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Abstract

We adapt previous research on category theory and topological unsupervised
learning to develop a functorial perspective on manifold learning. We first char-
acterize manifold learning algorithms as functors that map pseudometric spaces
to optimization objectives and factor through hierarchical clustering functors. We
then use this characterization to prove refinement bounds on manifold learning
loss functions and construct a hierarchy of manifold learning algorithms based
on their invariants. We express several popular manifold learning algorithms as
functors at different levels of this hierarchy and present bounds on how closely
the embeddings these algorithms produce from noisy data approximate the em-
beddings they would learn from noiseless data.

1 Manifold Learning

A manifold learning algorithm constructs an n × m real valued matrix of embeddings in Matn,m =
Rn∗m from a finite pseudometric space with n points. In this work we focus on algorithms that operate
by solving embedding optimization problems, or tuples (n,m, l) where l : Matn,m → R is a loss
function. We call the set of all A ∈ Matn,m that minimize l(A) the solution set of the embedding
optimization problem.

Formally we define a manifold learning problem to be a function that maps the pseudometric space
(X, dX) to an embedding optimization problem of the form (|X|,m, l). Note that this definition does
not specify how the optimization problem is solved. For example, the Metric Multidimensional
Scaling manifold learning problem maps (X, dX) to (|X|,m, l) where l(A) = (dX(xi, x j) − ‖Ai − A j‖)2.
Optimizing this objective involves finding a matrix A such that the Euclidean distance matrix of the
rows of A is as close as possible to the dX distance matrix.

If a manifold learning problem maps isometric pseudometric spaces to embedding optimization
problems with the same solution set, we call it isometry-invariant. Intuitively, isometry-invariant
manifold learning algorithms do not change their output based the ordering of X. One property of
these problems is that they factor through hierarchical clustering:

Proposition 1. Given any isometry-invariant manifold learning problem M there exists a manifold
learning problem L ◦ H, where H is a hierarchical overlapping clustering algorithm (as defined
by Shiebler (2020)) and L is a function that maps the output of H to an embedding optimization
problem, such that the solution spaces of the images of M and L ◦ H on any pseudometric space
(X, dX) are identical. (Proof in Appendix B.1)

Intuitively, Proposition 1 holds because manifold learning problems generate loss functions by
grouping points in the finite pseudometric space together. In order to use this property to adapt
clustering theorems into manifold learning theorems we will introduce a target category of opti-
mization problems and replace functions with functors:

Definition 1. The objects in Lossm are tuples (n, {ci j , ei j }) where n is a natural number, ci j , ei j :
R≥0 → R are real-valued functions that satisfy ci′ j′ (x) = ei′ j′ (x) = 0 for i′ > n or j′ > n. Lossm is
a preorder where (n, {ci j , ei j }) ≤ (n′, {c′

i j
, e′

i j
}) iff for any x ∈ R≥0, i, j ∈ N we have c′

i j
(x) ≤ ci j (x) and

ei j (x) ≤ e′
i j
(x).

Definition 2. The objects in the category FLossm are functors F : (0, 1]op → Lossm that com-
mute with the forgetful functor that maps (n, {ci j , ei j }) to n. The morphisms in FLossm are natural
transformations. We call n the cardinality of F.

Each F ∈ FLossm corresponds to an embedding optimization problem. We can write F(a) =
(n, {cF(a)i j

, eF(a)i j
}) and define the embedding optimization problem (n,m, lF) where the F-loss lF(A)
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is lF(A) =
∫

a∈(0,1]

∑
i∈1...n
j∈1...n

cF(a)i j
(‖Ai−A j‖)+eF(a)i j

(‖Ai−A j‖) da. Intuitively,
∑

i∈1...n
j∈1...n

cF(a)i j
(‖Ai−A j‖)+

eF(a)i j
(‖Ai − A j‖) is a loss term that exists with the strength a, and lF(A) is the average loss across all

strengths.
Definition 3. Suppose PMet is the category of pseudometric spaces and non-expansive maps and
FCov is the category of fuzzy flag covers and natural transformations (Culbertson et al., 2016;
Shiebler, 2020). Then given the subcategories D ⊆ PMet,D′ ⊆ FCov, the composition L ◦H : D→
FLossm forms a D-manifold learning functor if H : D→ D′ is a hierarchical D-clustering functor
and L : D′ → Lossm is a functor that maps a fuzzy flag cover with vertex set X to some FX ∈ FLossm
with cardinality |X|.

Intuitively a manifold learning functor D
H
−→ D′

L
−→ FLossm factors through a hierarchical clustering

functor and sends (X, dX) to F where F(a) = (|X|, {cF(a)i j
, eF(a)i j

}). We will say that M = L ◦ H is
standard form if M maps the one-point metric space ({∗}, 0) to some F where cF(a)i j

(x) = eF(a)i j
(x) =

0 and ∀ε, δ ∈ R≥0,H(X, dX + ε)(−log(δ)) ' H(X, dX)(−log(δ + ε)). Each manifold learning functor
corresponds to a manifold learning problem that maps (X, dX) to (|X|,m, lM(X,dX )).

