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Abstract

Large language models (LLMs) present novel001
opportunities in public opinion research by pre-002
dicting survey responses in advance during the003
early stages of survey design. Prior methods004
steer LLMs via descriptions of subpopulations005
as LLMs’ input prompt, yet such prompt engi-006
neering approaches have struggled to faithfully007
predict the distribution of survey responses from008
human subjects. In this work, we propose di-009
rectly fine-tuning LLMs to predict response dis-010
tributions by leveraging unique structural char-011
acteristics of survey data. To enable fine-tuning,012
we curate SubPOP, a significantly scaled dataset013
of 3,362 questions and 70K subpopulation-014
response pairs from well-established public015
opinion surveys. We show that fine-tuning on016
SubPOP greatly improves the match between017
LLM predictions and human responses across018
various subpopulations, reducing the discrep-019
ancy in distribution over option choices by up020
to 46% compared to baselines, and achieves021
strong generalization to out-of-distribution data.022
Our findings highlight the potential of survey-023
based fine-tuning to improve predictions about024
opinions of real-world populations and there-025
fore enable more efficient survey designs.026

1 Introduction027

Surveys provide an essential tool for probing public028

opinions on societal issues, especially as opinions029

vary over time and across subpopulations. However,030

surveys are also costly, time-consuming, and require031

careful calibration to mitigate non-response and032

sampling biases (Choi and Pak, 2004; Bethlehem,033

2010). Recent work suggests that large language034

models (LLMs) can assist public opinion studies035

by predicting survey responses across different036

subpopulations, explored in both social science037

(Argyle et al., 2023; Bail, 2024; Ashokkumar et al.,038

2024; Manning et al., 2024), and NLP (Santurkar039

et al., 2023; Chu et al., 2023; Moon et al., 2024;040
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Figure 1: Illustration of our method and SubPOP. We
collect survey data from two survey families—ATP from
Pew Research (Center, 2018) (forming SubPOP-Train)
and GSS from NORC (Davern et al., 2024) (forming
SubPOP-Eval). LLMs are fine-tuned on SubPOP-Train
and evaluated on both OpinionQA (Santurkar et al.,
2023) and SubPOP-Eval to assess generalization
of distributional opinion prediction across unseen
subpopulations, topics, and survey families.

Hämäläinen et al., 2023; Chiang and Lee, 2023). 041

Such capabilities could substantially enhance the 042

survey development process– not as a replacement 043

for human participants but as a tool to complement 044

various phases, e.g. pilot testing (Grossmann et al., 045

2023; Ziems et al., 2024; Rothschild et al., 2024; 046

Dillion et al., 2023; Learner, 2024). 047

Prior work in steering language models, i.e. con- 048

ditioning models to reflect the opinions of a specific 049

subpopulation, has primarily investigated different 050

prompt engineering techniques (Santurkar et al., 051

2023; Moon et al., 2024; Park et al., 2024a). How- 052

ever, prompting alone has shown limited success 053

in generating completions that accurately reflect 054

the distributions of survey responses collected from 055
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human subjects. Off-the-shelf LLMs (Achiam et al.,056

