
Latent Inter-User Difference Modeling for LLM Personalization

Anonymous ACL submission

Abstract001

Large language models (LLMs) are increas-002
ingly integrated into users’ daily lives, leading003
to a growing demand for personalized outputs.004
Previous work focuses on leveraging a user’s005
own history, overlooking inter-user differences006
that are crucial for effective personalization.007
While recent work has attempted to model such008
differences, the reliance on language-based009
prompts often hampers the effective extraction010
of meaningful distinctions. To address these is-011
sues, we propose Difference-aware Embedding-012
based Personalization (DEP), a framework that013
models inter-user differences in the latent space014
instead of relying on language prompts. DEP015
constructs soft prompts by contrasting a user’s016
embedding with those of peers who engaged017
with similar content, highlighting relative be-018
havioral signals. A sparse autoencoder then019
filters and compresses both user-specific and020
difference-aware embeddings, preserving only021
task-relevant features before injecting them into022
a frozen LLM. Experiments on personalized re-023
view generation show that DEP consistently024
outperforms baseline methods across multiple025
metrics. Our code is available on an Anony-026
mous GitHub.027

1 Introduction028

With continuous advancements in general-029

purpose intelligence, large language models030

(LLMs) (Achiam et al., 2023; Grattafiori et al.,031

2024; Yang et al., 2024; Guo et al., 2025) are032

increasingly integrated into everyday life, assisting033

users in making decisions (Yao et al., 2023;034

Deng et al., 2023), retrieving information (Gao035

et al., 2023; Asai et al., 2024), and task manage-036

ment (Shen et al., 2024). This growing presence037

has raised expectations for LLMs to go beyond038

generic, one-size-fits-all responses and instead039

produce responses that align with individual users’040

unique preferences. To meet these heightened041

expectations, there appears the interests of LLM042

personalization (Zhang et al., 2024; Xu et al., 043

2025; Liu et al., 2025), which aims at tailoring 044

model outputs based on user-specific information. 045

Widely used methods generally follow the 046

memory-retrieval framework, where user history 047

is stored in memory, and key information is then 048

retrieved as a steering prompt to guide model gener- 049

ation. Previous works focused solely on retrieving 050

information about the user themselves for person- 051

alization. However, recent work such as DPL (Qiu 052

et al., 2025) argues that effective personalization 053

should also capture how a user differs from others. 054

This view is grounded in insights from psychology 055

and behavioral science (Snyder and Fromkin, 1977, 056

2012; Irmak et al., 2010), which highlight that inter- 057

user variability determines individuality and shapes 058

users’ distinct preferences. Accordingly, DPL in- 059

corporates inter-user comparison in the retrieval 060

history, formulating the comparison as a language 061

task performed by the LLM. 062

Despite DPL’s demonstrated effectiveness, we 063

argue that its language-based inter-user compari- 064

son paradigm using LLMs is structurally ill-suited 065

for accurately extracting inter-user differences. On 066

one hand, controlling the extraction of differences 067

using an LLM is challenging; although providing 068

extraction criteria can help, some aspects of distinc- 069

tion may be missed due to the difficulty of defining 070

comprehensive standards. On the other hand, in- 071

cluding other users’ raw data for comparison in 072

LLMs can result in verbose prompts that strain the 073

model’s context window, ultimately hindering the 074

extraction of meaningful inter-user differences. 075

To address these limitations, we propose shifting 076

to latent-space difference modeling, where task- 077

relevant differences between users are structurally 078

represented and compared in the latent embedding 079

space (Doddapaneni et al., 2024; Liu et al., 2024; 080

Zeldes et al., 2025). Compared to natural language, 081

latent embeddings offer two key advantages: (1) 082

they encode fine-grained, context-dependent behav- 083
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ioral patterns in a compact form; and (2) they inher-084