1.1 A Spectrum ofManifold Learning Functors

Recall the single and maximal linkage hierarchical overlapping clustering algorithms SL andML
which map the pseudometric space (X, dX) to the fuzzy non-nested cover (X,CXa ) where CXa is
respectively the connected components of the −log(a)-Vietoris-Rips complex of (X, dX) and the
maximally linked sets of the relation Ra in which x1Rax2 if dX(x1, x2) ≤ −log(a) (Shiebler, 2020;
Culbertson et al., 2016). If we apply functoriality to Proposition 6 in Shiebler (2020) we see:
Proposition 2. Suppose D is a subcategory of PMet such that PMetbi j ⊆ D, L ◦ H is a D-manifold
learning functor such that H is non-trivial and for all a ∈ (0, 1], the functor H(−)(a) : D → Cov
has clustering parameter δH,a. Then for a ∈ (0, 1] and (X, dX) ∈ D we have maps:

(L ◦ML)(X, dX)(e−δH,a ) ≤ (L ◦ H)(X, dX)(a) ≤ (L ◦ SL)(X, dX)(e−δH,a ) (1)

That are natural in a and (X, dX). (Proof in Appendix B.2)

Intuitively, this proposition states that every manifold learning functor maps (X, dX) to a loss that
is both no more interconnected than the loss that does not distinguish points within the same con-
nected component of the Vietoris-Rips complex and no less interconnected than the loss that treats
each pair of points independently. There are many manifold learning functors that lie between these
extremes. In particular, for any functor L : PMetin j → Lossm and sequence of clustering func-
tors ML,H1,H2, ...,Hn,SL whose outputs refine each other we can apply functoriality to form a
sequence of manifold learning functors L ◦ ML ≤ L ◦ H1 ≤ ... ≤ L ◦ Hn ≤ L ◦ SL. For exam-
ple, consider the Lk family of hierarchical overlapping clustering functors from Culbertson et al.
(2016): for k ∈ N, the cover Lk(X, dX)(a) is the maximal linked sets of the relation Ra where xRax′
if there is a sequence x = x1, x2..., xk−1, xk = x′ in X where d(xi, xi+1) ≤ −log(a). The functor L ◦ Lk
therefore maps (X, dX) to a loss that distinguishes only between points whose shortest path in the
Vietoris-Rips complex is longer than k. For k > 1 this loss is more interconnected than L ◦ML and
less interconnected than L ◦ SL. This also suggests a recipe for generating new manifold learning
algorithms (see Appendix A): first express an existing manifold learning problem in the form L ◦H,
and then form L ◦ SL, L ◦ML, or any of the functors along the spectrum L ◦ Lk.

1.2 CharacterizingManifold Learning Problems

Similarly to how Carlsson & Mémoli (2013) characterize clustering algorithms in terms of their
functoriality over different subcategories of pseudometric spaces, we can characterize manifold
learning algorithms based on the subcategory D ⊆ PMet over which they are functorial.

We have already introduced the class of isometry-invariant manifold learning problems. Any
PMetisom-manifold learning functor is isometry-invariant, and an isometry-invariant manifold learn-
ing problem is expansive-contractive if the loss that it aims to minimize decomposes into the sum
of an expansive term e that decreases as distances increase and a contractive term c that increases as
distances increase. Intuitively, expansive-contractive manifold learning problems use the term e to
push together points that are close in the original space and use the term c to push apart points that
are far in the original space. Any PMetbi j-manifold learning functor is expansive-contractive.
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An expansive-contractive manifold learning problems is positive extensible if c increases and e
decreases when we increase |X|. If instead c decreases and e increases when we increase |X|, we
say it is negative extensible. Any PMetsur-manifold learning functor is positive extensible and any
PMetin j-manifold learning functor is negative extensible.

1.2.1 MetricMultidimensional Scaling (PMetsur-Manifold Learning Functor)

The most straightforward strategy for learning embeddings is to minimize the difference between
the pairwise distance matrix of the original space and the pairwise Euclidean distance matrix of the
learned embeddings. The Metric Multidimensional Scaling algorithm (Abdi, 2007) does exactly
this. Given a finite pseudometric space (X, dX), the Metric Multidimensional Scaling embedding
optimization problem is (|X|,m, l) where l(A) =

∑
i∈1...n
j∈1...n

(dX(xi, x j) − ‖Ai − A j‖)2. When the distance

matrix of the pseudometric space is double-centered (mean values of rows/columns are zero) this is
the same objective that Principal Components Analysis (PCA) optimizes (Hinton, 2013).
Proposition 3. There exists a functor MDS : FCovsur → FLossm such that the PMetsur-manifold
learning functor MDS ◦ ML maps the finite pseudometric space (X, dX) to the Metric Multidimen-
sional Scaling embedding optimization problem. (Proof in Appendix B.3)

1.2.2 IsoMap (PMetsur-Manifold Learning Functor)

For many real world datasets it is the case that the distances between nearby points are more reliable
and less noisy than the distances between far away points. The IsoMap algorithm (Tenenbaum et al.,
2000) redefines the distances between far apart points in terms of the distances between near points.
Given a finite pseudometric space (X, dX), the IsoMap embedding optimization problem is (|X|,m, l)
where l(A) =

∑
i∈1...n
j∈1...n

(d′X(xi, x j) − ‖Ai − A j‖)2 such that d′X(xi, x j) is the length of the shortest path

between xi and x j in the graph in which there exists an edge of length dX(x, x′) between each pair of
points (x, x′) ∈ X with dX(x, x′) ≤ δ.
Proposition 4. For any δ ∈ R≥0, there exists a hierarchical PMet-clustering functor IsoClusterδ
such that the PMetsur-manifold learning functor MDS ◦ IsoClusterδ maps the finite pseudometric
space (X, dX) to the IsoMap embedding optimization problem. (Proof in Appendix B.4)

