
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GENERALIST SCANNER MEETS SPECIALIST LOCATOR:
A SYNERGISTIC COARSE-TO-FINE FRAMEWORK FOR
ROBUST GUI GROUNDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Grounding natural language queries in graphical user interfaces (GUIs) presents a
challenging task that requires models to comprehend diverse UI elements across
various applications and systems, while also accurately predicting the spatial co-
ordinates for the intended operation. To tackle this problem, we propose GMS:
Generalist Scanner Meets Specialist Locator, a synergistic coarse-to-fine frame-
work that effectively improves GUI grounding performance. GMS leverages the
complementary strengths of general vision-language models (VLMs) and small,
task-specific GUI grounding models by assigning them distinct roles within the
framework. Specifically, the general VLM acts as a ‘Scanner’ to identify potential
regions of interest, while the fine-tuned grounding model serves as a ‘Locator’ that
outputs precise coordinates within these regions. This design is inspired by how
humans perform GUI grounding, where the eyes scan the interface and the brain
focuses on interpretation and localization. Our whole framework consists of five
stages and incorporates hierarchical search with cross-modal communication to
achieve promising prediction results. Experimental results on the ScreenSpot-Pro
dataset show that while the ‘Scanner’ and ‘Locator’ models achieve only 2.0%
and 3.7% accuracy respectively when used independently, their integration within
GMS framework yields an overall accuracy of 35.7%, representing a 10× improve-
ment. Additionally, GMS significantly outperforms other strong baselines under
various settings, demonstrating its robustness and potential for general-purpose
GUI grounding.

1 INTRODUCTION

Grounding natural language queries in graphical user interfaces (GUIs) requires models to predict
accurate coordinates for user-specified actions, enabling applications in agent control, device au-
tomation, and accessibility (Wang et al., 2025a; Nguyen et al., 2025; Zhang et al., 2025a; Tang
et al., 2025b). As vision-language models (VLMs) advance in multimodal reasoning, GUI grounding
emerges as a key benchmark for evaluating their interactive capabilities (Hui et al., 2025; Wang et al.,
2025b; Li et al., 2025; Cheng et al., 2024; Liu et al., 2024). GUI grounding is challenging due to
the diverse structures, styles, and semantics of interfaces across platforms. It requires fine-grained
understanding of both textual and non-textual elements, dense visual layouts, and context-dependent
functions, making accurate interpretation difficult (Li et al., 2025; Wu & Xie, 2024; Wu et al., 2025a).

Existing approaches can be broadly categorized into two groups: (i) Training-based methods either
fine-tune base vision-language models, such as Qwen2-VL-7B, to directly predict grounding coordi-
nates, or employ reinforcement learning techniques, such as GRPO, to induce multi-step reasoning
processes that ultimately localize the target region (Gou et al., 2025; Wu et al., 2024; Shao et al.,
2024). Although fine-tuning improves task-specific performance, it often sacrifices the model’s
capacity for self-correction and adaptive reasoning. Reinforcement learning methods offer greater
flexibility and generalization, but they incur substantial computational overhead and suffer from
slow inference due to the complexity of the reasoning procedures they require (Luo et al., 2025a;
Zhou et al., 2025; Lu et al., 2025; Liu et al., 2025; Tang et al., 2025a). (ii) Training-free methods
seek to bypass the cost of retraining by leveraging pre-trained models. These include recursive
zoom-in techniques that iteratively refine grounding predictions and planner-based strategies that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

CAD

Creative

Dev

OS

Office

Sci

15

30

45

60

Gemini-2.0-Flash (Only)

CAD

Creative

Dev

OS

Office

Sci

15

30

45

60

OS-Atlas-4B (Only)

CAD

Creative

Dev

OS

Office

Sci

15

30

45

60

GMS Framework (Ours)

+ =

Figure 1: The two original models individually perform poorly on the GUI grounding task, with
average accuracies below 4%. Under our GMS framework, where each model specializes in its
strengths and collaborates effectively, the overall accuracy reaches 36%, which is nearly 10× higher
than their standalone performance.

utilize general models to guide localizers (Li et al., 2025; Wu et al., 2025a; Nguyen, 2025; Luo
et al., 2025b; Ge et al., 2025; Zhang et al., 2024; Wang et al., 2024a). However, zoom-in strategies
are highly sensitive to initial prediction errors and lack any verification mechanism, making them
fragile in practice. Planner-based approaches mitigate this to some extent by introducing coordination
between models, but they continue to rely on general models to produce bounding boxes. Since these
general models are not trained explicitly for precise localization, the resulting predictions are often
inaccurate, and errors tend to propagate throughout the grounding process.

To address these limitations, we proposes GMS: Generalist Scanner Meets Specialist Locator, a
synergistic coarse-to-fine framework. GMS integrates the complementary strengths of general-
purpose and task-specific models to construct a training-free, modular grounding pipeline, as shown
in Figure 2. The design of GMS is inspired by the human visual cognition process, in which broad
perceptual scanning is followed by focused attention for fine-grained decision making. Accordingly,
the general-purpose vision-language model operates as a ‘Scanner’ that identifies high-confidence
candidate regions at a coarse level, while a fine-tuned GUI grounding model functions as a specialist
‘Locator’ that predicts precise coordinates within the selected regions. The GMS framework consists
of five modules that enable coarse-to-fine localization: (1) Hierarchical attention allocation, where
the “Scanner” partitions the screen into coarse grids and selects semantically relevant regions; (2)
Iterative focus refinement, where ambiguous areas are recursively zoomed in through semantically
guided subdivision; (3) Cross-modal verification, where the “Locator” proposes coordinates that
are validated by the “Scanner” to suppress false positives; (4) Multi-agent consensus, where the
“Scanner” and “Locator” predictions are fused with asymmetric weighting for robust agreement; and
(5) Adaptive resolution enhancement, where multi-scale late fusion reconciles coarse semantic cues
with fine pixel-level localization. This design creates a cognitively inspired perception and action
loop, outperforming prior pipelines in both robustness and precision.

By addressing key limitations in existing approaches, such as the absence of verification mechanisms
in zoom-in methods and the imprecise localization capabilities in planner-based strategies, GMS
demonstrates strong generalization and efficiency. Empirical results on the benchmark dataset confirm
that our proposed framework achieves substantial performance gains. Notably, even when initialized
with two individually weak models, GMS improves grounding accuracy from below 4% to 36%, as
illustrated in Figure 1. In summary, our contributions are threefold:

(1) We introduce GMS, a training-free multi-agent framework that emulates human-like grounding
by assigning complementary roles to generalist and specialist models, achieving substantial gains
without additional fine-tuning.

(2) Experiments on the ScreenSpot-Pro dataset show that GMS improves performance by more than
10× with weak model pairs and consistently outperforms other strong baselines, demonstrating both
robustness and generalizability.

(3) We conduct extensive evaluations, including test-time scaling and ablations, to validate the
framework. The results show that agents are most effective when specialized, leading to robust
performance across diverse and challenging scenarios.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

General VLM Model

Desktop ScreenShot

In the screenshot, where are the pixel coordinates (x, y)

of the element corresponding to the operation …
Wait! I’m knowledgeable, but I’m not good at giving specific pixel coordinates. Even

though I can see the element I should click, maybe the answer is (435, 284)?

Grounding Fine-tuned Model

Wait! Although I have the capability to give pixel coordinates, the image is too large

and contains many elements. I could be wrong, maybe the answer is (869, 1088)?

I can be a “Scanner”!

I can be a “Locator”!

GMS Framework (Ours)

(671, 853)

Figure 2: A simplified illustration captures the motivation and design of the proposed GMS framework.
General-purpose VLMs exhibit broad visual and semantic understanding but often fail to produce
accurate coordinate predictions. In contrast, grounding fine-tuned VLMs offer precise localization
capabilities but lack the high-level reasoning required for complex tasks. Individually, both models
tend to produce incorrect outputs. However, by leveraging their complementary strengths and
assigning the general VLM as a ‘Scanner’ and the grounding VLM as a ‘Locator’, mimicking the
roles of human eyes and brain, this system can effectively generate correct answers.

2 RELATED WORKS

Recent advances in vision-language models (VLMs) have significantly improved multimodal under-
standing by jointly learning visual and textual representations (Comanici et al., 2025; OpenAI et al.,
2024; Anthropic, 2025; OpenAI, 2025; Bai et al., 2025). Building on their strong capabilities, recent
work investigates more interactive and grounded scenarios, where models must not only interpret
visual content but also localize and manipulate elements within images. This direction naturally
extends to GUI grounding, which maps user instructions to actionable interface elements in GUIs.

