

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GENERALIST SCANNER MEETS SPECIALIST LOCATOR: A SYNERGISTIC COARSE-TO-FINE FRAMEWORK FOR ROBUST GUI GROUNDING

Anonymous authors

Paper under double-blind review

ABSTRACT

Grounding natural language queries in graphical user interfaces (GUIs) presents a challenging task that requires models to comprehend diverse UI elements across various applications and systems, while also accurately predicting the spatial coordinates for the intended operation. To tackle this problem, we propose ***GMS***: ***Generalist Scanner Meets Specialist Locator***, a synergistic coarse-to-fine framework that effectively improves GUI grounding performance. ***GMS*** leverages the complementary strengths of general vision-language models (VLMs) and small, task-specific GUI grounding models by assigning them distinct roles within the framework. Specifically, the general VLM acts as a ‘*Scanner*’ to identify potential regions of interest, while the fine-tuned grounding model serves as a ‘*Locator*’ that outputs precise coordinates within these regions. This design is inspired by how humans perform GUI grounding, where the eyes scan the interface and the brain focuses on interpretation and localization. Our whole framework consists of five stages and incorporates hierarchical search with cross-modal communication to achieve promising prediction results. Experimental results on the ScreenSpot-Pro dataset show that while the ‘*Scanner*’ and ‘*Locator*’ models achieve only 2.0% and 3.7% accuracy respectively when used independently, their integration within ***GMS*** framework yields an overall accuracy of 35.7%, representing a 10 \times improvement. Additionally, ***GMS*** significantly outperforms other strong baselines under various settings, demonstrating its robustness and potential for general-purpose GUI grounding.

1 INTRODUCTION

Grounding natural language queries in graphical user interfaces (GUIs) requires models to predict accurate coordinates for user-specified actions, enabling applications in agent control, device automation, and accessibility (Wang et al., 2025a; Nguyen et al., 2025; Zhang et al., 2025a; Tang et al., 2025b). As vision-language models (VLMs) advance in multimodal reasoning, GUI grounding emerges as a key benchmark for evaluating their interactive capabilities (Hui et al., 2025; Wang et al., 2025b; Li et al., 2025; Cheng et al., 2024; Liu et al., 2024). GUI grounding is challenging due to the diverse structures, styles, and semantics of interfaces across platforms. It requires fine-grained understanding of both textual and non-textual elements, dense visual layouts, and context-dependent functions, making accurate interpretation difficult (Li et al., 2025; Wu & Xie, 2024; Wu et al., 2025a).

Existing approaches can be broadly categorized into two groups: (i) Training-based methods either fine-tune base vision-language models, such as Qwen2-VL-7B, to directly predict grounding coordinates, or employ reinforcement learning techniques, such as GRPO, to induce multi-step reasoning processes that ultimately localize the target region (Gou et al., 2025; Wu et al., 2024; Shao et al., 2024). Although fine-tuning improves task-specific performance, it often sacrifices the model’s capacity for self-correction and adaptive reasoning. Reinforcement learning methods offer greater flexibility and generalization, but they incur substantial computational overhead and suffer from slow inference due to the complexity of the reasoning procedures they require (Luo et al., 2025a; Zhou et al., 2025; Lu et al., 2025; Liu et al., 2025; Tang et al., 2025a). (ii) Training-free methods seek to bypass the cost of retraining by leveraging pre-trained models. These include recursive zoom-in techniques that iteratively refine grounding predictions and planner-based strategies that

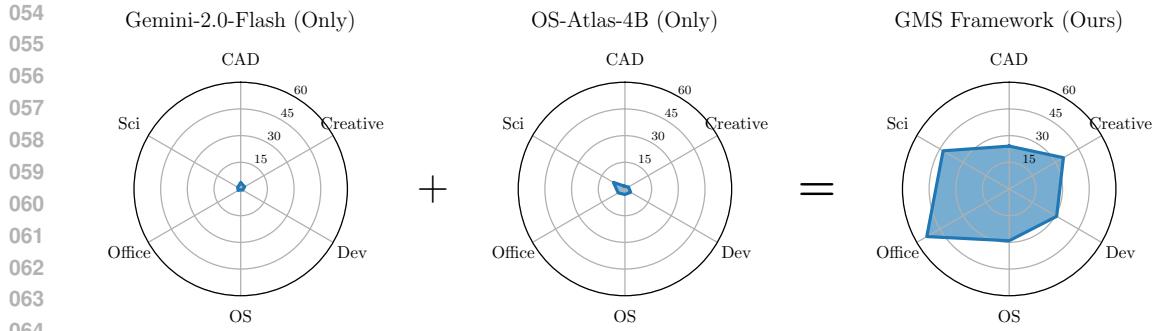


Figure 1: The two original models individually perform poorly on the GUI grounding task, with average accuracies below 4%. Under our GMS framework, where each model specializes in its strengths and collaborates effectively, the overall accuracy reaches 36%, which is nearly 10 \times higher than their standalone performance.

utilize general models to guide localizers (Li et al., 2025; Wu et al., 2025a; Nguyen, 2025; Luo et al., 2025b; Ge et al., 2025; Zhang et al., 2024; Wang et al., 2024a). However, zoom-in strategies are highly sensitive to initial prediction errors and lack any verification mechanism, making them fragile in practice. Planner-based approaches mitigate this to some extent by introducing coordination between models, but they continue to rely on general models to produce bounding boxes. Since these general models are not trained explicitly for precise localization, the resulting predictions are often inaccurate, and errors tend to propagate throughout the grounding process.

To address these limitations, we propose **GMS**: Generalist Scanner Meets Specialist Locator, a synergistic coarse-to-fine framework. GMS integrates the complementary strengths of general-purpose and task-specific models to construct a training-free, modular grounding pipeline, as shown in Figure 2. The design of GMS is inspired by the human visual cognition process, in which broad perceptual scanning is followed by focused attention for fine-grained decision making. Accordingly, the general-purpose vision-language model operates as a ‘Scanner’ that identifies high-confidence candidate regions at a coarse level, while a fine-tuned GUI grounding model functions as a specialist ‘Locator’ that predicts precise coordinates within the selected regions. The GMS framework consists of five modules that enable coarse-to-fine localization: (1) *Hierarchical attention allocation*, where the ‘Scanner’ partitions the screen into coarse grids and selects semantically relevant regions; (2) *Iterative focus refinement*, where ambiguous areas are recursively zoomed in through semantically guided subdivision; (3) *Cross-modal verification*, where the ‘Locator’ proposes coordinates that are validated by the ‘Scanner’ to suppress false positives; (4) *Multi-agent consensus*, where the ‘Scanner’ and ‘Locator’ predictions are fused with asymmetric weighting for robust agreement; and (5) *Adaptive resolution enhancement*, where multi-scale late fusion reconciles coarse semantic cues with fine pixel-level localization. This design creates a cognitively inspired perception and action loop, outperforming prior pipelines in both robustness and precision.

By addressing key limitations in existing approaches, such as the absence of verification mechanisms in zoom-in methods and the imprecise localization capabilities in planner-based strategies, GMS demonstrates strong generalization and efficiency. Empirical results on the benchmark dataset confirm that our proposed framework achieves substantial performance gains. Notably, even when initialized with two individually weak models, GMS improves grounding accuracy from below 4% to 36%, as illustrated in Figure 1. In summary, our contributions are threefold:

- (1) We introduce *GMS*, a training-free multi-agent framework that emulates human-like grounding by assigning complementary roles to generalist and specialist models, achieving substantial gains without additional fine-tuning.
- (2) Experiments on the ScreenSpot-Pro dataset show that *GMS* improves performance by more than 10 \times with weak model pairs and consistently outperforms other strong baselines, demonstrating both robustness and generalizability.
- (3) We conduct extensive evaluations, including test-time scaling and ablations, to validate the framework. The results show that agents are most effective when specialized, leading to robust performance across diverse and challenging scenarios.

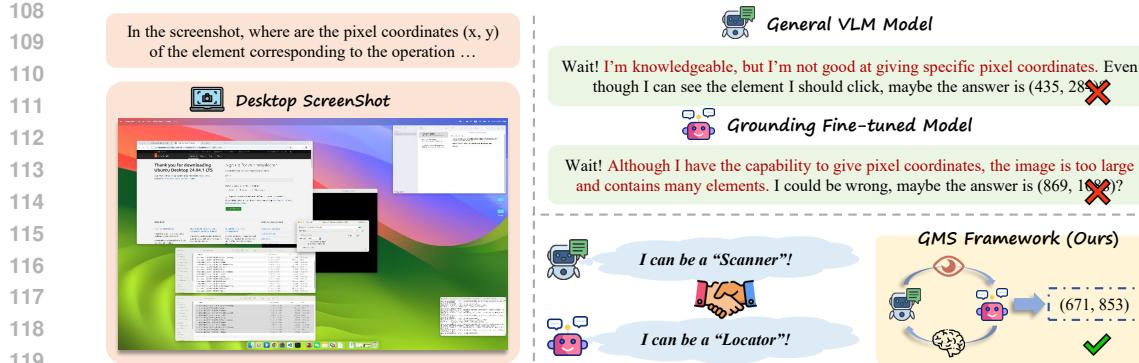


Figure 2: A simplified illustration captures the motivation and design of the proposed GMS framework. General-purpose VLMs exhibit broad visual and semantic understanding but often fail to produce accurate coordinate predictions. In contrast, grounding fine-tuned VLMs offer precise localization capabilities but lack the high-level reasoning required for complex tasks. Individually, both models tend to produce incorrect outputs. However, by leveraging their complementary strengths and assigning the general VLM as a ‘Scanner’ and the grounding VLM as a ‘Locator’, mimicking the roles of human eyes and brain, this system can effectively generate correct answers.