1.2.3 UMAP (PMetisom-Manifold Learning Functor)

The UMAP algorithm builds a local uber-metric space around each point in X, converts each local
uber-metric space to a fuzzy simplicial complex, and minimizes a loss function based on a fuzzy
union of these fuzzy simplicial complexes. Given a finite pseudometric space (X, dX), the UMAP
embedding optimization problem is (|X|,m, l) where l is the fuzzy cross-entropy:

l(A) =
∑

i∈1...|X|
j∈1...|X|

Wi j log
(

Wi j

e−‖Ai−A j‖

)
+ (1 −Wi j) log

(
1 −Wi j

1 − e−‖Ai−A j‖

)

and Wi j is the weight of the fuzzy union of the 1-simplices connecting xi and x j in the Vietoris-Rips
complexes formed from the |X| local uber-metric spaces (X, dxi ) where:

dxi (x j, xk) =

{
dX(x j, xk) − minl=1...ndX(xi, xl) i = j, i = k
∞ else

Proposition 5. There exists a hierarchical PMetisom-clustering functor FuzzySimplex that decom-
poses into the composition of four functors that: build a local uber-metric space around each point
in X, convert each local uber-metric space to a fuzzy simplicial complex, take a fuzzy union of these
fuzzy simplicial complexes, and convert the resulting fuzzy simplicial complex to a fuzzy non-nested
flag cover. (Proof in Appendix B.5)
Proposition 6. There exists a functor FCE : FCovbi j → FLossm such that the composition FCE ◦
FuzzySimplex is a PMetisom-manifold learning functor that maps the pseudometric space (X, dX) to
the UMAP embedding optimization problem. (Proof in Appendix B.6)

Since the UMAP distance rescaling procedure does not preserve non-expansive maps, even if a
map from (X, dX) to (X′, dX′ ) is non-expansive, this will not necessarily be the case for all of the

3



Submitted to the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

local uber-metric spaces (X, dxi ) that we build from (X, dX) and (X′, dX′ ). For this reason FCE ◦
FuzzySimplex is not functorial over PMetbi j.

2 Stability ofManifold Learning Algorithms

We can use this functorial perspective on manifold learning to reason about the stability of manifold
learning algorithms under dataset noise. An ε-interleaving between the functors F,G : R≥0 → C is
a collection of commuting natural transformations between F(δ) → G(δ + ε) and G(δ) → F(δ + ε)
(Chazal et al., 2014; Scoccola, 2020). The interleaving distance dI between such functors is the
smallest ε such that an ε-interleaving exists. In order to study interleavings between functors in
FCov or FLossm whose domain is (0, 1]op rather than R≥0, we will say that the functors F,G are
ε∗-interleaved when there is an ε-interleaving between the functors F ◦ r and G ◦ r where r(x) = e−x.
We will also write dI∗ (F,G) = dI(F ◦ r,G ◦ r).

Proposition 7. Given a subcategory D of PMet, a standard form D-manifold learning functor
M = L◦H and a pair of finite pseudometric spaces (X, dX), (Y, dY ) such that there exists a pair of mor-
phisms f : (X, dX)→ (Y, dY + ε), g : (Y, dY )→ (X, dX + ε) in D, we have dI∗ (M(X, dX),M(Y, dY )) ≤ ε.
(Proof in Appendix B.7)

Proposition 7 is similar in spirit to previous results that use the Gromov-Hausdorff distance between
metric spaces to bound the distance between their corresponding Rips complexes (Chazal et al.,
2014; Bubenik & Scott, 2014; Scoccola, 2020; Blumberg & Lesnick, 2017). As a special case, if M
is an PMetbi j-manifold learning functor and there exists an ε-isometry between (X, dX), (Y, dY ) then
dI∗ (M(X, dX),M(Y, dY )) ≤ ε. We can use this to show:

Proposition 8. Suppose we have a standard form PMetsur-manifold learning functor M, a pair
of ε-isometric finite pseudometric spaces (X, dX), (Y, dY ) and the matrices AX , AY that respectively
minimize lM(X,dX ) and lM(Y,dY ). Then if |cM(X,dX )(a)i j

(x)| ≤ Kc
2 , |cM(Y,dY )(a)i j

(x)| ≤ Kc
2 and |eM(X,dX )(a)i j

(x)| ≤
Ke
2 , |eM(Y,dY )(a)i j

(x)| ≤ Ke
2 we have:

lM(X,dX ) (AY ) ≤ lM(X,dX ) (AX) + Kcn2(1 − e−ε) + Ken2(eε − 1) (2)

If eM(X,dX )(a)i j
(x) is constant in x (such as for any M that factors as M = MDS ◦ H) we have:

lM(X,dX ) (AY ) ≤ lM(X,dX ) (AX) + Kcn2(1 − e−ε) (3)

(Proof in Appendix B.8)

These bounds apply to a very general class of manifold learning algorithms, including topologically
unstable algorithms like IsoMap (Balasubramanian, 2002). As an example, consider using IsoMap to
project n evenly spaced points that lie upon the surface of a radius r circle in R2 onto R1. In this case
(X, dX) is a finite ordered n-element subspace of R2 with Euclidean distance, M = MDS◦IsoClusterδ
and for any matrix AX ∈ Matn,1 that consists of n evenly spaced points along the real line such that
AXi+1 − AXi = 2rsin( 2π

2n ) we have lM(X,dX )(AX) = 0. Now suppose that we instead apply IsoMap to
a noisy view of (X, dX): a finite ordered n-element subspace (Y, dY ) of R2 where dY is Euclidean
distance and ∀i=1...ndX(Xi,Yi) = dY (Xi,Yi) = ‖Xi − Yi‖ ≤ ε. Then for any matrix AY ∈ Matn,1 that
minimizes lM(Y,dY ), Proposition 8 bounds the average squared difference between |AYi+1 − AYi | and
2rsin( 2π

2n ).

