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Abstract

Large language models (LLMs) present novel
opportunities in public opinion research by pre-
dicting survey responses in advance during the
early stages of survey design. Prior methods
steer LLMs via descriptions of subpopulations
as LLMs’ input prompt, yet such prompt engi-
neering approaches have struggled to faithfully
predict the distribution of survey responses from
human subjects. In this work, we propose di-
rectly fine-tuning LLMs to predict response dis-
tributions by leveraging unique structural char-
acteristics of survey data. To enable fine-tuning,
we curate SubPOP, a significantly scaled dataset
of 3,362 questions and 70K subpopulation-
response pairs from well-established public
opinion surveys. We show that fine-tuning on
SubPOP greatly improves the match between
LLM predictions and human responses across
various subpopulations, reducing the discrep-
ancy in distribution over option choices by up
to 46% compared to baselines, and achieves
strong generalization to out-of-distribution data.
Our findings highlight the potential of survey-
based fine-tuning to improve predictions about
opinions of real-world populations and there-
fore enable more efficient survey designs.

1 Introduction

Surveys provide an essential tool for probing public
opinions on societal issues, especially as opinions
vary over time and across subpopulations. However,
surveys are also costly, time-consuming, and require
careful calibration to mitigate non-response and
sampling biases (Choi and Pak, 2004; Bethlehem,
2010). Recent work suggests that large language
models (LLMs) can assist public opinion studies
by predicting survey responses across different
subpopulations, explored in both social science
(Argyle et al., 2023; Bail, 2024; Ashokkumar et al.,
2024; Manning et al., 2024), and NLP (Santurkar
et al., 2023; Chu et al., 2023; Moon et al., 2024;
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Figure 1: Illustration of our method and SubPOP. We
collect survey data from two survey families—ATP from
Pew Research (Center, 2018) (forming SubPOP-Train)
and GSS from NORC (Davern et al., 2024) (forming
SubPOP-Eval). LLMs are fine-tuned on SubPOP-Train
and evaluated on both OpinionQA (Santurkar et al.,
2023) and SubPOP-Eval to assess generalization
of distributional opinion prediction across unseen
subpopulations, topics, and survey families.

Hémildinen et al., 2023; Chiang and Lee, 2023).
Such capabilities could substantially enhance the
survey development process— not as a replacement
for human participants but as a tool to complement
various phases, e.g. pilot testing (Grossmann et al.,
2023; Ziems et al., 2024; Rothschild et al., 2024,
Dillion et al., 2023; Learner, 2024).

Prior work in steering language models, i.e. con-
ditioning models to reflect the opinions of a specific
subpopulation, has primarily investigated different
prompt engineering techniques (Santurkar et al.,
2023; Moon et al., 2024; Park et al., 2024a). How-
ever, prompting alone has shown limited success
in generating completions that accurately reflect
the distributions of survey responses collected from



human subjects. Off-the-shelf LLMs (Achiam et al.,
2023; Dubey et al., 2024; Jiang et al., 2023) have
shown to mirror the opinions of certain US subpopu-
lations such as the wealthy and educated (Santurkar
etal., 2023; Gallegos et al., 2024; Deshpande et al.,
2023; Kim and Lee, 2023), while generating stereo-
typical or biased predictions of underrepresented
groups (Cheng et al., 2023b,a; Wang et al., 2024).
Furthermore, these models often fail to capture the
diversity of human opinions within a subpopulation
(Kapania et al., 2024; Park et al., 2024b). While
fine-tuning presents opportunities to address these
limitations (Chu et al., 2023; He et al., 2024),
existing methods fail to train models that accurately
predict opinion distributions across (1) diverse sub-
populations and (2) various survey question topics.

The present work. We propose fine-tuning
LLMs on large collections of data from cross-
sectional public opinion surveys, consisting of
questions about diverse topics and full distributions
of responses from each subpopulation defined by
demographic and ideological traits. By casting
pairs of (subpopulation, survey question) as input
prompts, we train the LLM to align its response
distribution against that of human subjects in a
supervised manner. We posit that survey data is
particularly well-suited for training LLMs since: (1)
We can construct clear subpopulation-response
pairs as data samples from which models learn
associations between group identities and expressed
opinions, which are typically rare in language mod-
els’ pre-training corpora, (2) Large-scale opinion
polls are carefully designed and calibrated (e.g.
using post-stratification) to collect representative
human responses, even for minority groups that
have high empirical variance, (3) We can enable
LLMs to capture subpopulation opinions as dis-
tributions over multiple options using a training
objective that explicitly matches model predictions
against response distributions of human subjects.

Training on public opinion survey data has
remained under-explored due to the limited avail-
ability of structured survey datasets. To this end,
we curate and release SubPOP (Subpopulation-level
Public Opinion Prediction), a dataset of 70K
subpopulation-response distribution pairs (6.5x
larger compared to previous datasets). We show that
fine-tuning LLMs on SubPOP significantly improves
the distributional match between LLM generated
and human responses. Additionally, the improve-

ments strongly generalize to unseen subpopulations,
survey waves, and survey families, i.e. surveys ad-
ministered by different organizations. In particular,
we observe that our approach addresses prior lim-
itations in approximating opinion distributions of
diverse subpopulations, including minority groups.

Our contributions are summarized as follows:

* We show that training LLMs on response
distributions from survey data significantly
improves their ability to predict the opinions
of subpopulations, reducing the Wasserstein
distance between model-predicted and ground-
truth distributions by 32-46% compared to
top-performing baselines. (Section 4.2)

* We show that the performance of the fine-tuned
LLMs strongly generalizes to out-of-distribution
data, including unseen demographic groups,
new survey waves, and different survey families.
(Section 4.2 and Section 4.3)

* We release SubPOP, a curated and pre-processed
dataset of public opinion survey results that
is 6.5 larger than existing datasets, enabling
fine-tuning at scale.

2 Related Work

Predicting Human Opinions via LLMs. Prior
work has explored various prompt engineering
approaches for steering LLM responses: earlier
work use rule-based prompts that incorporate
demographic profiles of individuals or populations,
or few-shot examples of survey question-response
(Hwang et al., 2023; Simmons, 2022; Santurkar
et al., 2023; Dominguez-Olmedo et al., 2023).
Recent work explore prompting LLMs with
open-ended text, including interview transcripts
(Park et al., 2024a), personal narratives (Moon et al.,
2024), or LLM-refined prompts (Kim and Yang,
2024; Sun et al., 2024). Our proposed method of
fine-tuning language models with survey response
data is complementary to improvements in prompt
engineering, because for prompt engineering im-
proved prompts facilitate conditioning on the target
group but in our approach LLMs are directly guided
to use the target group label for opinion prediction.
In this work, we also demonstrate that our fine-tuned
models can exhibit significant improvements in
matching the response distributions of humans
without elaborate prompt engineering methods.

Other work (Chu et al., 2023; He et al., 2024;
Feng et al., 2024) fine-tune language models on text



corpora from specific communities (e.g., Reddit)
to infer the most popular response or response
distribution for a given survey question. While this
approach benefits from large-scale and continuously
updated text corpora, it struggles with dispropor-
tionate representation and lacks comprehensive
coverage of diverse subpopulations. An alternative
approach (Zhao et al., 2023; Li et al., 2023, 2024)
directly trains on survey data, with (Zhao et al.,
2023) applying meta-learning to predict opinions
of unseen groups and (Li et al., 2024) fine-tuning
on cross-cultural survey responses to predict the
most popular response. However, optimizing for
the most popular response discards distributional
information, and our experiments (Appendix C.1)
show that this exacerbates distribution mismatch.

Datasets for LLM-based Opinion Prediction.
Several research institutions conduct large-scale
public opinion polls and release data from those
surveys. Important examples include Pew Research
Center’s American Trends Panel (ATP), which
consists of multiple waves of cross-sectional
surveys on different topics, and the General Social
Survey (GSS) from the NORC at the University
of Chicago (Davern et al., 2024). Existing datasets
have curated such data for evaluating LLM-based
opinion predictions, including OpinionQA (San-
turkar et al., 2023), a subset of ATP survey waves
containing about 500 questions on contentious
social topics. While OpinionQA is widely used
in prior work (He et al., 2024; Zhao et al., 2023;
Liet al., 2023, 2024), we find its total number of
questions limited in scale for fine-tuning LLMs and
instead use this dataset for evaluation. We further
collect an extended set of survey data from ATP
waves not included in OpinionQA, as well as from
GSS to curate SubPOP.

