision-based168

policies in joint-space is difficult due to the challenge of learning the camera projection from pixels169

to poses and then the redundant inverse kinematics mapping from pixels to joint angles [57, 58, 29].170

Additionally, for robots with more than six degrees of freedom, joint space is higher dimensional171

than task space. Thus, in OPTIMUS, we instead use task-space control. We generate task space172

trajectories by performing forward kinematics on joint-space way-points given by the TAMP planner,173

then execute an operational-space (task-space) controller [59] to achieve them. Appendix C conducts174

an experiment comparing the trained policy success rate with joint-space actions versus task-space175

actions. Fig. C.1 shows that task-space actions enable higher success rates.176

Filtering Demonstrations: Since there is variance in run-time due to random sampling and the177

TAMP system is not guaranteed to converge in plan cost within the fixed time limit, some plans and178

thus behaviors may be sub-optimal. This data can often hamper policy learning by operating outside179

of the space of nominal solution trajectories. Training on this data from the TAMP system increases180

the likelihood of the agent leaving areas of high state space coverage, which produces policies that181

exhibit heightened compounding error. To ease the burden on the policy, we curate the data using182

several trajectory pruning rules. During data collection, we employ joint-space path smoothing.183

However, straight-line paths through joint-space are non-linear in task space, resulting in longer184

motions in the learner’s action space. Therefore, we propose two data pruning rules (Fig. 2 column185

2) to filter TAMP demonstrations. First, we remove outlier trajectories that have task-space length186

greater than two standard deviations away from the mean trajectory length, which can be viewed187

as randomly restarting TAMP episodes to reduce plan variance. Second, we impose a containment188

constraint in the form of a bounding box in visible workspace and prune out trajectories in which the189

end-effector pose exits the box. Appendix C and Fig. C.1 illustrate that the combination of these rules190

does improve performance by comparing the trained policy success rate with and without filtering.191

3.3 Training Imitation Policies at Scale192
PI

MLP Dec.

Transformer

t-h

at

MLP Enc.Resnet-18

It-h

1

MLP Proj.

Resnet-18

It-h

N P
t-h

zt-h

. . . t

1

MLP Enc.Resnet-18

MLP Proj.

Resnet-18

I t

N

t

z t

. . .
Camera N

Proprioception

Action

Figure 3: OPTIMUS policy architecture. The
model takes as input multiple images and proprio-
ception information per time-step, with a context
of h. We encode the input using Resnet-18 for
images and a MLP for the low-dimensional obser-
vations. We concatenate the embeddings, project
them into the Transformer embedding dimension
and pass them to the Transformer, which predicts
an embedding that is decoded into an action.

We now describe the imitation pipeline in OPTIMUS.193

Given large, diverse datasets from TAMP, we perform194

offline behavior cloning to distill the TAMP expert195

into a visuomotor policy.196

OPTIMUS Architecture: Our policy must operate197

over a history of multiple camera views and propri-198

oception, output low-level task space actions, and199

execute in real time. To that end, we design our pol-200

icy π, visualized in Fig. 3, as a Transformer operating201

over a history of observations h, in which each token202

corresponds to a single observation time-step. As a203

result, the Transformer can efficiently attend to all204

observations as the Transformer context length is set205

to h. To produce a single input token for a time-step206

t, we first embed each input, images from cameras207

1, ..., N (It1 through ItN) as well as proprioception pt,208

into fixed dimensional vector spaces. For propriocep-209

tion, we pass in the end-effector pose (xyz position and quaternion orientation) and gripper joint210

position (dual finger positions), encoded by an MLP. For embedding images, we use the vision211

backbone from Mandlekar et al. [29]: ResNet-18 [60] with a spatial softmax [61] output activation.212

We then fuse the inputs for a single time-step to produce zt, a vector matching the Transformer213

5

(a) StackFive (b) PickPlaceFour (c) Shelf (d) Microwave
Figure 4: Environment Visualizations. We evaluate OPTIMUS on long-horizon block stacking (a), multi-step
pick-place (b), shelf object manipulation (c), and articulated object manipulation (d).

embedding dimension, by concatenating and performing an MLP projection. The Transformer attends214

to each token zt and outputs a distribution over action at corresponding to the current time-step.215

The data distribution outputted by the TAMP supervisor is heavily multi-modal, from the diversity216

in planned paths to the variety of grasps and placements per object. As a result, we use a Gaussian217

Model Mixture (GMM) output distribution with K = 5 components for the policy from Mandlekar218

et al. [29] and train the model using log likelihood. As in [29], we find that this loss function provides219

a significant improvement over the standard MSE loss, which produces a unimodal policy.220

4 Experimental Evaluation221

In our experimental evaluation of OPTIMUS, we aim to answer the following questions: 1) Can222

imitating TAMP enable end-to-end policies to acquire long-horizon behaviors? 2) Does TAMP allow223

networks to solve complex manipulation tasks involving 3D obstacles and articulated objects? 3)224

Does diverse environment generation along with TAMP data-collection enable large-scale behavior225

learning? We begin by describing the datasets, tasks, and protocols that we use to evaluate OPTIMUS.226

We then proceed to experimentally evaluate OPTIMUS.227

Datasets and Tasks: We evaluate OPTIMUS across block stacking, pick and place, shelf manipula-228

tion and articulated object manipulation. (Fig. 4). Our block stacking tasks have two (Stack), three229

(StackThree), four (StackFour) or five (StackFive) blocks, with 1K, 2K, 5K, and 7K demonstrations230

respectively. For pick and place, we have: PickPlace-1, pick-place with a single object using 1K231

demos, and pick-place with two (PickPlaceTwo), three (PickPlaceThree), and four objects (Pick-232

PlaceFour) into separate bins. Finally we have two tasks in which the goal is for the agent to move233

the object to the target location while maneuvering in tight spaces (Shelf-1) or first pulling open234

a microwave door (Microwave-1), for which we generate 1K demonstrations each. For PickPlace,235

Shelf, and Microwave, we additionally evaluate two multi-task variants, in which we sample a set of236

19 and 72 objects from ShapeNet. We collect a 1K demonstrations per object, with 19K and 72K237

total trajectories, resulting in the following datasets: Pickplace-19, PickPlace-72, Shelf-19, Shelf-72,238

Microwave-19, Microwave-72. See Appendix Sec. D for complete task descriptions and details.239

Evaluation Protocol: We evaluate BC-MLP [62] and BC-RNN [29], which consist of a Resnet-18240

backbone followed by an MLP and an LSTM [63]. Additionally, we compare against Behavior241

Transformer (BeT) [43], which discretizes the dataset into clusters using K-Means and uses a242

Transformer model to predict a cluster center and an offset, in order to handle multi-modal data. Each243

method uses on the order of magnitude of 30M parameters, uses the same architecture as OPTIMUS244

for the vision-backbone, and leverages the data-pipeline we propose in Sec. 3. For each task, we245

evaluate on a dataset of unseen initial environment states. For single-task results, we evaluate using246

50 problems and average across 3 random seeds per run. For multi-task results, we evaluate using247

10 problems per task, with a single seed per run. We use task success rate as our evaluation metric,248

which is 1 if all objects are in a goal arrangement and 0 otherwise.249

4.1 Learning Results250

We first show that OPTIMUS can imitate the TAMP system to high fidelity on simple, shorter horizon251

tasks. We then extend our evaluation to the long-horizon regime in which the task complexity grows252

significantly with the number of objects. Next, we move beyond the table-top manipulation setting253

6

Dataset BC-MLP BC-RNN BeT OPTIMUS

Stack 100 100 100 100
StackThree 98 88 76 100
StackFour 83 77 61 96
StackFive 57 57 45 70

