
Multimodal Trajectory Prediction Conditioned on
Lane-Graph Traversals

Nachiket Deo1∗ Eric M. Wolff2 Oscar Beijbom2

1UC San Diego 2Motional
ndeo@ucsd.edu, {eric.wolff, oscar.beijbom}@motional.com

Abstract:
Accurately predicting the future motion of surrounding vehicles requires reason-
ing about the inherent uncertainty in driving behavior. This uncertainty can be
loosely decoupled into lateral (e.g., keeping lane, turning) and longitudinal (e.g.,
accelerating, braking). We present a novel method that combines learned discrete
policy rollouts with a focused decoder on subsets of the lane graph. The policy
rollouts explore different goals given current observations, ensuring that the model
captures lateral variability. Longitudinal variability is captured by our latent vari-
able model decoder that is conditioned on various subsets of the lane graph. Our
model achieves state-of-the-art performance on the nuScenes motion prediction
dataset, and qualitatively demonstrates excellent scene compliance. Detailed abla-
tions highlight the importance of the policy rollouts and the decoder architecture.

Keywords: Motion prediction, autonomous vehicles, graph neural networks

1 Introduction

To safely and efficiently navigate through complex traffic scenes, autonomous vehicles need the abil-
ity to predict the intent and future trajectories of surrounding vehicles. There is inherent uncertainty
in predicting the future, making trajectory prediction a challenging problem. However, there’s struc-
ture to vehicle motion that can be exploited. Drivers usually tend to follow traffic rules and follow
the direction ascribed to their lanes. High definition (HD) maps of driving scenes provide a succinct
representation of the road topology and traffic rules, and have thus been a critical component of
recent trajectory prediction models as well as public autonomous driving datasets.

Early work [1] encodes HD maps using a rasterized bird’s eye view image and convolutional layers.
While this approach exploits the expressive power of modern CNN architectures, rasterization of
the map can be computationally inefficient, erase information due to occlusions, and require large
receptive fields to aggregate context. The recently proposed VectorNet [2] and LaneGCN [3] mod-
els directly encode structured HD maps, representing lane polylines as nodes of a graph. VectorNet
aggregates context using attention [4], while LaneGCN proposes a dilated variant of graph convo-
lution [5] to aggregate context along lanes. These approaches achieve state-of-the-art performance
using fewer parameters than rasterization-based approaches.

The above methods represent the HD map as a graph and encode the input context into a single
context vector as shown in Fig.1. The context vector is then used by a multimodal prediction
header [1, 6] to output multiple plausible future trajectories. The prediction header thus needs to
learn a complex mapping, from the entire scene context to multiple future trajectories, often leading
to predictions that go off the road or violate traffic rules. In particular, the prediction header needs
to account for both lateral or route variability (e.g. will the driver change lane, will they turn right
etc.) as well as longitudinal variability (e.g. will the driver accelerate, brake, maintain speed). This
decoupling of routes and motion profiles for trajectories has been used in path planning [7, 8], and
more recently in prediction [9].

∗Work done during an internship at Motional.

5th Conference on Robot Learning (CoRL 2021), London, UK.

Figure 1: Overview of our approach. We encode HD maps and agent tracks using a graph rep-
resentation of the scene. However, instead of aggregating the entire scene context into a single
vector and learning a one-to-many mapping to multiple trajectories, we condition our predictions on
selectively aggregated context based on paths traversed in the graph by a discrete policy.

Our core insight is that the graph structure of the scene can additionally be leveraged to explicitly
model the lateral or route variability in trajectories. We propose a novel approach for trajectory
prediction termed Prediction via Graph-based Policy (PGP). Our approach relies on two key ideas.

Predictions conditioned on traversals: We selectively aggregate part of the scene context for each
prediction, by sampling path traversals from a learned behavior cloning policy as shown in Fig. 1.
By more directly selecting the subset of the graph that is used for each prediction, we lessen the rep-
resentational demands on the output decoder. Additionally, the probabilistic policy leads to a diverse
set of sampled paths and captures the lateral variability of the multimodal trajectory distribution.

Latent variable for longitudinal variability: To account for longitudinal variability of trajectories,
we additionally condition our predictions with a sampled latent variable. This allows our model to
predict distinct trajectories even for identical path traversals. We show through our experiments that
this translates to greater longitudinal variability of predictions.