3 Conclusion

We have taken the first steps towards a categorical framework for manifold learning. By defining a
manifold learning algorithm as a functor out of a category of metric spaces, we can explicitly express
the kind of dataset transformation that it is invariant to. We can also use functoriality to extend
theorems about clustering algorithms to theorems about manifold learning algorithms, reason about
our algorithms’ stability properties, and create new algorithms that are guaranteed to obey these
properties by composing functors. In future work we hope to use these techniques to derive more
powerful theorems around the resilience of other kinds of unsupervised algorithms to noise.

4



Submitted to the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

References
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A Appendix A: Experiment in Functorial Recombination

One benefit of the functorial perspective on manifold learning is that it provides a natural way to
produce new manifold learning algorithms by recombining the components of existing algorithms.
Suppose we are able to express two existing manifold learning algorithms M1,M2 in this framework
such that M1 = L1 ◦ H1 and M2 = L2 ◦ H2 where H1,H2 are hierarchical clustering functors. Then
we can use the compositionality of functors to define the manifold learning algorithms L2 ◦ H1 or
L1 ◦ H2. We can use this procedure to combine the strengths of multiple algorithms in a way that
preserves functoriality.

Consider a DNA recombination task in which we attempt to match a string of DNA that has been
repeatedly mutated back to the original string. One way to solve this task is to generate embeddings
for each string of DNA and look at the nearest neighbors of the mutated string. We can simulate this
task as follows

1. Generate N original random sequences of DNA of length L (strings of “A”, “C”, “G”, “T”).
2. For each sequence, mutate the sequence M times to produce a mutation list, or a list of

sequences which each start with an original DNA sequence and end with a final DNA
sequence.

3. Collect each of the M sequences in each of these N mutation lists into a N ∗ M element
finite pseudometric space with Hamming distance.

4. Build embeddings from this pseudometric space and compute the percent of mutation lists
for which the nearest neighbor of the last DNA sequence in that list among the set of all
original sequences is the first sequence in that list (the accuracy).
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Figure 1: Embeddings of DNA sequences from the DNA recombination task with L = 1000,N =
100,M = 10. Each color indicates a unique DNA sequence mutation list. Note that Single Linkage
Scaling (MDS ◦ SL) on the right embeds sequences in the same mutation list more closely together
than Metric Multidimensional Scaling (MDS ◦ML) on the left.

A manifold learning algorithm that performs well on this task will need to take advantage of the
intermediate mutation states to recognize that the first state and final state in a mutation list should
be embedded as close together as possible. We can follow the procedure in Section 1.1 to adapt the
Metric Multidimensional Scaling algorithm MDS ◦ ML (Section 1.2.1) into such an algorithm by
forming the maximally interconnected functor MDS ◦ SL. Intuitively, this functor maps (X, dX) to
a loss function that corresponds to the optimization objective for Metric Multidimensional Scaling
where Euclidean distance is replaced with:

d∗X(x, x′) = inf{δ | ∃x = x1, x2, ..., xn = x′ ∈ X, dX(xi, xi+1) ≤ δ}
We call this the Single Linkage Scaling algorithm (Algorithm 1). Since this algorithm embeds
points that are connected by a sequence in the original space as close together as possible, we expect
Single Linkage Scaling to outperform Metric Multidimensional Scaling on the DNA recombination
task. This is exactly what we see in Table 1. We also show the embeddings for each sequence in
each list in Figure 1.

Algorithm 1 Single Linkage Scaling

1: procedure SingleLinkageScaling(((X, dX),m))
2: Initialize the |X| × |X| matrix B to all zeros
3: ∀i, j ≤ |X|
4: Bi j = inf{δ | ∃xi = x1, x2, ..., xn = x j ∈ X, dX(xk, xk+1) ≤ δ}
5: A← minA∈Mat|X|,m

∑
i∈1...|X|
j∈1...|X|

(‖Ai − A j‖ − Bi j)2

6: return A

B Appendix B: Proofs

B.1 Proof of Proposition 1

Proof. Recall the maximal linkage hierarchical overlapping clustering algorithmML that maps the
pseudometric space (X, dX) to the fuzzy non-nested cover (X,CXa ) where CXa is the maximally linked
sets of the relation R in which x1Rx2 if dX(x1, x2) ≤ −log(a) (Shiebler, 2020; Culbertson et al., 2016).
Consider also the function Real that maps the fuzzy non-nested cover (X,CXa ) to the pseudometric
space (X, d′X) in which:

d′X(x1, x2) = e− sup{a | ∃S∈CXa ,x1,x2∈S }

It is easy to see that Real◦ML is an isometry on pseudometric spaces. Therefore, for any isometry-
invariant manifold learning problem M, the composition (M◦Real)◦MLwill have the same solution
set as M. �
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Algorithm Accuracy
N = 100
M = 10

Accuracy
N = 100
M = 20

Accuracy
N = 200
M = 10

Accuracy
N = 200
M = 20

Metric Multidimensional Scaling
Embedding Size 2

0.21 (± 0.05) 0.01 (± 0.02) 0.29 (± 0.02) 0.01 (± 0.00)

Single Linkage Scaling
Embedding Size 2

0.61 (± 0.02) 0.68 (± 0.05) 0.76 (± 0.01) 0.32 (± 0.02)

Metric Multidimensional Scaling
Embedding Size 5

0.74 (± 0.01) 0.13 (± 0.02) 0.84 (± 0.01) 0.04 (± 0.01)

Single Linkage Scaling
Embedding Size 5

0.93 (± 0.05) 0.91 (± 0.02) 0.96 (± 0.02) 0.34 (± 0.02)

Table 1: Performance on the DNA recombination task of the Metric Multidimensional Scaling
(MDS ◦ ML) and Single Linkage Scaling (MDS ◦ SL) algorithms. The accuracy is the percent
of the N mutation lists of length M for which the nearest neighbor of the last sequence in the list
among the set of all original DNA sequences is the first sequence in that list. The reported num-
bers are means (and standard deviations) across 10 simulations. All DNA sequences are of length
L = 1000.