Other datasets, such as GlobalOpinionQA
(Durmus et al., 2023)—derived from the World
Values Survey (World Values Survey, 2022) and
the Pew Global Attitudes Survey (Pew Research
Center, 2024)—and the PRISM dataset (Kirk
et al., 2024) investigates how language models
align with opinions from populations across the
globe and different cultures. In our work, we
focus on surveys conducted in the U.S. and target
U.S. subpopulations as an initial demonstration of
our approach’s empirical validity. However, our
proposed method for fine-tuning language models
applies to any survey dataset with distributional
information about subpopulation responses.

Pluralistic Alignment of LLMs. Recent liter-
ature on pluralistic and distributional alignment
target a similar yet different problem in fine-tuning
LLMs (Chakraborty et al., 2024; Melnyk et al.,
2024; Poddar et al., 2024; Siththaranjan et al., 2023;
Yao et al., 2024; Sorensen et al., 2024; Lake et al.,
2024; Chen et al., 2024; Jiang et al., 2024). While
this line of work shares a similar goal as ours in train-
ing models to reflect on opinions (and preferences)
of diverse subpopulations, most work differ from
ours in that they operate in the context of training
against pair-wise preference orderings between
alternative language model completions, extending
the Bradley-Terry-Luce model (Rajkumar and
Agarwal, 2014; Ouyang et al., 2022; Rafailov et al.,
2024) or investigating alternative models to account
for diverging preference orderings across popu-
lations. In contrast, our work trains the model to
directly predict the opinion distributions of human
subpopulations, where accurately matching distri-
butions across a large variety of subpopulations is of
paramount interest. Our work additionally focuses
on the particular context of estimating human opin-
ions about societal issues—the objective of public
opinion research—which enables relatively straight-
forward supervised training on openly available,
structured survey data as presented by SubPOP.

3 Methods

3.1 Matching between
Model and Human Response Distributions

Our goal is to fine-tune an LLM to predict the
distribution of responses for a multiple-choice
question, conditioned on descriptions of a human
subpopulation we want to simulate, typically a
specific demographic or ideological subgroup.
Consider the example in Figure 2: the question asks,
“What do you think the chances are these days that
a woman won’t get a job or promotion while an
equally or less qualified man gets one instead?”” The
available responses are: A. Very likely, B. Somewhat
likely, C. Not very likely, D. Very unlikely, and
E. Refused. 1In this case, the LLM will output a
probability for each of the tokens corresponding
to the choices A through E, thereby generating a
complete response distribution that we aim to align
with the true distribution observed in survey data.

Formally, let ¢ € () be a question, g € GG be a
subpopulation, and .4, be the set of possible choices
for question g. An LLLM with parameters 6 produces
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Figure 2: Proposed supervised fine-tuning setup with
a survey response dataset such as SubPOP. Survey data
is 3-tuple of a survey question, target subpopulation in-
formation, and the observed human opinion distribution
(i.e. how subjects in the group responded to the given
question). The training objective, £(6), is a forward KL
divergence loss on language model predicted distribution
of question option likelihoods; our loss guides the model
predictions to match the response distribution of the
specified human subpopulation.

a conditional probability distribution py(Ay | ¢,9).
We fine-tune this model so that its predicted distribu-
tion for each (¢,g) mirrors the human response distri-
bution pg (Aq | q,9) collected from real survey data.

To accomplish this, we apply LoRA fine-
tuning (Hu et al.,, 2021) and use the forward
Kullback-Leibler (KL) divergence as our loss.
Concretely, if py (A, | ¢,9) represents the group-
level empirical distribution of human opinions
and py(Ay | ¢,9) represents the model’s predicted
distribution, our training objective is:

L(6)=Eq | Dict (p11(Ag 19.9) [po(Aq 1 0.9)) |

where Dgkr, denotes the KL divergence. In the
example shown in Figure 2, the model is trained
to reduce the KL divergence between the target
(survey-based) distribution over {A, B,C, D, E}
and its predicted distribution for the subpopulation
living in the Southern United States.

We choose forward KL (i.e., KL (pH I pg))
since it is sensitive to cases where py assigns high
probability but py does not, naturally encouraging
the model to cover the real distribution.

This property aligns with standard maximum-
likelihood training, where the model is penalized for
underestimating any response that is frequent in the
data. In other words, if many participants in group
g choose option “A” for question g, then the model
probability on “A” should be correspondingly high.

Instead of explicitly modeling the group response
distribution as pg(A4lg, g), one could do two
alternatives. (1) One-hot encoding: this approach
(Li et al., 2024) approximates the distribution by
a one-hot vector, assigning a value of one to the
most probable option and zero elsewhere. (2) Data
augmentation by response frequency: this approach
(Zhao et al., 2023) expands the dataset by replicating
question-choice pairs in proportion to their observed
frequency. We adopt the explicit distribution mod-
eling in our main experiments because it directly
encodes the distributional information without re-
quiring discrete sampling or replicating data points.
This avoids potential quantization errors introduced
by binning continuous values and reduces the total
amount of data needed. A detailed comparison of
these approaches is provided in Section C.1.

3.2 SubPOP: a Comprehensive Survey
Dataset to Fine-tune and Evaluate LLMs

OpinionQA (Santurkar et al., 2023) is a widely used
dataset for fine-tuning and evaluating large language
models (LLMs) on opinion prediction, containing
roughly 500 questions drawn from 14 ATP (Amer-
ican Trends Panel) waves (Center, 2018). Although
valuable, it faces two important limitations: (1)
Limited thematic diversity—for instance, wave 26
focuses narrowly on firearms. (2) Reliance on a
single survey family (ATP), which risks overfitting
to a particular style of questions and hampers out-of-
distribution evaluation on other sources (e.g., GSS).

To address these limitations, we introduce a new
dataset, SubPOP, that broadens both the thematic
and institutional scope of opinion prediction data.
For training, SubPOP comprises 3,229 multiple-
choice questions drawn from ATP waves 61-132.
We exclude waves included in OpinionQA to
assess whether an LLM fine-tuned with SubPOP can
generalize to unseen subject areas. For evaluation,
SubPOP includes 133 multiple-choice questions
from the General Social Survey (GSS) (Davern
etal., 2024), serving as an out-of-distribution bench-
mark. This expanded collection not only broadens
the range of topics beyond OpinionQA’s initial 500



questions, but also enables evaluation on surveys
created and administered by different institutions
(Pew Research Center ATP vs. NORC-Chicago
GSS). Dataset curation and refinement pipeline is
available in Appendix A.

3.3 Evaluation Metric

We use Wasserstein distance (WD) to quantify how
closely the model’s predicted opinion distribution
matches human survey data (Santurkar et al., 2023;
Moon et al., 2024; Meister et al., 2024; Zhao et al.,
2023). Formally, for a group g representing some
subpopulation and a question ¢ WD is defined
as WDy(q,9) = WD(pu(Aqla, 9), pe(Aqlg; 9))-
Please refer to Appendix B for the exact formula
of WD metric.

Some prior work utilizes one-hot accuracy (Feng
etal., 2024; Liet al., 2023) as an evaluation metric.
However, one-hot accuracy has a notable drawback
for the response distribution prediction task. One-
hot accuracy only verifies whether the top-predicted
choice matches the top human response, thereby
discarding distribution information. In contrast,
WD accounts for partial overlaps among the cate-
gories and reflects the ‘cost’ of shifting probability
mass, providing a more nuanced assessment of
distribution discrepancy. Consider the example
question provided in Figure 2, where the human
response distribution indicates that option B
(“Somewhat likely”) is the most probable. Now
consider two cases in which the model incorrectly
predicts the top choice. In the first case, the model
assigns a high probability to option A (“Very
likely”), while in the second case, it assigns a high
probability to option D. Although one-hot accuracy
would treat both predictions equally as errors, WD
differentiates between them by accounting for the
ordinal relationship among the options, penalizing
the second prediction more heavily for its larger
deviation from the true distribution.

4 [Experiments

4.1 Bounds of WD and Baselines

In this section, we describe the lower/upper bounds
and two baseline methods against which we
compare our method.

Lower and upper bounds. We use a uniform
distribution over all available choices to establish
an upper bound of the WD between a predicted and

the target response distribution. To compute a lower
bound, we sample a group of human respondents
from the original human respondents to calculate
the WD between the two, and perform bootstrap-
ping to obtain a robust estimate. This lower bound
captures the intrinsic variance arising from the
respondent sampling process in opinion surveys.