ently support inter-user comparison through vector085

operations, enabling direct integration of compari-086

son signals. Together, these properties make latent087

embeddings a more suitable medium for modeling088

inter-user differences within LLMs.089

Building on this idea, we propose a new method090

called Difference-aware Embedding-based Person-091

alization (DEP), which models task-relevant inter-092

user differences in the latent space and injects093

them into LLMs as soft prompts for personaliza-094

tion. DEP extracts a difference-aware embedding095

as a soft prompt by subtracting and aggregating the096

user’s embedding against those of other users who097

engaged with similar items. At the same time, the098

original user-specific embedding is provided as a099

reference to supply contextual information. Both100

embeddings are essential: the user-specific em-101

bedding defines the behavioral context, while the102

difference-aware embedding captures deviations103

from that context. Together, they form a contextu-104

alized inter-user signal that reflects both individu-105

alized preferences and relative differences.106

Taking a step further, latent differences can be re-107

dundant, as not all aspects are task-relevant—some108

may simply constitute noise for the task. To ex-109

tract essential information while filtering out irrel-110

evant signals, we process both user-specific and111

difference-aware embeddings using a sparse au-112

toencoder (SAE) (Huben et al., 2024), which en-113

forces sparsity to retain only key features. The114

resulting compressed representations are then in-115

jected into a frozen LLM as soft prompts. The116

SAE is fine-tuned to align these representations117

with the LLM’s internal understanding, allowing118

the model to effectively leverage inter-user differ-119

ences for improved personalization. We conduct120

extensive experiments on one representative task,121

review generation (Ni et al., 2019), where DEP122

achieves state-of-the-art performance across multi-123

ple evaluation metrics.124

Our main contributions are as follows:125

• We propose modeling inter-user differences in126

the latent space to enable more comprehensive127

and flexible extraction of preference signals for128

LLM personalization.129

• We propose a novel method, DEP, to achieve la-130

tent difference modeling, equipped with a sparse131

autoencoder to extract task-relevant differences132

while filtering out noise.133

• Extensive experiments show that our DEP con-134

sistently outperforms baseline methods with sig- 135

nificant improvements. 136

2 Preliminary 137

Problem Formulation. This work studies the task 138

of LLM personalization, where the goal is to pro- 139

duce user-aligned output that reflects the individual 140

preferences of a given user. We assume that each 141

user has a set of historical texts. These histori- 142

cal texts are utilized to help the LLM infer the 143

user’s interests and generate personalized content. 144

Formally, let D denote the collection of historical 145

records from all users. Each record in D is repre- 146

sented as (u, i, yiu), where u is a user, i is an item 147

(or object) the user has focused on, and yiu denotes 148

the text written or preferred by user u for item i. 149

When the target user u′ submits a request to gener- 150

ate text for a target item i′, the LLM is expected to 151

produce an output that aligns with the preference 152

of u′ based on D. 153

Without loss of generality, this work focuses on 154

review generation, a representative personalization 155

task. The goal is to generate reviews tailored to 156

a user’s style and preferences, ensuring the out- 157

put aligns with how the user typically expresses 158

opinions on items such as movies or products. 159

Memory-retrieval framework. A common ap- 160

proach to enabling LLMs to perform personalized 161

generation is to store users’ history and retrieve 162

relevant signals at inference. Following DPL (Qiu 163

et al., 2025), effective personalization should cap- 164

ture both a user’s own behavioral patterns and how 165

they differ from others. This involves extracting 166

key preference signals from two sources: the user’s 167

own history, which reflects individual tendencies, 168

and other users’ behaviors, which provide materi- 169

als for modeling inter-user differences. Formally, 170

given a target user u′ and a target item i′, the per- 171

sonalized generation process can be formulated as: 172

ŷi
′
u′ = LLM(u′, i′, ϕ(Du′ ;D)), (1) 173

where ŷi
′
u′ denotes the generated text, Du′ denotes 174

the history of the target user u′, and ϕ(Du′ ;D) de- 175

notes the process that extracts user-specific and 176

difference-aware preference signals from Du and 177

D. This memory retrieval framework supports life- 178

long user modeling without requiring LLM retrain- 179

ing (Zhuang et al., 2024), making it both adaptable 180

and resource-efficient for real-world personaliza- 181

tion scenarios. 182
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Figure 1: Overview of the proposed DEP method, which introduces user-specific and difference-aware embeddings
to capture both individual preferences and inter-user differences. A sparse autoencoder (SAE) refines these
representations, which are then injected into a frozen LLM as soft prompts to guide personalized text generation.