Dataset BC-MLP BC-RNN BeT OPTIMUS

PickPlaceTwo 96 98 80 96
PickPlaceThree 62 81 46 91
PickPlaceFour 33 38 22 60

Figure 5: Long Horizon Manipulation Results. (left) Performance is shown in terms of task success rate. While
all methods are able to solve single-step block stacking, only OPTIMUS is able to solve longer-horizon variants.
(right) For long-horizon manipulation, while the baselines are competitive with OPTIMUS on PickPlaceTwo,
OPTIMUS demonstrates significant improvement in success rate as the number of objects increases.

and train policies to solve tasks involving a shelf and microwave. Finally, we demonstrate that254

OPTIMUS can enable multi-task policies that can manipulate a wide range of objects. Please see255

Appendix C for a detailed analysis and ablation of OPTIMUS.256

OPTIMUS imitates TAMP to high fidelity on simple pick-and-place tasks. On Stack (Fig. 5), we257

find that OPTIMUS and the baselines are all able to achieve 100% performance on the task. On the258

other hand, on PickPlace-1, (Fig. 5), while the baselines achieve high success rates of up to 97%, only259

our method is able to solve the task at 100% success rate. These results demonstrate that on simple260

tasks, OPTIMUS can fit well to the output of the TAMP system, even though OPTIMUS does not261

have access to any privileged information. We note that even with significant tuning, BeT struggles to262

fit to TAMP data on most of our tasks. We hypothesize that this may be due to the difficulty of fitting263

K-Means as the dataset size increases, especially as TAMP generated datasets contain on the order of264

1-100K trajectories depending on the task. As a result, the cluster centers can be highly inaccurate,265

increasing the burden on the transformer to fit appropriate offsets.266

OPTIMUS enables visuomotor policies to solve manipulation tasks with up to 8 stages. We first267

evaluate on long-horizon block stacking, a task that is difficult because the stack of blocks becomes268

more unstable as its height grows. We train visuomotor policies across StackThree, StackFour, and269

StackFive, and visualize the results in Fig. 5. OPTIMUS outperforms the baseline methods while270

achieving near-perfect performance across each task. Multi-step pick-place is even more difficult271

as the network must learn to fit a variety of different grasps for each object. We plot the results for272

the multi-step pickplace tasks in Fig. 5. We find that while BC-RNN outperforms OPTIMUS on273

PickPlaceTwo, OPTIMUS exhibits a large performance improvement on PickPlaceThree and Four.274

These results demonstrate that with either primitive or general-purpose rigid objects, it is possible to275

train policies to perform long-horizon behaviors consisting of up to 8 pick and place operations or276

40 TAMP high-level actions, with high success rates of 70% and 60% respectively. An important277

take-away from these results is that for longer-horizon tasks, the Transformer policy architecture we278

develop in OPTIMUS greatly outperforms MLPs and RNNs.279

Guided TAMP OPTIMUS

88 90

Table 1: Comparison against
Guided TAMP. Results are in
terms of task success rate.

We additionally compare against prior work on imitating TAMP [28]280

on the Robosuite [58] PickPlace task, which involves picking and281

placing four fixed objects: a milk carton, a soda can, a cereal box282

and a piece of bread, into separate bins. In contrast to PickPlaceFour,283

Robosuite PickPlace can be solved with top-down, axis-aligned284

grasps due to the simplicity of the object geometry. However, the285

initial configurations are more challenging as all the objects are placed together in the same bin.286

We generate 25K demonstrations of the task using our system. As we show in Table 1, OPTIMUS287

achieves favorable results to Guided TAMP (90% vs. 88%) without requiring access to privileged288

state information, a fixed set of ground actions or online supervision.289

OPTIMUS can also solve tasks requiring obstacle awareness and skills beyond pick-and-place.290

On Shelf-1, OPTIMUS is able to grasp then place the object in the middle rung of the shelf at high291

success rates of 91% shown in Table 2. On Microwave-1 OPTIMUS outperforms the baselines by292

nearly 10%, achieving 86% success rate overall. This is likely because OPTIMUS is able to better fit293

the data in the multi-step manipulation regime, as noted in the prior section. The results on the Shelf294

and Microwave tasks demonstrate that OPTIMUS can learn to solve difficult manipulation tasks that295

require obstacle awareness and the ability to manipulate articulated objects.296

7

OPTIMUS can learn to adapt its behavior based on the scene configuration. As we describe297

in the Appendix, OPTIMUS is able to learn to adapt its task plan to produce additional stacking298

operations (StackAdapt) or clear the area in front of the microwave (MicrowaveAdapt) achieving299

96% and 75% success. OPTIMUS is able to generalize to unseen receptacle sizes, achieving 80%300

and 70% success rate on held out shelves and microwaves.301

We next evaluate the ability of our TAMP generation pipeline to collect diverse datasets in order to302

train large-scale policies. We add variety in the form of objects with differing geometries, requiring a303

single network to learn a range of manipulation behaviors end-to-end.304

Dataset BC-MLP BC-RNN BeT OPTIMUS

PickPlace-1 94 97 85 100
PickPlace-19 61 58 50 85
PickPlace-72 50 49 41 75

Shelf-1 91 88 70 91
Shelf-19 48 31 26 66
Shelf-72 30 36 13 48

Microwave-1 73 77 51 86
Microwave-19 24 41 31 61
Microwave-72 23 29 16 47

Table 2: Single and Multitask Results across Pick-
Place, Shelf, Microwave. Performance is shown in
terms of task success rate. While the baselines are com-
petitive with OPTIMUS on the single task variants of
each task, OPTIMUS greatly outperforms the baselines
as the number of objects increases across all tasks.

OPTIMUS achieves high success rates on305

vision-based manipulation tasks with up to306

72 objects. For each task: PickPlace, Shelf,307

and Microwave, we evaluate on their 19 and308

72 object variants (Table 2). On the 19 object309

tasks, OPTIMUS achieves 85%, 66%, and 61%310

in greatly outperforming the best baseline for311

each task: 61%, 48%, and 41%. Similarly on the312

72 object tasks, we find that OPTIMUS obtains313

75%, 48% and 47% success rates, in compar-314

ison to 50%, 36% and 29% for the best base-315

line. From these results, we note two important316

points: 1) Transformer-based architectures such317

as OPTIMUS are highly effective for multi-task318

imitation learning: they greatly outperform MLPs and RNNs. 2) While the single task variants of319

these tasks are solved at high success rates, performance drops significantly in the multi-task case,320

particularly for more challenging manipulation tasks such as Shelf and Microwave, indicating further321

work remains to bridge that gap.322

Finally, we highlight three advantages of OPTIMUS over the TAMP system: 1) success rate im-323

provement over the TAMP supervisor, 2) faster run-time, 3) operation from image instead of state324

input. We evaluate TAMP and OPTIMUS on all of the single task datasets and find that on average,325

OPTIMUS almost doubles the performance of the TAMP supervisor (87% vs. 52%). Additionally,326

we evaluate the run-time of OPTIMUS against TAMP by computing the average time per step for327

both systems across 100 trials. Overall, OPTIMUS is 5-7.5x faster than TAMP (21/31ms vs. 150ms328

per action). See Appendix Sec. B for analysis of scene adaptation and TAMP comparison results.329

5 Limitations and Future Work330

In this work, we propose an approach for distilling privileged TAMP experts into large-scale visuomo-331

tor policies. We generate large, diverse datasets and train high-capacity Transformer models to solve332

challenging, long-horizon manipulation tasks without task, state, or environment knowledge. Even so,333

there are limitations to OPTIMUS and scope for future work. First, for OPTIMUS to be able to solve334

a task, TAMP needs to be capable of solving it at training time, which could prevent OPTIMUS from335

being applied to tasks that require considering dynamics or tasks involving contact-rich manipulation,336

which can be challenging for traditional TAMP. However, TAMP can be applied to such tasks, e.g.337

pouring, scooping, stirring, peg insertion, or coffee making, by leveraging integrated task planning338

and skill learning approaches [64, 65, 66, 67], which OPTIMUS can leverage for supervision as well.339