In parallel, recent years have seen significant advances in research on GUI agents, evolving from
rule-based web automation to general-purpose interface control across platforms such as mobile and
desktop. A persistent challenge is the reliable localization of interface elements, which remains a
key bottleneck for robust automation (Nakano et al., 2022; Zhang et al., 2025b; Wang et al., 2024a).
The emergence of vision-language models marks a shift toward perception-driven grounding by
leveraging both visual and textual inputs, without depending solely on structured metadata. Recent
work improves robustness by fine-tuning VLMs on GUI-specific datasets, resulting in models that
predict element coordinates with higher precision (Gou et al., 2025; Wu et al., 2024; Gu et al.,
2025; Qin et al., 2025). Some studies extend this direction using reinforcement learning approaches
for multi-step decision-making with interpretable intermediate outputs (Tang et al., 2025c; Luo
et al., 2025a; Wu et al., 2025b). In parallel, training-free approaches explore dual-system models,
iterative zoom-in mechanisms, and the repurposing of general purpose models as planners to guide
action selection (Wu et al., 2025a; Li et al., 2025). However, existing methods often overlook
collaborative agent architectures, in which two specialized models assume distinct roles aligned
with their respective strengths. Such cooperation presents a promising direction for integrating
complementary model capabilities in GUI grounding.

3 METHODOLOGY

GUI grounding poses a dual challenge: it requires both global semantic understanding and precise
spatial localization. Prior approaches often rely on a single model to handle both tasks simultaneously,
leading to trade-offs that limit overall performance. Inspired by the dual-stream hypothesis in
visual cognition, which separates the “what/where” pathway from the “how” pathway in human
perception, we propose GMS: Generalist Scanner Meets Specialist Locator, a framework that
explicitly decomposes the grounding task into two specialized agents: a generalist vision-language
model acting as a ‘Scanner’, and a fine-tuned GUI grounding model serving as a ‘Locator’. GMS
follows a coarse-to-fine strategy across five stages, with the detailed process illustrated in Figure 3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In the screenshot, where are the pixel coordinates (x, y)

of the element corresponding to the operation “search

information of project in android studio”?

Step1 – Hierarchical Attention Allocation

Region 5 40

Region 1 30

Region 2 30

Region 8 20

Region 7 20

… I cannot directly

perform the search

operation using a

visible button or icon

in the screenshot.

… there isn't a readily

apparent button for

directly searching

project information in

the the image.

Step2 – “Scanner” Verification

Region Confidence Score9 Regions Splits Region 5 Verification Region 1 Verification

… the image does

contain elements that

allow searching for

project information.

Region 2 Verification

Scanner, I think the coordinate is (647, 235)

Locator, you need to help me

identify the precise coordinates (x,

y) of a specific area …

Ok, let me check … it is likely that this

cropped region contains the target button

for searching information of a project in

Android Studio.

Region 3 70

Region 2 60

Region 1 10

Region 5 5

Region 4 5

Step4 – Iterative Focus Refinement

9 Regions Splits Region Confidence Score

… the image does

not contain the

button or icon for

searching project

information.

… the image contains

the button to search

information of

project in android

studio.

Step5 – “Scanner” Verification

Region 3 Verification Region 2 Verification Region 1 Verification

… the "Navigate"

menu is visible in the

image, it is possible

to perform a search

operation.

Scanner, I think the coordinate is (442, 713)

Locator, you need to help me

identify the precise coordinates (x,

y) of a specific area …

Ok, let me check … it is unlikely to

contain the target button for directly

searching information of the project.

Step7 – Multi-Agent Consensus

Scanner, I will give you two candidates

and now I need you to make a choice

between them:

Locator, Candidate 1 shows a search bar

with a magnifying glass icon and a

dropdown menu, which is most …

Our Final Selection

Absolute Point (664, 224)

Step8 - Adaptive Resolution Enhancement

I prefer this area, the center

position within region 13

I prefer this area, which is the

coordinate I gave to you before

I think your answer is better, the final answer is: (664, 224)

Scanner Agent Locator Agent

Step3 – Cross-Modal Verification

Step6 – Cross-Modal Verification

Figure 3: A detailed illustration of the proposed GMS framework highlights its multi-stage and
hierarchical process. The ‘Scanner’ module mimics human vision by constraining the search space
and identifying regions of interest, while the ‘Locator’ module emulates cognitive decision-making to
determine precise coordinates. Each agent performs its dedicated role, yet they cooperate seamlessly
within the framework, leveraging their complementary strengths to accurately predict the target
coordinates.

Formally, let the GUI screen be an image I ∈ RH×W×3 and a natural language instruction as Q.
The goal is to predict a pixel coordinate p = (x∗, y∗) ∈ [0,W]× [0, H] corresponding to the GUI
element described in Q. GMS achieves this through the following stages:

3.1 HIERARCHICAL ATTENTION ALLOCATION

Human visual attention operates in a coarse-to-fine manner, allocating cognitive resources hierarchi-
cally across the scene. Psychological studies show that within the first 300ms of exposure, humans
can perform scene parsing to identify regions of interest prior to fine-scale analysis. GMS emulates
this behavior via adaptive grid partitioning and region-level semantic scoring.

Specifically, we begin by decomposing the screen into a 3× 3 grid:

R = {R1, R2, . . . , R9}, Ri ⊂ I.

Each region Ri is defined by its bounding box Bi = [xi
1, y

i
1, x

i
2, y

i
2]. The generalist vision-language

model (e.g., GPT, Gemini) then acts as the ‘Scanner’, which evaluates each region’s semantic
relevance to the query Q by computing:

si = Select(Instselection, Q,Ri), si ∈ [0, 100].

The top-k scoring regions are selected to form the candidate set Rtop. Note that our choice of 3× 3
reflects a trade-off between semantic coverage and token cost. While finer grids (e.g., 4× 4) increase
resolution, they incur diminishing returns in early-stage filtering and increase computational load.

3.2 ITERATIVE FOCUS REFINEMENT

One-shot attention allocation often fails in high-density GUI scenes due to:

• Semantic ambiguity from visually similar but functionally distinct elements.
• Contextual dependencies requiring reasoning over inter-element relations (e.g., “checkbox next

to the password field”).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To mitigate this, we design a recursive depth-first search (DFS) refinement process. At each level l,
regions R(l) are recursively subdivided into 3× 3 subgrids. The ‘Scanner’ re-applies the selection
function:

R(l+1) = Select(R(l), Instselection, Q),

until one of two stopping conditions is met: (i) the region’s width or height is below a threshold (e.g.,
< 600 px), or (ii) subsequent verification (section 3.3) indicates insufficient confidence. Unlike naive
zoom-in approaches, each refinement step is semantically informed and is grounded in a verification
loop to suppress false positives.

3.3 CROSS-MODAL VERIFICATION

While generalist models excel at region-level semantic matching, they often suffer from false con-
fidence due to hallucinations or overgeneralization. To correct this, we introduce a cross-modal
verification mechanism that uses the specialist ‘Locator’ as a factuality check.

For each selected region R(l), the ‘Locator’ agent predicts a coordinate:

p̂l = GUIGround(Q,R(l)).

A crop Cl of size 125× 125 pixels is extracted around p̂l, providing localized context. The ‘Scanner’
agent then performs verification:

vl = Verify(Cl, Q, Instverification), vl ∈ {0, 1}.
The patch size is carefully chosen to balance context and specificity. Empirically, 125× 125 provides
sufficient local cues while avoiding dilution from too many unrelated UI elements.

3.4 MULTI-AGENT CONSENSUS

After multiple rounds of verification, we could obtain t candidate crops:
C = {(C1, v1), . . . , (Ct, vt)}, vl ∈ {0, 1}.

Selecting the best candidate is framed as a multi-agent consensus problem. Instead of naı̈ve majority
voting, we adopt an asymmetric weighting strategy, reflecting each agent’s relative expertise:

(i) The ‘Scanner’ agent contributes global context understanding and high-level semantic reasoning
across multiple candidate regions.

(ii) The ‘Locator’ agent contributes fine-grained spatial precision and reliable confidence estimation
within localized regions.

The ‘Scanner’ agent is instructed as follows:

l̂ ← Eval(Instevaluation, C), C∗ = Cl̂.

This step ensures that the selected region maximally aligns with both semantic and spatial constraints
of the instruction Q.

3.5 ADAPTIVE RESOLUTION ENHANCEMENT

The final prediction requires resolving discrepancies between coarse attention and fine spatial cues.
Generalist vision-language models operate on low-resolution patches, while the specialist operates
on raw pixels. To bridge this, we design a multi-scale late fusion module.

First, we upscale C∗ by ×5 in both dimensions to improve resolution. A 5 × 5 grid is imposed,
followed by a 3× 3 subgrid within the selected region. The ‘Scanner’ estimates a coarse point:

pscanner = Center(z∗).

In parallel, the ‘Locator’ provides a direct prediction:
plocator = GUIGround(Q,C∗).