3 Methodology183

This section introduces our proposed Difference-184

aware Embedding-based Personalization (DEP).185

We begin with its motivation and an overview of186

the framework, followed by detailed descriptions187

of each key steps.188

3.1 Overview189

Personalization modeling requires capturing not190

only a user’s own behavioral patterns, but also how191

this user differs from others. In modeling inter-192

user differences, existing work (Qiu et al., 2025)193

relies on LLMs to summarize inter-user compar-194

isons in natural language, which may miss some195

key aspects of distinctions during the summariza-196

tion. To address this limitation, we propose the197

DEP method, which aims to model inter-user dif-198

ferences in the latent space. DEP has three main199

parts: (1) constructing two representations to cap-200

ture difference-aware preference: a user-specific201

embedding to model the behavioral context, and202

a difference-aware embedding to model how the203

user deviates from others within that context; (2)204

distilling the representations with a sparse autoen-205

coder to retain informative preference signals; and206

(3) injecting the compressed representation into a207

frozen LLM as soft prompts and fine-tuning the208

autoencoder to align this representation with the209

LLM’s internal understanding. Figure 1 provides210

an overview of our proposed DEP. Next, we elabo-211

rate the three parts in detail.212

3.2 Difference-aware Embedding-based 213

Personalization (DEP) 214

In this section, we introduce three key steps of DEP: 215

constructing difference-aware representations, dis- 216

tilling them via a sparse autoencoder, and injecting 217

them into an LLM for personalization. 218

3.2.1 Latent-space Difference-aware 219

Representation Modeling 220

The core of DEP is to model inter-user differ- 221

ences in the latent space through contrastive signals 222

grounded in shared item contexts. To achieve this, 223

following the memory-retrieval paradigm (Salemi 224

et al., 2024; Kumar et al., 2024; Qiu et al., 2025), 225

DEP first retrieves a set of representative interac- 226

tions from the user’s history, which serve as an- 227

chors for inter-user comparison. For a given user u′, 228

we assume a subset of N key interactions, denoted 229

as D∗
u′ , can be obtained via retrieval (Zhang et al., 230

2024) from Du′ . Then, for each retrieved interac- 231

tion (u′, i, yiu′) ∈ D∗
u′ , we aim to compare it with 232

reviews written by other users for the same item i, 233

which provides a natural basis for inter-user com- 234

parison. To this end, we first encode the user’s own 235

review yiu′ using a frozen text embedding model 236

femb(·) to obtain the user-specific embedding: 237

eihis = femb(y
i
u′), (2) 238

where eihis denotes the user-specific embedding 239

that reflects the preference pattern of user u′ on 240

item y. Next, to construct inter-user embeddings, 241

we identify the set of peer users who also interacted 242
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with item i, excluding u′, as {u1, u2, . . . , um},243