2 RELATED WORKS

Recent advances in vision-language models (VLMs) have significantly improved multimodal understanding by jointly learning visual and textual representations (Comanici et al., 2025; OpenAI et al., 2024; Anthropic, 2025; OpenAI, 2025; Bai et al., 2025). Building on their strong capabilities, recent work investigates more interactive and grounded scenarios, where models must not only interpret visual content but also localize and manipulate elements within images. This direction naturally extends to GUI grounding, which maps user instructions to actionable interface elements in GUIs.

In parallel, recent years have seen significant advances in research on GUI agents, evolving from rule-based web automation to general-purpose interface control across platforms such as mobile and desktop. A persistent challenge is the reliable localization of interface elements, which remains a key bottleneck for robust automation (Nakano et al., 2022; Zhang et al., 2025b; Wang et al., 2024a). The emergence of vision-language models marks a shift toward perception-driven grounding by leveraging both visual and textual inputs, without depending solely on structured metadata. Recent work improves robustness by fine-tuning VLMs on GUI-specific datasets, resulting in models that predict element coordinates with higher precision (Gou et al., 2025; Wu et al., 2024; Gu et al., 2025; Qin et al., 2025). Some studies extend this direction using reinforcement learning approaches for multi-step decision-making with interpretable intermediate outputs (Tang et al., 2025c; Luo et al., 2025a; Wu et al., 2025b). In parallel, training-free approaches explore dual-system models, iterative zoom-in mechanisms, and the repurposing of general purpose models as planners to guide action selection (Wu et al., 2025a; Li et al., 2025). However, existing methods often overlook collaborative agent architectures, in which two specialized models assume distinct roles aligned with their respective strengths. Such cooperation presents a promising direction for integrating complementary model capabilities in GUI grounding.

3 METHODOLOGY

GUI grounding poses a dual challenge: it requires both global semantic understanding and precise spatial localization. Prior approaches often rely on a single model to handle both tasks simultaneously, leading to trade-offs that limit overall performance. Inspired by the dual-stream hypothesis in visual cognition, which separates the “what/where” pathway from the “how” pathway in human perception, we propose **GMS**: Generalist Scanner Meets Specialist Locator, a framework that explicitly decomposes the grounding task into two specialized agents: a generalist vision-language model acting as a ‘Scanner’, and a fine-tuned GUI grounding model serving as a ‘Locator’. GMS follows a coarse-to-fine strategy across five stages, with the detailed process illustrated in Figure 3.

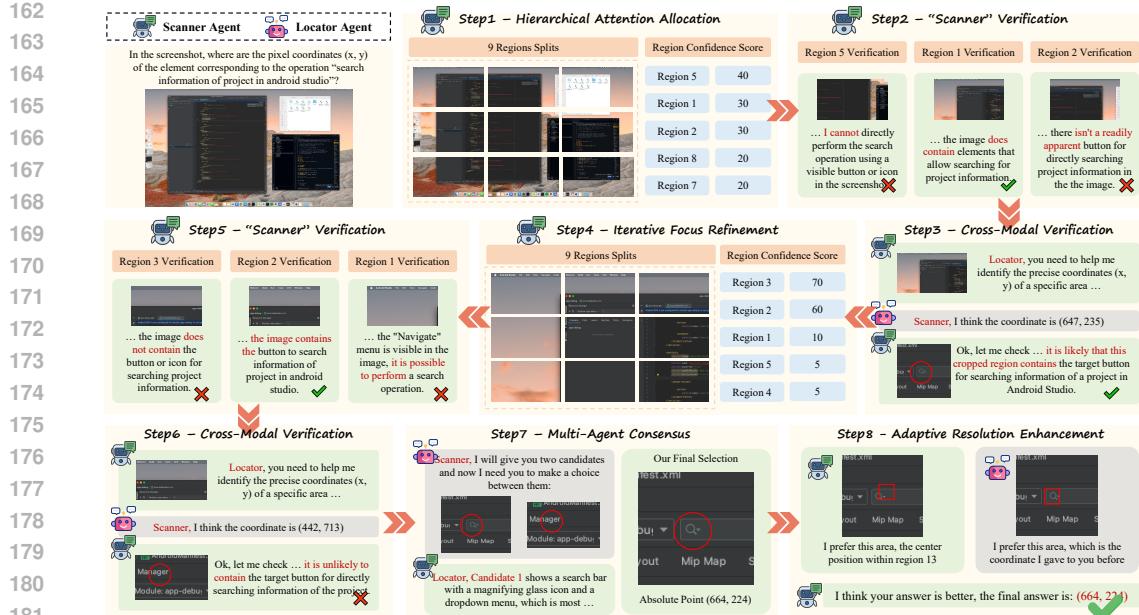


Figure 3: A detailed illustration of the proposed GMS framework highlights its multi-stage and hierarchical process. The ‘Scanner’ module mimics human vision by constraining the search space and identifying regions of interest, while the ‘Locator’ module emulates cognitive decision-making to determine precise coordinates. Each agent performs its dedicated role, yet they cooperate seamlessly within the framework, leveraging their complementary strengths to accurately predict the target coordinates.

Formally, let the GUI screen be an image $I \in \mathbb{R}^{H \times W \times 3}$ and a natural language instruction as Q . The goal is to predict a pixel coordinate $p = (x^*, y^*) \in [0, W] \times [0, H]$ corresponding to the GUI element described in Q . GMS achieves this through the following stages:

3.1 HIERARCHICAL ATTENTION ALLOCATION

Human visual attention operates in a coarse-to-fine manner, allocating cognitive resources hierarchically across the scene. Psychological studies show that within the first 300ms of exposure, humans can perform scene parsing to identify regions of interest prior to fine-scale analysis. GMS emulates this behavior via adaptive grid partitioning and region-level semantic scoring.

Specifically, we begin by decomposing the screen into a 3×3 grid:

$$R = \{R_1, R_2, \dots, R_9\}, \quad R_i \subset I.$$

Each region R_i is defined by its bounding box $B_i = [x_1^i, y_1^i, x_2^i, y_2^i]$. The generalist vision-language model (e.g., GPT, Gemini) then acts as the ‘Scanner’, which evaluates each region’s semantic relevance to the query Q by computing:

$$s_i = \text{Select}(Inst_{\text{selection}}, Q, R_i), \quad s_i \in [0, 100].$$

The top- k scoring regions are selected to form the candidate set R_{top} . Note that our choice of 3×3 reflects a trade-off between semantic coverage and token cost. While finer grids (e.g., 4×4) increase resolution, they incur diminishing returns in early-stage filtering and increase computational load.

3.2 ITERATIVE FOCUS REFINEMENT

One-shot attention allocation often fails in high-density GUI scenes due to:

- Semantic ambiguity from visually similar but functionally distinct elements.
- Contextual dependencies requiring reasoning over inter-element relations (e.g., “checkbox next to the password field”).

216 To mitigate this, we design a recursive depth-first search (DFS) refinement process. At each level l ,
 217 regions $R^{(l)}$ are recursively subdivided into 3×3 subgrids. The ‘Scanner’ re-applies the selection
 218 function:

$$R^{(l+1)} = \text{Select}(R^{(l)}, \text{Inst}_{\text{selection}}, Q),$$

220 until one of two stopping conditions is met: (i) the region’s width or height is below a threshold (e.g.,
 221 < 600 px), or (ii) subsequent verification (section 3.3) indicates insufficient confidence. Unlike naive
 222 zoom-in approaches, each refinement step is semantically informed and is grounded in a verification
 223 loop to suppress false positives.

225 3.3 CROSS-MODAL VERIFICATION

227 While generalist models excel at region-level semantic matching, they often suffer from false confidence
 228 due to hallucinations or overgeneralization. To correct this, we introduce a cross-modal
 229 verification mechanism that uses the specialist ‘Locator’ as a factuality check.

230 For each selected region $R^{(l)}$, the ‘Locator’ agent predicts a coordinate:

$$\hat{p}_l = \text{GUIGround}(Q, R^{(l)}).$$

232 A crop C_l of size 125×125 pixels is extracted around \hat{p}_l , providing localized context. The ‘Scanner’
 233 agent then performs verification:

$$v_l = \text{Verify}(C_l, Q, \text{Inst}_{\text{verification}}), \quad v_l \in \{0, 1\}.$$

235 The patch size is carefully chosen to balance context and specificity. Empirically, 125×125 provides
 236 sufficient local cues while avoiding dilution from too many unrelated UI elements.

238 3.4 MULTI-AGENT CONSENSUS

240 After multiple rounds of verification, we could obtain t candidate crops:

$$\mathcal{C} = \{(C_1, v_1), \dots, (C_t, v_t)\}, \quad v_l \in \{0, 1\}.$$

243 Selecting the best candidate is framed as a multi-agent consensus problem. Instead of naïve majority
 244 voting, we adopt an asymmetric weighting strategy, reflecting each agent’s relative expertise:

245 (i) The ‘Scanner’ agent contributes global context understanding and high-level semantic reasoning
 246 across multiple candidate regions.

247 (ii) The ‘Locator’ agent contributes fine-grained spatial precision and reliable confidence estimation
 248 within localized regions.