Second even with OPTIMUS, there is a significant drop in success rate with increasing task difficulty340

and number of objects (Sec. 4.1), which suggests further work on multi-task learning is necessary341

to bridge that gap. Finally, we describe two possible approaches to applying OPTIMUS to the real342

world: 1) Collect TAMP data in a controlled setting at training time using a pose estimation system343

(e.g. AR tags, SAM with calibrated depth [68], MegaPose [69]) and distill using OPTIMUS. At test344

time, OPTIMUS would not require pose estimation, while providing significantly faster execution345

and superior task performance. 2) Transfer imitation policies trained in simulation either zero-shot or346

via fine-tuning to real data [70, 71, 72, 73]. We leave this extension of OPTIMUS to future work.347

8

References348

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and349

I. Polosukhin. Attention is all you need. Advances in neural information processing systems,350

30, 2017.351

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,352

G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural353

information processing systems, 33:1877–1901, 2020.354

[3] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable effectiveness of data in355

deep learning era. In Proceedings of the IEEE international conference on computer vision,356

pages 843–852, 2017.357

[4] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes,358

A. Katta, C. Mullis, M. Wortsman, et al. Laion-5b: An open large-scale dataset for training next359

generation image-text models. arXiv preprint arXiv:2210.08402, 2022.360

[5] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.361

Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv362

preprint arXiv:2204.02311, 2022.363

[6] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos,364

L. Baker, Y. Du, et al. Lamda: Language models for dialog applications. arXiv preprint365

arXiv:2201.08239, 2022.366

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,367

M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for368

image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.369

[8] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer:370

Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF371

International Conference on Computer Vision, pages 10012–10022, 2021.372

[9] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour, B. K. Ayan,373

S. S. Mahdavi, R. G. Lopes, et al. Photorealistic text-to-image diffusion models with deep374

language understanding. arXiv preprint arXiv:2205.11487, 2022.375

[10] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-376

man, A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. Joshi, R. Julian,377

D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla, D. Manjunath,378

I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao,379

M. Ryoo, G. Salazar, P. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran,380

V. Vanhoucke, S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-1:381

Robotics transformer for real-world control at scale. In arXiv preprint arXiv:2204.01691, 2022.382

[11] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-383

ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano,384

K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine,385

Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet,386

N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng.387

Do as i can and not as i say: Grounding language in robotic affordances. In arXiv preprint388

arXiv:2204.01691, 2022.389

[12] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,390

Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint arXiv:2205.06175,391

2022.392

9

[13] P. F. Hokayem and M. W. Spong. Bilateral teleoperation: An historical survey. Automatica, 42393

(12):2035–2057, 2006.394

[14] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from395

demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.396

[15] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,397

E. Orbay, et al. Roboturk: A crowdsourcing platform for robotic skill learning through imitation.398

In Conference on Robot Learning, pages 879–893. PMLR, 2018.399

[16] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning400

latent plans from play. In Conference on robot learning, pages 1113–1132. PMLR, 2020.401

[17] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data.402

arXiv preprint arXiv:2005.07648, 2020.403

[18] Z. J. Cui, Y. Wang, N. Muhammad, L. Pinto, et al. From play to policy: Conditional behavior404

generation from uncurated robot data. arXiv preprint arXiv:2210.10047, 2022.405

[19] E. Rosete-Beas, O. Mees, G. Kalweit, J. Boedecker, and W. Burgard. Latent plans for task-406

agnostic offline reinforcement learning. arXiv preprint arXiv:2209.08959, 2022.407

[20] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:408

Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learning,409

pages 991–1002. PMLR, 2022.410

[21] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakr-411

ishnan, V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based robotic412

manipulation. In Conference on Robot Learning, pages 651–673. PMLR, 2018.413

[22] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and414

K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. arXiv415

preprint arXiv:2104.08212, 2021.416

[23] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and S. Levine. The417

ingredients of real-world robotic reinforcement learning. arXiv preprint arXiv:2004.12570,418

2020.419

[24] V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine. Skew-fit: State-covering420

self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.421

[25] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,422

M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint423

arXiv:1910.07113, 2019.424

[26] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,425

K. Van Wyk, A. Zhurkevich, B. Sundaralingam, et al. Dextreme: Transfer of agile in-hand426

manipulation from simulation to reality. arXiv preprint arXiv:2210.13702, 2022.427

[27] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-P´erez.428

Integrated Task and Motion Planning. Annual review of control, robotics, and autonomous429

systems, 4, 2021.430

[28] M. J. McDonald and D. Hadfield-Menell. Guided imitation of task and motion planning. In431

Conference on Robot Learning, pages 630–640. PMLR, 2022.432

[29] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,433

Y. Zhu, and R. Martı́n-Martı́n. What matters in learning from offline human demonstrations for434

robot manipulation. In arXiv preprint arXiv:2108.03298, 2021.435

10

[30] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in436

neural information processing systems, pages 305–313, 1989.437

[31] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynamical438

systems in humanoid robots. Proceedings 2002 IEEE International Conference on Robotics439

and Automation, 2:1398–1403 vol.2, 2002.440

[32] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via441

meta-learning. In Conference in Robot Learning, volume abs/1709.04905, 2017.442

[33] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot programming by demonstration. In443

Springer Handbook of Robotics, 2008.444

[34] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. Billard. Learning and reproduction445

of gestures by imitation. IEEE Robotics and Automation Magazine, 17:44–54, 2010.446

[35] T. Zhang, Z. McCarthy, O. Jow, D. Lee, K. Goldberg, and P. Abbeel. Deep imitation learning for447

complex manipulation tasks from virtual reality teleoperation. arXiv preprint arXiv:1710.04615,448

2017.449

[36] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, S. Savarese, and L. Fei-Fei. Learning to generalize450

across long-horizon tasks from human demonstrations. arXiv preprint arXiv:2003.06085, 2020.451

[37] C. Wang, R. Wang, D. Xu, A. Mandlekar, L. Fei-Fei, and S. Savarese. Generalization through452

hand-eye coordination: An action space for learning spatially-invariant visuomotor control.453

arXiv preprint arXiv:2103.00375, 2021.454

[38] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,455

K. Hausman, A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic456

affordances. arXiv preprint arXiv:2204.01691, 2022.457

[39] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and458

S. Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets.459

arXiv preprint arXiv:2109.13396, 2021.460

[40] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic461

manipulation. In Proceedings of the 6th Conference on Robot Learning (CoRL), 2022.462

[41] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu,463

and L. Fan. Vima: General robot manipulation with multimodal prompts. arXiv preprint arXiv:464

Arxiv-2210.03094, 2022.465

[42] S. Dasari and A. Gupta. Transformers for one-shot visual imitation. In Conference on Robot466

Learning, pages 2071–2084. PMLR, 2021.467

[43] N. M. M. Shafiullah, Z. J. Cui, A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k468

modes with one stone. arXiv preprint arXiv:2206.11251, 2022.469

[44] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics and470

stable modes for tool-use and manipulation planning. 2018.471

[45] M. Bhardwaj, S. Choudhury, and S. Scherer. Learning heuristic search via imitation. In472

Conference on Robot Learning, pages 271–280. PMLR, 2017.473

[46] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip. Motion planning networks. In 2019474