2023; Dubey et al., 2024; Jiang et al., 2023) have057

shown to mirror the opinions of certain US subpopu-058

lations such as the wealthy and educated (Santurkar059

et al., 2023; Gallegos et al., 2024; Deshpande et al.,060

2023; Kim and Lee, 2023), while generating stereo-061

typical or biased predictions of underrepresented062

groups (Cheng et al., 2023b,a; Wang et al., 2024).063

Furthermore, these models often fail to capture the064

diversity of human opinions within a subpopulation065

(Kapania et al., 2024; Park et al., 2024b). While066

fine-tuning presents opportunities to address these067

limitations (Chu et al., 2023; He et al., 2024),068

existing methods fail to train models that accurately069

predict opinion distributions across (1) diverse sub-070

populations and (2) various survey question topics.071

The present work. We propose fine-tuning072

LLMs on large collections of data from cross-073

sectional public opinion surveys, consisting of074

questions about diverse topics and full distributions075

of responses from each subpopulation defined by076

demographic and ideological traits. By casting077

pairs of (subpopulation, survey question) as input078

prompts, we train the LLM to align its response079

distribution against that of human subjects in a080

supervised manner. We posit that survey data is081

particularly well-suited for training LLMs since: (1)082

We can construct clear subpopulation-response083

pairs as data samples from which models learn084

associations between group identities and expressed085

opinions, which are typically rare in language mod-086

els’ pre-training corpora, (2) Large-scale opinion087

polls are carefully designed and calibrated (e.g.088

using post-stratification) to collect representative089

human responses, even for minority groups that090

have high empirical variance, (3) We can enable091

LLMs to capture subpopulation opinions as dis-092

tributions over multiple options using a training093

objective that explicitly matches model predictions094

against response distributions of human subjects.095

Training on public opinion survey data has096

remained under-explored due to the limited avail-097

ability of structured survey datasets. To this end,098

we curate and release SubPOP (Subpopulation-level099

Public Opinion Prediction), a dataset of 70K100

subpopulation-response distribution pairs (6.5×101

larger compared to previous datasets). We show that102

fine-tuning LLMs on SubPOP significantly improves103

the distributional match between LLM generated104

and human responses. Additionally, the improve-105

ments strongly generalize to unseen subpopulations, 106

survey waves, and survey families, i.e. surveys ad- 107

ministered by different organizations. In particular, 108

we observe that our approach addresses prior lim- 109

itations in approximating opinion distributions of 110

diverse subpopulations, including minority groups. 111

Our contributions are summarized as follows: 112

• We show that training LLMs on response 113

distributions from survey data significantly 114

improves their ability to predict the opinions 115

of subpopulations, reducing the Wasserstein 116

distance between model-predicted and ground- 117

truth distributions by 32-46% compared to 118

top-performing baselines. (Section 4.2) 119

• We show that the performance of the fine-tuned 120

LLMs strongly generalizes to out-of-distribution 121

data, including unseen demographic groups, 122

new survey waves, and different survey families. 123

(Section 4.2 and Section 4.3) 124

• We release SubPOP, a curated and pre-processed 125

dataset of public opinion survey results that 126

is 6.5× larger than existing datasets, enabling 127

fine-tuning at scale. 128

2 Related Work 129

Predicting Human Opinions via LLMs. Prior 130

work has explored various prompt engineering 131

approaches for steering LLM responses: earlier 132

work use rule-based prompts that incorporate 133

demographic profiles of individuals or populations, 134

or few-shot examples of survey question-response 135

(Hwang et al., 2023; Simmons, 2022; Santurkar 136

et al., 2023; Dominguez-Olmedo et al., 2023). 137

Recent work explore prompting LLMs with 138

open-ended text, including interview transcripts 139

(Park et al., 2024a), personal narratives (Moon et al., 140

2024), or LLM-refined prompts (Kim and Yang, 141

2024; Sun et al., 2024). Our proposed method of 142

fine-tuning language models with survey response 143

data is complementary to improvements in prompt 144

engineering, because for prompt engineering im- 145

proved prompts facilitate conditioning on the target 146

group but in our approach LLMs are directly guided 147

to use the target group label for opinion prediction. 148

In this work, we also demonstrate that our fine-tuned 149

models can exhibit significant improvements in 150

matching the response distributions of humans 151

without elaborate prompt engineering methods. 152

Other work (Chu et al., 2023; He et al., 2024; 153

Feng et al., 2024) fine-tune language models on text 154

2



corpora from specific communities (e.g., Reddit)155

to infer the most popular response or response156

distribution for a given survey question. While this157

approach benefits from large-scale and continuously158

updated text corpora, it struggles with dispropor-159

tionate representation and lacks comprehensive160

coverage of diverse subpopulations. An alternative161

approach (Zhao et al., 2023; Li et al., 2023, 2024)162

directly trains on survey data, with (Zhao et al.,163

2023) applying meta-learning to predict opinions164

of unseen groups and (Li et al., 2024) fine-tuning165

on cross-cultural survey responses to predict the166

most popular response. However, optimizing for167

the most popular response discards distributional168

information, and our experiments (Appendix C.1)169

show that this exacerbates distribution mismatch.170

Datasets for LLM-based Opinion Prediction.171

Several research institutions conduct large-scale172

public opinion polls and release data from those173

surveys. Important examples include Pew Research174

Center’s American Trends Panel (ATP), which175

consists of multiple waves of cross-sectional176

surveys on different topics, and the General Social177

Survey (GSS) from the NORC at the University178

of Chicago (Davern et al., 2024). Existing datasets179

have curated such data for evaluating LLM-based180

opinion predictions, including OpinionQA (San-181

turkar et al., 2023), a subset of ATP survey waves182

containing about 500 questions on contentious183

social topics. While OpinionQA is widely used184

in prior work (He et al., 2024; Zhao et al., 2023;185

Li et al., 2023, 2024), we find its total number of186

questions limited in scale for fine-tuning LLMs and187

instead use this dataset for evaluation. We further188

collect an extended set of survey data from ATP189

waves not included in OpinionQA, as well as from190

GSS to curate SubPOP.191

Other datasets, such as GlobalOpinionQA192

(Durmus et al., 2023)—derived from the World193

Values Survey (World Values Survey, 2022) and194

the Pew Global Attitudes Survey (Pew Research195

Center, 2024)—and the PRISM dataset (Kirk196

et al., 2024) investigates how language models197

align with opinions from populations across the198

globe and different cultures. In our work, we199

focus on surveys conducted in the U.S. and target200

U.S. subpopulations as an initial demonstration of201

our approach’s empirical validity. However, our202

proposed method for fine-tuning language models203

applies to any survey dataset with distributional204

information about subpopulation responses.205

Pluralistic Alignment of LLMs. Recent liter- 206

ature on pluralistic and distributional alignment 207

target a similar yet different problem in fine-tuning 208

LLMs (Chakraborty et al., 2024; Melnyk et al., 209

2024; Poddar et al., 2024; Siththaranjan et al., 2023; 210

Yao et al., 2024; Sorensen et al., 2024; Lake et al., 211

2024; Chen et al., 2024; Jiang et al., 2024). While 212

this line of work shares a similar goal as ours in train- 213

ing models to reflect on opinions (and preferences) 214

of diverse subpopulations, most work differ from 215

ours in that they operate in the context of training 216

against pair-wise preference orderings between 217

alternative language model completions, extending 218

the Bradley-Terry-Luce model (Rajkumar and 219

Agarwal, 2014; Ouyang et al., 2022; Rafailov et al., 220

2024) or investigating alternative models to account 221

for diverging preference orderings across popu- 222

lations. In contrast, our work trains the model to 223

directly predict the opinion distributions of human 224

subpopulations, where accurately matching distri- 225

butions across a large variety of subpopulations is of 226

paramount interest. Our work additionally focuses 227

on the particular context of estimating human opin- 228

ions about societal issues—the objective of public 229

opinion research—which enables relatively straight- 230

forward supervised training on openly available, 231

structured survey data as presented by SubPOP. 232

3 Methods 233

3.1 Matching between 234

Model and Human Response Distributions 235

Our goal is to fine-tune an LLM to predict the 236

distribution of responses for a multiple-choice 237

question, conditioned on descriptions of a human 238

subpopulation we want to simulate, typically a 239

specific demographic or ideological subgroup. 240

Consider the example in Figure 2: the question asks, 241

“What do you think the chances are these days that 242

a woman won’t get a job or promotion while an 243

equally or less qualified man gets one instead?” The 244

available responses are: A. Very likely, B. Somewhat 245

likely, C. Not very likely, D. Very unlikely, and 246

E. Refused. In this case, the LLM will output a 247

probability for each of the tokens corresponding 248

to the choices A through E, thereby generating a 249

complete response distribution that we aim to align 250

with the true distribution observed in survey data. 251

Formally, let q ∈ Q be a question, g ∈ G be a 252

subpopulation, andAq be the set of possible choices 253

for question q. An LLM with parameters θ produces 254
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Question: What do you think the 
chances are these days that a woman 
won't get a job or promotion while an 
equally or less qualified man gets one 
instead?
A. Very likely
B. Somewhat likely
C. Not very likely
D. Very unlikely
E. Refused

Model Response Distribution

Question: Which part of the United 
States do you currently live in?
A. Northeast
B. Midwest
C. South
D. West
Answer: C. South Group

Information

Survey
Question

Human Group-level
Opinion Distribution

Concatenated Prompt

Group-level Survey Data

A B C D E

Log-probabilities

log 	𝑝! ′A′|𝑞, 𝑔 = −0.4
log 	𝑝!(′B"|𝑞, 𝑔) = −2.3
log 	𝑝! ′C′|𝑞, 𝑔 = −2.5
log 	𝑝! ′D′|𝑞, 𝑔 = −2.1
log 	𝑝! ′E′|𝑞, 𝑔 = −3.7

LLM

KL-divergence

𝑝! ′A′ 𝑝! ′B′ 𝑝! ′C′ 𝑝! ′D′ 𝑝! ′E′

Figure 2: Proposed supervised fine-tuning setup with
a survey response dataset such as SubPOP. Survey data
is 3-tuple of a survey question, target subpopulation in-
formation, and the observed human opinion distribution
(i.e. how subjects in the group responded to the given
question). The training objective, L(θ), is a forward KL
divergence loss on language model predicted distribution
of question option likelihoods; our loss guides the model
predictions to match the response distribution of the
specified human subpopulation.

a conditional probability distribution pθ(Aq | q,g).255

We fine-tune this model so that its predicted distribu-256

tion for each (q,g)mirrors the human response distri-257

bution pH(Aq |q,g) collected from real survey data.258

To accomplish this, we apply LoRA fine-259

tuning (Hu et al., 2021) and use the forward260

Kullback–Leibler (KL) divergence as our loss.261

Concretely, if pH(Aq | q,g) represents the group-262

level empirical distribution of human opinions263

and pθ(Aq | q,g) represents the model’s predicted264

distribution, our training objective is:265

L(θ)=Eq,g

[
DKL

(
pH(Aq |q,g)

∥∥pθ(Aq |q,g)
)]
,266

where DKL denotes the KL divergence. In the267

example shown in Figure 2, the model is trained268

to reduce the KL divergence between the target269

(survey-based) distribution over {A,B,C,D,E}270

and its predicted distribution for the subpopulation271

living in the Southern United States.272

We choose forward KL (i.e., KL
(
pH || pθ

)
)273

since it is sensitive to cases where pH assigns high274

probability but pθ does not, naturally encouraging275

the model to cover the real distribution.276

This property aligns with standard maximum- 277

likelihood training, where the model is penalized for 278

underestimating any response that is frequent in the 279

data. In other words, if many participants in group 280

g choose option “A” for question q, then the model 281

probability on “A” should be correspondingly high. 282

Instead of explicitly modeling the group response 283

distribution as pH(Aq|q, g), one could do two 284

alternatives. (1) One-hot encoding: this approach 285

(Li et al., 2024) approximates the distribution by 286

a one-hot vector, assigning a value of one to the 287

most probable option and zero elsewhere. (2) Data 288

augmentation by response frequency: this approach 289

(Zhao et al., 2023) expands the dataset by replicating 290

question-choice pairs in proportion to their observed 291

frequency. We adopt the explicit distribution mod- 292

eling in our main experiments because it directly 293

encodes the distributional information without re- 294

quiring discrete sampling or replicating data points. 295

This avoids potential quantization errors introduced 296

by binning continuous values and reduces the total 297

amount of data needed. A detailed comparison of 298

these approaches is provided in Section C.1. 299

3.2 SubPOP: a Comprehensive Survey 300

Dataset to Fine-tune and Evaluate LLMs 301

OpinionQA (Santurkar et al., 2023) is a widely used 302

dataset for fine-tuning and evaluating large language 303

models (LLMs) on opinion prediction, containing 304

roughly 500 questions drawn from 14 ATP (Amer- 305

ican Trends Panel) waves (Center, 2018). Although 306

valuable, it faces two important limitations: (1) 307

Limited thematic diversity—for instance, wave 26 308

focuses narrowly on firearms. (2) Reliance on a 309

single survey family (ATP), which risks overfitting 310

to a particular style of questions and hampers out-of- 311

distribution evaluation on other sources (e.g., GSS). 312

To address these limitations, we introduce a new 313

dataset, SubPOP, that broadens both the thematic 314

and institutional scope of opinion prediction data. 315

For training, SubPOP comprises 3,229 multiple- 316

choice questions drawn from ATP waves 61–132. 317

We exclude waves included in OpinionQA to 318

assess whether an LLM fine-tuned with SubPOP can 319

generalize to unseen subject areas. For evaluation, 320

SubPOP includes 133 multiple-choice questions 321

from the General Social Survey (GSS) (Davern 322

et al., 2024), serving as an out-of-distribution bench- 323

mark. This expanded collection not only broadens 324

the range of topics beyond OpinionQA’s initial 500 325
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questions, but also enables evaluation on surveys326