249 The ‘Scanner’ agent is instructed as follows:

$$\hat{l} \leftarrow \text{Eval}(\text{Inst}_{\text{evaluation}}, \mathcal{C}), \quad C^* = C_{\hat{l}}.$$

252 This step ensures that the selected region maximally aligns with both semantic and spatial constraints
 253 of the instruction Q .

255 3.5 ADAPTIVE RESOLUTION ENHANCEMENT

257 The final prediction requires resolving discrepancies between coarse attention and fine spatial cues.
 258 Generalist vision-language models operate on low-resolution patches, while the specialist operates
 259 on raw pixels. To bridge this, we design a multi-scale late fusion module.

260 First, we upscale C^* by $\times 5$ in both dimensions to improve resolution. A 5×5 grid is imposed,
 261 followed by a 3×3 subgrid within the selected region. The ‘Scanner’ estimates a coarse point:

$$p_{\text{scanner}} = \text{Center}(z^*).$$

263 In parallel, the ‘Locator’ provides a direct prediction:

$$p_{\text{locator}} = \text{GUIGround}(Q, C^*).$$

265 The final decision is delegated to the stronger ‘Scanner’ agent:

$$p_{\text{final}} = \text{Decide}(Q, C^*, \{p_{\text{scanner}}, p_{\text{locator}}\}, \text{Inst}_{\text{decision}}).$$

268 This fusion mechanism leverages multi-resolution reasoning, ensuring that the final coordinate
 269 prediction is both semantically coherent and spatially precise. The design echoes principles from
 receptive field theory, where layered attention enhances perceptual granularity.

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292	Base Model	Development			Creative			CAD			Scientific			Office			OS			Average		
		text	icon	avg																		
GPT-4o		1.3	0.0	0.7	1.0	0.0	0.6	2.0	0.0	1.5	2.1	0.0	1.2	1.1	0.0	0.6	0.0	0.0	0.0	1.3	0.0	0.8
Gemini-2.0-Flash		0.6	2.1	1.3	4.5	0.0	2.6	3.6	3.1	3.4	2.1	1.8	2.0	2.3	0.0	1.7	0.0	1.1	0.5	2.5	1.3	2.0
Gemini-2.5-Flash-Lite		1.3	0.0	0.7	2.0	4.2	2.9	7.6	1.6	6.1	4.2	0.9	2.8	2.3	3.8	2.6	0.0	1.1	0.5	3.2	1.8	2.7
CogAgent-18B		14.9	0.7	8.0	9.6	0.0	5.6	7.1	3.1	6.1	22.2	1.8	13.4	13.0	0.0	6.5	5.6	0.0	3.1	12.0	0.8	7.7
Aria-UI		16.2	0.0	8.4	23.7	2.1	14.7	7.6	1.6	6.1	27.1	6.4	18.1	20.3	1.9	16.1	4.7	0.0	2.6	17.1	2.0	11.3
Claude (Computer Use)		22.0	3.9	12.6	25.9	3.4	16.8	14.5	3.7	11.9	33.9	15.8	25.8	30.1	16.3	26.2	11.0	4.5	8.1	23.4	7.1	17.1
UI-TARS-7B		58.4	12.4	36.1	50.0	9.1	32.8	20.8	9.4	18.0	63.9	31.8	50.0	63.3	20.8	53.5	30.8	16.9	24.5	47.8	16.2	35.7
UI-TARS-72B		63.0	17.3	40.8	57.1	15.4	39.6	18.8	12.5	17.2	64.6	20.9	45.7	63.3	26.4	54.8	42.1	15.7	30.1	50.9	17.5	38.1
OS-Atlas-4B		7.1	0.0	3.7	3.0	1.4	2.3	2.0	0.0	1.5	9.0	5.5	7.5	5.1	3.8	4.4	5.6	0.0	3.1	5.0	1.7	3.7
+ DiMo-GUI		13.6	1.4	7.7	9.6	2.8	6.7	4.1	4.7	4.2	30.6	4.5	19.3	24.3	15.1	22.2	7.5	2.2	5.1	14.6	4.0	10.6
+ GMS (w/ Gemini-2.0-Flash)		44.2	16.6	30.8	49.0	16.1	35.2	27.9	12.5	24.1	56.3	25.5	42.9	57.6	39.6	53.5	36.4	20.2	29.1	45.2	20.2	35.7
Δ		37.1	16.6	27.1	46.0	14.7	32.9	25.9	12.5	22.6	47.3	20.0	35.4	52.5	35.8	49.1	30.8	20.2	26.0	40.2	18.5	32.0
+ GMS (w/ Gemini-2.5-Flash-Lite)		39.0	18.6	29.1	48.5	14.7	34.3	21.3	12.5	19.2	45.8	20.0	34.6	55.4	24.5	48.3	35.5	19.1	28.1	40.9	17.9	32.1
Δ		31.9	18.6	25.4	45.5	13.3	32.1	19.3	12.5	17.7	36.8	14.5	27.1	50.3	20.7	43.9	29.9	19.1	25.0	35.9	16.2	28.4
UGround-7B		26.6	2.1	14.7	27.3	2.8	17.0	14.2	1.6	11.1	31.9	2.7	19.3	31.6	11.3	27.9	17.8	0.0	9.7	25.0	2.8	16.5
+ DiMo-GUI		44.2	6.2	25.8	39.9	7.7	26.4	17.3	3.1	13.8	50.7	8.2	32.3	46.9	15.1	39.6	32.7	10.1	22.4	38.1	7.9	26.6
+ GMS (w/ Qwen2.5-VL-7B)		44.2	13.8	29.4	56.1	15.4	39.0	33.5	17.2	<u>29.5</u>	54.2	25.5	41.7	59.3	34.0	53.5	37.4	18.0	28.6	47.9	19.0	36.9
Δ		15.6	11.7	14.7	28.8	12.6	22.0	19.3	15.6	18.4	22.3	22.8	22.4	27.7	22.7	25.6	19.6	18.0	18.9	22.9	16.2	20.4
+ GMS (w/ Gemini-2.0-Flash)		60.4	24.1	42.8	63.1	24.5	46.9	35.5	14.1	30.3	62.5	27.3	47.2	71.8	43.4	65.2	52.3	27.0	40.8	57.4	25.8	45.4
Δ		33.8	22.0	28.1	35.8	21.7	29.9	21.3	12.5	19.2	30.6	24.6	27.9	40.2	32.1	37.3	34.5	27.0	31.1	32.4	23.0	28.9
+ GMS (w/ Gemini-2.5-Flash-Lite)		44.8	18.6	32.1	59.6	21.7	43.7	29.9	18.8	27.2	50.0	28.2	40.6	70.1	35.8	62.2	44.9	20.2	33.7	50.2	22.8	39.7
Δ		18.2	16.5	17.4	32.3	18.9	26.7	15.7	17.2	16.1	18.1	25.5	21.3	38.5	24.5	34.3	27.1	20.2	24.0	25.2	20.0	23.2
UGround-V1-7B		51.9	3.4	28.4	48.0	9.1	31.7	20.0	1.6	15.3	57.6	16.4	39.8	61.6	13.2	50.4	37.4	7.9	25.0	45.6	8.4	31.4
+ DiMo-GUI		57.8	21.4	40.1	60.1	18.1	42.5	45.7	18.8	39.1	75.7	28.2	55.1	79.7	37.7	70.0	51.4	30.3	41.8	61.7	24.3	47.4
+ GMS (w/ Qwen2.5-VL-7B)		53.2	20.7	37.5	57.1	19.6	41.3	59.4	29.7	52.1	62.5	34.5	50.4	67.8	35.8	60.4	45.8	15.7	32.1	58.4	24.5	45.5
Δ		1.3	17.3	9.1	9.1	10.5	9.6	39.4	28.1	36.8	4.9	18.1	10.6	6.2	22.6	10.0	8.4	7.8	7.1	12.8	16.1	14.1
+ GMS (w/ Gemini-2.0-Flash)		69.5	35.9	53.2	67.7	26.6	50.4	67.0	28.1	57.5	70.1	38.2	56.3	76.8	50.9	70.9	51.4	21.3	37.8	68.1	32.5	54.5
Δ		17.6	32.5	24.8	19.7	17.5	18.7	47.0	26.5	42.2	12.5	21.8	16.5	15.2	37.7	20.5	14.0	13.4	12.8	22.5	24.1	23.1
+ GMS (w/ Gemini-2.5-Flash-Lite)		59.1	29.7	44.8	72.2	30.8	54.8	70.6	17.2	57.5	69.4	38.2	55.9	78.0	45.3	70.4	57.9	29.2	44.9	68.9	31.5	54.6
Δ		7.2	26.3	16.4	24.2	21.7	23.1	50.6	15.6	42.2	11.8	21.8	16.1	16.4	32.1	20.0	20.5	21.3	19.9	23.3	23.1	23.2

Table 1: Main experimental results on the ScreenSpot-Pro dataset. The table reports performance under the proposed GMS framework with different combinations of ‘Scanner’ and ‘Locator’ agents, compared against a range of baseline methods. The best accuracy for each setting is highlighted in **bold**, and the second-best is underlined. Relative improvements (in percentage points) are annotated.

4 EXPERIMENTS SETUP

4.1 DATASET

We evaluate our framework on the **ScreenSpot-Pro** benchmark, which consists of over 1,500 high-resolution desktop screenshots spanning six GUI grounding tasks (Li et al., 2025).