where uj denotes the j-th peer user of item i. Each244

peer user uj provides a review yiuj
, which is en-245

coded into an embedding:246

eiuj
= femb(y

i
uj
)). (3)247

Then we compute the difference-aware embedding248

by aggregating the vector differences between the249

target user and each peer:250

eidiff =
1

m

m∑
j=1

(eihis − eiuj
), (4)251

where eidiff denotes the difference-aware embed-252

ding. These two embeddings capture complemen-253

tary perspectives: the user-specific embedding eihis254

represents the behavior pattern of the target user255

and serves as a reference of context, while the256

difference-aware embedding eidiff models how this257

behavior pattern relatively deviates from others un-258

der the context. Together, they form a structured259

representative to capture the inter-user differences.260

3.2.2 Sparse Representation Distillation261

While the user-specific and difference-aware em-262

beddings capture rich semantic and contrastive263

signals, they may contain redundant or irrelevant264

information that hinders efficient personalization.265

To address this, we apply a sparse autoencoder266

(SAE) (Huben et al., 2024) to compress the high-267

dimensional embeddings into informative repre-268

sentations. The SAE adopts an encoder-decoder269

architecture with an ℓ1-based sparsity constraint270

on the latent space, encouraging the model to re-271

tain only the most salient features. Given a history272

embedding eihis and a difference-aware embedding273

eidiff, the encoder produces their respective low-274

dimensional latent vectors, zihis and zidiff, formally:275

zihis = fenc(e
i
his), êihis = fdec(z

i
his),

zidiff = fenc(e
i
diff), êidiff = fdec(z

i
diff),

(5)276

where fenc(·) and fdec(·) denote the encoder and de-277

coder networks, respectively. The encoder outputs278

zihis and zidiff are used as sparse preference represen-279

tations for downstream soft prompt construction.280

3.2.3 Representation Injection281

After obtaining the distilled latent representations282

from the sparse autoencoder, we aim to integrate283

personalized signals into the generation process284

of a frozen LLM. To achieve this, we adopt a285

soft prompt injection mechanism, where the com- 286

pressed user-specific and difference-aware embed- 287

dings are projected into the input space of the LLM 288

and used to condition its output without updating 289

model parameters. 290

Soft Prompt Construction and Injection. For 291

each retrieved history (u′, i, y), we obtain zihis 292

and zidiff from the SAE encoder, corresponding to 293

the user-specific and difference-aware embeddings. 294

These representations are projected into the LLM 295

input space via a lightweight projection network 296

Mp(·), which aligns their dimensionality with that 297

of the LLM’s embedding layer: 298

pihis = Mp(z
i
his), pidiff = Mp(z

i
diff), (6) 299

where pihis and pidiff are resulting soft prompt vec- 300

tors, which are injected into the input sequence at 301

designated positions. Then, the personalized gener- 302

ation process given the target user u′ and the target 303

item i′ is performed as: 304

ŷi′

u′ = LLM
(
S(i′, {i, pihis, p

i
diff}i∈I∗

u′ )
)
, (7) 305

where I∗u′ denotes the top-N retrieved items 306

from the target user’s interacted history, and 307

S(i′, {i, pihis, p
i
diff}i∈I∗u′ ) is a textual prompt con- 308

structed from both the target item i′ and the soft 309

prompts to model inter-user differences, and the 310

original user’s original review history to model 311

user’s own writing patterns. The template can be 312

found in Figure 6 in Appendix F. 313

Training Objectives. To guide the SAE learn- 314

ing informative representation for LLM personal- 315

ization and make the soft prompts align with the 316

LLM internal understanding, we jointly optimize 317

two components: the SAE for latent representation 318

learning and the LLM for personalized generation. 319

The LLM is trained using a standard generation 320

loss, denoted as Lgen, computed based on the gen- 321

erated output and ground-truth personalized text. 322

The SAE is trained with two standard objectives: a 323

reconstruction loss to ensure information preserva- 324

tion, and a sparsity loss to promote selective pref- 325

erence encoding. For the reconstruction loss, we 326

adopt the Smooth L1 loss, which is formulated as 327

follows: 328

Lrecon = SmoothL1(eihis, ê
i
his) + SmoothL1(eidiff, ê

i
diff).

(8) 329

The sparsity loss is applied to the distilled latent 330

vector zihis ∈ Rd′ and zidiff ∈ Rd′ , encouraging the 331

preservation of the most informative signals. For 332
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each, we compute the average activation ρ̂his and333

ρ̂diff as:334

ρ̂his =
1

N

N∑
i=1

zihis, ρ̂diff =
1

N

N∑
i=1

zidiff. (9)335

We then compute the sparsity loss by applying KL336

divergence between each of ρ̂his and ρ̂diff and a337

predefined sparsity target ρ.338

Lsparse =
1

d′

d′∑
j=1

KL(ρ||ρ̂jhis) +
1

d′

d′∑
j=1

KL(ρ||ρ̂jdiff).