B.2 Proof of Proposition 2

Proof. By Proposition 6 in Shiebler (2020), there exist natural transformations from:

ML(X, dX)(WH(−))→ H(X, dX)(−)→ SL(X, dX)(WH(−))

where WH(a) = e−δH,a . The statement then holds by functoriality. �

B.3 Proof of Proposition 3

Proof. Define MDS : FCovsur → FLossm to map the fuzzy non-nested cover H : (0, 1]op → Covin j
with vertex set X to F : (0, 1]op → Lossm where F(a) = (|X|, {cF(a)i j

, eF(a)i j
}) and:

cF(a)i j
(x) = x2 + 2x2

{
0 ∃S ∈ H(a), xi, x j ∈ S })
1/Wi j − 1/a else

eF(a)i j
(x) =

0 ∃S ∈ H(a), xi, x j ∈ S })
2log(Wi j)

Wi j
−

2log(a)
a else

where:

Wi j = sup
≥0
{a | a ∈ (0, 1], ∃S ∈ H(a), xi, x j ∈ S }

We will show that MDS ◦ML is an PMetsur-manifold learning functor that maps any pseudometric
space (X, dX) to the Metric Multidimensional Scaling embedding optimization problem over the
distance matrix of dX .

First, we need to show that MDS : FCovsur → FLossm is a functor. Consider the fuzzy non-
nested covers HX and HX′ in FCovsur with vertex sets X, X′ respectively such that there exists a
morphism f in FCovsur between them (a natural transformation with surjective components). Say
MDS(HX)(a) = (|X|, {cF(a)i j

, eF(a)i j
}) and MDS(HX′ )(a) = (|X′|, {c′F(a)i j

, e′F(a)i j
}). Since each component

of f is surjective it must be that |X|′ ≤ |X|. There are now two cases:

• Say i, j ≤ |X′|. For each a ∈ (0, 1], x1, x2 ∈ X,∃S ∈ HX(a), x1, x2 ∈ S , by definition
∃S ∈ HX′ (a), f (x1), f (x2) ∈ S . Therefore ∀x∈R≥0 eF(a)i j

(x) ≤ e′F(a)i j
(x), c′F(a)i j

(x) ≤ cF(a)i j
(x).

• Say i > |X′| or j > |X′|. By definition c′F(a)i j
(x) = e′F(a)i j

(x) = 0. Since cF(a)i j
is non-negative

and eF(a)i j
is non-positive, we have ∀x∈R≥0 eF(a)i j

(x) ≤ e′F(a)i j
(x), c′F(a)i j

(x) ≤ cF(a)i j
(x).

Therefore MDS(HX) ≤ MDS(HX′ ). Since MDS : FCovsur → FLossm trivially preserves the identity
we can conclude that it is a functor and MDS ◦ML is a PMetsur-manifold learning functor.

7
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Next, we show that MDS ◦ ML maps (X, dX) to the Metric Multidimensional Scaling embedding
optimization problem. Define F = (MDS ◦ML)(X, dX) and note that:

Wi j = sup
≥0
{a | a ∈ (0, 1], ∃S ∈ ML(X, dX)(a), xi, x j ∈ S } = e−dX (xi,x j)

The F-loss is as follows:

lF(A) =
∑

i∈1...n
j∈1...n

∫
a∈(0,1]

eF(a)i j
(‖Ai − A j‖) + cF(a)i j

(‖Ai − A j‖) da =

∑
i∈1...n
j∈1...n

‖Ai − A j‖
2 +

∫
a∈(Wi j,1]

2log(Wi j)
Wi j

−
2log(a)

a
da

 +

2‖Ai − A j‖
2
∫

a∈(Wi j,1]

1
Wi j
−

1
a

da
 =

C +
∑

i∈1...n
j∈1...n

‖Ai − A j‖
2 + log(Wi j)2 + 2‖Ai − A j‖

2log(Wi j) =

C +
∑

i∈1...n
j∈1...n

‖Ai − A j‖
2 + dX(xi, x j)2 − 2‖Ai − A j‖

2dX(xi, x j) =

C +
∑

i∈1...n
j∈1...n

(
‖Ai − A j‖ − dX(xi, x j)

)2

where n = |X| and C is a constant factor.

�

B.4 Proof of Proposition 4

Proof. First, define the δ-graph of (X, dX) to be the graph in which the vertices are the points in X
and there exists an edge of length dX(x, x′) between each pair of points (x, x′) ∈ X with dX(x, x′) ≤
δ. Now define IsoClusterδ : PMet → FCov such that IsoClusterδ(X, dX)(a) is the collection of
maximally linked sets of the relation Ra, where for x, x′ ∈ X we have xRax′ if there exists a path
of length no larger than −log(a) in the δ-graph of (X, dX). We will show that IsoClusterδ is a
hierarchical PMet-clustering functor.