The final decision is delegated to the stronger ‘Scanner’ agent:
pfinal = Decide(Q,C∗, {pscanner, plocator}, Instdecision).

This fusion mechanism leverages multi-resolution reasoning, ensuring that the final coordinate
prediction is both semantically coherent and spatially precise. The design echoes principles from
receptive field theory, where layered attention enhances perceptual granularity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Base Model Development Creative CAD Scientific Office OS Average

text icon avg text icon avg text icon avg text icon avg text icon avg text icon avg text icon avg

GPT-4o 1.3 0.0 0.7 1.0 0.0 0.6 2.0 0.0 1.5 2.1 0.0 1.2 1.1 0.0 0.6 0.0 0.0 0.0 1.3 0.0 0.8
Gemini-2.0-Flash 0.6 2.1 1.3 4.5 0.0 2.6 3.6 3.1 3.4 2.1 1.8 2.0 2.3 0.0 1.7 0.0 1.1 0.5 2.5 1.3 2.0
Gemini-2.5-Flash-Lite 1.3 0.0 0.7 2.0 4.2 2.9 7.6 1.6 6.1 4.2 0.9 2.8 2.3 3.8 2.6 0.0 1.1 0.5 3.2 1.8 2.7
CogAgent-18B 14.9 0.7 8.0 9.6 0.0 5.6 7.1 3.1 6.1 22.2 1.8 13.4 13.0 0.0 6.5 5.6 0.0 3.1 12.0 0.8 7.7
Aria-UI 16.2 0.0 8.4 23.7 2.1 14.7 7.6 1.6 6.1 27.1 6.4 18.1 20.3 1.9 16.1 4.7 0.0 2.6 17.1 2.0 11.3
Claude (Computer Use) 22.0 3.9 12.6 25.9 3.4 16.8 14.5 3.7 11.9 33.9 15.8 25.8 30.1 16.3 26.2 11.0 4.5 8.1 23.4 7.1 17.1
UI-TARS-7B 58.4 12.4 36.1 50.0 9.1 32.8 20.8 9.4 18.0 63.9 31.8 50.0 63.3 20.8 53.5 30.8 16.9 24.5 47.8 16.2 35.7
UI-TARS-72B 63.0 17.3 40.8 57.1 15.4 39.6 18.8 12.5 17.2 64.6 20.9 45.7 63.3 26.4 54.8 42.1 15.7 30.1 50.9 17.5 38.1

OS-Atlas-4B 7.1 0.0 3.7 3.0 1.4 2.3 2.0 0.0 1.5 9.0 5.5 7.5 5.1 3.8 4.4 5.6 0.0 3.1 5.0 1.7 3.7
+ DiMo-GUI 13.6 1.4 7.7 9.6 2.8 6.7 4.1 4.7 4.2 30.6 4.5 19.3 24.3 15.1 22.2 7.5 2.2 5.1 14.6 4.0 10.6
+ GMS (w/ Gemini-2.0-Flash) 44.2 16.6 30.8 49.0 16.1 35.2 27.9 12.5 24.1 56.3 25.5 42.9 57.6 39.6 53.5 36.4 20.2 29.1 45.2 20.2 35.7
∆ 37.1 16.6 27.1 46.0 14.7 32.9 25.9 12.5 22.6 47.3 20.0 35.4 52.5 35.8 49.1 30.8 20.2 26.0 40.2 18.5 32.0
+ GMS (w/ Gemini-2.5-Flash-Lite) 39.0 18.6 29.1 48.5 14.7 34.3 21.3 12.5 19.2 45.8 20.0 34.6 55.4 24.5 48.3 35.5 19.1 28.1 40.9 17.9 32.1
∆ 31.9 18.6 25.4 45.5 13.3 32.1 19.3 12.5 17.7 36.8 14.5 27.1 50.3 20.7 43.9 29.9 19.1 25.0 35.9 16.2 28.4

UGround-7B 26.6 2.1 14.7 27.3 2.8 17.0 14.2 1.6 11.1 31.9 2.7 19.3 31.6 11.3 27.9 17.8 0.0 9.7 25.0 2.8 16.5
+ DiMo-GUI 44.2 6.2 25.8 39.9 7.7 26.4 17.3 3.1 13.8 50.7 8.2 32.3 46.9 15.1 39.6 32.7 10.1 22.4 38.1 7.9 26.6
+ GMS (w/ Qwen2.5-VL-7B) 44.2 13.8 29.4 56.1 15.4 39.0 33.5 17.2 29.5 54.2 25.5 41.7 59.3 34.0 53.5 37.4 18.0 28.6 47.9 19.0 36.9
∆ 15.6 11.7 14.7 28.8 12.6 22.0 19.3 15.6 18.4 22.3 22.8 22.4 27.7 22.7 25.6 19.6 18.0 18.9 22.9 16.2 20.4
+ GMS (w/ Gemini-2.0-Flash) 60.4 24.1 42.8 63.1 24.5 46.9 35.5 14.1 30.3 62.5 27.3 47.2 71.8 43.4 65.2 52.3 27.0 40.8 57.4 25.8 45.4
∆ 33.8 22.0 28.1 35.8 21.7 29.9 21.3 12.5 19.2 30.6 24.6 27.9 40.2 32.1 37.3 34.5 27.0 31.1 32.4 23.0 28.9
+ GMS (w/ Gemini-2.5-Flash-Lite) 44.8 18.6 32.1 59.6 21.7 43.7 29.9 18.8 27.2 50.0 28.2 40.6 70.1 35.8 62.2 44.9 20.2 33.7 50.2 22.8 39.7
∆ 18.2 16.5 17.4 32.3 18.9 26.7 15.7 17.2 16.1 18.1 25.5 21.3 38.5 24.5 34.3 27.1 20.2 24.0 25.2 20.0 23.2

UGround-V1-7B 51.9 3.4 28.4 48.0 9.1 31.7 20.0 1.6 15.3 57.6 16.4 39.8 61.6 13.2 50.4 37.4 7.9 25.0 45.6 8.4 31.4
+ DiMo-GUI 57.8 21.4 40.1 60.1 18.1 42.5 45.7 18.8 39.1 75.7 28.2 55.1 79.7 37.7 70.0 51.4 30.3 41.8 61.7 24.3 47.4
+ GMS (w/ Qwen2.5-VL-7B) 53.2 20.7 37.5 57.1 19.6 41.3 59.4 29.7 52.1 62.5 34.5 50.4 67.8 35.8 60.4 45.8 15.7 32.1 58.4 24.5 45.5
∆ 1.3 17.3 9.1 9.1 10.5 9.6 39.4 28.1 36.8 4.9 18.1 10.6 6.2 22.6 10.0 8.4 7.8 7.1 12.8 16.1 14.1
+ GMS (w/ Gemini-2.0-Flash) 69.5 35.9 53.2 67.7 26.6 50.4 67.0 28.1 57.5 70.1 38.2 56.3 76.8 50.9 70.9 51.4 21.3 37.8 68.1 32.5 54.5
∆ 17.6 32.5 24.8 19.7 17.5 18.7 47.0 26.5 42.2 12.5 21.8 16.5 15.2 37.7 20.5 14.0 13.4 12.8 22.5 24.1 23.1
+ GMS (w/ Gemini-2.5-Flash-Lite) 59.1 29.7 44.8 72.2 30.8 54.8 70.6 17.2 57.5 69.4 38.2 55.9 78.0 45.3 70.4 57.9 29.2 44.9 68.9 31.5 54.6
∆ 7.2 26.3 16.4 24.2 21.7 23.1 50.6 15.6 42.2 11.8 21.8 16.1 16.4 32.1 20.0 20.5 21.3 19.9 23.3 23.1 23.2

Table 1: Main experimental results on the ScreenSpot-Pro dataset. The table reports performance
under the proposed GMS framework with different combinations of ‘Scanner’ and ‘Locator’ agents,
compared against a range of baseline methods. The best accuracy for each setting is highlighted in
bold, and the second-best is underlined. Relative improvements (in percentage points) are annotated.

4 EXPERIMENTS SETUP

4.1 DATASET

We evaluate our framework on the ScreenSpot-Pro benchmark, which consists of over 1,500 high-
resolution desktop screenshots spanning six GUI grounding tasks (Li et al., 2025).

4.2 VISION LANGUAGE MODELS

We instantiate our framework with two vision–language models in complementary roles: a general-
purpose ‘Scanner’ for broad visual understanding and instruction following, and a GUI-specialized
‘Locator’ for precise element localization.

To demonstrate that the framework effectively exploits each model’s strengths, we select two well-
known grounding-focused model families, each with fewer than 7B parameters: OS-Atlas (Wu et al.,
2024) and UGround (Gou et al., 2025).