(10)339

The final training objective combines the genera-340

tion loss from the LLM and the SAE loss, including341

both reconstruction and sparsity terms:342

Ltotal = Lgen + λ · (Lrecon + γ · Lsparse). (11)343

where λ and γ balance the contributions of the SAE344

loss and the sparsity constraint, respectively.345

4 Experiment346

We conduct experiments in real-world datasets to347

answer the following research questions:348

• RQ1: How does DEP compare with baseline349

methods on the personalized text generation task?350

• RQ2: What is the contribution of each individual351

component of DEP to its overall effectiveness?352

• RQ3: What is the impact of the number of re-353

trieved histories on the performance of DEP?354

• RQ4: How does DEP perform under different355

levels of user uniqueness compared to DPL?356

4.1 Experimental Setup357

Datasets. Building upon prior work, we focus358

on the representative task of item review gener-359

ation for LLM personalization (Ni et al., 2019;360

Peng et al., 2024; Kumar et al., 2024; Au et al.,361

2025). Specifically, we adopt the Amazon Reviews362

2023 dataset1 (Hou et al., 2024) preprocessed by363

DPL2 (Qiu et al., 2025), which covers three cate-364

gories: Books, Movies & TV, and CDs & Vinyl. To365

maximize data utilization, we follow the setting of366

REST-PG (Salemi et al., 2025) to train a unified367

model across categories. For training, we retain368

each user’s most recent interaction per category.369

For validation, we randomly select 512 instances370

1https://amazon-reviews-2023.github.io/
2https://huggingface.co/datasets/SnowCharmQ/

DPL-main & https://huggingface.co/datasets/
SnowCharmQ/DPL-meta

from the merged validation set across all three cat- 371

egories, while for testing, we follow the original 372

test splits provided by DPL. More details about the 373

dataset are provided in Appendix A. 374

Baselines. We compare our proposed DEP with 375

the following baseline methods. Further imple- 376

mentation details of all baselines can be found in 377

Appendix B. 378

• Non-Perso: A non-personalized baseline that 379

generates reviews using only item information, 380

along with the review’s title and rating. 381

• RAG (Salemi et al., 2024): A retrieval-based 382

method that incorporates the user’s history 383

records to provide contextual personalization. 384

• PAG (Richardson et al., 2023): An extension of 385

RAG that summarizes the user’s history records 386

into a compact profile and combines it with re- 387

trieved content for higher-level personalization. 388

• DPL (Qiu et al., 2025): A prompt-based method 389

that enhances personalization by explicitly com- 390

paring a user’s recent behavior with representa- 391

tive peers and summarizing the differences into a 392

profile integrated into the LLM input. 393

• PPlug (Liu et al., 2024): A plug-and-play ap- 394

proach that encodes user history into a dense 395

embedding, which is projected into the LLM’s 396

input space to guide generation. 397

Evaluation Metrics. Following previous works on 398

personalized text generation (Salemi et al., 2024; 399

Kumar et al., 2024; Zhang et al., 2025; Au et al., 400

2025), we evaluate all methods using ROUGE- 401

1 (Lin, 2004), METEOR (Banerjee and Lavie, 402

2005), and BLEU3 (Papineni et al., 2002). 403

Implementation Details. We use the Qwen2.5 404

Instruct4 (Yang et al., 2024) series models (7B 405

and 32B) as backbone LLMs for all baseline meth- 406

ods and DEP. To retrieve user histories, we adopt 407

a recency-based strategy, selecting the most recent 408

history for each user. Additionally, we employ 409

bge-m35 (Chen et al., 2024a) as the embedding 410

model to map user reviews into vector representa- 411

tions. We train DEP for 5 epochs and select the 412

checkpoint with the highest METEOR score on the 413

validation set for testing. For more details, please 414

refer to Appendix C. 415

3We use the standard SacreBLEU (Post, 2018) library to
calculate the BLEU score: https://github.com/mjpost/
sacrebleu.