We summarize our main contributions on multimodal motion prediction using HD maps:

• A novel method which combines discrete policy roll-outs with a lane-graph subset decoder.
• State-of-the-art performance on the nuScenes motion prediction challenge.
• Extensive ablations demonstrating ability to capture lateral and longitudinal motion variations.

2 Related Work
Graph representation of HD maps: Most self-driving cars have access to HD vector maps, which
include detailed geometric information about objects such as lanes, crosswalks, stop signs, and more.
VectorNet [2] encodes the scene context using a hierarchical representation of map objects and agent
trajectories. Each component is represented as a sequence of vectors, which are then processed by
a local graph network. The resulting features are aggregated globally via a fully-connected graph
network. LaneGCN [3] extracts a lane graph from the HD map, and uses a graph convolutional
network to compute lane features. These features are combined with both agent and other lane
features in a fusion network. Both methods utilize the entire graph for making predictions, relying
on the header to identify the most relevant features.

Multimodal trajectory prediction: Researchers have proposed a variety of ways to model the
multiple possible future trajectories that vehicles may take. One approach is to model the output
as a probability distribution over trajectories, using either regression [1], ordinal regression [6], or
classification [10]. Another approach models the output as a spatial-temporal occupancy grid [11].
Sampling methods use stochastic policy roll outs [12, 13] or latent variable models that map a
latent variable sampled from a simple distribution to a predicted trajectory. Latent variable models
are trained as GANs [14, 15], CVAEs [16, 17], or directly using the winner-takes-all regression
loss [18]. These models must learn a one-to-many mapping from the entire input context (except the
random variable) to multiple trajectories, and can lead to predictions that are not scene compliant.

Goal-conditioned trajectory prediction: Rather than learning a one to many mapping from the
entire context to multiple future trajectories, methods such as TnT [19], LaneRCNN [20], and PEC-
Net [21] condition each prediction on goals of the driver. Conditioning predictions on future goals

2

makes intuitive sense and helps leverage the HD map by restricting goals to be near the lanes. How-
ever, one limitation is that over moderate time horizons, there can be multiple paths that reach a
given goal location. Additionally, certain plausible goal locations might be unreachable due to con-
straints in the scene that are not local to the goal location, e.g., a barrier that blocks a turn lane. In
contrast, our method conditions on paths traversed in a lane graph, which ensures that the inferred
goal is reachable. Furthermore, the traversed path provides a stronger inductive bias than just the
goal location. A similar stream of work conditions on candidate lane centerlines as goals (e.g.,
WIMP [22], GoalNet [9], CXX [23]). While the lane centerline provides more local context than
just the goal, accounting for lane changes can be difficult. Additionally, routes need to be determin-
istically chosen, with multiple trajectories predicted along the selected route. Our approach allows
for probabilistic sampling of both routes and motion profiles. In scenes with just a single plausible
route, our model can use its prediction budget of K trajectories purely for different plausible motion
profiles. Closest to our work is P2T [24]. They predict trajectories conditioned on paths explored by
an IRL policy over a grid defined over the scene. However, they use a rasterized BEV image for the
scene, which leads to inefficient encoders and loss of connectivity information due to occlusions.
Additionally, their model cannot generate different motion profiles along a sampled path.

3 Formulation
We predict the future trajectories of vehicles of interest, conditioned on their past trajectory, the past
trajectories of nearby vehicles and pedestrians, and the HD map of the scene. We represent the scene
and predict trajectories in the bird’s eye view and use an agent-centric frame of reference aligned
along the agent’s instantaneous direction of motion.

3.1 Trajectory representation

We assume access to past trajectories of agents in the scene obtained from on-board detectors and
multi-object trackers. We represent the past trajectory of agent i as a sequence of motion state
vectors si−th:0 = [si−th , ..., s

i
−1, s

i
0] over the past th time steps. Each sit = [xit, y

i
t, v

i
t, a

i
t, ω

i
t, Ii],

where xit, y
i
t are the BEV location co-ordinates, vit, a

i
t and ωi

t are the speed, acceleration and yaw-
rate of the agent at time t, and Ii is an indicator with value 1 for pedestrians and 0 for a vehicles.
We nominally assign the index 0 to the target vehicle, and timestamp 0 to the time of prediction.