Baselines. We compare our approach with two
baseline methods: prompting and Modular Plural-
ism (Feng et al., 2024). For prompting, we consider
both zero-shot and few-shot methods. In zero-shot
prompting, we steer the LLM using demographic
prompt formats. Specifically, we employ three
different formats following Santurkar et al. (2023):
QA, BIO, and PORTRAY. For instance, to condition the
LLM to a person living in the South of the US, the QA
format uses a question-answer format as illustrated
in Figure 2; the BIO format conditions the model
with a first-person narrative such as “I currently
reside in the South."; and the PORTRAY format uses
a third-person narrative like “Answer the following
question as if you currently reside in the South.".

Few-shot prompting augments the prompt with
a few examples of question-response distribution
pairs alongside the demographic label (Hwang et al.,
2023). In particular, we select the top five few-shot
examples from the SubPOP training set based on co-
sine similarity computed by the embedding model.
In our experiments, we represent the response
distribution in JSON format and require the model
to output its prediction in the same JSON format,
following the approach in Meister et al. (2024).

Modular pluralism (Feng et al., 2024) fine-tunes
multiple LLMs on distinct datasets to capture the
viewpoints of different communities (Feng et al.,
2023). For a given question, each fine-tuned LLM
generates an opinion that reflects the perspective
of the community it represents, and a separate
black-box LLM aggregates these outputs to
produce the final distributional response. Detailed
implementation of the lower/upper bounds and the
baselines is provided in Appendix D.

4.2 Generalization
to Unseen Topics and Survey Families

In this section, we assess the ability of our fine-tuned
LLMs to generalize to unseen data—both in terms
of new topics and entirely different survey families.
To evaluate these aspects, we use OpinionQA
to measure generalization to unseen topics, and



Table 1: Evaluation on OpinionQA and the SubPOP evaluation set (SubPOP-Eval) for 22 subpopulations following
(Santurkar et al., 2023). We compute the WD by averaging over all questions and subpopulations. Lower and upper
bounds of performance give guidance on how each method performs. For Modular Pluralism, we provide an error
rate of one-hot prediction (1) (Section 3.3) which was used in the original paper.

Method ‘ OpinionQA ‘ SubPOP-Eval

Llama-2-7B Llama-2-13B Mistral-7B Llama-3-70B Llama-2-7B  Llama-2-13B Mistral-7B  Llama-3-70B
Upper bound (Unit.) 0.178 0.208
Lower bound (Human) 0.031 0.033
Zero-shot prompt (QA) 0.173 0.170 0.153 0.138 0.206 0.196 0.187 0.160
Zero-shot prompt (BIO0) 0.193 0.183 0.162 0.143 0.221 0.212 0.202 0.175
Zero-shot prompt (PORTRAY) 0.195 0.207 0.158 0.209 0.212 0.242 0.194 0.247
Few-shot prompt 0.186 0.175 0.174 0.166 0.217 0.194 0.175 0.182
Modular Pluralism 0.285 (755.6%) 0.279 (F55.2%)
Ours (SubPOP-FT) 0.106 0.102 0.096 0.094 0.121 0.113 0.115 0.096

SubPOP-Eval to test generalization to a different
survey family.

We fine-tune four LLMs (Llama-2-7B, Llama-
2-13B, Mistral-7B, and Llama-3-70B) on
SubPOP-Train. We opt for pretrained LLMs rather
than instruction-following models, as previous
work has shown that pretrained models perform
better on this task (Moon et al., 2024). A detailed
comparison between these model types is provided
in Appendix C.2.

Table 1 reports the average WD metrics com-
puted over all demographic groups and survey
questions, comparing our fine-tuned models against
various baseline approaches.

Summary of Results. Our experiments show
that fine-tuning on SubPOP-Train significantly
outperforms all other methods, yielding a 32-46%
reduction in WD on OpinionQA and a 39-42%
reduction on SubPOP-Eval compared to the best
baselines. Notably, SubPOP-Train is based on ATP
data, while SubPOP-Eval is derived from GSS
surveys—two distinct survey families that can differ
in respondent pools, calibration techniques, and
other methodological factors, leading to non-trivial
distribution shifts despite both being representative
of the US population. Furthermore, our fine-grained
analyses at the wave level (see Appendix E) confirm
that these trends persist even at more detailed levels
of evaluation.

Comparison to Zero- and Few-Shot Prompting.
We first compare the performance of prompting
methods with our approach. Zero-shot prompting re-
sults in only modest WD improvements over the up-
per bound, with the largest gain observed for Llama-
3-70B and negligible improvements for Llama-2-
7B. Even when using few-shot prompting—where
five example question-response distribution pairs
are provided—the performance gains remain min-

imal. This may be partly due to an under-optimized
prompt format (e.g. requiring JSON output) and the
inherent sensitivity of language models to prompt
formatting (Sclar et al., 2023; Anagnostidis and Bu-
lian, 2024). These findings underscore the need for
methods, such as fine-tuning, that enable relatively
reliable predictions of opinion distributions.

Comparison to Modular Pluralism. Modular
Pluralism improves one-hot accuracy, reducing pre-
diction error from 72.7% (zero-shot prompting) to
55.6% on OpinionQA, but underperforms in match-
ing the full distribution of option choices, measured
as WD. This discrepancy in performance highlights
the limitations of methods that train LLMs to
identify only the most probable response rather
than modeling the entire distribution of responses.
Opinions are inherently distributed: even within
a particular subpopulation such as a single demo-
graphic subgroup, distribution of opinions cannot be
captured as a single most likely response. Moreover,
instruction-tuned models that serve as a black-box
LLM tend to assign high probabilities on only spe-
cific tokens (Lin et al., 2022; Kadavath et al., 2022;
Achiam et al., 2023), further pushing the generated
distribution away from the human distribution.

4.3 Generalization
across Target Subpopulations

Here we report two key observations: (1) prediction
performance improves consistently across most
subpopulations represented in the fine-tuning data,
and (2) the LLMs fine-tuned on SubPOP-Train
generalize well to subpopulations that were not
included during fine-tuning.

Consistent Performance Improvements over
Subpopulations. Figure 3 shows the per-group
WD on the OpinionQA evaluation for Llama-2-7B,
comparing our fine-tuning approach with zero-shot
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Figure 3: Per-group evaluation performance of our model Llama-2-7B-SubPOP-FT (red lines) on OpinionQA. For comparison,
the results from zero-shot QA prompting (black lines) and the lower bound (blue lines) are presented. We observe that the
relative improvement, measuring how much of the gap between zero-shot prompting and the lower bound has been closed, remains
consistent across subpopulations. Shaded blue regions represent the 95% confidence interval of the lower-bound estimation for each
group. Per-group results for other models (Table 7) and the results on SubPOP evaluation set (Table 8) are available in Appendix E.

prompting and the empirical WD lower bound. To
evaluate the consistency of performance gains, we
calculate the relative improvement for each subpop-
ulation as how much of the gap between zero-shot
prompting and the empirical lower bound is reduced
after fine-tuning. This measure allows us to account
for varying lower bounds across subpopulations:
since some groups have fewer respondents, there
is greater uncertainty in their reported distribution
in the survey data and greater variance between the
original sample and bootstrap samples.

With the exception of two of the smallest groups
(Hindu and Muslim), all subgroups demonstrate
a large and consistent relative improvement after
fine-tuning, ranging from 40%—-54%. Including all
groups, the average relative improvement is 46.7%,
with a standard deviation of 4.4%. This consistency
confirms that our fine-tuning approach delivers
balanced performance gains without disproportion-
ately favoring any particular demographic subgroup.
We hypothesize that the consistent gains over
groups largely stem from our dataset design, which
allocates an equal number of training samples to
each group. By ensuring uniformly distributed data
points across subpopulations, the model captures
sufficient subgroup-specific signals, ultimately
leading to consistent performance improvements.

Generalization on Unseen Subpopulations. We
further investigate how models fine-tuned with our
approach and SubPOP might show generalization
to subpopulations that were not represented in the

training data, a circumstance that can commonly oc-
cur when such fine-tuned LLMs are deployed for use
in assisting survey design. For this evaluation, we
benchmark our methods against a zero-shot prompt-
ing baseline. Specifically, we evaluate our model,
which is fine-tuned on 22 subpopulations provided
in SubPOP-Train, on a set of 38 subpopulations in
OpinionQA that were not included in fine-tuning.
This experiment not only checks generalization to
unseen subpopulations, but also involves unseen
survey questions, providing a robust assessment of
the model capability for generalization to OoD data.