created and administered by different institutions327

(Pew Research Center ATP vs. NORC-Chicago328

GSS). Dataset curation and refinement pipeline is329

available in Appendix A.330

3.3 Evaluation Metric331

We use Wasserstein distance (WD) to quantify how332

closely the model’s predicted opinion distribution333

matches human survey data (Santurkar et al., 2023;334

Moon et al., 2024; Meister et al., 2024; Zhao et al.,335

2023). Formally, for a group g representing some336

subpopulation and a question q WD is defined337

as WDθ(q, g) = WD(pH(Aq|q, g), pθ(Aq|q, g)).338

Please refer to Appendix B for the exact formula339

of WD metric.340

Some prior work utilizes one-hot accuracy (Feng341

et al., 2024; Li et al., 2023) as an evaluation metric.342

However, one-hot accuracy has a notable drawback343

for the response distribution prediction task. One-344

hot accuracy only verifies whether the top-predicted345

choice matches the top human response, thereby346

discarding distribution information. In contrast,347

WD accounts for partial overlaps among the cate-348

gories and reflects the ‘cost’ of shifting probability349

mass, providing a more nuanced assessment of350

distribution discrepancy. Consider the example351

question provided in Figure 2, where the human352

response distribution indicates that option B353

(“Somewhat likely”) is the most probable. Now354

consider two cases in which the model incorrectly355

predicts the top choice. In the first case, the model356

assigns a high probability to option A (“Very357

likely”), while in the second case, it assigns a high358

probability to option D. Although one-hot accuracy359

would treat both predictions equally as errors, WD360

differentiates between them by accounting for the361

ordinal relationship among the options, penalizing362

the second prediction more heavily for its larger363

deviation from the true distribution.364

4 Experiments365

4.1 Bounds of WD and Baselines366

In this section, we describe the lower/upper bounds367

and two baseline methods against which we368

compare our method.369

Lower and upper bounds. We use a uniform370

distribution over all available choices to establish371

an upper bound of the WD between a predicted and372

the target response distribution. To compute a lower 373

bound, we sample a group of human respondents 374

from the original human respondents to calculate 375

the WD between the two, and perform bootstrap- 376

ping to obtain a robust estimate. This lower bound 377

captures the intrinsic variance arising from the 378

respondent sampling process in opinion surveys. 379

Baselines. We compare our approach with two 380

baseline methods: prompting and Modular Plural- 381

ism (Feng et al., 2024). For prompting, we consider 382

both zero-shot and few-shot methods. In zero-shot 383

prompting, we steer the LLM using demographic 384

prompt formats. Specifically, we employ three 385

different formats following Santurkar et al. (2023): 386

QA, BIO, and PORTRAY. For instance, to condition the 387

LLM to a person living in the South of the US, the QA 388

format uses a question-answer format as illustrated 389

in Figure 2; the BIO format conditions the model 390

with a first-person narrative such as “I currently 391

reside in the South."; and the PORTRAY format uses 392

a third-person narrative like “Answer the following 393

question as if you currently reside in the South.". 394

Few-shot prompting augments the prompt with 395

a few examples of question-response distribution 396

pairs alongside the demographic label (Hwang et al., 397

2023). In particular, we select the top five few-shot 398

examples from the SubPOP training set based on co- 399

sine similarity computed by the embedding model. 400

In our experiments, we represent the response 401

distribution in JSON format and require the model 402

to output its prediction in the same JSON format, 403

following the approach in Meister et al. (2024). 404

Modular pluralism (Feng et al., 2024) fine-tunes 405

multiple LLMs on distinct datasets to capture the 406

viewpoints of different communities (Feng et al., 407

2023). For a given question, each fine-tuned LLM 408

generates an opinion that reflects the perspective 409

of the community it represents, and a separate 410

black-box LLM aggregates these outputs to 411

produce the final distributional response. Detailed 412

implementation of the lower/upper bounds and the 413

baselines is provided in Appendix D. 414

4.2 Generalization 415

to Unseen Topics and Survey Families 416

In this section, we assess the ability of our fine-tuned 417

LLMs to generalize to unseen data—both in terms 418

of new topics and entirely different survey families. 419

To evaluate these aspects, we use OpinionQA 420

to measure generalization to unseen topics, and 421
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Table 1: Evaluation on OpinionQA and the SubPOP evaluation set (SubPOP-Eval) for 22 subpopulations following
(Santurkar et al., 2023). We compute the WD by averaging over all questions and subpopulations. Lower and upper
bounds of performance give guidance on how each method performs. For Modular Pluralism, we provide an error
rate of one-hot prediction (†) (Section 3.3) which was used in the original paper.

Method OpinionQA SubPOP-Eval
Llama-2-7B Llama-2-13B Mistral-7B Llama-3-70B Llama-2-7B Llama-2-13B Mistral-7B Llama-3-70B

Upper bound (Unif.) 0.178 0.208
Lower bound (Human) 0.031 0.033

Zero-shot prompt (QA) 0.173 0.170 0.153 0.138 0.206 0.196 0.187 0.160
Zero-shot prompt (BIO) 0.193 0.183 0.162 0.143 0.221 0.212 0.202 0.175
Zero-shot prompt (PORTRAY) 0.195 0.207 0.158 0.209 0.212 0.242 0.194 0.247
Few-shot prompt 0.186 0.175 0.174 0.166 0.217 0.194 0.175 0.182
Modular Pluralism 0.285 (†55.6%) 0.279 (†55.2%)
Ours (SubPOP-FT) 0.106 0.102 0.096 0.094 0.121 0.113 0.115 0.096

SubPOP-Eval to test generalization to a different422

survey family.423

We fine-tune four LLMs (Llama-2-7B, Llama-424

2-13B, Mistral-7B, and Llama-3-70B) on425

SubPOP-Train. We opt for pretrained LLMs rather426

than instruction-following models, as previous427

work has shown that pretrained models perform428

better on this task (Moon et al., 2024). A detailed429

comparison between these model types is provided430

in Appendix C.2.431

Table 1 reports the average WD metrics com-432

puted over all demographic groups and survey433

questions, comparing our fine-tuned models against434

various baseline approaches.435

Summary of Results. Our experiments show436

that fine-tuning on SubPOP-Train significantly437

outperforms all other methods, yielding a 32–46%438

reduction in WD on OpinionQA and a 39–42%439

reduction on SubPOP-Eval compared to the best440

baselines. Notably, SubPOP-Train is based on ATP441

data, while SubPOP-Eval is derived from GSS442

surveys—two distinct survey families that can differ443

in respondent pools, calibration techniques, and444

other methodological factors, leading to non-trivial445

distribution shifts despite both being representative446

of the US population. Furthermore, our fine-grained447

analyses at the wave level (see Appendix E) confirm448

that these trends persist even at more detailed levels449

of evaluation.450

Comparison to Zero- and Few-Shot Prompting.451

We first compare the performance of prompting452

methods with our approach. Zero-shot prompting re-453

sults in only modest WD improvements over the up-454

per bound, with the largest gain observed for Llama-455

3-70B and negligible improvements for Llama-2-456

7B. Even when using few-shot prompting—where457

five example question-response distribution pairs458

are provided—the performance gains remain min-459

imal. This may be partly due to an under-optimized 460

prompt format (e.g. requiring JSON output) and the 461

inherent sensitivity of language models to prompt 462

formatting (Sclar et al., 2023; Anagnostidis and Bu- 463

lian, 2024). These findings underscore the need for 464

methods, such as fine-tuning, that enable relatively 465

reliable predictions of opinion distributions. 466

Comparison to Modular Pluralism. Modular 467

Pluralism improves one-hot accuracy, reducing pre- 468

diction error from 72.7% (zero-shot prompting) to 469

55.6% on OpinionQA, but underperforms in match- 470

ing the full distribution of option choices, measured 471

as WD. This discrepancy in performance highlights 472

the limitations of methods that train LLMs to 473

identify only the most probable response rather 474

than modeling the entire distribution of responses. 475

Opinions are inherently distributed: even within 476

a particular subpopulation such as a single demo- 477

graphic subgroup, distribution of opinions cannot be 478

captured as a single most likely response. Moreover, 479

instruction-tuned models that serve as a black-box 480

LLM tend to assign high probabilities on only spe- 481

cific tokens (Lin et al., 2022; Kadavath et al., 2022; 482

Achiam et al., 2023), further pushing the generated 483

distribution away from the human distribution. 484

4.3 Generalization 485

across Target Subpopulations 486

Here we report two key observations: (1) prediction 487

performance improves consistently across most 488

subpopulations represented in the fine-tuning data, 489

and (2) the LLMs fine-tuned on SubPOP-Train 490

generalize well to subpopulations that were not 491

included during fine-tuning. 492

Consistent Performance Improvements over 493

Subpopulations. Figure 3 shows the per-group 494

WD on the OpinionQA evaluation for Llama-2-7B, 495

comparing our fine-tuning approach with zero-shot 496
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Figure 3: Per-group evaluation performance of our model Llama-2-7B-SubPOP-FT (red lines) on OpinionQA. For comparison,
the results from zero-shot QA prompting (black lines) and the lower bound (blue lines) are presented. We observe that the
relative improvement, measuring how much of the gap between zero-shot prompting and the lower bound has been closed, remains
consistent across subpopulations. Shaded blue regions represent the 95% confidence interval of the lower-bound estimation for each
group. Per-group results for other models (Table 7) and the results on SubPOP evaluation set (Table 8) are available in Appendix E.