4https://huggingface.co/Qwen
5https://huggingface.co/BAAI/bge-m3
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Table 1: Performance comparison between the baselines and our DEP across the three datasets. 7B and 32B represent
the size of base LLMs. The best results are highlighted in bold, and the second-best results are underlined. “R-1”,
“MET.”, and “BL.” respectively denote ROUGE-1, METEOR, and BLEU. Higher values indicate better performance
across all metrics.

Datasets (→) Books Movies & TV CDs & Vinyl

Methods (↓) R-1 MET. BL. R-1 MET. BL. R-1 MET. BL.

32B

Non-Perso 0.3025 0.1949 2.6728 0.2608 0.1666 1.1226 0.2765 0.1767 1.6597
RAG 0.3404 0.2735 6.8178 0.2983 0.2142 2.8680 0.3092 0.2177 3.1588
PAG 0.3276 0.2830 6.8920 0.2816 0.2130 2.7751 0.2971 0.2215 3.2164
DPL 0.3392 0.3003 7.7423 0.2967 0.2238 3.2965 0.3119 0.2337 3.8271

7B

Non-Perso 0.2907 0.1735 1.9766 0.2469 0.1503 0.7242 0.2604 0.1561 1.0997
RAG 0.3149 0.2101 3.6874 0.2693 0.1701 1.3021 0.2796 0.1733 1.6129
PAG 0.3136 0.2378 4.6762 0.2761 0.1905 1.9360 0.2882 0.1979 2.4740
DPL 0.3194 0.2459 5.6623 0.2845 0.1958 2.2451 0.2952 0.2003 2.6943

PPlug 0.3033 0.2234 7.0469 0.2530 0.1724 3.2291 0.2619 0.1711 3.0753
DEP (ours) 0.3745 0.3156 13.5300 0.3092 0.2381 6.6835 0.3165 0.2364 6.5166