As shown in Table 2, our model achieves a strong
reduction in WD even for unseen subpopulations,
indicating that the model can be steered by demo-
graphic prompts beyond the seen subpopulations in
training. Interestingly, although SubPOP-Train does
not contain any data with opinion distributions of
particular age groups (e.g. subjects of age 18-29 or
those of age 65+), the average relative improvement
is 44.7%, which is compatible with the average
relative improvement for seen subpopulations.

For other traits such as education level and polit-
ical ideology in Table 2, the relative improvements
for unseen subpopulations is comparable with the
relative improvements for seen subpopulations. We
provide results for other unseen subpopulations
in Table 6. For most of unseen subpopulations, our
methods achieve comparable relative improvements.
These findings show that our fine-tuning approach
effectively steers the model with conditioning
prompts and robustly generalizes to a wide range of



Table 2: Per-group evaluation performance of Llama-2-7B-
SubPOP-FT (Ours) on OpinionQA. We report the lower bound,
WD for zero-shot prompting, WD for Llama-2-7B-SubPOP-
FT, and the relative improvement. Rows highlighted in blue
represent subpopulations included during fine-tuning, while
uncolored rows correspond to subpopulations that were unseen
during fine-tuning.

Group Lower Zero Ours Relative
Bound Shot Improvement (%)
Age: 18-29 0.023 0.185  0.096 54.8
Age: 30-49 0.014 0.151  0.093 42.4
Age: 50-64 0.014 0.154  0.101 37.7
Age: 65+ 0.013 0.195  0.115 43.8
Less than high school 0.043 0.161  0.101 45.4
High school graduate 0.017 0.144  0.092 41.3
Some college, no degree 0.018 0.144  0.093 40.5
Associate’s degree 0.026 0.159  0.098 455
College grad 0.018 0.165  0.099 51.2
Postgraduate 0.015 0.174  0.106 42.6
Very conservative 0.026 0.208  0.107 55.5
Conservative 0.021 0.191 0.110 44.7
Moderate 0.018 0.184  0.120 42.1
Liberal 0.018 0224 0.102 54.2
Very liberal 0.025 0202 0.111 51.4

subpopulations. The further analysis on this result
is available in Appendix C.3.

4.4 Effect of Scaling the Dataset

In this section, we examine performance scales
with training dataset size. We randomly sample
subsets containing 25%, 50%, 75%, and 87.5%
of the full SubPOP training set and evaluate three
models—Ilama-2-7B, Llama-2-13B, and Mistral-
7B—on OpinionQA. As shown in Figure 4, we
observe diminishing marginal returns, as is typical
with fine-tuning; for example, after training on a
random 25%, the models reach 72%-78% of the
total improvement they achieve after fine-tuning on
all of SubPOP-train. However, what is interesting is
that performance does not entirely plateau. Instead,
it continues to improve as we further increase the
training data from 25% to 100%. We fit linear trend
lines (dotted in Figure 4) to the results and observe
that the slopes are similar for each model. This
suggests that the rate of improvement—reflected by
the slope in the power-law relationship—is intrinsic
to the data and task rather than to the specific
model architecture. In other words, LLLMs exhibit
comparable data efficiency, with performance gains
that are fundamentally tied to dataset size rather
than model-specific factors.

Using these trend lines, we can estimate the
amount of fine-tuning data required to reach a
target performance. For instance, we estimate that
fine-tuning Mistral-7B on a dataset 25 times larger
than the current SubPOP training set would yield
a WD value of 0.07, which is much closer to the
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Figure 4: Evaluation results on OpinionQA after fine-tuning
each LLM on increasingly large sampled subsets of SubPOP-
Train. The plot z-axis is the size of sampled dataset and y-axis
is WD against human responses measured on OpinionQA.
Note that both axes are log scale. Dashed lines represent a
line of best fit. Performances at data percentage of 100% are
identical to ours in Table 1.

empirical lower bound of 0.031 reported in Table 1.
This result underscores the critical importance of
collecting more high-quality data, as increased
dataset size can drive significant improvements in
model performance.

5 Conclusion

In this work, we demonstrated that fine-tuning
large language models on structured public opinion
survey data markedly improves their ability to
predict human response distributions. We curate
SubPOP —a dataset 6.5x larger than previous col-
lections to fine-tune and evaluate LLLMs on survey
response distribution prediction task. By training
on SubPOP, we showed that LLMs can accurately
capture the nuanced, group-specific variability in
public opinions, while also generalizing to unseen
survey waves and different survey families. Our
experiments reveal that as the fine-tuning dataset
grows, model performance continues to scale
favorably, underscoring the importance of dataset
size and representative sampling strategies.

These findings not only advance the state of
opinion prediction but also highlight a broader
societal imperative: to support public opinion
research and survey design, there is a critical need
to invest in and collect high-quality, large-scale
survey data. Such efforts will enable more accurate
modeling of diverse human opinions and, in turn,
assist more informed decision-making in both
public policy and research contexts.



6 Limitations

In this work, we explore the capability of language
models to complement traditional survey design by
predicting survey responses in advance. However,
we acknowledge the following inherent limitations
of this approach.

Role in Survey Research. While language mod-
els can provide a coarse approximation of human
opinions, they cannot fully replace human involve-
ment in the survey process. Human opinions evolve
dynamically in response to social events, and while
pretrained language models can incorporate such
knowledge through retrieval-augmented generation,
they remain limited in adapting to arapidly changing
world. Moreover, fine-tuning a language model on
distributions of human opinions may inadvertently
replicate and amplify existing biases of humans,
leading to undesirable outcomes. It is important
to note that a model fine-tuned on human opinions
does not necessarily align with human values and
behaviors, nor does it serve as a perfect proxy for hu-
man decision-making. The scope of our work is re-
stricted to language models prompted with a group-
level information generating response distributions
to survey questions, rather than simulating individ-
ual human respondents in a personalized manner.

Data Dependence. Survey response data, even
after post-stratification calibration, remain subject
to empirical variance, particularly for relatively
small groups that comprise about one percent
of the U.S. population. Also, while traditional
surveys have implemented various strategies to
mitigate response bias stemming from the linguistic
and multiple-choice nature of survey questions
(Tourangeau, 2000), the extent to which these
biases affect language models—and how best to
address them—remains an open question (Tjuatja
et al., 2024; Bisbee et al., 2024). Future research
could focus on developing reliable opinion datasets
for underrepresented groups and examining how
prompt engineering elements can be optimized to
reduce bias in language model-generated responses.

Limited Contextual Information. Our fine-
tuning approach, which structures prompts in a
QA format, demonstrates strong matching with
human opinion distributions. However, we have not
explored fine-tuning with richer contextual infor-
mation. Prior research suggests that incorporating

additional contextual details can improve the fidelity
of model-generated opinions to actual human re-
sponses. We anticipate that more sophisticated steer-
ing techniques could further enhance the opinion
prediction performance beyond the results presented
in this study. Investigating such methods remains
an open and promising direction for future work.

7 Potential Risks

Employing language models for opinion prediction
has both influential possibilities and risk of misuse.
We acknowledge that the risk of misuse cannot be
overlooked, and we clearly state that indiscrimi-
nately minimizing the discrepancy of opinion re-
sponse distribution as a fine-tuning target can cause
severe harms. In particular, the model might develop
a bias toward specific demographics during the
course of fine-tuning, an artifact of minimizing re-
sponse distribution when other safeguard measures
are not employed. We emphasize that an oversight
and holistic evaluation of methods and pipelines are
required before deploying such models for any of the
actual applications and interactions with human.
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A Dataset Details

A.1 American Trends Panel Datasets

Pew Research holds regular American Trends
Panel (ATP) survey (called waves) (Center, 2018)
covering various topics (e.g. veterans, political
priorities, gender and leadership) and releases result
at an individual level. For each anonymized individ-
ual, the following information is released: unique
identification number, demographic details, survey
responses, and weight. Weights (Merceretal., 2018)
are the output of post-survey calibration process
that helps adjusting survey results for response bias
(e.g., non-response bias, sampling bias) correction
and population representativeness. As of January
2025, survey data until wave 132 has been released.
About 20 surveys are conducted in each year.