International Conference on Robotics and Automation (ICRA), pages 2118–2124. IEEE, 2019.475

[47] A. Fishman, A. Murali, C. Eppner, B. Peele, B. Boots, and D. Fox. Motion policy networks.476

arXiv preprint arXiv:2210.12209, 2022.477

11

[48] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. Online replanning in478

belief space for partially observable task and motion problems. In 2020 IEEE International479

Conference on Robotics and Automation (ICRA), pages 5678–5684. IEEE, 2020.480

[49] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,481

S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint482

arXiv:1512.03012, 2015.483

[50] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. Pddlstream: Integrating symbolic planners484

and blackbox samplers via optimistic adaptive planning. In Proceedings of the International485

Conference on Automated Planning and Scheduling, volume 30, pages 440–448, 2020.486

[51] C. Eppner, A. Mousavian, and D. Fox. Acronym: A large-scale grasp dataset based on487

simulation. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages488

6222–6227. IEEE, 2021.489

[52] P. Beeson and B. Ames. {TRAC-IK}: An open-source library for improved solving of generic490

inverse kinematics. 11 2015.491

[53] J. J. Kuffner Jr. and S. M. LaValle. RRT-Connect: An efficient approach to single-query path492

planning. In IEEE International Conference on Robotics and Automation (ICRA), 2000.493

[54] W. Vega-Brown and N. Roy. Asymptotically optimal planning under piecewise-analytic con-494

straints. 2016. URL http://www.wafr.org/papers/WAFR_2016_paper_11.pdf.495

[55] K. Hauser and V. Ng-Thow-Hing. Fast smoothing of manipulator trajectories using optimal496

bounded-acceleration shortcuts. pages 2493–2498, 2010.497

[56] K. Hsu, M. J. Kim, R. Rafailov, J. Wu, and C. Finn. Vision-based manipulators need to also see498

from their hands. arXiv preprint arXiv:2203.12677, 2022.499

[57] R. Martı́n-Martı́n, M. A. Lee, R. Gardner, S. Savarese, J. Bohg, and A. Garg. Variable impedance500

control in end-effector space: An action space for reinforcement learning in contact-rich tasks.501

In 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages502

1010–1017. IEEE, 2019.503

[58] Y. Zhu, J. Wong, A. Mandlekar, and R. Martı́n-Martı́n. robosuite: A modular simulation504

framework and benchmark for robot learning. arXiv preprint arXiv:2009.12293, 2020.505

[59] O. Khatib. A unified approach for motion and force control of robot manipulators: The506

operational space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 1987.507

[60] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In508

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–509

778, 2016.510

[61] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.511

The Journal of Machine Learning Research, 17(1):1334–1373, 2016.512

[62] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel. Deep imitation513

learning for complex manipulation tasks from virtual reality teleoperation. In 2018 IEEE514

International Conference on Robotics and Automation (ICRA), pages 5628–5635. IEEE, 2018.515

[63] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):516

1735–1780, 1997.517

[64] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Learning compositional models518

of robot skills for task and motion planning. The International Journal of Robotics Research,519

40(6-7):866–894, 2021.520

12

http://www.wafr.org/papers/WAFR_2016_paper_11.pdf

[65] A. Curtis, X. Fang, L. P. Kaelbling, T. Lozano-Pérez, and C. R. Garrett. Long-horizon manipu-521

lation of unknown objects via task and motion planning with estimated affordances. In 2022522

International Conference on Robotics and Automation (ICRA), pages 1940–1946. IEEE, 2022.523

[66] S. Cheng and D. Xu. Guided skill learning and abstraction for long-horizon manipulation. arXiv524

preprint arXiv:2210.12631, 2022.525

[67] A. Mandlekar, C. Garrett, D. Xu, and D. Fox. Human-in-the-loop task and motion planning for526

imitation learning. Workshop on effective Representations, Abstractions, and Priors for Robot527

Learning (RAP4Robots), 2023.528

[68] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.529

Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.530

[69] Y. Labbé, L. Manuelli, A. Mousavian, S. Tyree, S. Birchfield, J. Tremblay, J. Carpentier,531

M. Aubry, D. Fox, and J. Sivic. Megapose: 6d pose estimation of novel objects via render &532

compare. arXiv preprint arXiv:2212.06870, 2022.533

[70] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged locomotion in challenging terrains534

using egocentric vision. 2022.535

[71] P.-L. Guhur, S. Chen, R. Garcia, M. Tapaswi, I. Laptev, and C. Schmid. Instruction-driven536

history-aware policies for robotic manipulations. 2022.537

[72] M. Khansari, D. Ho, Y. Du, A. Fuentes, M. Bennice, N. Sievers, S. Kirmani, Y. Bai, and538

E. Jang. Practical imitation learning in the real world via task consistency loss. arXiv preprint539

arXiv:2202.01862, 2022.540

[73] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár, R. Hadsell,541

N. de Freitas, et al. Reinforcement and imitation learning for diverse visuomotor skills. arXiv542

preprint arXiv:1802.09564, 2018.543

[74] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy544

deep reinforcement learning with a stochastic actor. In International conference on machine545

learning, pages 1861–1870. PMLR, 2018.546

[75] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved547

data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.548

[76] N. Hansen, Y. Lin, H. Su, X. Wang, V. Kumar, and A. Rajeswaran. Modem: Accelerating visual549

model-based reinforcement learning with demonstrations. arXiv preprint arXiv:2212.05698,550

2022.551

[77] H. Mao, R. Zhao, H. Chen, J. Hao, Y. Chen, D. Li, J. Zhang, and Z. Xiao. Transformer in552

transformer as backbone for deep reinforcement learning. arXiv preprint arXiv:2212.14538,553

2022.554

[78] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient555

exact attention with io-awareness. arXiv preprint arXiv:2205.14135, 2022.556

[79] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,557

A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for558

robot learning. arXiv preprint arXiv:2108.10470, 2021.559

[80] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim. Unified particle physics for real-time560

applications. ACM Transactions on Graphics (TOG), 33(4):1–12, 2014.561

[81] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learning562

with augmented data. Advances in neural information processing systems, 33:19884–19895,563

2020.564

13

[82] I. Kostrikov, D. Yarats, and R. Fergus. Image augmentation is all you need: Regularizing deep565

reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.566

[83] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning567

using nonequilibrium thermodynamics. In International Conference on Machine Learning,568

pages 2256–2265. PMLR, 2015.569

[84] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:570

Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.571

[85] P. Kormushev, S. Calinon, and D. G. Caldwell. Imitation learning of positional and force skills572

demonstrated via kinesthetic teaching and haptic input. Advanced Robotics, 25(5):581–603,573

2011.574

[86] M. Hersch, F. Guenter, S. Calinon, and A. Billard. Dynamical system modulation for robot575

learning via kinesthetic demonstrations. IEEE Transactions on Robotics, 24(6):1463–1467,576

2008.577

[87] S. Niekum, S. Chitta, A. G. Barto, B. Marthi, and S. Osentoski. Incremental semantically578

grounded learning from demonstration. In Robotics: Science and Systems, volume 9, pages579

10–15607. Berlin, Germany, 2013.580

[88] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz. Trajectories and keyframes for kines-581

thetic teaching: A human-robot interaction perspective. In Proceedings of the seventh annual582

ACM/IEEE international conference on Human-Robot Interaction, pages 391–398, 2012.583

[89] A. Mandlekar, J. Booher, M. Spero, A. Tung, A. Gupta, Y. Zhu, A. Garg, S. Savarese, and584

L. Fei-Fei. Scaling robot supervision to hundreds of hours with roboturk: Robotic manipulation585

dataset through human reasoning and dexterity. arXiv preprint arXiv:1911.04052, 2019.586