For the ‘Scanner’ role, we balance cost and model availability (including both open-weight and
closed-source models) and choose: Qwen2.5-VL (Bai et al., 2025) and Gemini (Google, 2025;
Comanici et al., 2025; Team et al., 2024; 2025b).

4.3 METRICS

We use accuracy as the evaluation metric. Formally, let p̂ = (x, y) denote the predicted coordinate
and B = [xmin, xmax]× [ymin, ymax] denote the ground-truth bounding box. We define an indicator
function:

I(p̂ ∈ B) =
{
1, if xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax,

0, otherwise.

Then, the accuracy over N samples is: Accuracy = 1
N

∑N
i=1 I(p̂i ∈ Bi).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1024 768 600 512 448

Pixel Threshold

20

30

40

50

60

A
cc

u
ra

cy
(%

)

CAD

1024 768 600 512 448

Pixel Threshold

30

35

40

45

50

55

Creative

1024 768 600 512 448

Pixel Threshold

20

30

40

50

Development

1024 768 600 512 448

Pixel Threshold

30

40

50

60

70

OS

1024 768 600 512 448

Pixel Threshold

40

50

60

70

A
cc

u
ra

cy
(%

)

Office

1024 768 600 512 448

Pixel Threshold

25

30

35

40

45

50

Scientific

1024 768 600 512 448

Pixel Threshold

25

30

35

40

45

50

55

27.1

29.7
31.1 31.8 31.831.4

33.6
35.1 35.8 36.2

39.2
41.4

42.5
43.4 43.7

49.6

51.9
53.0 53.6 54.4

Average

OS-Atlas-4B (w/ Gemini-2.5-Flash-Lite)

UGround-7B (w/ Qwen2.5-VL-7B)

UGround-7B (w/ Gemini-2.0-Flash)

UGroundV1-7B (w/ Gemini-2.0-Flash)

Figure 4: Experimental results illustrating the impact of decreasing the pixel number threshold from
1024 to 448 in the hierarchical search constraints. The figure reports the accuracy of six sub-categories
and the overall accuracy across four agentic combinations.

4.4 IMPLEMENTATION DETAILS

We obtain all open-weight models from their official repositories on HuggingFace. For these fine-
tuned grounding models, we set the temperature to 0.0 to ensure faithfulness. For closed-source
models, we perform inference via the OpenRouter platform. To ensure consistency and efficiency,
we adopt the default inference settings: temperature = 0.7 and topp = 0.95. All experiments were
conducted on a machine equipped with two NVIDIA A100 80GB GPUs and 1,000 GB of RAM. The
prompts and baseline introduction are provided in Appendix G and Appendix E, respectively.

5 EXPERIMENT RESULTS

We evaluate our proposed framework on the ScreenSpot-Pro benchmark, with results presented in
Table 1. Our framework consistently outperforms all baselines across multiple settings, including
strong fine-tuned models (up to 72B parameters) and DiMo-GUI. The improvements are particularly
substantial across various sub-categories, covering both text and icon grounding tasks, with relative
gains ranging from 100% to over 1000%. We highlight the following key findings:

Effectiveness in Low-Performance Settings. The OS-Atlas-4B model performs poorly under direct
inference, achieving only 13% accuracy even with DiMo-GUI. Remarkably, when integrated into our
framework and paired with Gemini models, each of which yields less than 3% accuracy individually,
the combined system achieves 30% accuracy. This represents a 10× improvement over the original
results and a 2× improvement over DiMo-GUI. These findings highlight the framework’s ability to
coordinate weaker models into a highly effective cooperative system by assigning them specialized
roles.

Superior Performance on Icon Grounding Tasks. Existing methods, including DiMo-GUI and
large fine-tuned models, typically underperform on icon-related grounding tasks compared to text-
based tasks. In contrast, our GMS framework substantially alleviates this disparity. By leveraging the
synergy between the generalist ‘Scanner’ and specialist ‘Locator’ modules, our method boosts icon
grounding accuracy from 1.7% to 20% on OS-Atlas-4B (a 1076% improvement) and from 2.8% to
25.8% on UGround-7B (an 821% improvement).

Scalability and Model Flexibility. Our framework demonstrates strong scalability. Even with
relatively small ‘Scanner’ models, such as 7B or flash-Gemini variants, the performance gains remain
substantial. Furthermore, the results indicate that stronger general models lead to better outcomes.
Given the framework’s flexible and modular design, integrating more capable models (e.g., stronger
Gemini variants) may yield further performance improvements.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

3 5 7 9

Top-k

20

30

40

50

60
A

cc
u

ra
cy

(%
)

18.3

21.5
24.1 24.6

26.7

31.9
33.5

35.1

59.2 59.7 60.7 60.7

CAD

3 5 7 9

Top-k

30

35

40

45

50

55

28.9

34.2
35.3

36.9

34.8

39.6
41.2 41.7

48.1

52.9 53.5
55.1

Creative

3 5 7 9

Top-k

20

30

40

50

20.2

25.9

28.5
29.8

12.7

19.6
20.9

23.4

44.3

47.5
48.7 49.4

Development

3 5 7 9

Top-k

25

30

35

40

A
cc

u
ra

cy
(%

)

22.6

28.8

31.5
32.2

23.3

28.8

31.5

32.9

31.5

35.6

37.7

39.7

OS

3 5 7 9

Top-k

50

55

60

65

70

75

48.8
50.6

52.4 52.4
53.6

57.8 57.8
59.6

66.3

71.7

75.3 75.9

Office

3 5 7 9

Top-k

25

30

35

40

45

50

55

23.0

27.0
28.4

29.4
27.4

31.9
33.3 33.8

45.1

48.5

51.0
52.0

Scientific

OS-Atlas-4B (w/ Gemini-2.5-Flash-Lite) UGround-7B (w/ Qwen2.5-VL-7B) UGroundV1-7B (w/ Gemini-2.0-Flash)

Figure 5: Experimental results showing the impact of increasing the top-k selection value from 3 to 9.
The figure reports the accuracy across six sub-categories under four agentic combinations.

6 TEST-TIME SCALING

Our framework integrates the concept of test-time scaling into the hierarchical search process. The
inference time can be flexibly controlled by adjusting two key factors: the top-k selection parameter
at each search step and the pixel threshold used during the process. In this section, we analyze the
impact of these parameters on the 15 most challenging subsets.

6.1 IMPACT OF PIXEL VALUE THRESHOLD

We begin by evaluating the impact of different pixel thresholds, with accuracy results shown in
Figure 4. As the threshold decreases from 1024 to 512, which allows the ‘Scanner’ agents to capture
finer-grained details of the GUI interface, we observe a consistent increase in accuracy. Notably,
even at the higher threshold of 1024, the framework maintains strong performance, with only a
marginal drop in accuracy compared to lower thresholds. This result highlights the robustness and
effectiveness of our proposed framework. Moreover, the improvements observed with decreasing
thresholds suggest promising test-time scaling capabilities. Given that many original images in the
ScreenSpot-Pro dataset exceed 3000 pixels in resolution, these findings indicate that the framework
is well suited for high-resolution settings, which are critical in GUI understanding tasks.

6.2 IMPACT OF TOP-K REGION SELECTION

We further examine the impact of the k-value in the top-k region selection mechanism, which guides
the deeper stages of hierarchical search. As shown in Figure 5, increasing k from 3 to 9 leads to a
gradual improvement in accuracy. This trend aligns with intuition, as a larger search space allows the
‘Scanner’ agent to explore more potentially relevant subregions. Since in high-resolution settings,
where input images are especially large, the agent may fail to cover all important areas. A smaller k
can lead to the omission of critical regions, particularly when the agent assigns low confidence to
relevant areas due to limited context or weaker understanding.

The most significant performance gain occurs when increasing k from 3 to 5, suggesting that the
‘Scanner’ agent possesses a baseline level of capability, and a modest expansion of the search space
greatly enhances its effectiveness. Beyond this point, further improvements are observed, but with
diminishing returns. We also find that the choice of ‘Scanner’ agent influences the model’s sensitivity
to changes in k. For example, the Qwen2.5-VL-7B model shows the most pronounced improvement
as k increases; on the Development split, accuracy rises from 12.7% to 23.4%. In contrast, when

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Scanner Agent Locator Agent Inference Method Overall Accuracy (%)

Gemini-2.0-Flash OS-Atlas-4B

GMS 35.67

w/o Cross-Modal Verification 27.83(↓ 7.84)
w/o Multi-Agent Consensus 33.05(↓ 2.62)

w/o Adaptive Resolution Enhancement 31.59(↓ 4.08)

Gemini-2.5-Flash-Lite UGround-7B

GMS 39.72

w/o Cross-Modal Verification 33.57(↓ 6.15)
w/o Multi-Agent Consensus 37.20(↓ 2.52)

w/o Adaptive Resolution Enhancement 34.91(↓ 4.81)

Table 2: Ablation results after individually removing each of the three crucial stages from our
framework. Overall accuracy drops significantly compared to the full framework, highlighting the
cooperative nature and effectiveness of the proposed architecture.

stronger Gemini models are used as the ‘Scanner’ agent, the benefit of increasing k is less substantial.
This aligns with expectations, as stronger vision-language models are generally more confident and
accurate in identifying the correct region, thereby reducing the need for a large search space.