4.2 VISION LANGUAGE MODELS

We instantiate our framework with two vision–language models in complementary roles: a general-purpose ‘Scanner’ for broad visual understanding and instruction following, and a GUI-specialized ‘Locator’ for precise element localization.

To demonstrate that the framework effectively exploits each model’s strengths, we select two well-known grounding-focused model families, each with fewer than 7B parameters: OS-Atlas (Wu et al., 2024) and UGround (Gou et al., 2025).

For the ‘Scanner’ role, we balance cost and model availability (including both open-weight and closed-source models) and choose: Qwen2.5-VL (Bai et al., 2025) and Gemini (Google, 2025; Comanici et al., 2025; Team et al., 2024; 2025b).

4.3 METRICS

We use **accuracy** as the evaluation metric. Formally, let $\hat{\mathbf{p}} = (x, y)$ denote the predicted coordinate and $\mathcal{B} = [x_{\min}, x_{\max}] \times [y_{\min}, y_{\max}]$ denote the ground-truth bounding box. We define an indicator function:

$$\mathbb{I}(\hat{\mathbf{p}} \in \mathcal{B}) = \begin{cases} 1, & \text{if } x_{\min} \leq x \leq x_{\max} \text{ and } y_{\min} \leq y \leq y_{\max}, \\ 0, & \text{otherwise.} \end{cases}$$

Then, the accuracy over N samples is: $Accuracy = \frac{1}{N} \sum_{i=1}^N \mathbb{I}(\hat{\mathbf{p}}_i \in \mathcal{B}_i)$.

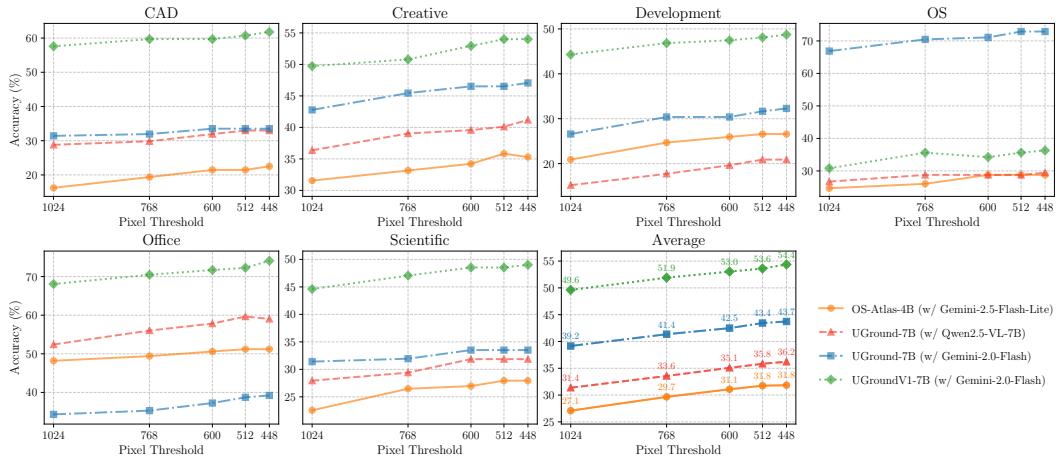


Figure 4: Experimental results illustrating the impact of decreasing the pixel number threshold from 1024 to 448 in the hierarchical search constraints. The figure reports the accuracy of six sub-categories and the overall accuracy across four agentic combinations.

4.4 IMPLEMENTATION DETAILS

We obtain all open-weight models from their official repositories on HuggingFace. For these fine-tuned grounding models, we set the temperature to 0.0 to ensure faithfulness. For closed-source models, we perform inference via the OpenRouter platform. To ensure consistency and efficiency, we adopt the default inference settings: temperature = 0.7 and $\text{top}_p = 0.95$. All experiments were conducted on a machine equipped with two NVIDIA A100 80GB GPUs and 1,000 GB of RAM. The prompts and baseline introduction are provided in Appendix G and Appendix E, respectively.

5 EXPERIMENT RESULTS

We evaluate our proposed framework on the ScreenSpot-Pro benchmark, with results presented in Table 1. Our framework consistently outperforms all baselines across multiple settings, including strong fine-tuned models (up to 72B parameters) and DiMo-GUI. The improvements are particularly substantial across various sub-categories, covering both text and icon grounding tasks, with relative gains ranging from 100% to over 1000%. We highlight the following key findings:

Effectiveness in Low-Performance Settings. The OS-Atlas-4B model performs poorly under direct inference, achieving only 13% accuracy even with DiMo-GUI. Remarkably, when integrated into our framework and paired with Gemini models, each of which yields less than 3% accuracy individually, the combined system achieves 30% accuracy. This represents a 10 \times improvement over the original results and a 2 \times improvement over DiMo-GUI. These findings highlight the framework’s ability to coordinate weaker models into a highly effective cooperative system by assigning them specialized roles.

Superior Performance on Icon Grounding Tasks. Existing methods, including DiMo-GUI and large fine-tuned models, typically underperform on icon-related grounding tasks compared to text-based tasks. In contrast, our GMS framework substantially alleviates this disparity. By leveraging the synergy between the generalist ‘Scanner’ and specialist ‘Locator’ modules, our method boosts icon grounding accuracy from 1.7% to 20% on OS-Atlas-4B (a 1076% improvement) and from 2.8% to 25.8% on UGround-7B (an 821% improvement).

Scalability and Model Flexibility. Our framework demonstrates strong scalability. Even with relatively small ‘Scanner’ models, such as 7B or flash-Gemini variants, the performance gains remain substantial. Furthermore, the results indicate that stronger general models lead to better outcomes. Given the framework’s flexible and modular design, integrating more capable models (e.g., stronger Gemini variants) may yield further performance improvements.

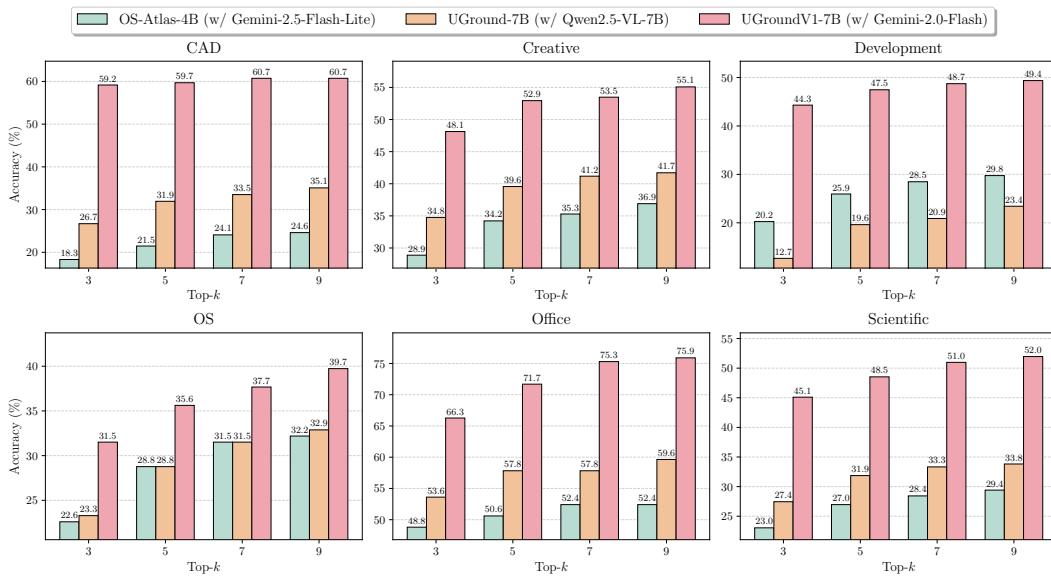


Figure 5: Experimental results showing the impact of increasing the top- k selection value from 3 to 9. The figure reports the accuracy across six sub-categories under four agentic combinations.

6 TEST-TIME SCALING

Our framework integrates the concept of test-time scaling into the hierarchical search process. The inference time can be flexibly controlled by adjusting two key factors: the top- k selection parameter at each search step and the pixel threshold used during the process. In this section, we analyze the impact of these parameters on the 15 most challenging subsets.

6.1 IMPACT OF PIXEL VALUE THRESHOLD

We begin by evaluating the impact of different pixel thresholds, with accuracy results shown in Figure 4. As the threshold decreases from 1024 to 512, which allows the ‘Scanner’ agents to capture finer-grained details of the GUI interface, we observe a consistent increase in accuracy. Notably, even at the higher threshold of 1024, the framework maintains strong performance, with only a marginal drop in accuracy compared to lower thresholds. This result highlights the robustness and effectiveness of our proposed framework. Moreover, the improvements observed with decreasing thresholds suggest promising test-time scaling capabilities. Given that many original images in the ScreenSpot-Pro dataset exceed 3000 pixels in resolution, these findings indicate that the framework is well suited for high-resolution settings, which are critical in GUI understanding tasks.

6.2 IMPACT OF TOP-K REGION SELECTION

We further examine the impact of the k -value in the top- k region selection mechanism, which guides the deeper stages of hierarchical search. As shown in Figure 5, increasing k from 3 to 9 leads to a gradual improvement in accuracy. This trend aligns with intuition, as a larger search space allows the ‘Scanner’ agent to explore more potentially relevant subregions. Since in high-resolution settings, where input images are especially large, the agent may fail to cover all important areas. A smaller k can lead to the omission of critical regions, particularly when the agent assigns low confidence to relevant areas due to limited context or weaker understanding.