A.2 OpinionQA

OpinionQA is a subset of ATP curated in (Santurkar
et al., 2023). This dataset consists of contentious
500 questions sampled from 14 ATP waves which
have high inter-group disagreement (i.e. large
Wasserstein distances among demographic groups
to a question). It also comes with hand-crafted
ordinality information which provides structure to
option lists. For example, options ‘Major reason’,
‘Minor reason’, and ‘Not a reason’, are assigned an
ordinality mapping to 1, 2, and 3, respectively. This
ordinality allows a calculation of 1-dimensional
Wasserstein distance.

Demographic groups we employ and the number
of questions per each of 14 waves are listed in
Table 3. This set of groups are adopted for several
small-scale analysis (Santurkar et al., 2023; Zhao
et al., 2023; Kim and Yang, 2024). We note that
our approach is not limited to a specific number
of groups and data is available for minority or
fine-grained demographic subpopulations.

A.3 SubPOP

We gather additional data from the American
Trends Panel, specifically collecting 53 waves
from Wave 61 to 132. There are 62 waves from
Wave 61 - 132, however, some waves have missing
demographic or ideology information (for example,
wave 63 does not contain political ideology
information) or the data is not available hence
removed during the curation process. To refine
the dataset, we exclude questions that meet the


https://www.worldvaluessurvey.org/wvs.jsp

Table 3: A list of 22 demographic groups and a wave-level
information for waves included in OpinionQA dataset.

Trait Groups Population % in Wave 82
Region Northeast 17.2
¢ South 378
- College grad+ 242
Education Less than high school 5.2
Male 443
Gender Female 54.6
Black 9.6
. White 66.1
Race / ethnicity Asian 48
Hispanic 15.2
Income $100,000 or more 21.8
Less than $30,000 21.3
. Democrat 35.1
Political Party Republican 29.1
Liberal 20.0
Political Ideology Conservative 22.6
Moderate 38.3
Protestant 40.8
Jewish 2.0
Religion Hindu 0.9
Atheist 0.6
Muslim 0.7
Wave  # questions Wave Topic
26 44 Guns
29 20 Views on gender
32 24 Community types, Sexual harassment
34 16 Biomedical and food issues
36 68 Gender and leadership
41 41 Views of America in 2050
42 26 Trust in science
43 51 Race in America
45 13 Misinformation
49 19 Privacy and surveillance
50 43 American families
54 50 Economic inequality
82 56 2021 Global Attitudes Project U.S. survey
92 23 Political Typology

following criteria: those with more than 10 response
options, redacted response data, or dependencies on
prior questions (e.g., assessing political strength).
For the remaining questions, we use GPT-40 to
refine their wording, ensuring they are well-suited
for individual prompting while making minimal
modifications. In Figure 5 we provide a few-shot
prompt for question refinement.

In Figure 6, we visualize the embeddings of the
question texts (projected to 2-dimensions using
t-SNE) from OpinionQA compared to the ATP and
GSS portions of SubPOP. The visualization shows
how much larger our dataset is than OpinionQA
(6.5x%), along with the expanded coverage of our
dataset into semantic areas untouched by Opin-
ionQA. The embeddings also reveal the distribution
shift from ATP questions to GSS questions: while
the ATP and GSS questions overlap in embedding
space, the GSS question appear as small clusters,
not evenly distributed over the ATP questions.
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Instruction: Refine the question with a minimal
change to make the question sensible. Do not
modify options, and do not modify a question if it
makes sense. Always start your answer with
"Refined question:".

Question: A cross // Do you have any of the
following for sEirituaI purposes?

A. Yes, | have this for spiritual purposes

B. No, | do not have this for spiritual purposes

Refined question: Do you have a cross for spiritual
purposes?

Question: As you may know, same-sex marriage is
now legal in the U.S. Do you think this is [a good
thing or a bad thing] for our society?

A. Very good thing

B. Somewhat EOOd thing

C. Somewhat bad thing

D. Very bad thing

Refined question: As you may know, same-sex
marriage is now legal in the U.S. Do you think this is
a good thing or a bad thing for our society?,

Question: On a different subject...How much, if at
all, do white people benefit from advantages in
society that black people do not have

A. A great deal

B. A fair amount

C. Not too much

D. Not at all

Refined question: How much, if at all, do white
Beople benefit from advantages in society that
lack people do not have?,

Question: Thinking about the past couple of weeks,
would you say the news for Donald Trump has
been...

A. Very good

B. Mostly good

C. Neither good nor bad

D. Mostly bad

E. Very bad

Refined question: Thinking about the past couple of
\k/]veelés, would you say the news for Donald Trump
as been...

Question: (Question to refine)
(Options)

Refined question:

Figure 5: Few-shot prompt for refining the question to suit
a language model prompting. An instruction is designed to
make a minimal change to the original question, and in-context
examples are provided.

A.4 General Social Survey 2022

To evaluate the out-of-distribution generalization
ability of our fine-tuned models, we subsample
133 questions from the GSS 2022 dataset (Davern
et al., 2024). We apply the same selection criteria
as outlined in Appendix A.3, excluding questions
that are redacted, conditioned on prior questions,
directly answered through demographic steering,
derived from a set of questions, or those with more
than 10 response options.
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Figure 6: Embeddings of questions from OpinionQA,
SubPOP-Train, and SubPOP-Eval.
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Figure 7: Distribution of cosine similarities between a question
in SubPOP-ATP and OpinionQA, having a long tail towards
a high cosine similarity. We inspect the question pairs in the
range of 0.8 to 1.0 (distribution shown in the magnified view)
and used a similarity of 0.87 as a safe threshold to identify a
semantically identical question pair.

A.5 Inspection of Identical Questions

Distribution of cosine similarities between two text
embeddings (an output of the embedding model
OpenAl-text-embedding-3-large given a question),
one from a question in SubPOP and another from
a question in OpinionQA is shown in Figure 7.
We observe a fraction of pairs having high cosine
similarity, and manually inspected question pairs
with high relevance pairs and find that by setting a
threshold cosine similarity of 0.87 we can detect all
semantically identical pairs. We took a conservative
threshold of cosine similarity; this value was to
maximize the recall at a cost of precision to ensure
detection of overlapping questions.

B Training Details

We conduct our experiments using Nvidia A100
GPUs with 80GB VRAM. Hyperparameter tuning
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is performed over learning rates {5e-5, 1e-4, 2e-4}
and batch sizes {64, 128, 256}. After evaluating
possible combinations, we select a (learning rate,
batch size) = (2e-4, 256) for Llama-2-7B, (learning
rate, batch size) = (2e-4, 256) for Mistral-7B-v0.1,
and (learning rate, batch size) = (le-4, 256) for
Llama-2-13B when utilizing the full training
dataset. For Llama-3-70B, we have not done
hyperparameter search but heuristically used
(learning rate, batch size) = (2e-5, 256).

For sub-sampled training data (Figure 4), we use
the following configurations:

¢ (Ir, bs) = (2e-4, 256) for 75% of the training data
* (Ir, bs) = (1e-4, 128) for 50% of the training data
¢ (Ir, bs) = (1le-4, 128) for 25% of the training data

All training is performed using LoRA (Hu et al.,
2021), with LoRA parameters initialized from a
normal distribution with 0 =0.02. We set the LoRA
rank to 8, alpha to 32, and apply a dropout rate of
0.05. LoRA weights are applied to the query and
value matrices. The AdamW (Loshchilov, 2017)
optimizer is used with a weight decay of 0.

B.1 Choice of the training objective

In this section, we explore both forward KL-
divergence and Wasserstein Distance (WD) as
training objectives. The forward KL-divergence is
defined as

pr(a)

D1 (pullpe)= ) pu(a)log——,

where py(a) =pp(alq,g) and pg(a) =pg(a|q,9).
Similarly, WD is given by

WD(pH7p9): V(Gaa/)d(aaa/)a

cA,

min

’YGH(pH,pe)%a,
with II(pg, pg) denoting the set of all couplings
between py and py, and d(a,a’) the L1 distance
between choices. Since survey responses are
inherently one-dimensional and ordinal, we can
simplify the computation of WD using cumulative
distribution functions (CDFs). In the 1-D case, WD
is computed as

+oo
|F,

PH

WD(pr,pg) = /

—00

:Z|FPH (1) = Fipy (4)]
=1

(x)—Fpy(x)|dz,
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Figure 8: Train loss curve (left) and validation loss curve (right)
for Llama-2-7B fine-tuned on 90% of OpinionQA, with the
remaining 10% used for validation. Light and dark blue lines
represent KL-divergence (KL) and Wasserstein distance (WD)
when used KL as a training objective, while light and dark
red lines represent KL and WD when used WD as a training
objective. The two training objectives yield similar results
in terms of WD, the primary measure of opinion distribution
matching in our work.

where F),,, and F},, are the CDFs corresponding
to py and py, respectively. We use this discrete
formulation as the WD loss in our training.