Consider the non-expansive map f : (X, dX) → (Y, dY ) and say that for some a ∈ (0, 1], x, x′ ∈
X,∃S ∈ IsoClusterδ(X, dX)(a), x, x′ ∈ S . Then there exists x = x1, x2, ..., xn−1, xn = x′ such that:

maxi=1...ndX(xi, xi+1) ≤ δ
∑

i=1...n

dX(xi, xi+1) ≤ −log(a)

which implies that:

maxi=1...ndY ( f (xi), f (xi+1)) ≤ δ
∑

i=1...n

dY ( f (xi), f (xi+1)) ≤ −log(a)

which implies that ∃S ′ ∈ IsoCluster(Y, dY )(a), f (x), f (x′) ∈ S ′. Since IsoClusterδ trivially pre-
serves the identity and acts as the identity on the underlying set, we can conclude that IsoClusterδ
is a hierarchical PMet-clustering functor.

Next, we will show that the manifold learning functor MDS◦IsoClusterδ maps (X, dX) to the IsoMap
embedding optimization problem. First define:

Wi j = sup
≥0
{a | a ∈ (0, 1], ∃S ∈ IsoClusterδ(X, dX)(a), xi, x j ∈ S } = e−d′X (xi,x j)

where d′X(xi, x j) is the smallest γ such that there exists a path of length no greater than γ between xi
and x j in the δ-graph of (X, dX). Now if we define F = (MDS ◦ IsoClusterδ)(X, dX) then following
the same steps as in Section B.3 we have:

lF(A) = C +
∑

i∈1...n
j∈1...n

(
‖Ai − A j‖ − d′X(xi, x j)

)2

where n = |X| and C is a constant factor. �
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B.5 Proof of Proposition 5

Before we begin, we will show the following:
Proposition 9. The category of fuzzy simplicial complexes and bijective simplicial maps FSCpxbi j
(Shiebler, 2020) is finitely co-complete.

Proof. For some finite category C consider a functor of the form F : C → FSCpxbi j. Define the
fuzzy simplicial complex Fc : (0, 1]op → SCpxbi j in FSCpxbi j to map a ∈ (0, 1] to the simplicial
complex whose set of n-simplices is ∪o∈ob(C)F(o)[n]. Note that ob(C) is the set of objects in C. It is
clear that this is the minimal fuzzy simplicial complex such that there exists a natural transformation
from each fuzzy simplicial complex F(o), o ∈ ob(C) into this fuzzy simplicial complex, so Fc is the
colimit of F and FSCpxbi j is finitely co-complete. �

Now we will prove Proposition 5.

Proof. Note that for any N,N′ ∈ N such that N , N′, the size N pseudometric spaces and the size
N′ pseudometric spaces have no morphisms between them in PMetisom. Therefore, we can uniquely
define FuzzySimplex by defining a separate functor FuzzySimplexN : PMetisom(N) → FCovbi j for
each N ∈ N, where PMetisom(N) is the subcategory of PMetisom where objects are restricted to
pseudometric spaces (X, dX) with cardinality N.

To start, denote the N-element discrete category N and define the following functor for step 1 (build
a local uber-metric space around each point): LocalMetricN : PMetisom(N) → UMetN

bi j sends the
N-element pseudometric space (X, dX) to the functor F : N → UMetbi j that maps i ∈ N to (X, dxi )
where:

dxi (x j, xk) =

{
dX(x j, xk) − minl=1...ndX(xi, xl) i = j, i = k
∞ else

LocalMetricN sends the function f to the natural transformation in which each component is f .
Since f is an isometry this map must exist and be natural.

Since LocalMetricN trivially preserves composition and the identity it is a functor. For step 2 (con-
vert each local uber-metric space to a fuzzy simplicial complex), we will use the functor (Shiebler,
2020):

(FinS ing ◦ −)N : UMetN
bi j → FSCpxN

bi j

which maps the functor F : N→ UMetbi j to the functor (FinS ing ◦ F) : N→ FSCpxbi j.

For step 3 (take a fuzzy union of these fuzzy simplicial complexes), we apply the colimit functor
colimN : FSCpxN

bi j → FSCpxbi j which sends an indexed set of fuzzy simplicial complexes in
FSCpxN

bi j to its logical fuzzy union. This functor exists by Proposition 9. In a logical fuzzy union the
strength of a simplex is defined to be its maximum strength among the complexes we are adjoining1

. For step 4 (convert the resulting fuzzy simplicial complex to a fuzzy non-nested flag cover), we use
the functor (Flag◦−) from Shiebler (2020). Since Flag maps bijective simplicial maps to bijections,
the image of this functor over FSCpxbi j is FCovbi j. Now we can compose steps 1-4 and apply a
coproduct over N ∈ N to extend this to the following functor from PMetisom to FCovbi j:

FuzzySimplex = ΠN∈N (Flag ◦ −) ◦ colimN ◦ (FinS ing ◦ −)N ◦ LocalMetricN

We now show FuzzySimplex is a hierarchical PMetisom-clustering functor. Since FuzzySimplex is
by definition a functor, we simply need to show for any (X, dX) that FuzzySimplex(X, dX) is a fuzzy
non-nested flag cover of X. First note that for any object o ∈ N, the vertex set of the following fuzzy
simplicial complex is X:

((FinS ing ◦ −)N ◦ LocalMetricN)(X, dX)(o)
Therefore the vertex set of the following fuzzy simplicial complex is X as well:

(colimN ◦ (FinS ing ◦ −)N ◦ LocalMetricN)(X, dX)
This implies that FuzzySimplex(X, dX) is a fuzzy cover of X.