The most significant performance gain occurs when increasing k from 3 to 5, suggesting that the ‘Scanner’ agent possesses a baseline level of capability, and a modest expansion of the search space greatly enhances its effectiveness. Beyond this point, further improvements are observed, but with diminishing returns. We also find that the choice of ‘Scanner’ agent influences the model’s sensitivity to changes in k . For example, the Qwen2.5-VL-7B model shows the most pronounced improvement as k increases; on the *Development* split, accuracy rises from 12.7% to 23.4%. In contrast, when

432	Scanner Agent	Locator Agent	Inference Method	Overall Accuracy (%)
433	Gemini-2.0-Flash	OS-Atlas-4B	GMS	35.67
434			w/o Cross-Modal Verification	27.83(↓ 7.84)
435			w/o Multi-Agent Consensus	33.05(↓ 2.62)
436	Gemini-2.5-Flash-Lite	UGround-7B	w/o Adaptive Resolution Enhancement	31.59(↓ 4.08)
437			GMS	39.72
438			w/o Cross-Modal Verification	33.57(↓ 6.15)
439			w/o Multi-Agent Consensus	37.20(↓ 2.52)
440			w/o Adaptive Resolution Enhancement	34.91(↓ 4.81)

440
 441 Table 2: Ablation results after individually removing each of the three crucial stages from our
 442 framework. Overall accuracy drops significantly compared to the full framework, highlighting the
 443 cooperative nature and effectiveness of the proposed architecture.

444
 445 stronger Gemini models are used as the ‘Scanner’ agent, the benefit of increasing k is less substantial.
 446 This aligns with expectations, as stronger vision-language models are generally more confident and
 447 accurate in identifying the correct region, thereby reducing the need for a large search space.

449 7 ABLATION STUDY

450
 451 To validate the effectiveness of each key component in our proposed framework, we conduct a series
 452 of ablation studies using three modified baselines:

- 453 • Deletion of Cross-Modal Verification: The ‘Locator’ agent’s predicted coordinates are passed
 454 directly, without any confidence-based filtering.
- 455 • Deletion of Multi-Agent Consensus: The ‘Locator’ agent always selects the coordinate with
 456 the highest confidence score, bypassing the consensus selection mechanism.
- 457 • Deletion of Adaptive Resolution Enhancement: The ‘Locator’ and ‘Scanner’ agents no longer
 458 collaborate; the output of the ‘Locator’ alone is used as the final click instruction.

459
 460 The experimental results, presented in Table 2, show that removing any component leads to noticeable
 461 performance degradation. Among these experiments, the removal of cross-modal verification has
 462 the most severe impact. This is likely due to the absence of confidence filtering, which causes the
 463 ‘Scanner’ agent to receive multiple candidate regions without sufficient guidance, making effective
 464 reasoning difficult, especially under long-context constraints or limited output reasoning capacity.

465
 466 In contrast, the removal of multi-agent consensus has the least impact on performance. This finding
 467 reflects the strong evaluation capabilities of the ‘Scanner’ agent, which can reliably assess each
 468 candidate to determine whether it contains the target position. As a result, selecting only the candidate
 469 with the highest verification score still yields strong performance compared to the other two conditions.
 470 This further supports the design intuition of assigning distinct and complementary responsibilities to
 471 different agent types within our framework.

472 8 CONCLUSION

473
 474 We propose **GMS**: Generalist Scanner Meets Specialist Locator, a synergistic coarse-to-fine frame-
 475 work that employs hierarchical search with test-time scaling. Drawing inspiration from how humans
 476 approach GUI grounding tasks, GMS introduces two specialized roles: the ‘Scanner’ and the ‘Loca-
 477 tor’. This division enables cooperative behavior, allowing each agent to focus on the subtask that
 478 aligns with its respective strengths. The ‘Scanner’ performs coarse region localization, while the
 479 ‘Locator’ is responsible for precise coordinate prediction within the identified region. Extensive
 480 experiments on the ScreenSpot-Pro dataset demonstrate the effectiveness of GMS. The framework
 481 not only surpasses strong baselines but also substantially boosts the performance of two relatively
 482 weak models when combined, achieving nearly double their original accuracy without any additional
 483 fine-tuning. Ablation studies further confirm the robustness of the framework, showing that each stage
 484 contributes significantly to overall performance. These results underscore the practical applicability
 485 of GMS to real-world GUI grounding scenarios and highlight its potential as a general paradigm for
 486 agent collaboration in vision–language tasks.

486 ETHICS STATEMENT
487

488 Ethical considerations play a central role in this research. All models used in this study are either open-
489 weight or widely adopted within the scientific community, ensuring transparency and reproducibility.
490 The proposed GMS framework aims to advance the capabilities of current VLM agents for the GUI
491 grounding task, contributing to real-world applications without introducing or reinforcing harmful
492 biases. No personally identifiable information or sensitive data is involved in this work. We are
493 committed to responsible research practices and advocate for the transparent reporting and ethical
494 deployment of AI technologies in ways that serve the broader interests of society.

495 REFERENCES
496

498 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
499 Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
500 Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa,
501 Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril Zhang,
502 and Yi Zhang. Phi-4 technical report, 2024. URL <https://arxiv.org/abs/2412.08905>.

503 Anthropic. Introducing claude 4. <https://www.anthropic.com/news/claude-4>, May 2025. Ac-
504 cessed May 22, 2025.

505 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
506 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
507 text reading, and beyond, 2023. URL <https://arxiv.org/abs/2308.12966>.

508 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
509 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
510 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
511 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
512 <https://arxiv.org/abs/2502.13923>.

514 Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
515 Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents, 2024. URL <https://arxiv.org/abs/2401.10935>.

517 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
518 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marrs, Sam Petulla, Colin
519 Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-
520 Jiang Jiang, Krishna Haridasan, et al. Gemini 2.5: Pushing the frontier with advanced reasoning,
521 multimodality, long context, and next generation agentic capabilities, 2025. URL <https://arxiv.org/abs/2507.06261>.

523 Haonan Ge, Yiwei Wang, Ming-Hsuan Yang, and Yujun Cai. Mrfd: Multi-region fusion decoding
524 with self-consistency for mitigating hallucinations in lvlms, 2025. URL <https://arxiv.org/abs/2508.10264>.

526 Google. Gemini 2.0. <https://developers.googleblog.com/en/gemini-2-family-expands/>,
527 February 2025. Accessed FEB. 5, 2025.

529 Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
530 Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents, 2025.
531 URL <https://arxiv.org/abs/2410.05243>.

532 Zhangxuan Gu, Zhengwen Zeng, Zhenyu Xu, Xingran Zhou, Shuheng Shen, Yunfei Liu, Beitong
533 Zhou, Changhua Meng, Tianyu Xia, Weizhi Chen, Yue Wen, Jingya Dou, Fei Tang, Jinzhen Lin,
534 Yulin Liu, Zhenlin Guo, Yichen Gong, Heng Jia, Changlong Gao, Yuan Guo, Yong Deng, Zhenyu
535 Guo, Liang Chen, and Weiqiang Wang. Ui-venus technical report: Building high-performance ui
536 agents with rft, 2025. URL <https://arxiv.org/abs/2508.10833>.

538 Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
539 Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A
visual language model for gui agents, 2024. URL <https://arxiv.org/abs/2312.08914>.

540 Siyuan Hu, Mingyu Ouyang, Difei Gao, and Mike Zheng Shou. The dawn of gui agent: A preliminary
 541 case study with claude 3.5 computer use, 2024. URL <https://arxiv.org/abs/2411.10323>.

542

543 Zheng Hui, Yinheng Li, Dan Zhao, Colby Banbury, Tianyi Chen, and Kazuhito Koishida. WinSpot:
 544 GUI grounding benchmark with multimodal large language models. In Wanxiang Che, Joyce
 545 Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual
 546 Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp. 1086–1096,
 547 Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-252-7.
 548 doi: 10.18653/v1/2025.acl-short.85. URL <https://aclanthology.org/2025.acl-short.85>.

549

550 Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
 551 Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use,
 552 2025. URL <https://arxiv.org/abs/2504.07981>.

553

554 Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei,
 555 Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui visual
 556 agent, 2024. URL <https://arxiv.org/abs/2411.17465>.

557

558 Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li, and Xiang
 559 Yue. Visualwebbench: How far have multimodal llms evolved in web page understanding and
 560 grounding?, 2024. URL <https://arxiv.org/abs/2404.05955>.

561

562 Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
 563 and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
 564 reasoners, 2025. URL <https://arxiv.org/abs/2504.14239>.

565

566 Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren,
 567 Guanjing Xiong, and Hongsheng Li. Ui-r1: Enhancing efficient action prediction of gui agents by
 568 reinforcement learning, 2025. URL <https://arxiv.org/abs/2503.21620>.

569

570 Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1 : A generalist r1-style vision-language
 571 action model for gui agents, 2025a. URL <https://arxiv.org/abs/2504.10458>.

572

573 Tiange Luo, Lajanugen Logeswaran, Justin Johnson, and Honglak Lee. Visual test-time scaling for
 574 gui agent grounding, 2025b. URL <https://arxiv.org/abs/2505.00684>.

575

576 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 577 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 578 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

579

580 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
 581 Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
 582 Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
 583 Browser-assisted question-answering with human feedback, 2022. URL <https://arxiv.org/abs/2112.09332>.