[90] A. Tung, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, L. Fei-Fei, and S. Savarese. Learning587

multi-arm manipulation through collaborative teleoperation. arXiv preprint arXiv:2012.06738,588

2020.589

[91] J. Wong, A. Tung, A. Kurenkov, A. Mandlekar, L. Fei-Fei, S. Savarese, and R. Martı́n-Martı́n.590

Error-aware imitation learning from teleoperation data for mobile manipulation. In Conference591

on Robot Learning, pages 1367–1378. PMLR, 2022.592

[92] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer. Hg-dagger: Interactive593

imitation learning with human experts. In 2019 International Conference on Robotics and594

Automation (ICRA), pages 8077–8083. IEEE, 2019.595

[93] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, Y. Zhu, L. Fei-Fei, and S. Savarese. Human-in-the-loop596

imitation learning using remote teleoperation. arXiv preprint arXiv:2012.06733, 2020.597

[94] J. Zhang and K. Cho. Query-efficient imitation learning for end-to-end autonomous driving.598

arXiv preprint arXiv:1605.06450, 2016.599

[95] R. Hoque, A. Balakrishna, E. Novoseller, A. Wilcox, D. S. Brown, and K. Goldberg. Thriftydag-600

ger: Budget-aware novelty and risk gating for interactive imitation learning. arXiv preprint601

arXiv:2109.08273, 2021.602

[96] R. Hoque, A. Balakrishna, C. Putterman, M. Luo, D. S. Brown, D. Seita, B. Thananjeyan,603

E. Novoseller, and K. Goldberg. Lazydagger: Reducing context switching in interactive604

imitation learning. In 2021 IEEE 17th International Conference on Automation Science and605

Engineering (CASE), pages 502–509. IEEE, 2021.606

[97] S. Dass, K. Pertsch, H. Zhang, Y. Lee, J. J. Lim, and S. Nikolaidis. Pato: Policy assisted607

teleoperation for scalable robot data collection. arXiv preprint arXiv:2212.04708, 2022.608

14

[98] A. H. Qureshi, A. Mousavian, C. Paxton, M. C. Yip, and D. Fox. Nerp: Neural rearrangement609

planning for unknown objects. arXiv preprint arXiv:2106.01352, 2021.610

[99] D. Driess, J.-S. Ha, M. Toussaint, and R. Tedrake. Learning models as functionals of signed-611

distance fields for manipulation planning. In Conference on Robot Learning, pages 245–255.612

PMLR, 2022.613

15

Appendix614

A Table of Contents615

• Additional Learning Results (Appendix B): Additional experimental results demonstrating616

OPTIMUS’s effectiveness on more tasks and additional baselines.617

• Ablations (Appendix C): Ablations and analyses of OPTIMUS, demonstrating the effective-618

ness of our design decisions.619

• Environments (Appendix D): Description of all the environments we use in this work.620

• Agent Structure (Appendix E): details regarding the observation space and action space of621

the agent.622

• Experiment Details (Appendix F): Full details on how OPTIMUS is implemented, specifi-623

cally the hyper-parameters used for training and network architectures.624

• Related Work (Appendix G): Full description of the related work.625

16

B Additional Learning Results626

OPTIMUS exhibits multi-task category control capabilities. We extend our multi-task results627

to the setting in which the task category can also vary by training a multi-task category model628

on a dataset of demonstrations from Pickplace, Shelf and Microwave. Across the tasks, the goal629

is implicitly communicated by the initial observation. In this setting, we use the same camera630

views across all tasks: the left/right shoulder views and the wrist camera. We build a dataset of631

15K trajectories with 5 objects per task category and 1K demos per task. We include the results632

in Table B.1. Similar to our multitask results in the main text, we find that OPTIMUS is able to633

demonstrate multi-task category capabilities: a single Transformer is capable of learning to pick and634

place objects on a table, manipulate objects in a shelf, and open doors across a large set of objects at635

a success rate of 73%. This experiment shows that OPTIMUS greatly outperforms the baselines on636

multi-task learning.

Dataset BC-MLP BC-RNN BeT OPTIMUS

PickPlace-Shelf-Microwave 44 47 41 73

Table B.1: Multi-task category results.. By distilling TAMP demonstrations across three environments
(PickPlace, Shelf, and Microwave), OPTIMUS is able to effectively manipulate a wide array of objects across
diverse scenes, purely from image input.

637

OPTIMUS can learn to adapt its behavior based on the scene configuration. We evaluate638

OPTIMUS on two tasks that involve adapting the task plan based on the configuration of objects in639

the scene: StackAdapt and MicrowaveAdapt, and two that require adapting motions to randomized640

receptacle sizes: ShelfReceptacle and MicrowaveReceptacle. As shown in Table B.2, OPTIMUS641

is able to effectively leverage visual input to learn when additional stacking operations are needed642

(StackAdapt) or when the area in front of the microwave needs to be cleared (MicrowaveAdapt),643

achieving 96% and 75% respectively, compared to the best baseline (96% and 40%). Additionally,644

we demonstrate that OPTIMUS is able to effectively learn to generalize to unseen receptacle sizes645

with high success rates, achieves 80% and 70% on held out shelves and microwaves respectively.646

These results illustrate that OPTIMUS can distill scene conditioned task plan adaptation and motion647

generalization across scene configurations from TAMP supervision.648

Dataset BC-MLP BC-RNN BeT OPTIMUS

StackAdapt 96 92 81 96
MicrowaveAdapt 25 40 13 75
ShelfReceptacle 72 71 59 80
MicrowaveReceptacle 48 55 31 70

Table B.2: Scene-based adaptation results. OPTIMUS can learn to vary the task plan it executes based on the
scene configuration (rows 1 and 2) as well as adapt to unseen receptacles (rows 3 and 4).

OPTIMUS solves tasks that RL methods fail to make progress on. We perform a thorough649

comparison of OPTIMUS against modern deep RL methods across four benchmark tasks in Robosuite650

(Stack, PickPlaceCan, PickPlaceCereal, PickPlace), for which there exist dense rewards suitable for651

RL. We evaluate 3 algorithms: SAC [74], a commonly used off-policy model free method, DRQ-652

v2 [75], a state-of-the-art vision-based RL method, and MoDem [76], an efficient visual model-based653

RL method. We train each RL method with up to 5 million samples with 5 seeds. We show the results654

in Table B.3. Across every task, the RL baselines struggle to learn the long-horizon behaviors, failing655

to achieve a greater than 10% success rate on any given task. These environments pose a significant656

exploration challenge for RL agents, especially when trying to map high-dimensional observations657

such as images to low-level control actions.658

OPTIMUS can outperform purely Transformer based architectures. In this experiment, we659

integrate Transformer-in-Transformer [77], a recently proposed Transformer architecture for control,660

into OPTIMUS and evaluate it across five tasks: Stack, Pickplace-1, Shelf-1, Microwave-1 and661

17

Dataset SAC Drq-v2 MoDem OPTIMUS

Stack 0 6 3 100
PickPlaceCan 0 10 0 100
PickPlaceCereal 0 5 0 100
PickPlace 0 0 0 90

Table B.3: Comparison of OPTIMUS vs. RL methods. OPTIMUS is able to solve each Robosuite task to a
high success rate, while RL methods struggle to make progress due to exploration challenges.