3.2 Representing HD maps as lane graphs

Nodes: We represent the HD map as a directed graph G(V,E). The network of lane centerlines
captures both, the direction of traffic flow, and the legal routes that each driver can follow. We seek
to use both as inductive biases for our model. We thus use lane centerlines as nodes (V) in our graph.
We consider all lane centerlines within a fixed area around the target vehicle. To ensure that each
node represents a lane segment of a similar length, we divide longer lane centerlines into smaller
snippets of a fixed length, and discretize them to a set of N poses. Each snippet corresponds to a
node in our graph, with a node v represented by a sequence of feature vectors fv1:N = [fv1 , ..., f

v
N].

Here each fvn = [xvn, y
v
n, θ

v
n, Ivn], where xvn, yvn and θvn are the location and yaw of the nth pose of v

and Ivn is a 2-D binary vector indicating whether the pose lies on a stop line or crosswalk. Thus, our
node features capture both the geometry as well as traffic control elements along lane centerlines.

Edges: We constrain edges (E) in the lane graph such that any traversed path through the graph
corresponds to a legal route that a vehicle can take in the scene. We consider two types of edges.
Successor edges (Esuc) connect nodes to the next node along a lane. A given node can have multiple
successors if a lane branches out at an intersection. Similarly, multiple nodes can have the same
successor if two or more lanes merge. To account for lane changes, we additionally define proximal
edges (Eprox) between neighboring lane nodes if they are within a distance threshold of each other
and their directions of motion are within a yaw threshold. The yaw threshold ensures that proximal
edges are not erroneously assigned in intersections where multiple lanes cross each other.

3.3 Output representation

To account for multimodality of the distribution of future trajectories, we output a set of K trajec-
tories [τ11:tf , τ

2
1:tf

, ..., τK1:tf] for the target vehicle consisting of future x-y locations over a prediction
horizon of tf time steps. Each of the K trajectories represents a mode of the predictive distribution,
ideally corresponding to different plausible routes or different motion profiles along the same route.

3

Figure 2: Proposed model. PGP consists of three modules trained end-to-end. The graph encoder
(top) encodes agent and map context as node encodings of a directed lane-graph. The policy header
(bottom-left) learns a discrete policy for sampled graph traversals. The trajectory decoder (bottom-
right) predicts trajectories by selectively attending to node encodings along paths traversed by the
policy and a sampled latent variable.

4 Proposed Model

Fig. 2 provides an overview of our model. It consists of three interacting modules trained end-to-end.
The graph encoder (Sec. 4.1) forms the backbone of our model. It outputs learned representations
for each node of the lane graph, incorporating the HD map as well as surrounding agent context.
The policy header (Sec. 4.2) outputs a discrete probability distribution over outgoing edges at each
node, allowing us to sample paths in the graph. Finally, our attention based trajectory decoder (Sec.
4.3) outputs trajectories conditioned on paths traversed by the policy and a sampled latent variable.

4.1 Encoding scene and agent context

Inspired by the simplicity and effectiveness of graph based encoders for trajectory prediction [2, 3],
we seek to encode all agent features and map features as node encodings of our lane graph G(V,E).

GRU encoders. Both, agent trajectories and lane polylines form sequences of features with a well
defined order. We first independently encode both sets of features using gated recurrent unit (GRU)
encoders. We use three GRU encoders for encoding the target vehicle trajectory s0−th:0, surrounding
vehicle trajectories si−th:0 and node features fv1:N . These output the motion encoding hmotion, agent
encodings hiagent and initial node encodings hvnode respectively.

Agent-node attention. Drivers co-operate with other drivers and pedestrians to navigate through
traffic scenes. Thus, surrounding agents serve as a useful cue for trajectory prediction. Of particular
interest are agents that might interact with the target vehicle’s route. We thus update node encodings
with nearby agent encodings using scaled dot product attention [4]. We only consider agents within
a distance threshold of each lane node to update the node encoding. This allows our trajectory
decoder (Sec 4.3) to selectively focus on agents that might interact with specific routes that the
target vehicle might take. We obtain keys and values by linearly projecting encodings hiagent of
nearby agents, and the query by linearly projecting hvnode. Finally, the updated node encoding is
obtained by concatenating the output of the attention layer with the original node encoding.