584

585 Anthony Nguyen. Improved gui grounding via iterative narrowing, 2025. URL <https://arxiv.org/abs/2411.13591>.

586

587 Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namyong Park, Zhengmian Hu, Hanjia Lyu, Junda Wu,
 588 Ryan Aponte, Yu Xia, Xintong Li, Jing Shi, Hongjie Chen, Viet Dac Lai, Zhouhang Xie, Sungchul
 589 Kim, Ruiyi Zhang, Tong Yu, Mehrab Tanjim, Nesreen K. Ahmed, Puneet Mathur, Seunghyun Yoon,
 590 Lina Yao, Branislav Kveton, Thien Huu Nguyen, Trung Bui, Tianyi Zhou, Ryan A. Rossi, and
 591 Franck Dernoncourt. Gui agents: A survey, 2025. URL <https://arxiv.org/abs/2412.13501>.

592

593 OpenAI. Introducing gpt-5. <https://openai.com/index/introducing-gpt-5/>, August 2025.
 Accessed Aug 7, 2025.

594

595 OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
 596 AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb,
 597 Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino,
 598 Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali
 599 Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya
 600 Kumar, et al. Gpt-4o system card. *arXiv preprint*, August 2024. URL <https://arxiv.org/abs/2410.21276>. Accessed June 22, 2025.

594 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
 595 Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
 596 Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng,
 597 Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng
 598 Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction
 599 with native agents, 2025. URL <https://arxiv.org/abs/2501.12326>.

600 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 601 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 602 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

603 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling lilm test-time compute optimally
 604 can be more effective than scaling model parameters, 2024. URL <https://arxiv.org/abs/2408.03314>.

605 Fei Tang, Zhangxuan Gu, Zhengxi Lu, Xuyang Liu, Shuheng Shen, Changhua Meng, Wen Wang,
 606 Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, and Yueting Zhuang. Gui-g²: Gaussian
 607 reward modeling for gui grounding, 2025a. URL <https://arxiv.org/abs/2507.15846>.

608 Fei Tang, Haolei Xu, Hang Zhang, Siqi Chen, Xingyu Wu, Yongliang Shen, Wenqi Zhang, Guiyang
 609 Hou, Zeqi Tan, Yuchen Yan, Kaitao Song, Jian Shao, Weiming Lu, Jun Xiao, and Yueting Zhuang.
 610 A survey on (m)llm-based gui agents, 2025b. URL <https://arxiv.org/abs/2504.13865>.

611 Liang Tang, Shuxian Li, Yuhao Cheng, Yukang Huo, Zhepeng Wang, Yiqiang Yan, Kaer Huang,
 612 Yanzhe Jing, and Tiaonan Duan. Sea: Self-evolution agent with step-wise reward for computer use.
 613 *arXiv preprint arXiv:2508.04037*, 2025c.

614 5 Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang
 615 Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu, Rui Lu, Shulin
 616 Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifan An, Yilin Niu, Yuanhao
 617 Wen, Yushi Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen, Bowen Wu,
 618 Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi Ge, Chenghua
 619 Huang, Chenhui Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models,
 620 2025a. URL <https://arxiv.org/abs/2508.06471>.

621 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 622 Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding, Xinyang Geng,
 623 Fred Alcober, Roy Frostig, Mark Omernick, Lexi Walker, Cosmin Paduraru, Christina Sorokin,
 624 Andrea Tacchetti, Colin Gaffney, Samira Daruki, Olcan Sercinoglu, Zach Gleicher, Juliette Love,
 625 Paul Voigtlaender, Rohan Jain, Gabriela Surita, Kareem Mohamed, Rory Blevins, et al. Gemini
 626 1.5: Unlocking multimodal understanding across millions of tokens of context, 2024. URL
 627 <https://arxiv.org/abs/2403.05530>.

628 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 629 Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Melvin Johnson,
 630 Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Timothy
 631 Lillicrap, Angeliki Lazaridou, Orhan Firat, James Mollo, Michael Isard, Paul R. Barham, Tom
 632 Hennigan, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, Ryan Doherty, Eli
 633 Collins, Clemens Meyer, et al. Gemini: A family of highly capable multimodal models, 2025b.
 634 URL <https://arxiv.org/abs/2312.11805>.

635 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 636 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 637 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
 638 Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai
 639 Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
 640 Yi Gao, Basil Mustafa, Iain Barr, et al. Gemma 3 technical report, 2025c. URL <https://arxiv.org/abs/2503.19786>.

641 Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
 642 Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception, 2024a.
 643 URL <https://arxiv.org/abs/2401.16158>.

648 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 649 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 650 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 651 perception of the world at any resolution, 2024b. URL <https://arxiv.org/abs/2409.12191>.
 652

653 Shuai Wang, Weiwen Liu, Jingxuan Chen, Yuqi Zhou, Weinan Gan, Xingshan Zeng, Yuhan Che,
 654 Shuai Yu, Xinlong Hao, Kun Shao, Bin Wang, Chuhuan Wu, Yasheng Wang, Ruiming Tang,
 655 and Jianye Hao. Gui agents with foundation models: A comprehensive survey, 2025a. URL
 656 <https://arxiv.org/abs/2411.04890>.
 657

658 Xuehui Wang, Zhenyu Wu, JingJing Xie, Zichen Ding, Bowen Yang, Zehao Li, Zhaoyang Liu,
 659 Qingyun Li, Xuan Dong, Zhe Chen, Weiyun Wang, Xiangyu Zhao, Jixuan Chen, Haodong
 660 Duan, Tianbao Xie, Chenyu Yang, Shiqian Su, Yue Yu, Yuan Huang, Yiqian Liu, Xiao Zhang,
 661 Yanting Zhang, Xiangyu Yue, Weijie Su, Xizhou Zhu, Wei Shen, Jifeng Dai, and Wenhui Wang.
 662 Mmbench-gui: Hierarchical multi-platform evaluation framework for gui agents, 2025b. URL
 663 <https://arxiv.org/abs/2507.19478>.
 664

665 Hang Wu, Hongkai Chen, Yujun Cai, Chang Liu, Qingwen Ye, Ming-Hsuan Yang, and Yiwei Wang.
 666 Dimo-gui: Advancing test-time scaling in gui grounding via modality-aware visual reasoning,
 667 2025a. URL <https://arxiv.org/abs/2507.00008>.
 668

669 Penghao Wu and Saining Xie. V?: Guided visual search as a core mechanism in multimodal llms. In
 670 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 671 pp. 13084–13094, June 2024.
 672

673 Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
 674 Baolin Peng, Bo Qiao, Reuben Tan, Si Qin, Lars Liden, Qingwei Lin, Huan Zhang, Tong Zhang,
 675 Jianbing Zhang, Dongmei Zhang, and Jianfeng Gao. Gui-actor: Coordinate-free visual grounding
 676 for gui agents, 2025b. URL <https://arxiv.org/abs/2506.03143>.
 677

678 Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
 679 Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
 680 generalist gui agents, 2024. URL <https://arxiv.org/abs/2410.23218>.
 681

682 Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
 683 Visual grounding for gui instructions, 2025. URL <https://arxiv.org/abs/2412.16256>.
 684

685 Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
 686 Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Ufo: A ui-focused agent for windows os
 687 interaction, 2024. URL <https://arxiv.org/abs/2402.07939>.
 688

689 Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma,
 690 Guyue Liu, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Large language
 691 model-brained gui agents: A survey, 2025a. URL <https://arxiv.org/abs/2411.18279>.
 692

693 Chi Zhang, Zhao Yang, Jiaxuan Liu, Yanda Li, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu,
 694 and Gang Yu. Appagent: Multimodal agents as smartphone users. In *Proceedings of the 2025*
 695 *CHI Conference on Human Factors in Computing Systems*, CHI '25, New York, NY, USA, 2025b.
 696 Association for Computing Machinery. ISBN 9798400713941. doi: 10.1145/3706598.3713600.
 697 URL <https://doi.org/10.1145/3706598.3713600>.
 698

699 Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
 700 Guo, Yufei Wang, Niklas Muennighoff, Irwin King, Xue Liu, and Chen Ma. A survey on
 701 test-time scaling in large language models: What, how, where, and how well?, 2025c. URL
<https://arxiv.org/abs/2503.24235>.

702

703 Yuqi Zhou, Sunhao Dai, Shuai Wang, Kaiwen Zhou, Qinglin Jia, and Jun Xu. Gui-g1: Understanding
 704 r1-zero-like training for visual grounding in gui agents, 2025. URL <https://arxiv.org/abs/2505.15810>.
 705

706

707

702 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
703704 We used LLMs to assist with the phrasing and grammar of the manuscript. The LLMs were used
705 strictly as a writing aid and did not contribute to the scientific ideation, methodology, or results
706 presented in this paper.
707708 B IMPLEMENTATION DETAILS
709710 For the closed-source models, we perform inference using the OpenRouter platform, and all use
711 the default provider. All experiments were conducted between August 15 and September 15 on a
712 machine equipped with two NVIDIA A100 80GB GPUs and 1000GB of RAM.
713714 B.1 BENCHMARK DATASET DISCUSSION
715716 The **ScreenSpot-Pro** benchmark dataset poses challenges such as diverse icons, layouts, and
717 application-specific styles, as well as large input sizes and heterogeneous content, making it a
718 suitable resource for evaluating model robustness.
719720 B.2 MAIN EXPERIMENT DETAILS
721722 In the main experimental results shown in Table 1, we compare our approach with several baselines:
723 (1) direct inference using the original models and (2) DiMo-GUI, one of the strongest existing base-
724 lines, which incorporates the concept of test-time scaling. To balance performance and computational
725 efficiency, we set the threshold for hierarchical image search to 600 pixels, meaning that the search
726 terminates when either the image width or height falls below this threshold.
727728 B.3 EXPERIMENTAL MODEL INTRODUCTION
729730 Here we briefly introduce the four types of models that are used in the main experiments, as the
731 general ‘Scanner’ and the specialist ‘Locator’.
732733 B.3.1 ‘LOCATOR’ MODELS
734735

- OS-Atlas (Wu et al., 2024): An open-source foundational action model series for GUI agents,
736 trained on 2.3 million cross-platform screenshots and 13 million UI elements.
- UGround (Gou et al., 2025): A universal visual-only grounding model family that predicts
737 pixel-level element coordinates using only visual input, trained on 1.3 million screenshots
738 containing 10 million GUI elements.