prompting and the empirical WD lower bound. To497

evaluate the consistency of performance gains, we498

calculate the relative improvement for each subpop-499

ulation as how much of the gap between zero-shot500

prompting and the empirical lower bound is reduced501

after fine-tuning. This measure allows us to account502

for varying lower bounds across subpopulations:503

since some groups have fewer respondents, there504

is greater uncertainty in their reported distribution505

in the survey data and greater variance between the506

original sample and bootstrap samples.507

With the exception of two of the smallest groups508

(Hindu and Muslim), all subgroups demonstrate509

a large and consistent relative improvement after510

fine-tuning, ranging from 40%–54%. Including all511

groups, the average relative improvement is 46.7%,512

with a standard deviation of 4.4%. This consistency513

confirms that our fine-tuning approach delivers514

balanced performance gains without disproportion-515

ately favoring any particular demographic subgroup.516

We hypothesize that the consistent gains over517

groups largely stem from our dataset design, which518

allocates an equal number of training samples to519

each group. By ensuring uniformly distributed data520

points across subpopulations, the model captures521

sufficient subgroup-specific signals, ultimately522

leading to consistent performance improvements.523

Generalization on Unseen Subpopulations. We524

further investigate how models fine-tuned with our525

approach and SubPOP might show generalization526

to subpopulations that were not represented in the527

training data, a circumstance that can commonly oc- 528

cur when such fine-tuned LLMs are deployed for use 529

in assisting survey design. For this evaluation, we 530

benchmark our methods against a zero-shot prompt- 531

ing baseline. Specifically, we evaluate our model, 532

which is fine-tuned on 22 subpopulations provided 533

in SubPOP-Train, on a set of 38 subpopulations in 534

OpinionQA that were not included in fine-tuning. 535

This experiment not only checks generalization to 536

unseen subpopulations, but also involves unseen 537

survey questions, providing a robust assessment of 538

the model capability for generalization to OoD data. 539

As shown in Table 2, our model achieves a strong 540

reduction in WD even for unseen subpopulations, 541

indicating that the model can be steered by demo- 542

graphic prompts beyond the seen subpopulations in 543

training. Interestingly, although SubPOP-Train does 544

not contain any data with opinion distributions of 545

particular age groups (e.g. subjects of age 18-29 or 546

those of age 65+), the average relative improvement 547

is 44.7%, which is compatible with the average 548

relative improvement for seen subpopulations. 549

For other traits such as education level and polit- 550

ical ideology in Table 2, the relative improvements 551

for unseen subpopulations is comparable with the 552

relative improvements for seen subpopulations. We 553

provide results for other unseen subpopulations 554

in Table 6. For most of unseen subpopulations, our 555

methods achieve comparable relative improvements. 556

These findings show that our fine-tuning approach 557

effectively steers the model with conditioning 558

prompts and robustly generalizes to a wide range of 559

7



Table 2: Per-group evaluation performance of Llama-2-7B-
SubPOP-FT (Ours) on OpinionQA. We report the lower bound,
WD for zero-shot prompting, WD for Llama-2-7B-SubPOP-
FT, and the relative improvement. Rows highlighted in blue
represent subpopulations included during fine-tuning, while
uncolored rows correspond to subpopulations that were unseen
during fine-tuning.

Group Lower Zero Ours Relative
Bound Shot Improvement (%)

Age: 18-29 0.023 0.185 0.096 54.8
Age: 30-49 0.014 0.151 0.093 42.4
Age: 50-64 0.014 0.154 0.101 37.7
Age: 65+ 0.013 0.195 0.115 43.8

Less than high school 0.043 0.161 0.101 45.4
High school graduate 0.017 0.144 0.092 41.3
Some college, no degree 0.018 0.144 0.093 40.5
Associate’s degree 0.026 0.159 0.098 45.5
College grad 0.018 0.165 0.099 51.2
Postgraduate 0.015 0.174 0.106 42.6

Very conservative 0.026 0.208 0.107 55.5
Conservative 0.021 0.191 0.110 44.7
Moderate 0.018 0.184 0.120 42.1
Liberal 0.018 0.224 0.102 54.2
Very liberal 0.025 0.202 0.111 51.4

subpopulations. The further analysis on this result560

is available in Appendix C.3.561

4.4 Effect of Scaling the Dataset562

In this section, we examine performance scales563

with training dataset size. We randomly sample564

subsets containing 25%, 50%, 75%, and 87.5%565

of the full SubPOP training set and evaluate three566

models—Llama-2-7B, Llama-2-13B, and Mistral-567

7B—on OpinionQA. As shown in Figure 4, we568

observe diminishing marginal returns, as is typical569

with fine-tuning; for example, after training on a570

random 25%, the models reach 72%-78% of the571

total improvement they achieve after fine-tuning on572

all of SubPOP-train. However, what is interesting is573

that performance does not entirely plateau. Instead,574

it continues to improve as we further increase the575

training data from 25% to 100%. We fit linear trend576

lines (dotted in Figure 4) to the results and observe577

that the slopes are similar for each model. This578

suggests that the rate of improvement—reflected by579

the slope in the power-law relationship—is intrinsic580

to the data and task rather than to the specific581

model architecture. In other words, LLMs exhibit582

comparable data efficiency, with performance gains583

that are fundamentally tied to dataset size rather584

than model-specific factors.585

Using these trend lines, we can estimate the586

amount of fine-tuning data required to reach a587

target performance. For instance, we estimate that588

fine-tuning Mistral-7B on a dataset 25 times larger589

than the current SubPOP training set would yield590

a WD value of 0.07, which is much closer to the591

Llama-2-7B Llama-2-13B Mistral-7B

W
as

se
rs

te
in
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is

ta
nc

e

Data Percentage [%]

Figure 4: Evaluation results on OpinionQA after fine-tuning
each LLM on increasingly large sampled subsets of SubPOP-
Train. The plot x-axis is the size of sampled dataset and y-axis
is WD against human responses measured on OpinionQA.
Note that both axes are log scale. Dashed lines represent a
line of best fit. Performances at data percentage of 100% are
identical to ours in Table 1.

empirical lower bound of 0.031 reported in Table 1. 592

This result underscores the critical importance of 593

collecting more high-quality data, as increased 594

dataset size can drive significant improvements in 595

model performance. 596

5 Conclusion 597

In this work, we demonstrated that fine-tuning 598

large language models on structured public opinion 599

survey data markedly improves their ability to 600

predict human response distributions. We curate 601

SubPOP —a dataset 6.5× larger than previous col- 602

lections to fine-tune and evaluate LLMs on survey 603

response distribution prediction task. By training 604

on SubPOP, we showed that LLMs can accurately 605

capture the nuanced, group-specific variability in 606

public opinions, while also generalizing to unseen 607

survey waves and different survey families. Our 608

experiments reveal that as the fine-tuning dataset 609

grows, model performance continues to scale 610

favorably, underscoring the importance of dataset 611

size and representative sampling strategies. 612

These findings not only advance the state of 613

opinion prediction but also highlight a broader 614

societal imperative: to support public opinion 615

research and survey design, there is a critical need 616

to invest in and collect high-quality, large-scale 617

survey data. Such efforts will enable more accurate 618

modeling of diverse human opinions and, in turn, 619

assist more informed decision-making in both 620

public policy and research contexts. 621
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6 Limitations622

In this work, we explore the capability of language623

models to complement traditional survey design by624

predicting survey responses in advance. However,625

we acknowledge the following inherent limitations626

of this approach.627

Role in Survey Research. While language mod-628

els can provide a coarse approximation of human629

opinions, they cannot fully replace human involve-630

ment in the survey process. Human opinions evolve631

dynamically in response to social events, and while632

pretrained language models can incorporate such633

knowledge through retrieval-augmented generation,634

they remain limited in adapting to a rapidly changing635

world. Moreover, fine-tuning a language model on636

distributions of human opinions may inadvertently637

replicate and amplify existing biases of humans,638

leading to undesirable outcomes. It is important639

to note that a model fine-tuned on human opinions640

does not necessarily align with human values and641

behaviors, nor does it serve as a perfect proxy for hu-642

man decision-making. The scope of our work is re-643

stricted to language models prompted with a group-644

level information generating response distributions645

to survey questions, rather than simulating individ-646

ual human respondents in a personalized manner.647

Data Dependence. Survey response data, even648

after post-stratification calibration, remain subject649

to empirical variance, particularly for relatively650

small groups that comprise about one percent651

of the U.S. population. Also, while traditional652

surveys have implemented various strategies to653

mitigate response bias stemming from the linguistic654

and multiple-choice nature of survey questions655

(Tourangeau, 2000), the extent to which these656

biases affect language models—and how best to657

address them—remains an open question (Tjuatja658

et al., 2024; Bisbee et al., 2024). Future research659

could focus on developing reliable opinion datasets660

for underrepresented groups and examining how661

prompt engineering elements can be optimized to662

reduce bias in language model-generated responses.663

Limited Contextual Information. Our fine-664

tuning approach, which structures prompts in a665

QA format, demonstrates strong matching with666

human opinion distributions. However, we have not667

explored fine-tuning with richer contextual infor-668

mation. Prior research suggests that incorporating669

additional contextual details can improve the fidelity 670

of model-generated opinions to actual human re- 671

sponses. We anticipate that more sophisticated steer- 672

ing techniques could further enhance the opinion 673

prediction performance beyond the results presented 674

in this study. Investigating such methods remains 675

an open and promising direction for future work. 676

7 Potential Risks 677

Employing language models for opinion prediction 678

has both influential possibilities and risk of misuse. 679

We acknowledge that the risk of misuse cannot be 680

overlooked, and we clearly state that indiscrimi- 681

nately minimizing the discrepancy of opinion re- 682

sponse distribution as a fine-tuning target can cause 683

severe harms. In particular, the model might develop 684

a bias toward specific demographics during the 685

course of fine-tuning, an artifact of minimizing re- 686

sponse distribution when other safeguard measures 687

are not employed. We emphasize that an oversight 688

and holistic evaluation of methods and pipelines are 689

required before deploying such models for any of the 690

actual applications and interactions with human. 691
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Ai Assistants In Writing: We have used AI985