4

GNN layers. With the node encodings updated with nearby agent features, we exploit the graph
structure to aggregate local context from neighboring nodes using graph neural network (GNN)
layers. We experiment with graph convolution (GCN) [5] and graph attention (GAT) [25] layers.
For the GNN layers, we treat both successor and proximal edges as equivalent and bidirectional.
This allows us to aggregate context along all directions around each node. The outputs of the GNN
layers serve as the final node encodings learned by the graph encoder.

4.2 Discrete policy for graph traversal

Every path in our directed lane graph corresponds to a plausible route for the target vehicle. How-
ever, not every route is equally likely. For example, the past motion of the target vehicle approaching
an intersection might indicate that the driver is preparing to make a turn rather than go straight. A
slow moving lane make it likelier for the target vehicle to change lane rather than maintain lane.

We seek to learn a policy πroute for graph traversal such that sampled roll-outs of the policy cor-
respond to likely routes that the target vehicle would take in the future. We represent our policy as
a discrete probability distribution over outgoing edges at each node. We additionally include edges
from every node to an end state to allow πroute to terminate at a goal location. The edge probabil-
ities are output by the policy header shown in Fig. 2. The policy header uses an MLP with shared
weights to output a scalar score for each edge (u, v) given by,

score(u, v) = MLP
(
concat(hmotion, h

u
node, h

v
node,1(u,v)∈Esuc

)
)
. (1)

The scoring function thus takes into account the motion of the target vehicle as well as local scene
and agent context at the specific edge. We then normalize the scores using a softmax layer for all
outgoing edges at each node to output the policy for graph traversal,

πroute(v|u) = softmax({score(u, v)|(u, v) ∈ E}). (2)

We train the policy header using behavior cloning. For each prediction instance, we use the ground
truth future trajectory to determine which nodes were visited by the vehicle. We can naively assign
each pose in the future trajectory to the closest node in the graph. However, this can lead to erroneous
assignment of nodes in intersections, where multiple lanes intersect. We thus only consider lane
nodes whose direction of motion is within a yaw threshold of the target agent’s pose. An edge
(u, v) is treated as visited if both nodes u and v are visited. We use negative log likelihood of the
edge probabilities for all edges visited by the ground truth trajectory (Egt), as the loss function for
training the graph traversal policy, given by

LBC =
∑

(u,v)∈Egt

−log(πroute(v|u)). (3)

4.3 Decoding trajectories conditioned on traversals

Sampling roll-outs of πroute yields plausible future routes for the target vehicle. We posit that the
most relevant context for predicting future trajectories is along these routes and propose a trajectory
decoder that selectively aggregates context along the sampled routes.

Given a sequence of nodes [v1, v2, ..., vM] corresponding to a sampled policy roll-out, our trajectory
decoder uses multi-head scaled dot product attention [4] to aggregate map and agent context over
the node sequence as shown in Fig. 2. We linearly project the target vehicle’s motion encoding
to obtain the query, while we linearly project the node features [hv1node, h

v2
node, ..., h

vM
node] to obtain

keys and values for computing attention. The multi-head attention layer outputs a context vector
C encoding the route. Each distinct policy roll-out yields a distinct context vector, allowing us to
predict trajectories along a diverse set of routes.

Diversity in routes alone does not account for the multimodality of future trajectories. Drivers can
brake, accelerate and follow different motion profiles along a planned route. To allow the model
to output distinct motion profiles, we additionally condition our predictions with a sampled latent
vector z. Unlike routes, vehicle velocities and accelerations vary on a continuum. We thus sample z
from a continuous distribution. We use the multivariate standard normal distribution for simplicity.

5

Table 1: Comparison to the state of the art on nuScenes

Model MinADE5 MinADE10 MissRate5,2 MissRate10,2 Offroad rate

CoverNet [10] 1.96 1.48 0.67 - -
Trajectron++ [17] 1.88 1.51 0.70 0.57 0.25
SG-Net [28] 1.86 1.40 0.67 0.52 0.04
MHA-JAM [29] 1.81 1.24 0.59 0.46 0.07
CXX [23] 1.63 1.29 0.69 0.60 0.08
P2T [24] 1.45 1.16 0.64 0.46 0.03
PGP (Ours) 1.30 1.00 0.61 0.37 0.03