739 B.3.2 ‘SCANNER’ MODELS
740741

- Qwen2.5-VL (Bai et al., 2025): A recent multimodal vision–language model series, available
742 in multiple sizes, that offers strong visual understanding.
- Gemini (Google, 2025; Comanici et al., 2025; Team et al., 2024; 2025b): Google’s family of
743 multimodal models, capable of processing text, images, audio, and code, and designed for
744 broad AI applications including chat and search.

745 C FURTHER RELATED WORK
746747 Here, we further discuss related work concerning the use of test-time scaling in the field of GUI
748 grounding:
749750 C.1 TEST-TIME SCALING
751752 Test-time scaling refers to techniques that improve model performance at inference without modifying
753 model parameters, typically by increasing computation or using additional resources (Muennighoff
754 et al., 2025; Snell et al., 2024; Zhang et al., 2025c). In GUI grounding, test-time scaling has been
755

used to improve localization through action histories, external knowledge retrieval, zoom-in searches, and adaptive focus refinement (Wu et al., 2025a; Nguyen, 2025; Nakano et al., 2022). These methods aim for greater accuracy via extended reasoning and iterative attention.

D ADDITIONAL BASELINE PERFORMANCE

Due to the page limitations in the main paper, we also report the raw performance of several additional vision-language models on the test benchmark, which we list in Table 3.

Base Model	Development			Creative			CAD			Scientific			Office			OS			Average		
	text	icon	avg	text	icon	avg	text	icon	avg	text	icon	avg	text	icon	avg	text	icon	avg	text	icon	avg
Gemma-3-27B	0.0	0.0	0.0	2.0	0.0	1.2	1.0	1.6	1.1	3.5	0.0	2.0	1.1	0.0	0.9	0.0	0.0	0.0	1.3	0.2	0.9
Phi-4-Multimodal	0.0	0.7	0.3	1.5	0.0	0.9	0.5	1.6	0.8	2.1	0.0	1.2	1.7	5.7	2.6	0.0	0.0	0.0	1.0	0.8	0.9
SeeClick	0.6	0.0	0.3	1.0	0.0	0.6	2.5	0.0	1.9	3.5	0.0	2.0	1.1	0.0	0.5	2.8	0.0	1.5	1.8	0.0	1.1
Claude Sonnet 4	1.3	3.4	2.3	1.5	0.7	1.2	2.5	0.0	1.9	1.4	1.8	1.6	0.6	1.9	0.9	0.0	0.0	0.0	1.3	1.5	1.4
Qwen2-VL-7B	2.6	0.0	1.3	1.5	0.0	0.9	0.5	0.0	0.4	6.3	0.0	3.5	3.4	1.9	3.0	0.9	0.0	0.5	2.5	0.2	1.6
GLM-4.5V	0.0	1.4	0.7	1.5	2.1	1.8	5.6	0.0	4.2	2.8	1.0	2.0	1.7	1.9	1.7	0.0	0.0	0.0	2.1	1.2	1.8
GPT-5	2.6	0.7	1.7	4.5	4.2	4.4	7.6	7.8	7.7	4.2	1.8	3.1	4.5	3.8	4.3	0.0	0.0	0.0	4.3	2.6	3.7
Gemini-2.5-Pro	4.5	2.8	3.7	7.6	5.6	6.7	14.2	1.6	11.1	4.9	6.4	5.5	7.3	3.8	6.5	2.8	1.1	2.0	7.5	3.8	6.1
ShowUI-2B	16.9	1.4	9.4	9.1	0.0	5.3	2.5	0.0	1.9	13.2	7.3	10.6	15.3	7.5	13.5	10.3	2.2	6.6	10.8	2.6	7.7

Table 3: Additional baseline results of various vision-language models on the GUI grounding benchmark. Despite their strong general capabilities, these models perform poorly on this specific task.

From the results presented in the table, it is evident that most state-of-the-art vision-language models, including those from families such as GPT-5 and Gemini-2.5-Pro, perform poorly on the GUI grounding benchmark despite their strong general vision capabilities. This highlights a critical limitation in their ability to handle fine-grained, domain-specific grounding tasks. Nevertheless, their robust visual perception suggests that they can still serve effectively as visual front-ends to parse and understand GUI images. These findings underscore the importance of fully leveraging the intrinsic capabilities of such models, rather than relying solely on scaling up data or fine-tuning larger parameter models.

E BASELINE INTRODUCTION

We compare our GMS framework with several baselines, as shown in Table 1 and Table 3. Below, we introduce each baseline to provide clarification.

- *GPT-4o* (OpenAI et al., 2024): OpenAI’s flagship multimodal model that seamlessly understands and generates text, images, and audio. It enables faster, more natural real-time interactions while maintaining strong reasoning and accuracy.
- *Gemma3-27B* (Team et al., 2025c): Google’s 27B-parameter version of their Gemma 3 model family. It’s a high-capacity, multimodal model that accepts both text and image inputs, supports an expanded 128K context window, works across 140 languages.
- *Phi-4-Multimodal* (Abdin et al., 2024): Microsoft’s 5.6B-parameter model that can process text, vision, and speech (audio) inputs in a unified system. It supports a long 128K token context, uses a “mixture of LoRAs” approach for modality-adapters.
- *SeeClick* (Cheng et al., 2024): A visual GUI agent that automates tasks like clicking or typing by observing only interface screenshots, without needing structured representations such as HTML or accessibility trees.
- *Claude-Sonnet-4* Anthropic (2025): A mid-tier model in Anthropic’s Claude 4 family, designed to balance strong reasoning and coding ability with efficiency and accessibility.
- *Qwen2-VL-7B* (Wang et al., 2024b; Bai et al., 2023): A 7B-parameter vision-language model from Alibaba’s Qwen2-VL family.
- *GLM-4.5V* (Team et al., 2025a): ZhipuAI’s flagship vision-language model built on GLM-4.5-Air, activating 12B of its 106B parameters per pass to balance efficiency with strong multimodal reasoning.

- *Gemini-2.0-Flash* (Google, 2025): Google’s high-performance, multimodal model in the Gemini 2.0 family designed for the “agentic era”.
- *Gemini-2.5-Flash-Lite* (Comanici et al., 2025): Google’s cost- and latency-optimized variant in the Gemini 2.5 model series, designed for high-volume, real-world use.
- *GPT-5* (OpenAI, 2025): OpenAI’s next-generation multimodal model that advances beyond GPT-4o with stronger reasoning, longer context handling, and more efficient real-time interaction across text, vision, and audio.
- *Gemini-2.5-Pro* (Comanici et al., 2025): Google’s top-tier reasoning model in the Gemini 2.5 family, designed to tackle complex problems across modalities, including text, audio, images, video, and even whole code repositories.
- *ShowUI-2B* (Lin et al., 2024): A lightweight vision-language-action model from ShowLab, built for GUI agents to understand and interact with graphical user interfaces via screenshots.
- *CogAgent-18B* (Hong et al., 2024): An open-source vision-language model (VLM) developed by THUDM and Zhipu AI, specifically optimized for understanding and interacting with graphical user interfaces (GUIs).
- *Aria-UI* (Yang et al., 2025): A multimodal model for GUI grounding that maps language instructions to specific interface elements using only vision (screenshots), foregoing HTML or accessibility trees (AXTrees) as auxiliary input.
- *Claude (Computer Use)* (Hu et al., 2024): A GUI-agent extension of Claude 3.5 Sonnet that enables the model to observe screenshots of a user’s computer and issue desktop actions (mouse, keyboard, clicks) to automate tasks.
- *UI-TARS-7B* (Qin et al., 2025): A 7B-parameter vision-language model from ByteDance designed for native GUI automation, capable of controlling both web and desktop applications via only screenshot input.
- *UI-TARS-72B* (Qin et al., 2025): 72B-parameter version of UI-TARS.

For the baselines not presented in the previous paper, we conduct the evaluations ourselves, with the inference prompts provided in Appendix G. For the baselines included in the previous paper, we directly use the results reported by Wu et al. (2025a), which also correspond to the ScreenSpot-Pro leaderboard data. Regarding the general-purpose vision-language models, we select recent and strong models to demonstrate their raw performance on the direct GUI grounding task, which turns out to be rather poor.

F DISCUSSION

In this section, we elaborate on the proposed framework and present further analysis of the associated experiments, demonstrating its superior performance and the novel insights it yields relative to existing methods.