While training with WD resulted in a higher
KL-divergence on the validation set, the validation
WD converged to similar levels regardless of the
objective (see Figure 8). We attribute this to KL-
divergence penalizing low-probability assignments
without significantly altering the overall distribution
geometry. Given its broader applicability—without
requiring ordinal information—we primarily used
KL-divergence in our experiments.

However, the choice of objective did not signif-
icantly impact the opinion prediction performance,
as measured by WD (Figure 8). Although WD as a
training objective resulted in higher KL-divergence
on the validation set, the validation WD converged
to the same level regardless of the training objective.
We attribute this to KL-divergence strongly penaliz-
ing language models’ probability assignments to op-
tions with low human opinion probability (choices
rarely selected by humans). However, since these
probabilities remain low, the shape of probability
distribution is preserved. Given KL-divergence’s
broader applicability—it does not require ordinal in-
formation—we primarily used it in our experiments.

C Additional Experiments

C.1 Effect of Response Distribution Modeling

In this section, we compare different methods for
capturing the distribution of human responses. We
consider three approaches:

1. One-hot: Predicting only the most probable
response, which ignores the full distribution
over all responses (Li et al., 2024).

2. Augment by N: Augmenting the dataset by
replicating each response by a factor of N
according to its observed frequency (Zhao
etal., 2023).

3. Explicit probability modeling:  Directly
modeling the full response distribution using
the actual probability values for each option.

Table 4 summarizes the results of these
approaches. Notably, the explicit probability
modeling outperforms one-hot with a considerable
margin. This shows that merely learning the single
most frequent response fails to capture the opinion
diversity within each demographic subgroup.

Compared with augmented data, the explicit
modeling performs better than the augmentation
approach.  Notably, the performance gap is
larger than the quantization error introduced by
discretizing the response distribution. If we use
N for discretization, the quantization error is ﬁ,
which is continuous value with 0.01 or 0.005 for the
cases in Table 4. Also, the other benefit of explicit
modeling compared to augment by N, is that we
can reduce the amount of data by a factor of N. This

reduces the cost of fine-tuning LLMs.

Table 4 summarizes the results of these ap-
proaches. Notably, explicit probability modeling
substantially outperforms the one-hot method,
demonstrating that simply predicting the single most
frequent response fails to capture the opinion diver-
sity present within each demographic subgroup.

Compared with augment by N (2nd and 3rd
column in Table 4), explicit probability modeling
also achieves better performance. Importantly, the
performance gap exceeds the quantization error
introduced by discretizing the response distribution.
For instance, when discretizing with a factor of V,
the quantization error is ﬁ—approximately 0.01
or 0.005 in the cases shown in Table 4. Moreover,
explicit modeling offers the practical benefit of
reducing the data volume by a factor of /N compared
to the augmentation approach, thereby lowering the
computational cost of fine-tuning LLMs.

These results underscore the importance of
explicit distribution modeling. By aligning the
model’s predictive distribution directly with the



survey distribution, we achieve higher accuracy
with fewer data samples, avoiding the rounding
errors and replication overheads that are inherent
to data-augmentation approaches.

C.2 Post-trained Model

We fine-tune Llama-2-7B-chat to observe the
effect of starting from checkpoints that have been
instruction-tuned via Reinforcement Learning
from Human Feedback (RLHF). Table 5 shows
the evaluation performance of a baseline method
(Zero-shot prompting (QA)), fine-tuned base
model and our fine-chat model. We observe the
significant performance improvement, while the
baseline method performs worse then the models
not instruction-tuned (Table 1). Especially, the
performance for SubPOP-Eval of chat model is
significantly worse than that of base model. We
observe the high WD of the baseline method
resulting from the model assigning high probability
to a specific token (e.g. ‘A’), being far apart from
the human opinion distribution. After fine-tuning
the model are able to generate a more distributed
probability of answer tokens. This result coincides
with the result reported in (Moon et al., 2024).

C.3 Generalization to Unseen Subpopulations

Here we present a complete list of evaluation
performance on OpinionQA for unseen subpop-
ulations (the groups not used to fine-tune our
model) and perform an analysis that shows our
fine-tuned models are able to steer towards the
given subpopulation information.

As shown in Table 6, we observe a performance
improvement across unseen subpopulations. To
verify that the performance improvement does not
come from the model simply utilizing average opin-
ion distribution (average of response distributions
across subpopulations used in the fine-tuning data),

Table 4: Comparison of evaluation performance for three
response distribution modeling approaches, with Llama-2-7B
as a base model. The last column (Explicit) is identical to the
ours presented in Table 1. A model fine-tuned to predict the
most probable choice (one-hot) performs the worst, as the
model has not learned distributional opinion at fine-tuning
phase. A model trained on augmented data (Aug. (x50,
%x100)), while performing much better than one-hot still
underperforms the explicit distribution modeling.

Eval Dataset ‘ One-hot Aug. (X 50) Aug. (x 100) Explicit (Ours)
OpinionQA ‘ 0.163 0.110 0.107 0.106
SubPOP-Eval | 0.178 0.130 0.123 0.121
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Table 5: Performance of the fine-tuned Llama-2-7B-chat
model (Chat LLM). For comparison, we also present
lower and upper bounds, the baseline method Zero-shot
prompt (QA) and fine-tuned Llama-2-7B (Base LLM).

Method | OpinionQA | SubPOP-Eval
Upper bound (Unif.) 0.178 0.208
Lower bound (Human) 0.031 0.033
Zero-shot prompt (QA) 0.308 0.383
Chat LLM 0.109 0.148
Base LLM 0.106 0.121

we perform an analysis of how closely a fine-tuned
model provided with a steering prompt for group
X represents the response distribution for group Y.

To verify that the observed improvements are
not coincidental, we analyze in Figure 9, Figure 10,
Figure 11, and Figure 12 how well language models
conditioned with different steering prompts match
the true distributions of various subpopulations.
Concretely, we measure how closely our fine-tuned
model provided with a steering prompt of group
X predict response distribution of human group
Y. We observe that even for unseen subpopulations
Y should be X to minimize the WD between the
model’s response distribution and the response of
group X, confirming that the model tailors its pre-
dictions to each unseen group rather than defaulting
to an averaged distribution of . We hypothesize
that this is possible because the model learns
to be jointly conditioned on the subpopulation
information and survey question during fine-tuning,
and also utilizing its knowledge on relationship
between subpopulations, able to predict the opinion
distribution even for unseen groups.

D Baseline Details

* Upper bound: We estimate the distribution be-
tween human responses and uniform distribution
as an upper bound of WD metrics.

e Zero-shot prompting: Three prompt styles—QA,
BIO, and PORTRAY—are introduced in (Santurkar
et al., 2023) to integrate group information into
prompts. These prompts are then combined with
survey questions to construct inputs for LLM.
Then, the first-token log-probability from LLM
is measured to calculate the model’s response
distribution over options. In our baseline (and
also in fine-tuning experiments) we focus on the
QA steering format. Examples of this prompting
method are shown in Figure 13.

* Few-shot prompting: We craft a conditioning



Table 6: Evaluation performance on OpinionQA with demographics not included in the fine-tuning dataset SubPOP-training from
Llama-2-7B. For reference, we present a lower bound (human) and the zero-shot prompting (QA) are presented. Absolute difference
refers to the difference between zero-shot prompting and ours, and the relative improvement is caluclated in a same way to Figure 3.