assistants (ChatGPT) in our writing.986

A Dataset Details 987

A.1 American Trends Panel Datasets 988

Pew Research holds regular American Trends 989

Panel (ATP) survey (called waves) (Center, 2018) 990

covering various topics (e.g. veterans, political 991

priorities, gender and leadership) and releases result 992

at an individual level. For each anonymized individ- 993

ual, the following information is released: unique 994

identification number, demographic details, survey 995

responses, and weight. Weights (Mercer et al., 2018) 996

are the output of post-survey calibration process 997

that helps adjusting survey results for response bias 998

(e.g., non-response bias, sampling bias) correction 999

and population representativeness. As of January 1000

2025, survey data until wave 132 has been released. 1001

About 20 surveys are conducted in each year. 1002

A.2 OpinionQA 1003

OpinionQA is a subset of ATP curated in (Santurkar 1004

et al., 2023). This dataset consists of contentious 1005

500 questions sampled from 14 ATP waves which 1006

have high inter-group disagreement (i.e. large 1007

Wasserstein distances among demographic groups 1008

to a question). It also comes with hand-crafted 1009

ordinality information which provides structure to 1010

option lists. For example, options ‘Major reason’, 1011

‘Minor reason’, and ‘Not a reason’, are assigned an 1012

ordinality mapping to 1, 2, and 3, respectively. This 1013

ordinality allows a calculation of 1-dimensional 1014

Wasserstein distance. 1015

Demographic groups we employ and the number 1016

of questions per each of 14 waves are listed in 1017

Table 3. This set of groups are adopted for several 1018

small-scale analysis (Santurkar et al., 2023; Zhao 1019

et al., 2023; Kim and Yang, 2024). We note that 1020

our approach is not limited to a specific number 1021

of groups and data is available for minority or 1022

fine-grained demographic subpopulations. 1023

A.3 SubPOP 1024

We gather additional data from the American 1025

Trends Panel, specifically collecting 53 waves 1026

from Wave 61 to 132. There are 62 waves from 1027

Wave 61 - 132, however, some waves have missing 1028

demographic or ideology information (for example, 1029

wave 63 does not contain political ideology 1030

information) or the data is not available hence 1031

removed during the curation process. To refine 1032

the dataset, we exclude questions that meet the 1033
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Table 3: A list of 22 demographic groups and a wave-level
information for waves included in OpinionQA dataset.

Trait Groups Population % in Wave 82

Region Northeast 17.2
South 37.8

Education College grad+ 24.2
Less than high school 5.2

Gender Male 44.3
Female 54.6

Race / ethnicity

Black 9.6
White 66.1
Asian 4.8

Hispanic 15.2

Income $100,000 or more 21.8
Less than $30,000 21.3

Political Party Democrat 35.1
Republican 29.1

Political Ideology
Liberal 20.0

Conservative 22.6
Moderate 38.3

Religion

Protestant 40.8
Jewish 2.0
Hindu 0.9
Atheist 0.6
Muslim 0.7

Wave # questions Wave Topic

26 44 Guns
29 20 Views on gender
32 24 Community types, Sexual harassment
34 16 Biomedical and food issues
36 68 Gender and leadership
41 41 Views of America in 2050
42 26 Trust in science
43 51 Race in America
45 13 Misinformation
49 19 Privacy and surveillance
50 43 American families
54 50 Economic inequality
82 56 2021 Global Attitudes Project U.S. survey
92 23 Political Typology

following criteria: those with more than 10 response1034

options, redacted response data, or dependencies on1035

prior questions (e.g., assessing political strength).1036

For the remaining questions, we use GPT-4o to1037

refine their wording, ensuring they are well-suited1038

for individual prompting while making minimal1039

modifications. In Figure 5 we provide a few-shot1040

prompt for question refinement.1041

In Figure 6, we visualize the embeddings of the1042

question texts (projected to 2-dimensions using1043

t-SNE) from OpinionQA compared to the ATP and1044

GSS portions of SubPOP. The visualization shows1045

how much larger our dataset is than OpinionQA1046

(6.5×), along with the expanded coverage of our1047

dataset into semantic areas untouched by Opin-1048

ionQA. The embeddings also reveal the distribution1049

shift from ATP questions to GSS questions: while1050

the ATP and GSS questions overlap in embedding1051

space, the GSS question appear as small clusters,1052

not evenly distributed over the ATP questions.1053

Instruction: Refine the question with a minimal
change to make the question sensible. Do not
modify options, and do not modify a question if it
makes sense. Always start your answer with
"Refined question:".

Question: A cross // Do you have any of the
following for spiritual purposes?
A. Yes, I have this for spiritual purposes
B. No, I do not have this for spiritual purposes

Refined question: Do you have a cross for spiritual
purposes?

Question: As you may know, same-sex marriage is
now legal in the U.S. Do you think this is [a good
thing or a bad thing] for our society?
A. Very good thing
B. Somewhat good thing
C. Somewhat bad thing
D. Very bad thing

Refined question: As you may know, same-sex
marriage is now legal in the U.S. Do you think this is
a good thing or a bad thing for our society?,

Question: On a different subject…How much, if at
all, do white people benefit from advantages in
society that black people do not have
A. A great deal
B. A fair amount
C. Not too much
D. Not at all

Refined question: How much, if at all, do white
people benefit from advantages in society that
black people do not have?,

Question: Thinking about the past couple of weeks,
would you say the news for Donald Trump has
been...
A. Very good
B. Mostly good
C. Neither good nor bad
D. Mostly bad
E. Very bad

Refined question: Thinking about the past couple of
weeks, would you say the news for Donald Trump
has been...

Question: (Question to refine)
(Options)

Refined question:

Figure 5: Few-shot prompt for refining the question to suit
a language model prompting. An instruction is designed to
make a minimal change to the original question, and in-context
examples are provided.

A.4 General Social Survey 2022 1054

To evaluate the out-of-distribution generalization 1055

ability of our fine-tuned models, we subsample 1056

133 questions from the GSS 2022 dataset (Davern 1057

et al., 2024). We apply the same selection criteria 1058

as outlined in Appendix A.3, excluding questions 1059

that are redacted, conditioned on prior questions, 1060

directly answered through demographic steering, 1061

derived from a set of questions, or those with more 1062

than 10 response options. 1063
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t-SNE of question text embeddings

OpinionQA SubPOP-Train SubPOP-Eval

Figure 6: Embeddings of questions from OpinionQA,
SubPOP-Train, and SubPOP-Eval.

Figure 7: Distribution of cosine similarities between a question
in SubPOP-ATP and OpinionQA, having a long tail towards
a high cosine similarity. We inspect the question pairs in the
range of 0.8 to 1.0 (distribution shown in the magnified view)
and used a similarity of 0.87 as a safe threshold to identify a
semantically identical question pair.

A.5 Inspection of Identical Questions1064

Distribution of cosine similarities between two text1065

embeddings (an output of the embedding model1066

OpenAI-text-embedding-3-large given a question),1067

one from a question in SubPOP and another from1068

a question in OpinionQA is shown in Figure 7.1069

We observe a fraction of pairs having high cosine1070

similarity, and manually inspected question pairs1071

with high relevance pairs and find that by setting a1072

threshold cosine similarity of 0.87 we can detect all1073

semantically identical pairs. We took a conservative1074

threshold of cosine similarity; this value was to1075

maximize the recall at a cost of precision to ensure1076

detection of overlapping questions.1077

B Training Details1078

We conduct our experiments using Nvidia A1001079

GPUs with 80GB VRAM. Hyperparameter tuning1080

is performed over learning rates {5e-5, 1e-4, 2e-4} 1081

and batch sizes {64, 128, 256}. After evaluating 1082

possible combinations, we select a (learning rate, 1083

batch size) = (2e-4, 256) for Llama-2-7B, (learning 1084

rate, batch size) = (2e-4, 256) for Mistral-7B-v0.1, 1085

and (learning rate, batch size) = (1e-4, 256) for 1086

Llama-2-13B when utilizing the full training 1087

dataset. For Llama-3-70B, we have not done 1088

hyperparameter search but heuristically used 1089

(learning rate, batch size) = (2e-5, 256). 1090

For sub-sampled training data (Figure 4), we use 1091

the following configurations: 1092

• (lr, bs) = (2e-4, 256) for 75% of the training data 1093

• (lr, bs) = (1e-4, 128) for 50% of the training data 1094

• (lr, bs) = (1e-4, 128) for 25% of the training data 1095

All training is performed using LoRA (Hu et al., 1096

2021), with LoRA parameters initialized from a 1097

normal distribution with σ=0.02. We set the LoRA 1098

rank to 8, alpha to 32, and apply a dropout rate of 1099

0.05. LoRA weights are applied to the query and 1100

value matrices. The AdamW (Loshchilov, 2017) 1101

optimizer is used with a weight decay of 0. 1102

B.1 Choice of the training objective 1103

In this section, we explore both forward KL- 1104

divergence and Wasserstein Distance (WD) as 1105

training objectives. The forward KL-divergence is 1106

defined as 1107

DKL(pH∥pθ)=
∑
a∈Aq

pH(a)log
pH(a)

pθ(a)
, 1108

where pH(a)≡pH(a | q,g) and pθ(a)≡pθ(a | q,g). 1109

Similarly, WD is given by 1110

WD(pH ,pθ)= min
γ∈Π(pH ,pθ)