Finally, to sample a trajectory τk1:tf from our model, we sample a roll-out of πroute and obtain Ck,
we sample zk from the latent distribution and concatenate both with hmotion and pass them through
an MLP to output τk1:tf the future locations over tf timesteps,

τk1:tf = MLP(concat(hmotion, Ck, zk)). (4)

The sampling process can often be redundant, yielding similar or repeated trajectories. However our
light-weight encoder and decoder heads allows us to sample a large number of trajectories in parallel.
To obtain a final set ofK modes of the trajectory distribution, we use K-means clustering and output
the cluster centers as our final set ofK predictions [τ11:tf , τ

2
1:tf

, ..., τK1:tf]. We train our decoder using
the winner takes all average displacement error with respect to the ground truth trajectory (τgt) in
order to not penalize the diverse plausible trajectories output by our model,

Lreg = mink
1

tf

tf∑
t=1

‖τkt − τ
gt
t ‖2. (5)

We train our model end-to-end using a multi-task loss combining losses from Eq. 3 and Eq. 5,

L = LBC + Lreg. (6)

5 Experiments

Dataset: We evaluate our method on nuScenes [26], a self-driving car dataset collected in Boston
and Singapore. nuScenes contains 1000 scenes, each 20 seconds, with ground truth annotations and
HD maps. Vehicles have manually-annotated 3D bounding boxes, which are published at 2 Hz.
The prediction task is to use the past 2 seconds of object history and the map to predict the next 6
seconds. We use the standard split from the nuScenes software kit [27].

Metrics: To evaluate our model, we use the standard metrics on the nuScenes leaderboard [27].
The minimum average displacement error (ADE) over the top K predictions (MinADEK). The miss
rate (MissRateK,2) only penalizes predictions that are further than 2 m from the ground truth. The
offroad rate measures the fraction of predictions that are off the road. Since all examples in nuScenes
are on the road, this should be zero. Additionally, we report metrics measuring sample diversity of
a set of K predictions. To measure lateral diversity, we report the average number of distinct final
lanes reached, and the variance of final heading angle of the target vehicle (σ2

yaw) for the set of K
trajectories. To measure longitudinal diversity, we report the variance of average speeds (σ2

speed)
and accelerations (σ2

acc) for the set of K trajectories.

Comparison to the state of the art: We report our results on the standard benchmark split of the
nuScenes prediction dataset in table 1, comparing with the top performing entries on the nuScenes
leaderboard. We achieve state of the art results on almost all metrics, significantly outperforming the
previous best entry P2T [24] on the MinADEK and MissRate metrics, while achieving comparable
off-road rate. This suggests that our model achieves better coverage of the modes of the trajectory
distribution, while still predicting trajectories that are scene-compliant.

Encoder ablations: We analyze the effects of our graph structure and components of the graph
encoder by performing ablations on the graph encoder reported in table 2. In particular we analyze
the effect of including proximal edges, modeling surrounding agents with agent-node attention and

6

Table 2: Encoder ablations

Graph structure Agent-node
attention

GNN
layers

MinADEK MissRateK,2 Offroad rate
Esuc Eprox K=5 K=10 K=5 K=10

3 1.35 1.03 0.64 0.41 0.04
3 3 1.33 1.01 0.63 0.38 0.03
3 3 3 1.30 1.00 0.61 0.37 0.03
3 3 3 GCN × 1 1.31 1.01 0.62 0.39 0.04
3 3 3 GCN × 2 1.31 1.01 0.61 0.39 0.04
3 3 3 GAT × 1 1.30 1.00 0.62 0.38 0.03
3 3 3 GAT × 2 1.31 1.01 0.61 0.37 0.03

Table 3: Decoder ablations

Decoder MinADE5 MinADE10 MissRate5,2 MissRate10,2 Offroad rate

MTP [1] 1.59 1.12 0.57 0.48 0.08
Latent var (LV) only 1.38 1.08 0.65 0.43 0.05
Traversal only 1.37 1.10 0.65 0.44 0.04
Goals + LV 1.33 1.02 0.60 0.42 0.06
Traversals + LV 1.31 1.01 0.61 0.37 0.03

Table 4: Lateral diversity metrics (K=10)

Decoder # distinct final lanes σ2
yaw

LV only 1.22 0.11
Traversals + LV 1.41 0.13

Table 5: Longitudinal diversity metrics (K=10)

Decoder σ2
speed σ2

acc

Traversal only 2.33 5.28
Traversals + LV 4.07 6.65

finally aggregating local context using GCN [5] or GAT [25] layers. We get improvement across all
metrics by adding proximal edges, and agent-node attention, suggesting the importance of modeling
lane changes and agent context. Somewhat surprisingly, adding GNN layers gives ambiguous results
with GCN layers achieving slightly worse results and GAT layers performing on par with the encoder
without GNN layers. This could be because the multi-head attention layer aggregates context across
the entire traversed path, making the GNNs redundant.