�
1This is different from the probabilistic simplicial complex union that the UMAP python code uses (McInnes

et al., 2018).
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B.6 Proof of Proposition 6

Proof. Define FCE : FCovbi j → FLossm to map the fuzzy non-nested cover H : (0, 1]op → Covbi j
with vertex set X to F : (0, 1]op → Lossm where F(a) = (|X|, {cF(a)i j

, eF(a)i j
}, 0) and:

eF(a)i j
(x) =

{
−log(e−x) ∃S ∈ H(a), xi, x j ∈ S })
0 else

cF(a)i j
(x) =

{
0 ∃S ∈ H(a), xi, x j ∈ S })
−log(1 − e−x) else

We will show that FCE ◦ FuzzySimplex is an PMetisom-manifold learning functor that maps any
pseudometric space (X, dX) to the UMAP embedding optimization problem over the distance matrix
of dX .

First, we need to show that FCE : FCovbi j → FLossm is a functor. Consider the fuzzy non-nested
covers HX and HX′ in FCovbi j with vertex sets X, X′ respectively such that there exists a morphism f
in FCovbi j between them (a natural transformation with bijective components). Say FCE(HX)(a) =
(|X|, {cF(a)i j

, eF(a)i j
}, 0) and FCE(HX′ )(a) = (|X′|, {c′F(a)i j

, e′F(a)i j
}, 0). Since each component of f is

bijective it must be that |X|′ = |X|. Now for each a ∈ (0, 1], x1, x2 ∈ X,∃S ∈ HX(a), x1, x2 ∈ S , by
definition ∃S ∈ HX′ (a), f (x1), f (x2) ∈ S . Therefore ∀x∈R≥0 eF(a)i j

(x) ≤ e′F(a)i j
(x), c′F(a)i j

(x) ≤ cF(a)i j
(x).

Therefore FCE(HX) ≤ FCE(HX′ ). Since FCE : FCovbi j → FLossm trivially preserves the identity
we can conclude that it is a functor and FCE◦FuzzySimplex is a PMetisom-manifold learning functor.

Next, we will show that FCE ◦ FuzzySimplex maps (X, dX) to the UMAP embedding optimization
problem. Define F = (FCE ◦ FuzzySimplex)(X, dX). We have that the F-loss is:

lF(A) =
∑

i∈1...n
j∈1...n

∫
a∈(0,1]

cF(a)i j
(‖Ai − A j‖) + eF(a)i j

(‖Ai − A j‖)da =

∑
i∈1...n
j∈1...n

∫
a∈(Wi j,1]

−log(1 − e−‖Ai−A j‖) da −
∫

a∈(0,Wi j]
log(e−‖Ai−A j‖) da =

∑
i∈1...n
j∈1...n

−(1 −Wi j)log(1 − e−‖Ai−A j‖) −Wi jlog(e−‖Ai−A j‖) =

C +
∑

i∈1...n
j∈1...n

(1 −Wi j)log
(

1 −Wi j

1 − e−‖Ai−A j‖

)
+ Wi jlog

(
Wi j

e−‖Ai−A j‖

)

where Wi j = sup≥0{a | a ∈ (0, 1], ∃S ∈ FuzzySimplex(X, dX)(a), xi, x j ∈ S } is the weight of the
fuzzy 1-simplex connecting xi and x j, n = |X| and C =

∑
i∈1...n
j∈1...n

(1 −Wi j)log(1 −Wi j) + Wi jlog(Wi j) is

a constant. �

B.7 Proof of Proposition 7

Proof. Say we have a pair of finite metric spaces (X, dX), (Y, dY ) such that there exists a pair of
morphisms f : (X, dX) → (Y, dY + ε), g : (Y, dY ) → (X, dX + ε) in D. By definition we have that
H(X, dX + ε)(−log(δ)) = H(X, dX)(−log(δ + ε)), so by functoriality for any δ ∈ R≥0 we have that
f is refinement-preserving from H(X, dX)(−log(δ)) to H(Y, dY )(−log(δ + ε)) and g is refinement-
preserving from H(Y, dY )(−log(δ)) to H(X, dX)(−log(δ + ε)). Therefore since M = L ◦ H by functo-
riality we also have that:

M(X, dX)(−log(δ)) ≤ M(Y, dY )(−log(δ + ε))
M(Y, dY )(−log(δ)) ≤ M(X, dX)(−log(δ + ε))

Since Lossm is a preorder, this implies that M(X, dX) and M(Y, dY ) are ε-interleaved. �
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B.8 Proof of Proposition 8

To start, we will show the following:
Proposition 10. Suppose M is a standard form PMetsur-manifold learning functor and M′ is a
standard form PMetin j-manifold learning functor. Then for any (X, dX) and a ∈ (0, 1] we have that
eM(X,dX )(a)i j

, cM′(X,dX )(a)i j
are non-positive and cM(X,dX )(a)i j

, eM′(X,dX )(a)i j
are non-negative.

Proof. First, since there trivially exists a surjective non-expansive map from (X, dX) to ({∗}, 0), by
functoriality we have that M(X, dX) ≤ M({∗}, 0). This implies that for all i, j we have eM(X,dX )(a)i j

≤

eM({∗},0)(a)i j
= 0 and 0 = cM({∗},0)(a)i j

≤ cM(X,dX )(a)i j
.