∑
a,a′∈Aq

γ(a,a′)d(a,a′), 1111

with Π(pH , pθ) denoting the set of all couplings 1112

between pH and pθ, and d(a,a′) the L1 distance 1113

between choices. Since survey responses are 1114

inherently one-dimensional and ordinal, we can 1115

simplify the computation of WD using cumulative 1116

distribution functions (CDFs). In the 1-D case, WD 1117

is computed as 1118

WD(pH ,pθ)=

∫ +∞

−∞
|FpH (x)−Fpθ(x)|dx, 1119

=
n∑

i=1

|FpH (i)−Fpθ(i)| 1120
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Figure 8: Train loss curve (left) and validation loss curve (right)
for Llama-2-7B fine-tuned on 90% of OpinionQA, with the
remaining 10% used for validation. Light and dark blue lines
represent KL-divergence (KL) and Wasserstein distance (WD)
when used KL as a training objective, while light and dark
red lines represent KL and WD when used WD as a training
objective. The two training objectives yield similar results
in terms of WD, the primary measure of opinion distribution
matching in our work.

where FpH and Fpθ are the CDFs corresponding1121

to pH and pθ, respectively. We use this discrete1122

formulation as the WD loss in our training.1123

While training with WD resulted in a higher1124

KL-divergence on the validation set, the validation1125

WD converged to similar levels regardless of the1126

objective (see Figure 8). We attribute this to KL-1127

divergence penalizing low-probability assignments1128

without significantly altering the overall distribution1129

geometry. Given its broader applicability—without1130

requiring ordinal information—we primarily used1131

KL-divergence in our experiments.1132

However, the choice of objective did not signif-1133

icantly impact the opinion prediction performance,1134

as measured by WD (Figure 8). Although WD as a1135

training objective resulted in higher KL-divergence1136

on the validation set, the validation WD converged1137

to the same level regardless of the training objective.1138

We attribute this to KL-divergence strongly penaliz-1139

ing language models’ probability assignments to op-1140

tions with low human opinion probability (choices1141

rarely selected by humans). However, since these1142

probabilities remain low, the shape of probability1143

distribution is preserved. Given KL-divergence’s1144

broader applicability—it does not require ordinal in-1145

formation—we primarily used it in our experiments.1146

C Additional Experiments1147

C.1 Effect of Response Distribution Modeling1148

In this section, we compare different methods for1149

capturing the distribution of human responses. We1150

consider three approaches:1151

1. One-hot: Predicting only the most probable 1152

response, which ignores the full distribution 1153

over all responses (Li et al., 2024). 1154

2. Augment by N: Augmenting the dataset by 1155

replicating each response by a factor of N 1156

according to its observed frequency (Zhao 1157

et al., 2023). 1158

3. Explicit probability modeling: Directly 1159

modeling the full response distribution using 1160

the actual probability values for each option. 1161

Table 4 summarizes the results of these 1162

approaches. Notably, the explicit probability 1163

modeling outperforms one-hot with a considerable 1164

margin. This shows that merely learning the single 1165

most frequent response fails to capture the opinion 1166

diversity within each demographic subgroup. 1167

Compared with augmented data, the explicit 1168

modeling performs better than the augmentation 1169

approach. Notably, the performance gap is 1170

larger than the quantization error introduced by 1171

discretizing the response distribution. If we use 1172

N for discretization, the quantization error is 1
2N , 1173

which is continuous value with 0.01 or 0.005 for the 1174

cases in Table 4. Also, the other benefit of explicit 1175

modeling compared to augment by N, is that we 1176

can reduce the amount of data by a factor of N. This 1177

reduces the cost of fine-tuning LLMs. 1178

Table 4 summarizes the results of these ap- 1179

proaches. Notably, explicit probability modeling 1180

substantially outperforms the one-hot method, 1181

demonstrating that simply predicting the single most 1182

frequent response fails to capture the opinion diver- 1183

sity present within each demographic subgroup. 1184

Compared with augment by N (2nd and 3rd 1185

column in Table 4), explicit probability modeling 1186

also achieves better performance. Importantly, the 1187

performance gap exceeds the quantization error 1188

introduced by discretizing the response distribution. 1189

For instance, when discretizing with a factor of N , 1190

the quantization error is 1
2N —approximately 0.01 1191

or 0.005 in the cases shown in Table 4. Moreover, 1192

explicit modeling offers the practical benefit of 1193

reducing the data volume by a factor ofN compared 1194

to the augmentation approach, thereby lowering the 1195

computational cost of fine-tuning LLMs. 1196

These results underscore the importance of 1197

explicit distribution modeling. By aligning the 1198

model’s predictive distribution directly with the 1199
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survey distribution, we achieve higher accuracy1200

with fewer data samples, avoiding the rounding1201

errors and replication overheads that are inherent1202

to data-augmentation approaches.1203

C.2 Post-trained Model1204

We fine-tune Llama-2-7B-chat to observe the1205

effect of starting from checkpoints that have been1206

instruction-tuned via Reinforcement Learning1207

from Human Feedback (RLHF). Table 5 shows1208

the evaluation performance of a baseline method1209

(Zero-shot prompting (QA)), fine-tuned base1210

model and our fine-chat model. We observe the1211

significant performance improvement, while the1212

baseline method performs worse then the models1213

not instruction-tuned (Table 1). Especially, the1214

performance for SubPOP-Eval of chat model is1215

significantly worse than that of base model. We1216

observe the high WD of the baseline method1217

resulting from the model assigning high probability1218

to a specific token (e.g. ‘A’), being far apart from1219

the human opinion distribution. After fine-tuning1220

the model are able to generate a more distributed1221

probability of answer tokens. This result coincides1222

with the result reported in (Moon et al., 2024).1223

C.3 Generalization to Unseen Subpopulations1224

Here we present a complete list of evaluation1225

performance on OpinionQA for unseen subpop-1226

ulations (the groups not used to fine-tune our1227

model) and perform an analysis that shows our1228

fine-tuned models are able to steer towards the1229

given subpopulation information.1230

As shown in Table 6, we observe a performance1231

improvement across unseen subpopulations. To1232

verify that the performance improvement does not1233

come from the model simply utilizing average opin-1234

ion distribution (average of response distributions1235

across subpopulations used in the fine-tuning data),1236

Table 4: Comparison of evaluation performance for three
response distribution modeling approaches, with Llama-2-7B
as a base model. The last column (Explicit) is identical to the
ours presented in Table 1. A model fine-tuned to predict the
most probable choice (one-hot) performs the worst, as the
model has not learned distributional opinion at fine-tuning
phase. A model trained on augmented data (Aug. (×50,
×100)), while performing much better than one-hot still
underperforms the explicit distribution modeling.

Eval Dataset One-hot Aug. (× 50) Aug. (× 100) Explicit (Ours)

OpinionQA 0.163 0.110 0.107 0.106

SubPOP-Eval 0.178 0.130 0.123 0.121

Table 5: Performance of the fine-tuned Llama-2-7B-chat
model (Chat LLM). For comparison, we also present
lower and upper bounds, the baseline method Zero-shot
prompt (QA) and fine-tuned Llama-2-7B (Base LLM).

Method OpinionQA SubPOP-Eval

Upper bound (Unif.) 0.178 0.208
Lower bound (Human) 0.031 0.033

Zero-shot prompt (QA) 0.308 0.383
Chat LLM 0.109 0.148
Base LLM 0.106 0.121

we perform an analysis of how closely a fine-tuned 1237

model provided with a steering prompt for group 1238

X represents the response distribution for group Y . 1239

To verify that the observed improvements are 1240

not coincidental, we analyze in Figure 9, Figure 10, 1241

Figure 11, and Figure 12 how well language models 1242

conditioned with different steering prompts match 1243

the true distributions of various subpopulations. 1244

Concretely, we measure how closely our fine-tuned 1245

model provided with a steering prompt of group 1246

X predict response distribution of human group 1247

Y . We observe that even for unseen subpopulations 1248

Y should be X to minimize the WD between the 1249

model’s response distribution and the response of 1250

group X , confirming that the model tailors its pre- 1251

dictions to each unseen group rather than defaulting 1252

to an averaged distribution of . We hypothesize 1253

that this is possible because the model learns 1254

to be jointly conditioned on the subpopulation 1255

information and survey question during fine-tuning, 1256

and also utilizing its knowledge on relationship 1257

between subpopulations, able to predict the opinion 1258

distribution even for unseen groups. 1259

D Baseline Details 1260

• Upper bound: We estimate the distribution be- 1261

tween human responses and uniform distribution 1262

as an upper bound of WD metrics. 1263

• Zero-shot prompting: Three prompt styles—QA, 1264

BIO, and PORTRAY—are introduced in (Santurkar 1265

et al., 2023) to integrate group information into 1266

prompts. These prompts are then combined with 1267

survey questions to construct inputs for LLM. 1268

Then, the first-token log-probability from LLM 1269

is measured to calculate the model’s response 1270

distribution over options. In our baseline (and 1271

also in fine-tuning experiments) we focus on the 1272

QA steering format. Examples of this prompting 1273

method are shown in Figure 13. 1274

• Few-shot prompting: We craft a conditioning 1275
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Table 6: Evaluation performance on OpinionQA with demographics not included in the fine-tuning dataset SubPOP-training from
Llama-2-7B. For reference, we present a lower bound (human) and the zero-shot prompting (QA) are presented. Absolute difference
refers to the difference between zero-shot prompting and ours, and the relative improvement is caluclated in a same way to Figure 3.