Decoder ablations: We next analyze the effect of our traversal and latent variable based decoder.
We compare several decoders, all built on top of our proposed encoder with both types of edges,
agent-node attention and 2 GAT layers. First, we consider the multimodal regression header from
MTP [1]. Next we consider ablations of our decoder without the graph traversals and without the
latent variable conditioning. Finally, we consider a model that conditions predictions on sampled
goals at different node locations, instead of traversals. Table 3 reports quantitative results while Fig.
3 shows qualitative examples comparing the decoders. We make the following observations.

MTP generally fares worse compared to the other decoders, particularly in terms of offroad rate. We
note from Fig. 3 that while it generates a diverse set of trajectories, several veer off-road.

The decoders conditioned purely on the latent variable or purely on traversals both fare worse in
terms of MinADE and MissRate compared to our decoder conditioned on both. From the sample
diversity metrics (Tables 4 and 5) and qualitative examples (Fig.3) we observe that this is for dif-
ferent reasons. The ‘LV only’ decoder generates diverse motion profiles, but almost always predicts
trajectories along a single route, leading to poor lateral diversity of trajectories. On the other hand,
the ’Traversal only’ decoder predicts trajectories over a variety of routes, but lacks diversity in terms
of motion profiles.

Finally, the ‘Goals + LV’ decoder also fares worse compared to our ‘Traversals + LV’ decoder, again,
especially in terms of off-road rate. Qualitatively, we observe that this is due to two types of errors.
First, it tends to predict spurious goals which aren’t reachable for the target vehicle (Fig.3 3©, 4©),
and second, while it predicts correct goals, it generates trajectories that don’t follow accurate paths
to those goals (Fig.3 2©, 6©).

7

Figure 3: Qualitative comparison of decoders: MTP (column 2) predicts trajectories that often
veer off-road (1©- 3©, 6©). The decoder purely conditioned on latent variables (column 3) lacks lateral
diversity and predicts trajectories along a single route, even missing the correct route in 6©. The
decoder conditioned purely on traversals (column 4) predicts diverse routes, but lacks longitudinal
diversity (1©, 2©, 5©). Finally, the decoder conditioned on goals rather than path traversals (column
5) predicts spurious goals that may not be reachable (3©, 4©). Our model (column 6) predicts scene-
compliant trajectories over a diverse set of routes. In cases with few plausible routes (e.g. 5©), it uses
its prediction budget of K trajectories to generate more longitudinal diversity.

6 Conclusions

We presented a novel method for multimodal trajectory prediction conditioned on paths traversed in
a lane graph of the HD map by a discrete policy, and a sampled latent variable. Through experimental
analysis and ablation studies using the publicly available nuScenes dataset, we showed that

• Selectively conditioning predictions on lane-graph traversals leads to trajectories that are (i) di-
verse in terms of routes, and (ii) precise and scene compliant with the lowest offroad-rates.

• Additionally conditioning predictions on sampled latent variables leads to trajectories that are
diverse in terms of motion profiles.

• Both put together lead to state of the art results in terms of MinADE and MissRate metrics.

8

References
[1] H. Cui, V. Radosavljevic, F. Chou, T. Lin, T. Nguyen, T. Huang, J. Schneider, and N. Djuric.

Multimodal trajectory predictions for autonomous driving using deep convolutional networks.
In International Conference on Robotics and Automation (ICRA), 2019.

[2] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid. Vectornet: Encoding
hd maps and agent dynamics from vectorized representation. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[3] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun. Learning lane graph
representations for motion forecasting. In European Conference on Computer Vision (ECCV),
2020.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Advances in neural information processing systems
(NeurIPS), 2017.