Next, since there trivially exists an injective non-expansive map from ({∗}, 0) to (X, dX), by func-
toriality we have that M′({∗}, 0) ≤ M′(X, dX). This implies that for all i, j we have cM′(X,dX )(a)i j

≤

cM′({∗},0)(a)i j
= 0 and 0 = eM′({∗},0)(a)i j

≤ eM′(X,dX )(a)i j
. �

We can now proceed with the proof of Proposition 8:

Proof. By using Proposition 7, we see that in order to prove Proposition 8 we simply need to
show that if F,G are ε∗-interleaved functors in FLossm such that AF ∈ Matn,m minimizes lF ,
AG ∈Matn,m minimizes lG, cF(a)i j

, cG(a)i j
are non-negative, eF(a)i j

, eG(a)i j
are non-positive, |cF(a)i j

(x)| ≤
Kc
2 , |cG(a)i j

(x)| ≤ Kc
2 and |eF(a)i j

(x)| ≤ Ke
2 , |eG(a)i j

(x)| ≤ Ke
2 then we have:

lF(AG) ≤ lF(AF) + Kcn2(1 − e−ε) + Ken2(eε − 1)

And that in the special case where cF(a)i j
(x) is constant in x we have:

lF(AG) ≤ lF(AF) + Kcn2(1 − e−ε)

Now for simplicity we will write:

eF(a)(A) =
∑

i∈1...n
j∈1...n

eF(a)i j (‖Ai − A j‖) cF(a)(A) =
∑

i∈1...n
j∈1...n

cF(a)i j (‖Ai − A j‖)

By the definition of ε-interleaving we have the following for any A ∈Matn,m.

cF(d∗e−ε )(x) ≤ cG(d)(x) eG(d)(x) ≤ eF(d∗e−ε )(x)

Now we can conclude that:

lF(AG) =

∫
a∈(0,1]

cF(a)(AG) da +

∫
a∈(0,1]

eF(a)(AG) da ≤∗∗

e−ε
∫

a∈(0,1]
cG(a)(AG) da +

Kc

2
n2(1 − e−ε) +

∫
a∈(0,1]

eF(a)(AG) da ≤∫
a∈(0,1]

cG(a)(AG) da +
Kc

2
n2(1 − e−ε) +

∫
a∈(0,1]

eF(a)(AG) da ≤∗∗∗∫
a∈(0,1]

cG(a)(AG) da + eε
∫

a∈(0,1]
eG(a)(AG) da +

Kc

2
n2(1 − e−ε) + (eε − 1)

Ke

2
n2 ≤(∫

a∈(0,1]
cG(a)(AG) + eG(a)(AG) da

)
+

Kc

2
n2(1 − e−ε) + (eε − 1)

Ke

2
n2 ≤∗(∫

a∈(0,1]
eG(a)(AF) + cG(a)(AF) da

)
+

Kc

2
n2(1 − e−ε) + (eε − 1)

Ke

2
n2 ≤∗∗∫

a∈(0,1]
eG(a)(AF) + e−εcF(a)(AF) da + Kcn2(1 − e−ε) + (eε − 1)

Ke

2
n2 ≤∫

a∈(0,1]
eεeF(a)(A) + e−εcF(a)(AF) da + Kcn2(1 − e−ε) + (eε − 1)Ken2 ≤

lF(AF) + Kcn2(1 − e−ε) + (eε − 1)Ken2

11
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In the special case where eF(a)i j
is constant we have:

lF(AG) =

∫
a∈(0,1]

cF(a)(AG) da +

∫
a∈(0,1]

eF(a)(AG) da ≤∗∗

e−ε
∫

a∈(0,1]
cG(a)(AG) da +

Kc

2
n2(1 − e−ε) +

∫
a∈(0,1]

eF(a)(AG) da ≤∗

e−ε
∫

a∈(0,1]
cG(a)(AF) da +

Kc

2
n2(1 − e−ε) +

∫
a∈(0,1]

eF(a)(AF) da ≤∗∗

e−2ε
∫

a∈(0,1]
cF(a)(AF) da + Kcn2(1 − e−ε) +

∫
a∈(0,1]

eF(a)(AF) da ≤

lF(AF) + Kcn2(1 − e−ε)

The steps marked with ∗ hold by the optimality of AG. The steps marked with ∗∗ are by the following,
which holds because c is non-negative and increasing in a: ∫

a∈(0,1]
cF(a)(A) da ≤∫

a∈(0,1]
cF(a)(A) da −

∫
a∈(e−ε ,1]

cF(a)(A) da +
Kc

2
n2(1 − e−ε) =∫

a∈(0,e−ε ]
cF(a)(A) da +

Kc

2
n2(1 − e−ε) =

e−ε
∫

a∈(0,1]
cF(a∗e−ε )(A) da +

Kc

2
n2(1 − e−ε) ≤

e−ε
∫

a∈(0,1]
cG(a)(A) da +

Kc

2
n2(1 − e−ε)

The steps marked with ∗∗∗ are by the following, which holds because e is non-positive and decreas-
ing in a: ∫

a∈(0,1]
eF(a)(A) da ≤∫

a∈(0,1]
eG(a∗e−ε )(A) da =

1
e−ε

∫
a∈(0,e−ε ]

eG(a)(A) da =

1
e−ε

(∫
a∈(0,1]

eG(a)(A) da +

∫
a∈(e−ε ,1]

eG(a)(A) da
)
≤

1
e−ε

(∫
a∈(0,1]

eG(a)(A) da − (1 − e−ε)Ken2 da
)

=

eε
∫

a∈(0,1]
eG(a)(A) da − (eε − 1)Ken2

�

12


	Manifold Learning
	A Spectrum of Manifold Learning Functors
	Characterizing Manifold Learning Problems
	Metric Multidimensional Scaling (PMetsur-Manifold Learning Functor)
	IsoMap (PMetsur-Manifold Learning Functor)
	UMAP (PMetisom-Manifold Learning Functor)


	Stability of Manifold Learning Algorithms
	Conclusion
	Appendix A: Experiment in Functorial Recombination
	Appendix B: Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8