Attribute Group Lower Bound (Human) Zero-shot (QA) Ours Absolute Diff. Relative Improvement

Age 18-29 0.023 0.185 0.096 0.089 0.548
Age 30-49 0.014 0.151 0.093 0.058 0.424
Age 50-64 0.014 0.154 0.101 0.052 0.377
Age 65+ 0.013 0.195 0.115 0.080 0.438

Region Midwest 0.016 0.153 0.095 0.058 0.425
Region West 0.017 0.162 0.095 0.068 0.465

Education Associate’s Degree 0.026 0.159 0.098 0.061 0.455
Education High School Graduate 0.017 0.144 0.092 0.053 0.413
Education Postgraduate 0.015 0.174 0.106 0.068 0.426
Education Some College, No Degree 0.018 0.144 0.093 0.051 0.405

Income $50,000-$75,000 0.016 0.153 0.098 0.054 0.396
Income $30,000-$50,000 0.019 0.144 0.094 0.050 0.400

Political Ideology Very Conservative 0.026 0.208 0.107 0.101 0.555
Political Ideology Very Liberal 0.025 0.202 0.111 0.091 0.514

Political Party Independent 0.016 0.155 0.093 0.062 0.445
Political Party Something Else 0.026 0.162 0.092 0.069 0.510

Race Other 0.050 0.180 0.144 0.036 0.275
Religion Agnostic 0.028 0.189 0.115 0.074 0.459
Religion Buddhist 0.063 0.207 0.149 0.059 0.405
Religion Nothing in Particular 0.019 0.153 0.092 0.061 0.454
Religion Orthodox 0.083 0.221 0.180 0.041 0.298
Religion Other 0.051 0.184 0.123 0.061 0.457
Religion Roman Catholic 0.018 0.145 0.098 0.047 0.371
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Figure 9: Heatmap of average WD between a human (y-axis) and a group on the x-axis for age trait. Our model, when steered
with the conditioning prompt, exhibits similar WD pattern as between human groups, showing that our model are steered towards
demographic subgroups.
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Figure 10: Heatmap of average WD between a human group (y-axis) and a group on the x-axis for gender trait.

prompt that contains not only group information1276

but also the group’s response distribution to k1277

train questions, following (Hwang et al., 2023).1278

For a test question qtest ∈ Qtest, we first sort1279

training questions Qtrain into {q1, q2, ...} such 1280

that sim(E(q1),E(qtest)) > sim(E(q2),E(qtest)), 1281

and so on. E(q) denotes the embedding model 1282

(OpenAI-text-embedding-3-large) output of the 1283
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Figure 11: The heatmap of average WD between a human group (y-axis) and a group on the x-axis for race trait.
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Figure 12: The heatmap of average WD between a human group (y-axis) and a group on the x-axis for political ideology trait.

input q and sim is a cosine similarity between two1284

embedding vectors. Then, response information1285

of the first k questions {qi,p(Aqi |qi,g)}ki=1 are1286

used as few shot prompts to have the language1287

model verbalize (Meister et al., 2024) expected1288

response distribution for the given g and qtest. An1289

example of the prompt for k=3 case is shown in1290

Figure 14, while we run the baseline experiment1291

in a k=5 setting.1292

• Modular Pluralism: The intuition behind Modu-1293

lar Pluralism (Feng et al., 2024) is that a language1294

model trained on a text corpus of a specific sub-1295

population will faithfully represent public opinion1296

of that population. Given a survey question with a1297

PORTRAY-style steering prompt, each of language1298

model ‘modules’ (fine-tuned Mistral-7B-Instruct-1299

v0.1) generates an option choice with explanation.1300

A black-box LLM (GPT-3.5-turbo-Instruct) re-1301

ceives all generations and select a generation that1302

best aligns with the given group. Finally, using1303

the chosen generation as a context, a black-box1304

LLM generates probability distribution over1305

options. The example pipeline is shown in Figure1306

15. Instead of the sub-sampled OpinionQA1307

dataset the authors of the method used, we use 1308

the exactly same evaluation set across all baseline 1309

methods and our approach for a fair comparison. 1310

• Lower bound: We compute a lower bound by 1311

randomly sampling two groups from the human 1312

respondents and calculating the WD between 1313

their response distributions. Bootstrapping is then 1314

applied to obtain a robust estimate. Further details 1315

on this estimation process are provided below: 1316

Computing weighted answer distributions: 1317

For each demographic group g and question q, we 1318

have ngq responses from respondents who belong 1319

to group g answering question q: x1,x2,···,xngq , 1320

where xi ∈ Aq, i.e., the answer set for question 1321

q (e.g., {1,2,3,4}). Furthermore, each respondent 1322

(and thus, their response) is associated with a 1323

wave-specific weight w1,w2,··· ,wngq , provided 1324

by Pew Research. We compute the human 1325

answer distribution π
(H)
gq as a weighted sum over 1326

responses, where the proportion of respondents 1327
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providing answer a∈Aq is estimated as1328

π(H)
gq (a)=

∑ngq

i=1wi1[xi=a]∑ngq

i=1wi
.1329

Bootstrapping at the respondent-level: We1330

draw bootstrap samples per demographic group1331

at the respondent-level including questions from1332

all survey waves. This allows us to capture1333

correlations in answer distributions across1334

questions and across waves.1335

Specifically, let Pg represent the set of respon-1336

dents in group g, where |Pg|= ng. We produce1337

bootstrapped samples by repeatedly sampling1338

ng respondents from Pg with replacement.1339

Let p
(r)
1 , p

(r)
2 , ··· , p

(r)
ng represent the sampled1340

respondents for the r-th bootstrap, and let1341

w
(r)
1 ,w

(r)
2 ,···,w(r)

ng represent their corresponding1342

weights.1343

For each question q, let Pgq ⊆ Pg represent the1344

set of respondents from group g who answered1345

question q; as before, |Pgq|=ngq. Let us define1346

q(pi) as person pi’s response to question q if1347

pi answered question q, i.e., pi ∈ Pgq, and 01348

otherwise. Then, we compute the r-th answer1349

distribution for option a to question q as:1350

π(r)
gq (a)=

∑ng

i=11[p
(r)
i ∈Pgq]w

(r)
i 1[q(p

(r)
i )=a]∑ng

i=11[p
(r)
i ∈Pgq]w

(r)
i

.1351

Human lower bound of WD. Our statistic of1352

interest is the mean Wasserstein distance over all1353

questions Q across all waves per demographic1354

group. We approximate this as the WD between1355

the observed human distribution π
(H)
gq and the1356

bootstrap sample π
(r)
gq for question q and group1357

g. Over all R bootstraps, we have1358

D(H)
g =

 1

|Q|
∑
q∈Q

WD(π(H)
gq ,π(r)

gq )


R

r=1

.1359

To quantify agreement between human samples,1360

we report the mean and 95% CI of D(H)
gq .1361

E Wave, Group-level Opinion Matching1362

Here we present a group-level and wave-level1363

averaged Wasserstein distance. Wave-level result is1364

in Table 9, and group-level results for OpinionQA1365

and SubPOP-Eval are in Table 7, 8, respectively.1366

Question: Which part of the United States do you
currently live in?
A. Northeast
B. Midwest
C. South
D. West

Answer: A. Northeast

Answer the following question keeping in mind
your previous answers.
Question: I am going to name some institutions in
this country. As far as the people running these
institutions are concerned, would you say you
have a great deal of confidence, only some
confidence, or hardly any confidence at all in
them? Military
A. A great deal
B. Only some
C. Hardly any
D. Refused
Answer as a choice between A.,B.,C.,D.

Answer:

Question: What is your present religion, if any?
A. Protestant
B. Roman Catholic
C. Mormon
D. Orthodox
E. Jewish
F. Muslim
G. Buddhist
H. Hindu
I. Atheist
J. Agnostic
K. Other
L. Nothing in particular

Answer: I. Atheist

Answer the following question keeping in mind
your previous answers.
Question: Do you believe there is a life after
death?
A. Yes
B. No
C. Refused
Answer as a choice between A.,B.,C.

Answer:

Figure 13: Two examples of LM steering in the QA format
(Santurkar et al., 2023). Demographic group information
(colored in pink) is concatenated with survey question (colored
in sky blue). The first-token log-probability (probabilities
assigned to A, B, C, ...) are used to calculate language model’s
response distribution. The same group steering prompt is used
in our fine-tuning experiment.
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Table 7: Per-group Wasserstein distance on OpinionQA for each base models, before and after fine-tuning on SubPOP-Train. Base
refers to zero-shot prompting (QA).