PickPlaceFour. We do so by modifying OPTIMUS to use the code released by the authors of [77] as662

the Transformer block. The default settings from [77] did not perform well on our tasks (20% success663

rate on Stack), so we made the following modifications: We modify the backbone used in [77] by664

increasing the number of layers in the Vision Transformer backbone from 1 to 6, the number of heads665

from 1 to 4, the patch dimension from 84 to 19 (to obtain a 4x4 grid). With these settings we achieve666

54% success rate on Stack. We then perform one further modification: instead of using the class667

token output as the state representation in [77], we reshape the tokens corresponding to each patch668

into 4x4 images and then pass them through a spatial softmax to obtain a keypoint representation of669

the image. Doing so improves the performance of Transformer-in-Transformer from 54% to 86%670

on the Stack task. We run Transformer-in-Transformer across all five tasks and include the results671

against OPTIMUS in Table B.4. Across each task, we find that OPTIMUS is able to outperform672

Transformer-in-Transformer, with an average performance improvement of 16.8%. One additional673

advantage of our architecture over the one proposed in [77] is that ours is 4-5x faster to execute. We674

hypothesize that a likely reason for this performance discrepancy is that on our visuomotor control675

tasks, ResNets [60] are a powerful inductive bias. They maintain spatial locality which allows the676

spatial softmax [61] to easily identify important key-points in the image.

Dataset Transformer-in-Transformer OPTIMUS

Stack 86 100
PickPlace-1 82 100
Shelf-1 73 91
Microwave-1 67 86
PickPlaceFour 45 60

Table B.4: Comparison of OPTIMUS vs. Transformer-in-Transformer. OPTIMUS is able to outperform
purely Transformer based architectures such as Transformer-in-Transformer [77] by 16.8% across 5 tasks,
demonstrating that our architecture is well-suited to imitating TAMP data from visual input.

677

We describe and empirically validate three advantages of the distilled policies over the TAMP678

system: 1) success rate improvement over the TAMP supervisor, 2) faster run-time, 3) operation from679

perceptual instead of state input.680

OPTIMUS almost doubles the performance of the TAMP supervisor. To evaluate TAMP, we681

execute 50 trials averaged over three random seeds on each single-task environment and record the682

performance in Table B.5. We find that OPTIMUS is able to outperform the TAMP system by a wide683

margin, from 20% on the easiest task, PickPlace, to 64% on Microwave-1 and 44% on the hardest684

task, PickPlaceFour. TAMP with joint space control has better performance on average than TAMP685

with task space control (52% vs. 45%), but still performs significantly worse than OPTIMUS (52%686

vs. 87%). We instead find that not all grasps execute perfectly every time, likely due to differences in687

simulation, planning and control schemes from the ACRONYM paper. As a result, we observe grasp688

execution failures and object slippage during placement motions. OPTIMUS avoids learning these689

failure cases by only distilling the successful trajectories, which enables it to successfully generalize690

to unseen configurations of the task.691

OPTIMUS executes 5-7.5x faster than TAMP. We evaluate the run-time of OPTIMUS against692

TAMP by computing the average time per step for both systems across 100 trials. We run the693

18

Dataset TAMP-joint TAMP-task OPTIMUS

PickPlace-1 82 82 100
PickPlaceTwo 52 58 96
PickPlaceThree 40 50 91
PickPlaceFour 34 16 60
Shelf-1 58 44 91
Microwave-1 46 22 86

Average 52 45 87
Table B.5: Comparison of OPTIMUS vs. TAMP. We plot percentage success on randomly chosen states from
the environment. We find OPTIMUS greatly outperforms the TAMP supervisor, whether TAMP uses task space
control or joint space.

evaluation on a machine with an RTX 3090 GPU and Intel i9-10980XE CPU and include the results694

in Table B.6. TAMP takes 150ms per action on average while OPTIMUS (30M parameters) takes695

21ms per action and OPTIMUS (100M parameters) takes 31ms per action. TAMP pays a high696

up-front cost of 2-5 seconds, and then executes a feedback controller to quickly track the planned697

way-points. In contrast, OPTIMUS spends a constant amount of time per action. Furthermore, it is698

possible to greatly improve the inference time performance of OPTIMUS by employing techniques699

such as FlashAttention [78], model compilation, and TensorRT.

TAMP OPTIMUS (30M) OPTIMUS (100M)

150ms 21ms 31ms

Table B.6: Timing Results. We measure the average time taken per action (lower is better). On average,
OPTIMUS is 5-7.5x faster to execute than TAMP.

700

By distilling TAMP, we obtain a performant policy that executes high-frequency low-level701

control from purely perceptual input. OPTIMUS produces policies that are fast to execute, reactive702

and perform visuomotor control at similar performance to policies that have access to state information703

(Fig. C.2) and out-performs the privileged TAMP expert (Table B.5).704

19

C Ablations705

In this section, we ablate components of OPTIMUS, low-level controller, data filtration scheme,706

gripper control scheme and data generation process, observation space design and loss function.707

State Image
Observation Space

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e

Action Space
Task
Joint

(a) Arm Action Space

None DurationWorkspace All
Filtering Rule

0

20

40

60

80

S
uc

ce
ss

 R
at

e

(b) Data Curation
Figure C.1: Effect of Arm Action Space Choice and Data Filtering Rules. (a) OPTIMUS task success
rate improves with task-space over joint-space actions when using image observations. Image observation-
space policies perform comparably to the privileged state-based policies when using task-space actions. (b)
Performance is improved by filtering TAMP success trajectories based on the visible workspace and their
duration.

Task-space control greatly improves visuomotor learning performance. We evaluate different708

controllers on the Microwave-1 task. For state-based learning, we find that the choice of action space709

makes little difference; both control schemes achieve high performance (98% for joint space vs. 100%710

for task space). However, when training with visual observations, we find that there is a large gap711

(86% vs. 100%) in performance between joint control and task-space control. We hypothesize that712

this is due to the difficulty of learning an inverse kinematics mapping from visual input, i.e. mapping713

2D pixel locations to 7DOF joint angles.714

Data filtration results in a significant improvement in policy success rates. On the Microwave-1715

task, we train four policies with different filtration schemes: 1) no filtering (None), 2) filtering based716

on trajectory length (Duration) 3) filtering based on visible workspace limits (Workspace), and 4)717

Duration and Workspace combined (Both). We find (Fig. C.1) that policies trained on unfiltered data718

perform worse when compared to those trained on filtered data. Specifically, workspace filtering has719

a greater impact than Duration. Combining both forms of filtering results in the greatest performance720

improvement of 10% and demonstrates that filtering TAMP trajectories is crucial to obtaining high721

success rates for learned policies.722

Discrete gripper control and short ”stall” regions directly impact the performance of TAMP723

imitation. We first analyze the impact of switching from continuous to discrete gripper control on724

the Stack task in Fig. C.2. By using discrete control, we can improve the success rate by 4%, while725

qualitatively we observe smoother gripper control and decisive grasps. On the other hand, we find726

that the decision to tune the length of ”stall” regions, namely TAMP grasp and release actions, is727

crucial to the performance of OPTIMUS. As observed in Fig. C.2, reducing the number of control728

actions per grasp and release action greatly improves performance, from 78% at 25 steps to 100% at 5729

actions. This is likely due to two reasons, 1) we shorten the overall length of the roll-outs, easing the730

learning burden, and 2) we reduce the likelihood of the policy to encounter a series of states where731

the observations and actions do not change, which can result in freezing behavior in the policy.732

Camera view selection enables greatly improved visuomotor learning. We evaluate two camera733

views on the Stack task. Both camera poses keep all objects as well as the robot in view; one is734

20

No Wrist Cam Use Wrist Cam
Wrist Cam Utilization

0

20

40

60

80

S
uc

ce
ss

 R
at

e

(a) Wrist Camera

Close Up Zoomed Out Tuned
Camera Position

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e

(b) Camera Position

Discrete Continuous
Gripper Action Space

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e

(c) Gripper Control

5 10 15 20 25
Num Gripper Steps

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e

(d) Gripper Steps

MSE Gaussian GMM
Loss Function

0

20

40

60

80

S
uc

ce
ss

 R
at

e

(e) Loss

Figure C.2: Effect of Observation, Action and Loss Decisions. We ablate a variety of design decisions in
OPTIMUS and demonstrate that each produces a clear improvement.