Attribute Group Lower Bound (Human) Zero-shot (QA) Ours Absolute Diff. Relative Improvement
Age 18-29 0.023 0.185 0.096 0.089 0.548
Age 30-49 0.014 0.151 0.093 0.058 0.424
Age 50-64 0.014 0.154 0.101 0.052 0.377
Age 65+ 0.013 0.195 0.115 0.080 0.438
Region Midwest 0.016 0.153 0.095 0.058 0.425
Region West 0.017 0.162 0.095 0.068 0.465
Education Associate’s Degree 0.026 0.159 0.098 0.061 0.455
Education High School Graduate 0.017 0.144 0.092 0.053 0.413
Education Postgraduate 0.015 0.174 0.106 0.068 0.426
Education Some College, No Degree 0.018 0.144 0.093 0.051 0.405
Income $50,000-$75,000 0.016 0.153 0.098 0.054 0.396
Income $30,000-$50,000 0.019 0.144 0.094 0.050 0.400
Political Ideology Very Conservative 0.026 0.208 0.107 0.101 0.555
Political Ideology Very Liberal 0.025 0.202 0.111 0.091 0.514
Political Party Independent 0.016 0.155 0.093 0.062 0.445
Political Party Something Else 0.026 0.162 0.092 0.069 0.510
Race Other 0.050 0.180 0.144 0.036 0.275
Religion Agnostic 0.028 0.189 0.115 0.074 0.459
Religion Buddhist 0.063 0.207 0.149 0.059 0.405
Religion Nothing in Particular 0.019 0.153 0.092 0.061 0.454
Religion Orthodox 0.083 0.221 0.180 0.041 0.298
Religion Other 0.051 0.184 0.123 0.061 0.457
Religion Roman Catholic 0.018 0.145 0.098 0.047 0.371
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Figure 9: Heatmap of average WD between a human (y-axis) and a group on the x-axis for age trait. Our model, when steered
with the conditioning prompt, exhibits similar WD pattern as between human groups, showing that our model are steered towards

demographic subgroups.
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Figure 10: Heatmap of average WD between a human group (y-axis) and a group on the z-axis for gender trait.

prompt that contains not only group information
but also the group’s response distribution to k
train questions, following (Hwang et al., 2023).
For a test question qest € Qtest, We first sort
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training questions Qyrqin into {q1,¢2, ...} such
that sim(E(q1),E(qrest)) > sim(E(q2),E(qrest))s
and so on. E(q) denotes the embedding model
(OpenAl-text-embedding-3-large) output of the
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Figure 12: The heatmap of average WD between a human group (y-axis) and a group on the x-axis for political ideology trait.

input ¢ and simis a cosine similarity between two
embedding vectors. Then, response information
of the first k questions {q;,p(Ay,|qi,9)}5_, are
used as few shot prompts to have the language
model verbalize (Meister et al., 2024) expected
response distribution for the given g and q;es¢. An
example of the prompt for k£ =3 case is shown in
Figure 14, while we run the baseline experiment
in a k=5 setting.

Modular Pluralism: The intuition behind Modu-
lar Pluralism (Feng et al., 2024) is that a language
model trained on a text corpus of a specific sub-
population will faithfully represent public opinion
of that population. Given a survey question with a
PORTRAY-style steering prompt, each of language
model ‘modules’ (fine-tuned Mistral-7B-Instruct-
v0.1) generates an option choice with explanation.
A black-box LLM (GPT-3.5-turbo-Instruct) re-
ceives all generations and select a generation that
best aligns with the given group. Finally, using
the chosen generation as a context, a black-box
LLM generates probability distribution over
options. The example pipeline is shown in Figure
15. Instead of the sub-sampled OpinionQA
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dataset the authors of the method used, we use
the exactly same evaluation set across all baseline
methods and our approach for a fair comparison.

Lower bound: We compute a lower bound by
randomly sampling two groups from the human
respondents and calculating the WD between
their response distributions. Bootstrapping is then
applied to obtain a robust estimate. Further details
on this estimation process are provided below:

Computing weighted answer distributions:
For each demographic group g and question g, we
have n 4, responses from respondents who belong
to group g answering question q: 1,72, *,Tn,,
where z; € A, i.e., the answer set for question
q (e.g., {1,2,3,4}). Furthermore, each respondent
(and thus, their response) is associated with a
wave-specific weight wy,wa,-+ ,wy,,, provided
by Pew Research. We compute the human
answer distribution WS(J,I]_I) as a weighted sum over
responses, where the proportion of respondents



providing answer a € A, is estimated as

29wl [z =al
Z:‘L:g(iwi '

Bootstrapping at the respondent-level: We
draw bootstrap samples per demographic group
at the respondent-level including questions from
all survey waves. This allows us to capture
correlations in answer distributions across
questions and across waves.

(
Tgq

(a)=

Specifically, let P, represent the set of respon-
dents in group g, where |Py| =n,. We produce
bootstrapped samples by repeatedly sampling
ng respondents from P, with replacement.
Let pgr), pg), . pgg) represent the sampled
respondents for the r-th bootstrap, and let
W ™)
1 »¥2 » Ny
weights.

represent their corresponding

For each question g, let Py, C P, represent the
set of respondents from group g who answered
question g; as before, | Py,| =ngq. Let us define
q(p;) as person p;’s response to question ¢ if
p; answered question ¢, i.e., p; € Pyq, and 0
otherwise. Then, we compute the r-th answer
distribution for option a to question q as:

la(p\") =a] _
< qu]w(r)

1

517 10p)) € Pygluw”1
Z;L:g1 1 [p(r)

7
Human lower bound of WD. Our statistic of
interest is the mean Wasserstein distance over all
questions () across all waves per demographic
group. We approximate this as the WD between

o

(a)=

the observed human distribution ng) and the
bootstrap sample Wéz) for question ¢ and group

g. Over all R bootstraps, we have

1

pH) ) _—
! Q|

> WD) x5
q€Q

r=1
To quantify agreement between human samples,

we report the mean and 95% CI of Dé{]{).

E Wave, Group-level Opinion Matching

Here we present a group-level and wave-level
averaged Wasserstein distance. Wave-level result is
in Table 9, and group-level results for OpinionQA
and SubPOP-Eval are in Table 7, 8, respectively.
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Question: Which part of the United States do you
currently live in?

A. Northeast

B. Midwest

C. South

D. West

Answer: A. Northeast

Answer the following question keeping in mind
your previous answers.

Question: | am going to name some institutions in
this country. As far as the people running these
institutions are concerned, would you say you
have a great deal of confidence, only some
confidence, or hardly any confidence at all in
them? Military

A. A great deal

B. Only some

C. Hardly any

D. Refused

Answer as a choice between A.,B.,C.,D.

Answer:

Question: What is your present religion, if any?
A. Protestant

B. Roman Catholic

C. Mormon

D. Orthodox

E. Jewish

F. Muslim

G. Buddhist

H. Hindu

I. Atheist

J. Agnostic

K. Other

L. Nothing in particular

Answer: |. Atheist

Answer the following question keeping in mind
your previous answers.

Question: Do you believe there is a life after
death?

A.Yes

B. No

C. Refused

Answer as a choice between A.,B.,C.

Answer:

Figure 13: Two examples of LM steering in the QA format
(Santurkar et al., 2023). Demographic group information
(colored in pink) is concatenated with survey question (colored
in sky blue). The first-token log-probability (probabilities
assigned to A, B, C, ...) are used to calculate language model’s
response distribution. The same group steering prompt is used
in our fine-tuning experiment.



Table 7: Per-group Wasserstein distance on OpinionQA for each base models, before and after fine-tuning on SubPOP-Train. Base

refers to zero-shot prompting (QA).

Attribute Grou Llama-2-7B Llama-2-13B Mistral-7B-v0.1 Llama-3-70B
P Human Baseline Base Fine-tuned Base Fine-tuned Base Fine-tuned Base Fine-tuned

Region Northeast 0.023 0.165 0.094 0.155 0.088 0.155 0.083 0.134 0.084
& South 0.017 0.149 0.092 0.143 0.085 0.133 0.081 0.113 0.078
Education College grad, some Postgrad 0.018 0.165 0.099 0.157 0.096 0.136 0.089 0.125 0.085
Less than high school 0.043 0.161 0.101 0.150 0.096 0.134 0.094 0.151 0.091
Gender Male 0.015 0.182 0.093 0.152 0.089 0.131 0.083 0.138 0.083
Female 0.013 0.162 0.100 0.158 0.092 0.146 0.088 0.130 0.087
Black 0.031 0.151 0.102 0.144 0.095 0.132 0.091 0.116 0.085
Race / ethnicit White 0.012 0.176 0.097 0.178 0.093 0.145 0.085 0.131 0.084
y Asian 0.051 0.165 0.111 0.167 0.104 0.143 0.102 0.124 0.099
Hispanic 0.044 0.162 0.102 0.163 0.098 0.134 0.092 0.126 0.091
Income $100,000 or more 0.019 0.172 0.103 0.162 0.100 0.147 0.091 0.159 0.087
Less than $30,000 0.021 0.162 0.091 0.148 0.083 0.127 0.080 0.154 0.078
Political Part Democrat 0.016 0.172 0.099 0.158 0.092 0.161 0.082 0.118 0.079
Y Republican 0.019 0.196 0.105 0.235 0.101 0.181 0.095 0.174 0.093

Liberal 0.022 0.192 0.100 0.181 0.094 0.166 0.084 0.126 0.081
Political Ideology Conservative 0.021 0.169 0.103 0.153 0.099 0.144 0.094 0.141 0.092
Moderate 0.016 0.151 0.094 0.153 0.090 0.132 0.082 0.106 0.081
Protestant 0.016 0.015 0.166 0.096 0.158 0.092 0.146 0.086 0.143
Jewish 0.058 0.182 0.124 0.182 0.122 0.165 0.115 0.144 0.115
Religion Hindu 0.079 0.211 0.160 0.232 0.163 0.211 0.161 0.181 0.157
Atheist 0.035 0.202 0.118 0.204 0.110 0.196 0.099 0.135 0.098
Muslim 0.089 0.202 0.159 0.209 0.156 0.204 0.146 0.171 0.144

Table 8: Per-group Wasserstein distance on SubPOP-Eval for each base models, before and after fine-tuning on SubPOP-Train.
Base refers to zero-shot prompting (QA).