F.1 COGNITION AND ARCHITECTURAL INSIGHTS

Here, we discuss several key aspects in which our GMS framework departs from prior works, highlighting the unique insights underlying our design:

- (1) Cognitive-inspired task decomposition based on the dual-stream model, separating semantic attention from motor-level localization.
- (2) Hierarchical attention and cross-modal verification that iteratively refine the search space, replacing brittle single-pass grounding.
- (3) Asymmetric multi-agent collaboration, with a generalist scanner for abstraction and a specialist locator for spatial precision.
- (4) Late-stage fusion through multi-resolution decision making, aligning global predictions with fine-grained local cues.

These insights allow GMS to achieve a stronger balance between global semantic reasoning and local spatial precision than prior approaches.

864 F.2 ON THE POSSIBILITY OF COMPARING WITH ADDITIONAL BASELINES
865866 In this paper, we primarily compare our framework with DiMo-GUI, one of the strongest existing
867 baselines on the GUI grounding benchmark. Although numerous related works report results on this
868 benchmark, their performance under comparable grounding model settings consistently falls short of
869 DiMo-GUI. Therefore, we focus our comparison on DiMo-GUI to balance both reproducibility costs
870 and page constraints. Given that our framework outperforms DiMo-GUI, it is reasonable to infer that
871 it also surpasses other baselines that perform worse than DiMo-GUI.872
873 G INFERENCE PROMPTS
874875 We present the manually designed inference prompts employed in the experiments shown in Figures 6
876 through 18.877 The first thing we want to note is that, for the specific fine-tuned grounding models, we use the same
878 inference prompt as the researchers in the previous work, without making any modifications. The
879 inference-related code is written based on the HuggingFace repository example code, including some
880 resizing and transformations for certain models such as OS-Atlas-4B.881 The second point to note is that each main prompt designed for our GMS framework has two versions,
882 depending on the names of certain subsets. Subsets such as "ppt_windows" or "word_macos" clearly
883 indicate the application name (here "powerpoint" and "word"). However, there are three special
884 subsets, namely "common_linux", "common_windows", and "common_macos", which do not contain
885 specific application names. For this reason, we provide two versions of each prompt: the first is used
886 for most subsets, while the second is used for the three special subsets mentioned here.
887888 Hierarchical Attention Allocation Prompt (Initial Level & Normal Version)
889890 I have provided you a screenshot of my desktop containing the interface of the
891 {application_name} application running on the {system_name} system. Where
892 should I click if I want to DIRECTLY perform the following operation in the
893 {application_name}: **{instruction}**? Provide the possibilities for each region
894 (Region 1 to Region 9, ordered from left to right, top to bottom) with a score between
895 0 and 100. Your output MUST follow this format: "Region X: SCORE (explanation)".
896897
898 Figure 6: The hierarchical attention allocation prompt for the initial level (search depth = 0) and the
899 normal subsets.
900902 Hierarchical Attention Allocation Prompt (Initial Level & Special Version)
903904 I have provided you a screenshot of my desktop using {system_name} system.
905 Where should I click if I want to DIRECTLY perform the following operation in the
906 {application_name}: **{instruction}**? Provide the possibilities for each region
907 (Region 1 to Region 9, ordered from left to right, top to bottom) with a score between
908 0 and 100. Your output MUST follow this format: "Region X: SCORE (explanation)".
909910
911 Figure 7: The hierarchical attention allocation prompt for the initial level (search depth = 0) and the
912 special subsets.
913914
915
916
917

918

919

920

921

922

923

924

925

926

927

928

929

Hierarchical Attention Allocation Prompt (Non-Initial Level & Normal Version)

Where should I click if I want to DIRECTLY perform the following operation in the {application_name}: **{instruction}**? Provide the possibilities for each region (Region 1 to Region 9, ordered from left to right, top to bottom) with a score between 0 and 100. Your output MUST follow this format: "Region X: SCORE (explanation)".

Figure 8: The hierarchical attention allocation prompt for the non-initial level (search depth ≥ 1) and the normal subsets.

930

931

932

933

934

Hierarchical Attention Allocation Prompt (Non-Initial Level & Special Version)

Where should I click if I want to DIRECTLY perform the following operation: **{instruction}**? Provide the possibilities for each region (Region 1 to Region 9, ordered from left to right, top to bottom) with a score between 0 and 100. Your output MUST follow this format: "Region X: SCORE (explanation)".

Figure 9: The hierarchical attention allocation prompt for the non-initial level (search depth ≥ 1) and the special subsets.

941

942

943

944

945

946

947

948

Scanner Region Verification Prompt (Normal Version)

You need to check if the image region from my desktop screenshot contains the button or icon for me to DIRECTLY perform the following operation in the {application}: **{instruction}**. You are required to output your reasoning process first, and then provide your final answer in the format: <answer>yes/no</answer>.

Figure 10: The region verification prompt that instructed the ‘Scanner’ agent to filter the region of interest (for normal subsets).

955

956

957

958

959

960

961

962

Scanner Region Verification Prompt (Special Version)

You need to check if the image region from my desktop screenshot contains the button or icon for me to DIRECTLY perform the following operation: **{instruction}**. You are required to output your reasoning process first, and then provide your final answer in the format: <answer>yes/no</answer>.

Figure 11: The region verification prompt that instructed the ‘Scanner’ agent to filter the region of interest (for special subsets).

971

972
973
974

Cross-Modal Verification Prompt (Normal Version)

I want to DIRECTLY perform the following operation in the {application}: **{instruction}**. First, I'm showing you the original screenshot image, followed by a cropped region from it. You need to determine whether this cropped region is likely to contain the target button, area, or icon for the operation. Answer with <relevance>yes/no</relevance> and provide your reasoning within <reasoning>...</reasoning>.

This is the original screenshot image: <Image1>

And this is the cropped region from the original screenshot image: <Image2>

985
986
987

Figure 12: The cross-modal verification prompt that instructed the ‘Scanner’ agent to verify the cropped region (for normal subsets).

988
989
990

Cross-Modal Verification Prompt (Special Version)

I want to DIRECTLY perform the following operation: **{instruction}**. First, I'm showing you the original screenshot image, followed by a cropped region from it. You need to determine whether this cropped region is likely to contain the target button, area, or icon for the operation. Answer with <relevance>yes/no</relevance> and provide your reasoning within <reasoning>...</reasoning>.

This is the original screenshot image: <Image1>

And this is the cropped region from the original screenshot image: <Image2>

1000

1001
1002
1003

Figure 13: The cross-modal verification prompt that instructed the ‘Scanner’ agent to verify the cropped region (for special subsets).

1004

1005
1006

Scanner Adaptive Resolution Enhancement Prompt (Normal Version)

I want to DIRECTLY perform this operation in the {application} on my desktop: **{instruction}**.

I have extracted a candidate region and divided it into 5x5 smaller regions (numbered 1 to 25 from left to right, top to bottom). Please identify which of the 25 regions is the most relevant (return only one region you are most confident about). Then, within that region, tell me which of the 9 inner zones the target click point is closest to. (Choose from: top left, top center, top right, center left, center, center right, bottom left, bottom center, bottom right)

First, provide your reasoning process, and then return your final answer in the following format:

<index>xxx</index>

<location>xxx</location>

1022

1023
1024
1025

Figure 14: The adaptive resolution prompt that instructed the ‘Scanner’ agent to identify a possible fine-grained region (for normal subsets).

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Scanner Adaptive Resolution Enhancement Prompt (Special Version)

I want to DIRECTLY perform this operation on my desktop: **{instruction}**. I have extracted a candidate region and divided it into 5x5 smaller regions (numbered 1 to 25 from left to right, top to bottom). Please identify which of the 25 regions is the most relevant (return only one region you are most confident about). Then, within that region, tell me which of the 9 inner zones the target click point is closest to. (Choose from: top left, top center, top right, center left, center, center right, bottom left, bottom center, bottom right)

First, provide your reasoning process, and then return your final answer in the following format:

<index>xxx</index>

<location>xxx</location>

Figure 15: The adaptive resolution prompt that instructed the ‘Scanner’ agent to identify a possible fine-grained region (for special subsets).

OS-Atlas-4B Grounding Prompt

In the screenshot of this web page, please give me the coordinates of the element I want to click on according to my instructions(with point).\n"{}"

Figure 16: The instruction for the OS-Atlas-4B model to output grounding coordinates.

UGround-7B Grounding Prompt

In the screenshot, where are the pixel coordinates (x, y) of the element corresponding to "{}"?

Figure 17: The instruction for the UGround-7B model to output grounding coordinates.

UGround-V1-7B Grounding Prompt

Your task is to help the user identify the precise coordinates (x, y) of a specific area/element/object on the screen based on a description.

- Your response should aim to point to the center or a representative point within the described area/element/object as accurately as possible.

- If the description is unclear or ambiguous, infer the most relevant area or element based on its likely context or purpose.

- Your answer should be a single string (x, y) corresponding to the point of interest.

Description: {instruction}

Answer:

Figure 18: The instruction for the UGround-V1-7B model to output grounding coordinates.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103 Baseline Models Grounding Prompt
1104
1105 I want to DIRECTLY perform this operation in the {application} on my desktop:
1106 **{instruction}**. You should provide the target CLICK pixel coordinate (x, y) in
1107 the ORIGINAL image. You must output only integer coordinate values. For example:
1108 '123, 456' or '(123, 456)'.

1109
1110
1111 Figure 19: The instruction for the baseline models to output grounding coordinates.
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133