7 ABLATION STUDY

To validate the effectiveness of each key component in our proposed framework, we conduct a series
of ablation studies using three modified baselines:

• Deletion of Cross-Modal Verification: The ‘Locator’ agent’s predicted coordinates are passed
directly, without any confidence-based filtering.

• Deletion of Multi-Agent Consensus: The ‘Locator’ agent always selects the coordinate with
the highest confidence score, bypassing the consensus selection mechanism.

• Deletion of Adaptive Resolution Enhancement: The ‘Locator’ and ‘Scanner’ agents no longer
collaborate; the output of the ‘Locator’ alone is used as the final click instruction.

The experimental results, presented in Table 2, show that removing any component leads to noticeable
performance degradation. Among these experiments, the removal of cross-modal verification has
the most severe impact. This is likely due to the absence of confidence filtering, which causes the
‘Scanner’ agent to receive multiple candidate regions without sufficient guidance, making effective
reasoning difficult, especially under long-context constraints or limited output reasoning capacity.

In contrast, the removal of multi-agent consensus has the least impact on performance. This finding
reflects the strong evaluation capabilities of the ‘Scanner’ agent, which can reliably assess each
candidate to determine whether it contains the target position. As a result, selecting only the candidate
with the highest verification score still yields strong performance compared to the other two conditions.
This further supports the design intuition of assigning distinct and complementary responsibilities to
different agent types within our framework.

8 CONCLUSION

We propose GMS: Generalist Scanner Meets Specialist Locator, a synergistic coarse-to-fine frame-
work that employs hierarchical search with test-time scaling. Drawing inspiration from how humans
approach GUI grounding tasks, GMS introduces two specialized roles: the ‘Scanner’ and the ‘Loca-
tor’. This division enables cooperative behavior, allowing each agent to focus on the subtask that
aligns with its respective strengths. The ‘Scanner’ performs coarse region localization, while the
‘Locator’ is responsible for precise coordinate prediction within the identified region. Extensive
experiments on the ScreenSpot-Pro dataset demonstrate the effectiveness of GMS. The framework
not only surpasses strong baselines but also substantially boosts the performance of two relatively
weak models when combined, achieving nearly double their original accuracy without any additional
fine-tuning. Ablation studies further confirm the robustness of the framework, showing that each stage
contributes significantly to overall performance. These results underscore the practical applicability
of GMS to real-world GUI grounding scenarios and highlight its potential as a general paradigm for
agent collaboration in vision–language tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Ethical considerations play a central role in this research. All models used in this study are either open-
weight or widely adopted within the scientific community, ensuring transparency and reproducibility.
The proposed GMS framework aims to advance the capabilities of current VLM agents for the GUI
grounding task, contributing to real-world applications without introducing or reinforcing harmful
biases. No personally identifiable information or sensitive data is involved in this work. We are
committed to responsible research practices and advocate for the transparent reporting and ethical
deployment of AI technologies in ways that serve the broader interests of society.

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa,
Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril Zhang,
and Yi Zhang. Phi-4 technical report, 2024. URL https://arxiv.org/abs/2412.08905.

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, May 2025. Ac-
cessed May 22, 2025.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond, 2023. URL https://arxiv.org/abs/2308.12966.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
https://arxiv.org/abs/2502.13923.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents, 2024. URL https:
//arxiv.org/abs/2401.10935.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, Sam Petulla, Colin
Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-
Jiang Jiang, Krishna Haridasan, et al. Gemini 2.5: Pushing the frontier with advanced reasoning,
multimodality, long context, and next generation agentic capabilities, 2025. URL https://arxiv.
org/abs/2507.06261.

Haonan Ge, Yiwei Wang, Ming-Hsuan Yang, and Yujun Cai. Mrfd: Multi-region fusion decoding
with self-consistency for mitigating hallucinations in lvlms, 2025. URL https://arxiv.org/
abs/2508.10264.

Google. Gemini 2.0. https://developers.googleblog.com/en/gemini-2-family-expands/,
February 2025. Accessed FEB. 5, 2025.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents, 2025.
URL https://arxiv.org/abs/2410.05243.

Zhangxuan Gu, Zhengwen Zeng, Zhenyu Xu, Xingran Zhou, Shuheng Shen, Yunfei Liu, Beitong
Zhou, Changhua Meng, Tianyu Xia, Weizhi Chen, Yue Wen, Jingya Dou, Fei Tang, Jinzhen Lin,
Yulin Liu, Zhenlin Guo, Yichen Gong, Heng Jia, Changlong Gao, Yuan Guo, Yong Deng, Zhenyu
Guo, Liang Chen, and Weiqiang Wang. Ui-venus technical report: Building high-performance ui
agents with rft, 2025. URL https://arxiv.org/abs/2508.10833.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A
visual language model for gui agents, 2024. URL https://arxiv.org/abs/2312.08914.

10

https://arxiv.org/abs/2412.08905
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2508.10264
https://arxiv.org/abs/2508.10264
https://developers.googleblog.com/en/gemini-2-family-expands/
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2508.10833
https://arxiv.org/abs/2312.08914

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Siyuan Hu, Mingyu Ouyang, Difei Gao, and Mike Zheng Shou. The dawn of gui agent: A preliminary
case study with claude 3.5 computer use, 2024. URL https://arxiv.org/abs/2411.10323.

Zheng Hui, Yinheng Li, Dan Zhao, Colby Banbury, Tianyi Chen, and Kazuhito Koishida. WinSpot:
GUI grounding benchmark with multimodal large language models. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1086–1096,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-252-7.
doi: 10.18653/v1/2025.acl-short.85. URL https://aclanthology.org/2025.acl-short.85/.

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use,
2025. URL https://arxiv.org/abs/2504.07981.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei,
Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui visual
agent, 2024. URL https://arxiv.org/abs/2411.17465.

Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li, and Xiang
Yue. Visualwebbench: How far have multimodal llms evolved in web page understanding and
grounding?, 2024. URL https://arxiv.org/abs/2404.05955.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
reasoners, 2025. URL https://arxiv.org/abs/2504.14239.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren,
Guanjing Xiong, and Hongsheng Li. Ui-r1: Enhancing efficient action prediction of gui agents by
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.21620.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1 : A generalist r1-style vision-language
action model for gui agents, 2025a. URL https://arxiv.org/abs/2504.10458.

Tiange Luo, Lajanugen Logeswaran, Justin Johnson, and Honglak Lee. Visual test-time scaling for
gui agent grounding, 2025b. URL https://arxiv.org/abs/2505.00684.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback, 2022. URL https://arxiv.org/
abs/2112.09332.

Anthony Nguyen. Improved gui grounding via iterative narrowing, 2025. URL https://arxiv.
org/abs/2411.13591.

Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namyong Park, Zhengmian Hu, Hanjia Lyu, Junda Wu,
Ryan Aponte, Yu Xia, Xintong Li, Jing Shi, Hongjie Chen, Viet Dac Lai, Zhouhang Xie, Sungchul
Kim, Ruiyi Zhang, Tong Yu, Mehrab Tanjim, Nesreen K. Ahmed, Puneet Mathur, Seunghyun Yoon,
Lina Yao, Branislav Kveton, Thien Huu Nguyen, Trung Bui, Tianyi Zhou, Ryan A. Rossi, and
Franck Dernoncourt. Gui agents: A survey, 2025. URL https://arxiv.org/abs/2412.13501.

OpenAI. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/, August 2025.
Accessed Aug 7, 2025.

OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino,
Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali
Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya
Kumar, et al. Gpt-4o system card. arXiv preprint, August 2024. URL https://arxiv.org/abs/
2410.21276. Accessed June 22, 2025.

11

https://arxiv.org/abs/2411.10323
https://aclanthology.org/2025.acl-short.85/
https://arxiv.org/abs/2504.07981
https://arxiv.org/abs/2411.17465
https://arxiv.org/abs/2404.05955
https://arxiv.org/abs/2504.14239
https://arxiv.org/abs/2503.21620
https://arxiv.org/abs/2504.10458
https://arxiv.org/abs/2505.00684
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2411.13591
https://arxiv.org/abs/2411.13591
https://arxiv.org/abs/2412.13501
https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng,
Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng
Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction
with native agents, 2025. URL https://arxiv.org/abs/2501.12326.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/2408.
03314.