close up which hinders accurate estimation of scene geometry while the other is farther away which735

decreases the size of the objects in the frame, making it difficult for the policy to focus on them. As a736

result, we find in Fig. C.2 that a well-tuned camera view that is angled and positioned appropriately737

performs best. We additionally evaluate the impact of using a wrist camera. For tasks with primitive738

objects such as blocks, we found that the wrist cam had little impact. However, moving to tasks such739

as Microwave, where close up views of the handle and target object enable improved perception of740

grasp geometries, the wrist camera affords a significant performance improvement as we show in741

Fig. C.2.742

GMM loss enables OPTIMUS to better handle the multi-modality of TAMP supervision. TAMP743

generates highly multi-modal action distributions through randomized planning and non-deterministic744

IK. Therefore, as we note in Sec. 3.3, we use Gaussian Mixture Models to model the multi-modality.745

We experimentally validate that GMM output distributions greatly improve learning performance746

by comparing against MSE loss, which produces a deterministic, uni-modal output distribution,747

and Gaussian log-likelihood, which produces a non-deterministic, uni-modal output distribution.748

We find that GMM loss greatly out-performs both output distributions (86% vs. 66% and 70%).749

While including a stochastic output distribution such as a Gaussian does improve performance by750

4%, the multi-modality of GMM produces a further improvement of 16% performance. The results751

demonstrate that by providing the policy a more expressive output distribution, we can greatly752

improve how well the policy can model the TAMP expert.753

21

D Environments754

In this section, we provide a detailed description of the environments we use to evaluate OPTIMUS.755

We begin by describing settings which are common across environments. We then discuss each task756

individually.757

For all tasks, we use a Franka Panda 7-DOF manipulator with the default Franka gripper, though the758

TAMP system is capable of generating supervision using any manipulator, provided the robot URDF.759

For the Stack task, we use the block stacking environment from Robosuite [58], modifying it to760

include up to 5 blocks and a larger workspace region. For all other tasks we use IsaacGym [79] with761

the PhysX [80] back-end. For each task, we use a fixed reset pose for the robot, while randomizing762

the positions of sampled objects. Object orientation about the z-axis is sampled uniformly at random763

from 0 to 360 degrees for all tasks.764

For PickPlace, Multi-step PickPlace, Shelf and Microwave, we sample objects from ShapeNet [49].765

We select objects that have valid grasps in the Acronym [51] dataset. We further refine our dataset by766

filtering out objects that do not simulate well in our IsaacGym environments. From the remaining767

objects, we form two datasets with 19 and 72 objects respectively.768

We next provide additional details for each task.769

Stack: The goal is to stack the blocks in a fixed ordering. Each block is a different color. The block770

positions are sampled uniformly in an area of size 28cm x 28cm. The base block is of size 2.5cm3;771

the rest are of size 2cm3. The task is considered solved if all of the blocks are stacked in the correct772

ordering.773

StackAdapt: The task is the same as Stack, except there are two platforms, the blocks must be774

stacked on the target platform only. There is a 50/50 chance for the base block to be spawned on the775

target platform, in which the task simply involves stacking, and the base block to be spawned on the776

other platform, which requires the agent to first place the base block on the target platform then stack777

on top of it.778

PickPlace: The task involves picking and placing ShapeNet objects from the left platform to the779

right platform. The platforms are of size .25 by .25 and are kept .5 apart. The object positions are780

sampled uniformly at random on the platform. The task success criteria is fulfilled if the object is781

placed anywhere on the target platform.782

Multi-step PickPlace: The task involves picking and placing ShapeNet objects from platforms on783

the left to bins on the right. Up to four objects: a basket, vase, magnet or cup are sampled on separate784

platforms. Each platform is of size .15x.15 and each bin is of size .2x.2m. Each object’s position is785

sampled uniformly at random on its associated platform. The task is solved when all objects are in786

their associated bins.787

Shelf: The task involves moving ShapeNet objects from the lower rung of the shelf to the middle788

one. The shelf is 1m tall and has three rungs of size .5m x .25. The position and size of the shelf are789

constant. Object positions are sampled on the lowest rung, uniformly at random across the surface.790

The task is solved when the object is placed on the middle rung.791

ShelfReceptacle: This task is the same as Shelf, but the shelf size is randomized within the following792

intervals: height (.8-1m), rungs: (.5x.25m - .4x.75m).793

Microwave: The goal is to open the microwave by pulling open the handle, grasp a ShapeNet object,794

and place it inside the microwave. The microwave is .3m tall, 50cm wide and 20 cm deep. Microwave795

position and size are held fixed. The initial angle of the microwave door is 0, i.e. fully closed. Object796

positions are sampled on a platform of size .25x.25m. The agent has succeeded when the object is797

inside the microwave.798

MicrowaveReceptacle: This task is the same as Microwave, but the microwave size is randomized799

within the following intervals: height (.3-.4m), width: (.5-.6m), depth: (.2-.3m).800

22

MicrowaveAdapt: The task is the same as the microwave task, except with 50% probability an801

object is spawned in front of the microwave door, requiring the agent to first move the object aside802

then open the door and place the target object inside.803

23

E Agent Structure804

Observation spaces: We use the same set of proprioceptive observations across all tasks: end-effector805

position, end-effector orientation (quaternion), gripper position. For each task, we select a different806

camera view that maximizes scene coverage. For Shelf and Microwave, we use two views, left807

and right shoulder views, whereas for the rest of the tasks we use a single forward facing view.808

Additionally, we use a wrist camera for every task, which greatly improves the performance. We use809

camera images of size 84x84. We empirically validate these decisions in Sec. C and visualize the810

results in Fig. C.2.811

Action spaces: As mentioned in the main text, we use task space control for moving the arm.812

In Robosuite, we use the built-in OSC controller [59]. In IsaacGym, we used a simple IK-based813

task-space controller. With regard to gripper control, we discuss and resolve two challenges related814

to TAMP. 1) Continuous gripper actions produced by the TAMP solver can be challenging for the815

network to fit, as the network does not fully commit to predicting grasps. To that end, we modify816

the gripper actions to be binary open and close motions which improves performance and reduces817

noise in policy execution. We validate that this results in a performance improvement in Appendix C.818

2) TAMP demonstrations can include“stall regions”: segments of the trajectory in which the robot819

is not moving, such as when TAMP executes gripper-only actions for grasps and placements. This820

results in trained policies that may freeze after grasping an object, as the data does not contain cues821

for when to exit the stall region. To address this issue, we tune the length of stall regions during data822

collection against the agent’s history length to ensure data collection success rate remains high while823

minimizing policy freezing behavior.824

24

F Experiment Details825

Hyper-parameter Value

Learning Rate 0.0001
Batch Size 16/512
Warmup Steps 0
Linear Scheduling Steps 100K
Final Learning Rate 0.00001
Weight Decay 0.01
Gradient Clip Threshold 1.0
Number of Gradient Steps 1M
Optimizer Type AdamW
Loss Type GMM
GMM Components 5
GMM Min. Std. Dev. 0.0001
GMM Std. Dev. Activation Fn. SoftPlus

Table F.1: Hyper-parameters used during training.