Attribute Group Llama-2-7B Llama-2-13B Mistral-7B-v0.1 Llama-3-70B
Human Baseline Base Fine-tuned Base Fine-tuned Base Fine-tuned Base Fine-tuned

Region Northeast 0.023 0.165 0.094 0.155 0.088 0.155 0.083 0.134 0.084
South 0.017 0.149 0.092 0.143 0.085 0.133 0.081 0.113 0.078

Education College grad, some Postgrad 0.018 0.165 0.099 0.157 0.096 0.136 0.089 0.125 0.085
Less than high school 0.043 0.161 0.101 0.150 0.096 0.134 0.094 0.151 0.091

Gender Male 0.015 0.182 0.093 0.152 0.089 0.131 0.083 0.138 0.083
Female 0.013 0.162 0.100 0.158 0.092 0.146 0.088 0.130 0.087

Race / ethnicity

Black 0.031 0.151 0.102 0.144 0.095 0.132 0.091 0.116 0.085
White 0.012 0.176 0.097 0.178 0.093 0.145 0.085 0.131 0.084
Asian 0.051 0.165 0.111 0.167 0.104 0.143 0.102 0.124 0.099

Hispanic 0.044 0.162 0.102 0.163 0.098 0.134 0.092 0.126 0.091

Income $100,000 or more 0.019 0.172 0.103 0.162 0.100 0.147 0.091 0.159 0.087
Less than $30,000 0.021 0.162 0.091 0.148 0.083 0.127 0.080 0.154 0.078

Political Party Democrat 0.016 0.172 0.099 0.158 0.092 0.161 0.082 0.118 0.079
Republican 0.019 0.196 0.105 0.235 0.101 0.181 0.095 0.174 0.093

Political Ideology
Liberal 0.022 0.192 0.100 0.181 0.094 0.166 0.084 0.126 0.081

Conservative 0.021 0.169 0.103 0.153 0.099 0.144 0.094 0.141 0.092
Moderate 0.016 0.151 0.094 0.153 0.090 0.132 0.082 0.106 0.081

Religion

Protestant 0.016 0.015 0.166 0.096 0.158 0.092 0.146 0.086 0.143
Jewish 0.058 0.182 0.124 0.182 0.122 0.165 0.115 0.144 0.115
Hindu 0.079 0.211 0.160 0.232 0.163 0.211 0.161 0.181 0.157
Atheist 0.035 0.202 0.118 0.204 0.110 0.196 0.099 0.135 0.098
Muslim 0.089 0.202 0.159 0.209 0.156 0.204 0.146 0.171 0.144

Table 8: Per-group Wasserstein distance on SubPOP-Eval for each base models, before and after fine-tuning on SubPOP-Train.
Base refers to zero-shot prompting (QA).

Attribute Group Llama-2-7B Llama-2-13B Mistral-7B-v0.1 Llama-3-70B
Human Baseline Base Fine-tuned Base Fine-tuned Base Fine-tuned Base Fine-tuned

Region Northeast 0.027 0.196 0.113 0.193 0.103 0.185 0.108 0.156 0.078
South 0.018 0.183 0.108 0.185 0.103 0.176 0.103 0.138 0.080

Education College grad, some Postgrad 0.019 0.206 0.105 0.175 0.101 0.167 0.099 0.137 0.077
Less than high school 0.036 0.191 0.129 0.182 0.117 0.172 0.121 0.180 0.108

Gender Male 0.017 0.186 0.102 0.176 0.101 0.170 0.099 0.150 0.079
Female 0.016 0.184 0.108 0.198 0.105 0.176 0.100 0.151 0.080

Race / ethnicity

Black 0.029 0.200 0.114 0.179 0.102 0.170 0.107 0.139 0.094
White 0.014 0.190 0.105 0.187 0.103 0.181 0.102 0.153 0.083
Asian 0.049 0.201 0.119 0.190 0.107 0.184 0.114 0.158 0.096

Hispanic 0.050 0.204 0.133 0.199 0.122 0.182 0.134 0.172 0.115

Income $100,000 or more 0.021 0.210 0.111 0.184 0.106 0.176 0.102 0.179 0.082
Less than $30,000 0.026 0.179 0.115 0.172 0.103 0.165 0.105 0.171 0.086

Political Party Democrat 0.020 0.219 0.103 0.197 0.092 0.199 0.091 0.128 0.076
Republican 0.023 0.205 0.123 0.234 0.117 0.206 0.115 0.187 0.093

Political Ideology
Liberal 0.019 0.224 0.102 0.191 0.090 0.188 0.096 0.134 0.076

Conservative 0.022 0.184 0.120 0.178 0.112 0.172 0.113 0.160 0.092
Moderate 0.018 0.191 0.110 0.183 0.103 0.170 0.103 0.141 0.082

Religion

Protestant 0.019 0.187 0.110 0.179 0.107 0.172 0.105 0.164 0.082
Jewish 0.066 0.245 0.149 0.226 0.144 0.218 0.129 0.164 0.119
Hindu 0.095 0.264 0.180 0.253 0.169 0.252 0.186 0.223 0.166
Atheist 0.021 0.222 0.126 0.207 0.103 0.199 0.116 0.132 0.106
Muslim 0.090 0.253 0.175 0.240 0.181 0.238 0.173 0.203 0.158
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Table 9: Per-wave Wasserstein distance on OpinionQA for each base model, before and after fine-tuning on SubPOP-Train. Base
refers to zero-shot prompting (QA).

Wave Llama-2-7B Llama-2-13B Mistral-7B-v0.1 Llama-3-70B
Base Fine-tuned Base Fine-tuned Base Fine-tuned Base Fine-tuned

26 0.191 0.145 0.180 0.126 0.178 0.131 0.134 0.084
29 0.169 0.096 0.172 0.123 0.153 0.096 0.125 0.085
32 0.163 0.110 0.156 0.098 0.137 0.099 0.151 0.091
34 0.155 0.105 0.171 0.089 0.134 0.095 0.138 0.083
36 0.175 0.120 0.184 0.126 0.175 0.107 0.130 0.087
41 0.160 0.090 0.155 0.084 0.134 0.073 0.116 0.085
42 0.159 0.053 0.146 0.059 0.127 0.059 0.131 0.084
43 0.179 0.112 0.172 0.104 0.154 0.102 0.124 0.099
45 0.177 0.101 0.177 0.093 0.149 0.084 0.126 0.091
49 0.151 0.098 0.143 0.131 0.128 0.116 0.159 0.087
50 0.209 0.139 0.196 0.121 0.188 0.125 0.154 0.078
54 0.158 0.087 0.158 0.087 0.128 0.077 0.118 0.079
82 0.173 0.098 0.171 0.075 0.148 0.077 0.174 0.093
92 0.165 0.073 0.153 0.071 0.140 0.055 0.126 0.081
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Predict the answer distribution of the following
questions for people whose race or ethnicity is
White.

Question: Overall, how does being Asian affect
people’s ability to get ahead in our country these
days?
A. Helps a lot
B. Helps a little
C. Hurts a little
D. Hurts a lot
E. Neither helps nor hurts
F. Refused

Answer distribution: {'A': 0.050, 'B': 0.210, 'C':
0.241, 'D': 0.034, 'E': 0.474, 'F': 0.010}

Question: Thinking about the people who design
artificial intelligence computer programs, how well
do you think they take into account the
experiences and views of Asian adults?
A. Very well
B. Somewhat well
C. Not too well
D. Not at all well
E. Not sure
F. Refused

Answer distribution: {'A': 0.078, 'B': 0.216, 'C':
0.138, 'D': 0.069, 'E': 0.507, 'F': 0.008}

Question: Thinking about the people who design
artificial intelligence computer programs, how well
do you think they take into account the
experiences and views of Hispanic adults?
A. Very well
B. Somewhat well
C. Not too well
D. Not at all well
E. Not sure
F. Refused

Answer distribution: {'A': 0.050, 'B': 0.160, 'C':
0.203, 'D': 0.090, 'E': 0.505, 'F': 0.008}

Question: Thinking again about race and race
relations in the U.S. in general, how well, if at all,
do you think each of these groups get along with
each other in our society these days? Hispanics
and Asians
A. Very well
B. Pretty well
C. Not too well
D. Not at all well
E. Not sure
F. Refused

Answer distribution:

Figure 14: Few-shot prompting example for k = 3. Demo-
graphic group information is presented in the beginning of
the prompt (colored in pink). Following group information,
k questions whose text embedding are the most similar to the
text embedding of the evaluation question (colored in sky blue)
are presented along with their opinion distribution. k questions
are presented in the ascending order of cosine similarity.
The generation of language model (verbalization of opinion
distribution) is parsed to obtain the response distribution.

In terms of political party, you are Republican.
Please respond to the following question with
explanation.

Question: Please indicate whether the following is a
major reason, a minor reason, or not a reason why
you own a gun. As part of a gun collection
A. Major reason
B. Minor reason
C. Not a reason

Answer:

Which of the following comments best reflect the
people of Republican in terms of political party?

Comment 1: (generation frommodel 1)

Comment 2: (generation frommodel 2)

Comment 3: (generation frommodel 3)

Comment 4: (generation frommodel 4)

Comment 5: (generation frommodel 5)

Comment 6: (generation frommodel 6)

Please select one comment number from 1 to 6.

In terms of political party, you are Republican.
Please respond to the following question with the
help of a passage.

Passage: (selected generation)

Question: Please indicate whether the following is a
major reason, a minor reason, or not a reason why
you own a gun. As part of a gun collection
A. Major reason
B. Minor reason
C. Not a reason

Answer:
Figure 15: Pipeline example of Modular Pluralism. Given
a demographic group and a survey question, the first prompt
is asked to multiple (6) language models, Mistral-7B-v0.1-
Instruct fine-tuned on the community text corpus. The
generations are sent to a black-box LLM (gpt-3.5-0613-
Instruct) in the format of the second prompt. The black-box
LLM answers which one of generations best reflects the given
demographics. Finally, the selected generation serves as a
context to answer the given survey question and the black-box
LLM is prompted (the third prompt) to generate response
distribution over the answer token A, B, C, etc.
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