Fei Tang, Zhangxuan Gu, Zhengxi Lu, Xuyang Liu, Shuheng Shen, Changhua Meng, Wen Wang,
Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, and Yueting Zhuang. Gui-g2: Gaussian
reward modeling for gui grounding, 2025a. URL https://arxiv.org/abs/2507.15846.

Fei Tang, Haolei Xu, Hang Zhang, Siqi Chen, Xingyu Wu, Yongliang Shen, Wenqi Zhang, Guiyang
Hou, Zeqi Tan, Yuchen Yan, Kaitao Song, Jian Shao, Weiming Lu, Jun Xiao, and Yueting Zhuang.
A survey on (m)llm-based gui agents, 2025b. URL https://arxiv.org/abs/2504.13865.

Liang Tang, Shuxian Li, Yuhao Cheng, Yukang Huo, Zhepeng Wang, Yiqiang Yan, Kaer Huang,
Yanzhe Jing, and Tiaonan Duan. Sea: Self-evolution agent with step-wise reward for computer use.
arXiv preprint arXiv:2508.04037, 2025c.

5 Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang
Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu, Rui Lu, Shulin
Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifan An, Yilin Niu, Yuanhao
Wen, Yushi Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen, Bowen Wu,
Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi Ge, Chenghua
Huang, Chenhui Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models,
2025a. URL https://arxiv.org/abs/2508.06471.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding, Xinyang Geng,
Fred Alcober, Roy Frostig, Mark Omernick, Lexi Walker, Cosmin Paduraru, Christina Sorokin,
Andrea Tacchetti, Colin Gaffney, Samira Daruki, Olcan Sercinoglu, Zach Gleicher, Juliette Love,
Paul Voigtlaender, Rohan Jain, Gabriela Surita, Kareem Mohamed, Rory Blevins, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context, 2024. URL
https://arxiv.org/abs/2403.05530.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Melvin Johnson,
Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Timothy
Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Isard, Paul R. Barham, Tom
Hennigan, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, Ryan Doherty, Eli
Collins, Clemens Meyer, et al. Gemini: A family of highly capable multimodal models, 2025b.
URL https://arxiv.org/abs/2312.11805.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai
Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
Yi Gao, Basil Mustafa, Iain Barr, et al. Gemma 3 technical report, 2025c. URL https://arxiv.
org/abs/2503.19786.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception, 2024a.
URL https://arxiv.org/abs/2401.16158.

12

https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2507.15846
https://arxiv.org/abs/2504.13865
https://arxiv.org/abs/2508.06471
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2401.16158

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution, 2024b. URL https://arxiv.org/abs/2409.12191.

Shuai Wang, Weiwen Liu, Jingxuan Chen, Yuqi Zhou, Weinan Gan, Xingshan Zeng, Yuhan Che,
Shuai Yu, Xinlong Hao, Kun Shao, Bin Wang, Chuhan Wu, Yasheng Wang, Ruiming Tang,
and Jianye Hao. Gui agents with foundation models: A comprehensive survey, 2025a. URL
https://arxiv.org/abs/2411.04890.

Xuehui Wang, Zhenyu Wu, JingJing Xie, Zichen Ding, Bowen Yang, Zehao Li, Zhaoyang Liu,
Qingyun Li, Xuan Dong, Zhe Chen, Weiyun Wang, Xiangyu Zhao, Jixuan Chen, Haodong
Duan, Tianbao Xie, Chenyu Yang, Shiqian Su, Yue Yu, Yuan Huang, Yiqian Liu, Xiao Zhang,
Yanting Zhang, Xiangyu Yue, Weijie Su, Xizhou Zhu, Wei Shen, Jifeng Dai, and Wenhai Wang.
Mmbench-gui: Hierarchical multi-platform evaluation framework for gui agents, 2025b. URL
https://arxiv.org/abs/2507.19478.

Hang Wu, Hongkai Chen, Yujun Cai, Chang Liu, Qingwen Ye, Ming-Hsuan Yang, and Yiwei Wang.
Dimo-gui: Advancing test-time scaling in gui grounding via modality-aware visual reasoning,
2025a. URL https://arxiv.org/abs/2507.00008.

Penghao Wu and Saining Xie. V?: Guided visual search as a core mechanism in multimodal llms. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 13084–13094, June 2024.

Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
Baolin Peng, Bo Qiao, Reuben Tan, Si Qin, Lars Liden, Qingwei Lin, Huan Zhang, Tong Zhang,
Jianbing Zhang, Dongmei Zhang, and Jianfeng Gao. Gui-actor: Coordinate-free visual grounding
for gui agents, 2025b. URL https://arxiv.org/abs/2506.03143.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
generalist gui agents, 2024. URL https://arxiv.org/abs/2410.23218.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
Visual grounding for gui instructions, 2025. URL https://arxiv.org/abs/2412.16256.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Ufo: A ui-focused agent for windows os
interaction, 2024. URL https://arxiv.org/abs/2402.07939.

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma,
Guyue Liu, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Large language
model-brained gui agents: A survey, 2025a. URL https://arxiv.org/abs/2411.18279.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yanda Li, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu,
and Gang Yu. Appagent: Multimodal agents as smartphone users. In Proceedings of the 2025
CHI Conference on Human Factors in Computing Systems, CHI ’25, New York, NY, USA, 2025b.
Association for Computing Machinery. ISBN 9798400713941. doi: 10.1145/3706598.3713600.
URL https://doi.org/10.1145/3706598.3713600.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
Guo, Yufei Wang, Niklas Muennighoff, Irwin King, Xue Liu, and Chen Ma. A survey on
test-time scaling in large language models: What, how, where, and how well?, 2025c. URL
https://arxiv.org/abs/2503.24235.

Yuqi Zhou, Sunhao Dai, Shuai Wang, Kaiwen Zhou, Qinglin Jia, and Jun Xu. Gui-g1: Understanding
r1-zero-like training for visual grounding in gui agents, 2025. URL https://arxiv.org/abs/
2505.15810.

13

https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2411.04890
https://arxiv.org/abs/2507.19478
https://arxiv.org/abs/2507.00008
https://arxiv.org/abs/2506.03143
https://arxiv.org/abs/2410.23218
https://arxiv.org/abs/2412.16256
https://arxiv.org/abs/2402.07939
https://arxiv.org/abs/2411.18279
https://doi.org/10.1145/3706598.3713600
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2505.15810
https://arxiv.org/abs/2505.15810

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to assist with the phrasing and grammar of the manuscript. The LLMs were used
strictly as a writing aid and did not contribute to the scientific ideation, methodology, or results
presented in this paper.

B IMPLEMENTATION DETAILS

For the closed-source models, we perform inference using the OpenRouter platform, and all use
the default provider. All experiments were conducted between August 15 and September 15 on a
machine equipped with two NVIDIA A100 80GB GPUs and 1000GB of RAM.

B.1 BENCHMARK DATASET DISCUSSION

The ScreenSpot-Pro benchmark dataset poses challenges such as diverse icons, layouts, and
application-specific styles, as well as large input sizes and heterogeneous content, making it a
suitable resource for evaluating model robustness.

B.2 MAIN EXPERIMENT DETAILS

In the main experimental results shown in Table 1, we compare our approach with several baselines:
(1) direct inference using the original models and (2) DiMo-GUI, one of the strongest existing base-
lines, which incorporates the concept of test-time scaling. To balance performance and computational
efficiency, we set the threshold for hierarchical image search to 600 pixels, meaning that the search
terminates when either the image width or height falls below this threshold.

B.3 EXPERIMENTAL MODEL INTRODUCTION

Here we briefly introduce the four types of models that are used in the main experiments, as the
general ‘Scanner’ and the specialist ‘Locator’.

B.3.1 ‘LOCATOR’ MODELS

• OS-Atlas (Wu et al., 2024): An open-source foundational action model series for GUI agents,
trained on 2.3 million cross-platform screenshots and 13 million UI elements.

• UGround (Gou et al., 2025): A universal visual-only grounding model family that predicts
pixel-level element coordinates using only visual input, trained on 1.3 million screenshots
containing 10 million GUI elements.

B.3.2 ‘SCANNER’ MODELS

• Qwen2.5-VL (Bai et al., 2025): A recent multimodal vision–language model series, available
in multiple sizes, that offers strong visual understanding.

• Gemini (Google, 2025; Comanici et al., 2025; Team et al., 2024; 2025b): Google’s family of
multimodal models, capable of processing text, images, audio, and code, and designed for
broad AI applications including chat and search.