OPTIMUS (30M/100M) MLP (30M/100M) RNN (30M/100M) BeT (30M/100M)

Num Layers 6/12 2/6 2/3 6/12
Hidden Dimension 1024/1024 1000/2000
Context Length 8/8 10/10 10/10
Num Heads 8/16 8/16
Transformer Embed. Dim. 256/512 256/512
Embedding Dropout Prob. 0.1/0.1 0.1/0.1
Attention Dropout Prob. 0.1/0.1 0.1/0.1
Output Dropout Prob. 0.1/0.1 0.1/0.1
Positional Embed. Learned/Learned Learned/Learned
Positional Embed. Type Relative/Relative Relative/Relative
Num. Clusters 24/24
Offset Loss Scale 100/100

Table F.2: Model hyper-parameters.

Network and Training Details: We include the model hyper-parameters for the 30M and 100M826

parameter variants of each method in Table F.2. For the vision-backbone, as discussed in the main827

text, we use a Resnet-18 [60] with a Spatial Softmax [61] output to encode each image separately.828

For details, please see the Robomimic paper [29]. We include learned positional embeddings with829

each token and employ relative, rather than absolute, position embeddings to enable the network to830

adapt to longer horizons at test time. We use a linear annealing schedule that reduces the learning rate831

from 10−4 to 10−5 over 100K gradient steps and then keeps the learning rate constant. We train with832

the AdamW optimizer with a weight decay of 0.01 and no learning rate warm-up. For single-task833

learning, we train with a batch size of 16 on a single V100 GPU, while for multi-task learning we834

train using batch size of 512 to 1024 depending on the task, across 8 V100 GPUs. For visuomotor835

learning, we train with multiple camera views with image size 84x84, and we augment the data with836

random crops [29, 81, 82]. We additionally list the hyper-parameters used for training in Table F.1.837

One note of interest: for multi-task training, we found that increasing the batch size greatly improved838

the results; hence we use a batch size of 512.839

For BeT, we tried using the original authors codebase, which we augmented with our vision backbone,840

but found that the performance was extremely low. Instead, we re-implemented BeT as a modification841

of OPTIMUS, using the same network structure but predicting a discrete cluster center and offset842

head instead and training using the focal and MT losses from the BeT paper. We found that the843

standard hyper-parameters for BeT did not perform well, and after significant hyper-parameter tuning844

found that the combination of 24 cluster centers and offset loss scale of 100 performed best.845

25

Evaluation Protocol: We note additional details regarding our evaluation protocol as follows. We846

split each dataset into a set of training and validation trajectories (using a 90/10 split). From the847

validation trajectories, we save the initial state of the demonstration. During evaluation, we reset848

the simulator state to an initial state from the validation set, and execute the policy from there. By849

comparing on the same set of validation states, we can better evaluate performance across seeds and850

algorithms. Note this means evaluation is performed from states that the TAMP solver is able to851

solve. As we note in Sec. 4.1, in practice this distinction matters little, as the TAMP system does not852

have a systematic failure case which could be passed on to the policy. Therefore we observe similar853

success rates when evaluating on randomly sample poses from the environment.854

26

G Related Work855

G.1 Offline Learning from Demonstrations856

Imitation Learning (IL) is a paradigm for training robots to perform manipulation tasks by leveraging857

a set of expert demonstrations. In this work, we focus on offline learning, in which a policy learns858

a dataset of demonstrations, without any additional interaction. This is typically done through859

Behavior Cloning (BC) [30], in which a policy is trained to imitate the actions in the dataset through860

supervised learning. While this is a simple approach, it has proved incredibly effective for robotic861

manipulation [29, 31, 32, 33, 34, 35, 36, 37], particularly when coupled with a large number of862

demonstrations [10, 20, 38, 39]. Concurrent work has proposed leveraging Diffusion Models [83] to863

train policies via BC [84] in order to handle multi-modality of demonstrations. Our work instead864

focuses on how to best imitate TAMP with Transformers; Diffusion Policies, in particular their865

Transformer variants, could be straightforwardly integrated into OPTIMUS.866

Human supervision is a common source of demonstrations. Several prior works use kinesthetic867

teaching [85, 86, 87, 88], in which a human manually guides an arm through a task, but this does not868

scale. Many works have leveraged teleoperation systems [13, 14, 35, 15, 89, 90, 91, 20, 38, 39], in869

which a human remote controls a robot arm to guide it through a task. However, scaling teleoperation870

is costly because it can require months of data collection and numerous human operators [10, 20, 89].871

This has motivated the development of intervention-based systems, in which humans provide smaller872

corrective behaviors to an agent [92, 93, 94, 95, 96, 97], enabling more sample-efficient learning and873

less operator burden. Instead of relying on human operators for supervision, we learn policies from874

demonstrations provided by a TAMP supervisor, which can generate large, diverse datasets without875

human supervision.876

G.2 Transformers for Robot Control877

Recent work explores the application of Transformers to controlling robot manipulators. Transformer-878

based policy architectures such as Gato [12], PerAct [40], VIMA [41], RT-1 [10], Dasari and Gupta879

[42], and Behavior Transformer [43] have demonstrated impressive results across a range of robotic880

manipulation tasks, yet make use of discretization of the input observations and output actions,881

limiting their applicability to tasks requiring precise manipulation. Additionally, PerAct [40] and882

VIMA [41] use abstracted actions to ease the learning burden at the cost of expressivity and execution883

speed. HiveFormer [71] is closest to our method in terms of architecture and training protocol884

but also assumes temporally-extended motion planner actions. As a result, these systems require885

privileged knowledge of the geometry of the environment to ensure safety. In contrast, OPTIMUS886

uses a Transformer architecture that is efficient to train and scale, fast-to-execute, consumes raw887

observations, and outputs low-level control actions.888

G.3 Task and Motion Planning889

Task and Motion Planning (TAMP) [27] addresses controlling a hybrid system through planning890

a sequence of discrete of manipulation types (task planning) realized through continuous motions891

(motion planning). TAMP approaches consume kinematic or dynamic models [44] of individual892

manipulation types and search over combining them in a manner that achieves a goal. Classically,893

these models are engineered; however, recently, they have been learned using methods such as894

Gaussian Processes [64] or Deep Neural Networks [98, 65, 99]. These mixed engineering-learning895

TAMP techniques can be quite effective, but they impose a strong human design bias, capping policy896

performance. Also, they are too computationally expensive to be run in real-time, preventing them897

from quickly reacting to new observations.898

There has been recent interest in approaches that imitate planning [45, 46, 47]; however, these899

approaches generally focus on single-step motion generation. The exception is [28], which recently900

proposed an approach, Guided TAMP, that directly imitates TAMP. Our work builds on this direction901

in several ways. First, Guided TAMP primarily addresses control from privileged state, while we902

27

focus exclusively on visuomotor learning, which requires fewer assumptions. Second, Guided TAMP903

proposes a hierarchical policy that first predicts a discrete task-level action and then, conditioned on904

that action, predicts the next control. In order for the learner to predict a task-level action, they require905

a fixed set of ground actions, preventing the same policy from being deployed in tasks, for example,906

with varying numbers of objects. In contrast, our Transformer architecture does not explicitly reason907

about task-level actions and thus does not require grounding and fixing the objects in the scene.908

Finally, we identify new considerations when using TAMP as a data generation pipeline.909

28

	1 Introduction
	2 Preliminaries
	3 Designing a TAMP Imitation System
	3.1 Cost-Minimizing TAMP
	3.2 Generating Imitation Data from TAMP
	3.3 Training Imitation Policies at Scale

	4 Experimental Evaluation
	4.1 Learning Results

	5 Limitations and Future Work
	A Table of Contents
	B Additional Learning Results
	C Ablations
	D Environments
	E Agent Structure
	F Experiment Details
	G Related Work
	G.1 Offline Learning from Demonstrations
	G.2 Transformers for Robot Control
	G.3 Task and Motion Planning