Attribute Grou Llama-2-7B Llama-2-13B Mistral-7B-v0.1 Llama-3-70B

P Human Baseline Base Fine-tuned Base Fine-tuned Base Fine-tuned Base Fine-tuned
Region Northeast 0.027 0.196 0.113 0.193 0.103 0.185 0.108 0.156 0.078
& South 0.018 0.183 0.108 0.185 0.103 0.176 0.103 0.138 0.080
Education College grad, some Postgrad 0.019 0.206 0.105 0.175 0.101 0.167 0.099 0.137 0.077
ueatio Less than high school 0.036 0.191 0.129 0.182 0.117 0.172 0.121 0.180 0.108
Gend Male 0.017 0.186 0.102 0.176 0.101 0.170 0.099 0.150 0.079
ender Female 0.016 0.184 0.108 0.198 0.105 0.176 0.100 0.151 0.080
Black 0.029 0.200 0.114 0.179 0.102 0.170 0.107 0.139 0.094
Race/ ethnicit White 0.014 0.190 0.105 0.187 0.103 0.181 0.102 0.153 0.083
Y Asian 0.049 0.201 0.119 0.190 0.107 0.184 0.114 0.158 0.096
Hispanic 0.050 0.204 0.133 0.199 0.122 0.182 0.134 0.172 0.115
Incom $100,000 or more 0.021 0210 0.111 0.184 0.106 0.176 0.102 0.179 0.082
come Less than $30,000 0.026 0.179 0.115 0.172 0.103 0.165 0.105 0.171 0.086
Political Part Democrat 0.020 0219 0.103 0.197 0.092 0.199 0.091 0.128 0.076
¥ Republican 0.023 0.205 0.123 0.234 0.117 0.206 0.115 0.187 0.093
Liberal 0.019 0.224 0.102 0.191 0.090 0.188 0.096 0.134 0.076
Political Ideology Conservative 0.022 0.184 0.120 0.178 0.112 0.172 0.113 0.160 0.092
Moderate 0.018 0.191 0.110 0.183 0.103 0.170 0.103 0.141 0.082
Protestant 0.019 0.187 0.110 0.179 0.107 0.172 0.105 0.164 0.082
Jewish 0.066 0.245 0.149 0.226 0.144 0218 0.129 0.164 0.119
Religion Hindu 0.095 0.264 0.180 0.253 0.169 0.252 0.186 0.223 0.166
Atheist 0.021 0222 0.126 0.207 0.103 0.199 0.116 0.132 0.106
Muslim 0.090 0253 0.175 0.240 0.181 0.238 0.173 0.203 0.158
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Table 9: Per-wave Wasserstein distance on OpinionQA for each base model, before and after fine-tuning on SubPOP-Train. Base
refers to zero-shot prompting (QA).

Wave Llama—2—7B Llama—z— 13B Mistral»7B—v0. 1 Llama—3_—70B
Base Fine-tuned Base Fine-tuned Base Fine-tuned Base Fine-tuned
26 0.191 0.145 0.180 0.126 0.178 0.131 0.134 0.084
29 0.169 0.096 0.172 0.123 0.153 0.096 0.125 0.085
32 0.163 0.110 0.156 0.098 0.137 0.099 0.151 0.091
34 0.155 0.105 0.171 0.089 0.134 0.095 0.138 0.083
36 0.175 0.120 0.184 0.126 0.175 0.107 0.130 0.087
41 0.160 0.090 0.155 0.084 0.134 0.073 0.116 0.085
42 0.159 0.053 0.146 0.059 0.127 0.059 0.131 0.084
43 0.179 0.112 0.172 0.104 0.154 0.102 0.124 0.099
45 0.177 0.101 0.177 0.093 0.149 0.084 0.126 0.091
49 0.151 0.098 0.143 0.131 0.128 0.116 0.159 0.087
50 0.209 0.139 0.196 0.121 0.188 0.125 0.154 0.078
54 0.158 0.087 0.158 0.087 0.128 0.077 0.118 0.079
82 0.173 0.098 0.171 0.075 0.148 0.077 0.174 0.093
92 0.165 0.073 0.153 0.071 0.140 0.055 0.126 0.081
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Predict the answer distribution of the following
questions for people whose race or ethnicity is
White.

Question: Overall, how does being Asian affect
people’s ability to get ahead in our country these
days?

A. Helps a lot

B. Helps a little

C. Hurts a little

D. Hurts a lot

E. Neither helps nor hurts

F. Refused

Answer distribution: {'A": 0.050, 'B"
0.241,'D" 0.034, 'E": 0.474, 'F": 0.010}

0.210, 'C":

Question: Thinking about the people who design
artificial intelligence computer programs, how well
do you think they take into account the
experiences and views of Asian adults?

A. Very well

B. Somewhat well

C. Not too well

D. Not at all well

E. Not sure

F. Refused

Answer distribution: {'A" 0.078, 'B"
0.138,'D": 0.069, 'E": 0.507, 'F': 0.008}

0.216, 'C"

Question: Thinking about the people who design
artificial intelligence computer programs, how well
do you think they take into account the
experiences and views of Hispanic adults?

A. Very well

B. Somewhat well

C. Not too well

D. Not at all well

E. Not sure

F. Refused

Answer distribution: {'A": 0.050, 'B"
0.203, 'D": 0.090, 'E": 0.505, 'F': 0.008}

0.160, 'C":

Question: Thinking again about race and race
relations in the U.S. in general, how well, if at all,
do you think each of these groups get along with
each other in our society these days? Hispanics
and Asians

A. Very well

B. Pretty well

C. Not too well

D. Not at all well

E. Not sure

F. Refused

Answer distribution:

Figure 14: Few-shot prompting example for £k = 3. Demo-
graphic group information is presented in the beginning of
the prompt (colored in pink). Following group information,
k questions whose text embedding are the most similar to the
text embedding of the evaluation question (colored in sky blue)
are presented along with their opinion distribution. k£ questions
are presented in the ascending order of cosine similarity.
The generation of language model (verbalization of opinion
distribution) is parsed to obtain the response distribution.
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In terms of political party, you are Republican.
Please respond to the following question with
explanation.

Question: Please indicate whether the following is a
major reason, a minor reason, or not a reason why
you own a gun. As part of a gun collection

A. Major reason

B. Minor reason

C. Not a reason

Answer:

Which of the following comments best reflect the
people of Republican in terms of political party?

Comment 1: (generation from model 1)
Comment 2: (generation from model 2)
Comment 3: (generation from model 3)
Comment 4: (generation from model 4)
Comment 5: (generation from model 5)

Comment 6: (generation from model 6)

Please select one comment number from 1 to 6.

In terms of political party, you are Republican.
Please respond to the following question with the
help of a passage.

Passage: (selected generation)

Question: Please indicate whether the following is a
major reason, a minor reason, or not a reason why
you own a gun. As part of a gun collection

A. Major reason

B. Minor reason

C. Not a reason

Answer:

Figure 15: Pipeline example of Modular Pluralism. Given
a demographic group and a survey question, the first prompt
is asked to multiple (6) language models, Mistral-7B-v0.1-
Instruct fine-tuned on the community text corpus. The
generations are sent to a black-box LLM (gpt-3.5-0613-
Instruct) in the format of the second prompt. The black-box
LLM answers which one of generations best reflects the given
demographics. Finally, the selected generation serves as a
context to answer the given survey question and the black-box
LLM is prompted (the third prompt) to generate response
distribution over the answer token A, B, C, etc.
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