C FURTHER RELATED WORK

Here, we further discuss related work concerning the use of test-time scaling in the field of GUI
grounding:

C.1 TEST-TIME SCALING

Test-time scaling refers to techniques that improve model performance at inference without modifying
model parameters, typically by increasing computation or using additional resources (Muennighoff
et al., 2025; Snell et al., 2024; Zhang et al., 2025c). In GUI grounding, test-time scaling has been

14

https://openrouter.ai/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

used to improve localization through action histories, external knowledge retrieval, zoom-in searches,
and adaptive focus refinement (Wu et al., 2025a; Nguyen, 2025; Nakano et al., 2022). These methods
aim for greater accuracy via extended reasoning and iterative attention.

D ADDITIONAL BASELINE PERFORMANCE

Due to the page limitations in the main paper, we also report the raw performance of several additional
vision-language models on the test benchmark, which we list in Table 3.

Base Model Development Creative CAD Scientific Office OS Average

text icon avg text icon avg text icon avg text icon avg text icon avg text icon avg text icon avg

Gemma-3-27B 0.0 0.0 0.0 2.0 0.0 1.2 1.0 1.6 1.1 3.5 0.0 2.0 1.1 0.0 0.9 0.0 0.0 0.0 1.3 0.2 0.9
Phi-4-Multimodal 0.0 0.7 0.3 1.5 0.0 0.9 0.5 1.6 0.8 2.1 0.0 1.2 1.7 5.7 2.6 0.0 0.0 0.0 1.0 0.8 0.9
SeeClick 0.6 0.0 0.3 1.0 0.0 0.6 2.5 0.0 1.9 3.5 0.0 2.0 1.1 0.0 0.5 2.8 0.0 1.5 1.8 0.0 1.1
Claude Sonnet 4 1.3 3.4 2.3 1.5 0.7 1.2 2.5 0.0 1.9 1.4 1.8 1.6 0.6 1.9 0.9 0.0 0.0 0.0 1.3 1.5 1.4
Qwen2-VL-7B 2.6 0.0 1.3 1.5 0.0 0.9 0.5 0.0 0.4 6.3 0.0 3.5 3.4 1.9 3.0 0.9 0.0 0.5 2.5 0.2 1.6
GLM-4.5V 0.0 1.4 0.7 1.5 2.1 1.8 5.6 0.0 4.2 2.8 1.0 2.0 1.7 1.9 1.7 0.0 0.0 0.0 2.1 1.2 1.8
GPT-5 2.6 0.7 1.7 4.5 4.2 4.4 7.6 7.8 7.7 4.2 1.8 3.1 4.5 3.8 4.3 0.0 0.0 0.0 4.3 2.6 3.7
Gemini-2.5-Pro 4.5 2.8 3.7 7.6 5.6 6.7 14.2 1.6 11.1 4.9 6.4 5.5 7.3 3.8 6.5 2.8 1.1 2.0 7.5 3.8 6.1
ShowUI-2B 16.9 1.4 9.4 9.1 0.0 5.3 2.5 0.0 1.9 13.2 7.3 10.6 15.3 7.5 13.5 10.3 2.2 6.6 10.8 2.6 7.7

Table 3: Additional baseline results of various vision-language models on the GUI grounding
benchmark. Despite their strong general capabilities, these models perform poorly on this specific
task.

From the results presented in the table, it is evident that most state-of-the-art vision-language models,
including those from families such as GPT-5 and Gemini-2.5-Pro, perform poorly on the GUI
grounding benchmark despite their strong general vision capabilities. This highlights a critical
limitation in their ability to handle fine-grained, domain-specific grounding tasks. Nevertheless,
their robust visual perception suggests that they can still serve effectively as visual front-ends to
parse and understand GUI images. These findings underscore the importance of fully leveraging the
intrinsic capabilities of such models, rather than relying solely on scaling up data or fine-tuning larger
parameter models.

E BASELINE INTRODUCTION

We compare our GMS framework with several baselines, as shown in Table 1 and Table 3. Below, we
introduce each baseline to provide clarification.

• GPT-4o (OpenAI et al., 2024): OpenAI’s flagship multimodal model that seamlessly un-
derstands and generates text, images, and audio. It enables faster, more natural real-time
interactions while maintaining strong reasoning and accuracy.

• Gemma3-27B (Team et al., 2025c): Google’s 27B-parameter version of their Gemma 3 model
family. It’s a high-capacity, multimodal model that accepts both text and image inputs, supports
an expanded 128K context window, works across 140 languages.

• Phi-4-Multimodal (Abdin et al., 2024): Microsoft’s 5.6B-parameter model that can process text,
vision, and speech (audio) inputs in a unified system. It supports a long 128K token context,
uses a “mixture of LoRAs” approach for modality-adapters.

• SeeClick (Cheng et al., 2024): A visual GUI agent that automates tasks like clicking or typing
by observing only interface screenshots, without needing structured representations such as
HTML or accessibility trees.

• Claude-Sonnet-4 Anthropic (2025): A mid-tier model in Anthropic’s Claude 4 family, designed
to balance strong reasoning and coding ability with efficiency and accessibility.

• Qwen2-VL-7B (Wang et al., 2024b; Bai et al., 2023): A 7B-parameter vision-language model
from Alibaba’s Qwen2-VL family.

• GLM-4.5V (Team et al., 2025a): ZhipuAI’s flagship vision-language model built on GLM-
4.5-Air, activating 12B of its 106B parameters per pass to balance efficiency with strong
multimodal reasoning.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Gemini-2.0-Flash (Google, 2025): Google’s high-performance, multimodal model in the
Gemini 2.0 family designed for the “agentic era”.

• Gemini-2.5-Flash-Lite (Comanici et al., 2025): Google’s cost- and latency-optimized variant
in the Gemini 2.5 model series, designed for high-volume, real-world use.

• GPT-5 (OpenAI, 2025): OpenAI’s next-generation multimodal model that advances beyond
GPT-4o with stronger reasoning, longer context handling, and more efficient real-time interac-
tion across text, vision, and audio.

• Gemini-2.5-Pro (Comanici et al., 2025): Google’s top-tier reasoning model in the Gemini 2.5
family, designed to tackle complex problems across modalities, including text, audio, images,
video, and even whole code repositories.

• ShowUI-2B (Lin et al., 2024): A lightweight vision-language-action model from ShowLab,
built for GUI agents to understand and interact with graphical user interfaces via screenshots.

• CogAgent-18B (Hong et al., 2024): An open-source vision-language model (VLM) developed
by THUDM and Zhipu AI, specifically optimized for understanding and interacting with
graphical user interfaces (GUIs).

• Aria-UI (Yang et al., 2025): A multimodal model for GUI grounding that maps language
instructions to specific interface elements using only vision (screenshots), foregoing HTML or
accessibility trees (AXTrees) as auxiliary input.

• Claude (Computer Use) (Hu et al., 2024): A GUI-agent extension of Claude 3.5 Sonnet that
enables the model to observe screenshots of a user’s computer and issue desktop actions (mouse,
keyboard, clicks) to automate tasks.

• UI-TARS-7B (Qin et al., 2025): A 7B-parameter vision-language model from ByteDance
designed for native GUI automation, capable of controlling both web and desktop applications
via only screenshot input.

• UI-TARS-72B (Qin et al., 2025): 72B-parameter version of UI-TARS.

For the baselines not presented in the previous paper, we conduct the evaluations ourselves, with
the inference prompts provided in Appendix G. For the baselines included in the previous paper, we
directly use the results reported by Wu et al. (2025a), which also correspond to the ScreenSpot-Pro
leaderboard data. Regarding the general-purpose vision-language models, we select recent and strong
models to demonstrate their raw performance on the direct GUI grounding task, which turns out to be
rather poor.

F DISCUSSION

In this section, we elaborate on the proposed framework and present further analysis of the associated
experiments, demonstrating its superior performance and the novel insights it yields relative to
existing methods.

F.1 COGNITION AND ARCHITECTURAL INSIGHTS

Here, we discuss several key aspects in which our GMS framework departs from prior works,
highlighting the unique insights underlying our design:

(1) Cognitive-inspired task decomposition based on the dual-stream model, separating semantic
attention from motor-level localization.

(2) Hierarchical attention and cross-modal verification that iteratively refine the search space, replacing
brittle single-pass grounding.

(3) Asymmetric multi-agent collaboration, with a generalist scanner for abstraction and a specialist
locator for spatial precision.

(4) Late-stage fusion through multi-resolution decision making, aligning global predictions with
fine-grained local cues.

These insights allow GMS to achieve a stronger balance between global semantic reasoning and local
spatial precision than prior approaches.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F.2 ON THE POSSIBILITY OF COMPARING WITH ADDITIONAL BASELINES

In this paper, we primarily compare our framework with DiMo-GUI, one of the strongest existing
baselines on the GUI grounding benchmark. Although numerous related works report results on this
benchmark, their performance under comparable grounding model settings consistently falls short of
DiMo-GUI. Therefore, we focus our comparison on DiMo-GUI to balance both reproducibility costs
and page constraints. Given that our framework outperforms DiMo-GUI, it is reasonable to infer that
it also surpasses other baselines that perform worse than DiMo-GUI.