[5] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

[6] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov. MultiPath: Multiple probabilistic anchor
trajectory hypotheses for behavior prediction. In Conference on Robot Learning (CoRL), 2019.

[7] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli. A survey of motion planning and
control techniques for self-driving urban vehicles. IEEE Transactions on intelligent vehicles,
1(1):33–55, 2016.

[8] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[9] L. Zhang, P.-H. Su, J. Hoang, G. C. Haynes, and M. Marchetti-Bowick. Map-adaptive goal-
based trajectory prediction. In Conference on Robot Learning (CoRL), 2020.

[10] T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M. Wolff. Covernet: Multi-
modal behavior prediction using trajectory sets. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[11] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun. End-to-end interpretable
neural motion planner. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[12] N. Rhinehart, K. M. Kitani, and P. Vernaza. R2P2: A reparameterized pushforward policy
for diverse, precise generative path forecasting. In European Conference on Computer Vision
(ECCV), 2018.

[13] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine. PRECOG: Prediction conditioned on
goals in visual multi-agent settings. In IEEE/CVF International Conference on Computer
Vision (ICCV), 2019.

[14] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi. Social gan: Socially acceptable tra-
jectories with generative adversarial networks. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018.

[15] T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker, Y. Zhao, Y. Wang, and Y. N. Wu. Multi-
agent tensor fusion for contextual trajectory prediction. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019.

[16] N. Lee, W. Choi, P. Vernaza, C. Choy, P. Torr, and M. Chandraker. DESIRE: Distant future
prediction in dynamic scenes with interacting agents. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[17] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone. Trajectron++: Dynamically-feasible
trajectory forecasting with heterogeneous data. In European Conference on Computer Vision
(ECCV), 2020.

9

[18] O. Makansi, E. Ilg, O. Cicek, and T. Brox. Overcoming limitations of mixture density net-
works: A sampling and fitting framework for multimodal future prediction. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[19] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen, Y. Shen, Y. Chai, C. Schmid,
C. Li, and D. Anguelov. Tnt: Target-driven trajectory prediction. In Conference on Robot
Learning (CoRL), 2020.

[20] W. Zeng, M. Liang, R. Liao, and R. Urtasun. Lanercnn: Distributed representations for graph-
centric motion forecasting. arXiv preprint arXiv:2101.06653, 2021.

[21] K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E. Adeli, J. Malik, and A. Gaidon. It is
not the journey but the destination: Endpoint conditioned trajectory prediction. In European
Conference on Computer Vision (ECCV), 2020.

[22] S. Khandelwal, W. Qi, J. Singh, A. Hartnett, and D. Ramanan. What-if motion prediction for
autonomous driving. arXiv preprint arXiv:2008.10587, 2020.

[23] C. Luo, L. Sun, D. Dabiri, and A. Yuille. Probabilistic multi-modal trajectory prediction with
lane attention for autonomous vehicles. arXiv preprint arXiv:2007.02574, 2020.

[24] N. Deo and M. M. Trivedi. Trajectory forecasts in unknown environments conditioned on
grid-based plans. arXiv preprint arXiv:2001.00735, 2020.

[25] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks. In International Conference on Learning Representations (ICLR), 2018.

[26] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. nuScenes: A multimodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027, 2019.

[27] nuScenes Contributors. nuScenes. https://www.nuscenes.org/, 2020.

[28] C. Wang, Y. Wang, M. Xu, and D. J. Crandall. Stepwise goal-driven networks for trajectory
prediction. arXiv preprint arXiv:2103.14107, 2021.

[29] K. Messaoud, N. Deo, M. M. Trivedi, and F. Nashashibi. Trajectory prediction for autonomous
driving based on multi-head attention with joint agent-map representation. In IEEE Intelligent
Vehicles Symposium (IV), 2021.

10

https://www.nuscenes.org/

	Introduction
	Related Work
	Formulation
	Trajectory representation
	Representing HD maps as lane graphs
	Output representation

	Proposed Model
	Encoding scene and agent context
	Discrete policy for graph traversal
	Decoding trajectories conditioned on traversals

	Experiments
	Conclusions
	Implementation details
	Map representation
	GRU encoders
	Agent-node attention
	GNN layers
	Policy header
	Trajectory decoder
	Training
	Decoder ablation details