G INFERENCE PROMPTS

We present the manually designed inference prompts employed in the experiments shown in Figures 6
through 18.

The first thing we want to note is that, for the specific fine-tuned grounding models, we use the same
inference prompt as the researchers in the previous work, without making any modifications. The
inference-related code is written based on the HuggingFace repository example code, including some
resizing and transformations for certain models such as OS-Atlas-4B.

The second point to note is that each main prompt designed for our GMS framework has two versions,
depending on the names of certain subsets. Subsets such as ”ppt windows” or ”word macos” clearly
indicate the application name (here ”powerpoint” and ”word”). However, there are three special
subsets, namely ”common linux”, ”common windows”, and ”common macos”, which do not contain
specific application names. For this reason, we provide two versions of each prompt: the first is used
for most subsets, while the second is used for the three special subsets mentioned here.

Hierarchical Attention Allocation Prompt (Initial Level & Normal Version)

I have provided you a screenshot of my desktop containing the interface of the
{application name} application running on the {system name} system. Where
should I click if I want to DIRECTLY perform the following operation in the
{application name}: **{instruction}**? Provide the possibilities for each region
(Region 1 to Region 9, ordered from left to right, top to bottom) with a score between
0 and 100. Your output MUST follow this format: ”Region X: SCORE (explanation)”.

Figure 6: The hierarchical attention allocation prompt for the initial level (search depth = 0) and the
normal subsets.

Hierarchical Attention Allocation Prompt (Initial Level & Special Version)

I have provided you a screenshot of my desktop using {system name} system.
Where should I click if I want to DIRECTLY perform the following operation in the
{application name}: **{instruction}**? Provide the possibilities for each region
(Region 1 to Region 9, ordered from left to right, top to bottom) with a score between
0 and 100. Your output MUST follow this format: ”Region X: SCORE (explanation)”.

Figure 7: The hierarchical attention allocation prompt for the initial level (search depth = 0) and the
special subsets.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Hierarchical Attention Allocation Prompt (Non-Initial Level & Normal Version)

Where should I click if I want to DIRECTLY perform the following operation in the
{application name}: **{instruction}**? Provide the possibilities for each region
(Region 1 to Region 9, ordered from left to right, top to bottom) with a score between
0 and 100. Your output MUST follow this format: ”Region X: SCORE (explanation)”.

Figure 8: The hierarchical attention allocation prompt for the non-initial level (search depth ≥ 1) and
the normal subsets.

Hierarchical Attention Allocation Prompt (Non-Initial Level & Special Version)

Where should I click if I want to DIRECTLY perform the following operation:
{instruction}? Provide the possibilities for each region (Region 1 to Region
9, ordered from left to right, top to bottom) with a score between 0 and 100. Your
output MUST follow this format: ”Region X: SCORE (explanation)”.

Figure 9: The hierarchical attention allocation prompt for the non-initial level (search depth ≥ 1) and
the special subsets.

Scanner Region Verification Prompt (Normal Version)

You need to check if the image region from my desktop screenshot contains the button
or icon for me to DIRECTLY perform the following operation in the {application}:
{instruction}. You are required to output your reasoning process first, and then
provide your final answer in the format: <answer>yes/no</answer>.

Figure 10: The region verification prompt that instructed the ‘Scanner’ agent to filter the region of
interest (for normal subsets).

Scanner Region Verification Prompt (Special Version)

You need to check if the image region from my desktop screenshot contains the button
or icon for me to DIRECTLY perform the following operation: **{instruction}**.
You are required to output your reasoning process first, and then provide your final
answer in the format: <answer>yes/no</answer>.

Figure 11: The region verification prompt that instructed the ‘Scanner’ agent to filter the region of
interest (for special subsets).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Cross-Modal Verification Prompt (Normal Version)

I want to DIRECTLY perform the following operation in the {application}:
{instruction}. First, I’m showing you the original screenshot image, fol-
lowed by a cropped region from it. You need to determine whether this cropped
region is likely to contain the target button, area, or icon for the operation. An-
swer with <relevance>yes/no</relevance> and provide your reasoning within
<reasoning>...</reasoning>.
This is the original screenshot image: <Image1>
And this is the cropped region from the original screenshot image: <Image2>

Figure 12: The cross-modal verification prompt that instructed the ‘Scanner’ agent to verify the
cropped region (for normal subsets).

Cross-Modal Verification Prompt (Special Version)

I want to DIRECTLY perform the following operation: **{instruction}**. First, I’m
showing you the original screenshot image, followed by a cropped region from it. You
need to determine whether this cropped region is likely to contain the target button,
area, or icon for the operation. Answer with <relevance>yes/no</relevance>
and provide your reasoning within <reasoning>...</reasoning>.
This is the original screenshot image: <Image1>
And this is the cropped region from the original screenshot image: <Image2>

Figure 13: The cross-modal verification prompt that instructed the ‘Scanner’ agent to verify the
cropped region (for special subsets).

Scanner Adaptive Resolution Enhancement Prompt (Normal Version)

I want to DIRECTLY perform this operation in the {application} on my desktop:
{instruction}.
I have extracted a candidate region and divided it into 5x5 smaller regions (numbered
1 to 25 from left to right, top to bottom). Please identify which of the 25 regions is
the most relevant (return only one region you are most confident about). Then, within
that region, tell me which of the 9 inner zones the target click point is closest to.
(Choose from: top left, top center, top right, center left, center, center right, bottom
left, bottom center, bottom right)
First, provide your reasoning process, and then return your final answer in the
following format:
<index>xxx</index>
<location>xxx</location>

Figure 14: The adaptive resolution prompt that instructed the ‘Scanner’ agent to identify a possible
fine-grained region (for normal subsets).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Scanner Adaptive Resolution Enhancement Prompt (Special Version)

I want to DIRECTLY perform this operation on my desktop: **{instruction}**.
I have extracted a candidate region and divided it into 5x5 smaller regions (numbered
1 to 25 from left to right, top to bottom). Please identify which of the 25 regions is
the most relevant (return only one region you are most confident about). Then, within
that region, tell me which of the 9 inner zones the target click point is closest to.
(Choose from: top left, top center, top right, center left, center, center right, bottom
left, bottom center, bottom right)
First, provide your reasoning process, and then return your final answer in the
following format:
<index>xxx</index>
<location>xxx</location>

Figure 15: The adaptive resolution prompt that instructed the ‘Scanner’ agent to identify a possible
fine-grained region (for special subsets).

OS-Atlas-4B Grounding Prompt

In the screenshot of this web page, please give me the coordinates of the element I
want to click on according to my instructions(with point).\n"{}"

Figure 16: The instruction for the OS-Atlas-4B model to output grounding coordinates.

UGround-7B Grounding Prompt

In the screenshot, where are the pixel coordinates (x, y) of the element corresponding
to \"{}\"?

Figure 17: The instruction for the UGround-7B model to output grounding coordinates.

UGround-V1-7B Grounding Prompt

Your task is to help the user identify the precise coordinates (x, y) of a specific
area/element/object on the screen based on a description.
- Your response should aim to point to the center or a representative point within the
described area/element/object as accurately as possible.
- If the description is unclear or ambiguous, infer the most relevant area or element
based on its likely context or purpose.
- Your answer should be a single string (x, y) corresponding to the point of the interest.
Description: {instruction}
Answer:

Figure 18: The instruction for the UGround-V1-7B model to output grounding coordinates.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Baseline Models Grounding Prompt

I want to DIRECTLY perform this operation in the {application} on my desktop:
{instruction}. You should provide the target CLICK pixel coordinate (x, y) in
the ORIGINAL image. You must output only integer coordinate values. For example:
’123, 456’ or ’(123, 456)’.

Figure 19: The instruction for the baseline models to output grounding coordinates.

21

	Introduction
	Related Works
	Methodology
	Hierarchical Attention Allocation
	Iterative Focus Refinement
	Cross-Modal Verification
	Multi-Agent Consensus
	Adaptive Resolution Enhancement

	Experiments Setup
	Dataset
	Vision Language Models
	Metrics
	Implementation Details

	Experiment Results
	Test-Time Scaling
	Impact of Pixel Value Threshold
	Impact of Top-k Region Selection

	Ablation Study
	Conclusion
	The Use of Large Language Models (LLMs)
	Implementation Details
	Benchmark Dataset Discussion
	Main Experiment Details
	Experimental Model Introduction
	`Locator' Models
	`Scanner' Models

	Further Related Work
	Test-Time Scaling

	Additional Baseline Performance
	Baseline Introduction
	Discussion
	Cognition and Architectural Insights
	On the Possibility of Comparing with Additional Baselines

	Inference Prompts