4.2 Main Results (RQ1)416

We first evaluate the overall performance of all417

compared methods. Table 1 presents the main ex-418

perimental results across three datasets, from which419

we draw the following observations:420

• Incorporating user context significantly im-421

proves the model’s capability for personal-422

ized text generation. Methods like RAG and423

PAG leverage retrieved user information to con-424

dition generation, significantly outperforming the425

Non-Perso baseline. DPL further improves upon426

these by explicitly modeling inter-user differ-427

ences, achieving the relatively best performance428

among all ICL-based methods. This shows that429

capturing user differences yields better personal-430

ization than simple relevance or summarization.431

• Scaling up the model size leads to stronger432

performance across different personalization433

methods. For methods where both 7B and 32B434

models are evaluated, we observe consistent im-435

provements across three metrics. This trend high-436

lights the capacity of larger models to capture437

more nuanced personalization patterns.438

• Using a single soft prompt for user history,439

PPlug lacks informative signals and overlooks440

inter-user differences. Although PPlug out-441

performs the Non-Perso baseline by introduc-442

ing lightweight user modeling through the soft443

prompt, its gains remain limited. This limita-444

tion motivates our design of a more effective soft445

prompt strategy.446

• DEP consistently outperforms all baselines447

across datasets and metrics. Despite operat-448

ing on a much smaller model scale, DEP not 449

only significantly outperforms all 7B-based meth- 450

ods, but also surpasses all baselines under the 451

32B backbone. Notably, averaged across three 452

datasets, DEP yields relative improvements of 453

5.05% in ROUGE-1, 4.21% in METEOR, and 454

82.59% in BLEU compared to the strongest base- 455

line. This substantial performance gain is primar- 456

ily attributed to the integration of implicit mod- 457

eling of user history and inter-user differences, 458

which provides more informative and discrimina- 459

tive signals for personalization. 460

4.3 Ablation Studies (RQ2) 461

To better understand the contribution of different 462

components in our personalization framework, we 463

conduct extensive ablation studies from two per- 464

spectives: user embedding configuration and repre- 465

sentation refinement. 466

We report METEOR scores on all three datasets 467

here, and leave results for the other two metrics in 468

Appendix D. 469

4.3.1 User Embedding Configuration 470

To assess the effectiveness of incorporating dif- 471

ferent types of user embeddings, we conduct a 472

detailed study comparing various configurations 473

of personalized signals. Specifically, we consider 474

two types of embeddings: (1) user-specific embed- 475

dings (his_emb), which represent the user’s past 476

interactions, and (2) difference-aware embeddings 477

(diff_emb), which encode inter-user differences by 478

contrasting the target user’s review history with 479

those of other users. We examine these embedding 480

configurations individually and in combination, un- 481
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Table 2: Ablation study on different configurations of
user embeddings. his_emb and diff_emb denote user
history and difference-aware embeddings. w/o text and
w/ text refer to the exclusion or inclusion of retrieved
review texts.

Datasets (→) Books Movies
& TV

CDs &
VinylMethods (↓)

Non-Perso-7B 0.1735 0.1503 0.1561

w
/o

te
xt his_emb 0.1718 0.1625 0.1711

diff_emb 0.1839 0.1546 0.1616
his_emb + diff_emb 0.2227 0.1871 0.1853

w
/t

ex
t his_emb 0.3110 0.2332 0.2268

diff_emb 0.2781 0.2128 0.2108
his_emb + diff_emb

(ours) 0.3156 0.2381 0.2364

Table 3: Ablation study on representation refinement.
w/o DR uses raw embeddings, w/ AE uses a standard
autoencoder, and w/ SAE is our implementation.

Datasets (→) Books Movies
& TV

CDs &
VinylMethods (↓)

w/o DR 0.3016 0.2325 0.2283
w/ AE 0.2994 0.2350 0.2355

w/ SAE (ours) 0.3156 0.2381 0.2364

der two settings: with retrieved review text (w/ text)482

and without it (w/o text).483

Results in Table 2 show that both his_emb484

and diff_emb individually outperform the non-485

personalized baseline, demonstrating the effective-486

ness of modeling both user history and inter-user487

differences. Combining the two leads to further488

improvements, suggesting that user-specific em-489

bedding and difference-aware embedding capture490

complementary aspects of personalization. Addi-491

tionally, incorporating retrieved texts (w/ text) con-492

sistently enhances all configurations, highlighting493

the benefit of contextual grounding.494

4.3.2 Representation Refinement495

We further evaluate the impact of different strate-496

gies for refining user embeddings before soft497

prompt injection. Specifically, we compare three498

variants: (1) w/o DR, where raw high-dimensional499

embeddings are directly projected without dimen-500

sionality reduction, (2) w/ AE, which uses a stan-501

dard autoencoder for compression without sparsity,502

and (3) w/ SAE, which applies our sparse autoen-503

coder to introduce the sparsity constraint.504

Table 3 shows that removing dimensionality re-505

duction (w/o DR) generally results in weaker per-506

formance. While the standard autoencoder (w/ AE)507

Figure 2: Effect of the number of retrieved user histories
(K) on BLEU performance across datasets.

brings partial improvements on Movies & TV and 508

CDs & Vinyl datasets, it does not consistently out- 509

perform the raw embedding variant, suggesting that 510

compression alone is insufficient. In contrast, we 511

introduce a sparse autoencoder (w/ SAE), achieving 512

the best results across all datasets, highlighting the 513

effectiveness of sparsity constraint in enhancing 514

representation quality for personalization. 515

4.4 In-Depth Analysis 516

We conduct additional experiments to further study 517

the design and effectiveness of our approach. 518

4.4.1 Impact of History Number (RQ3) 519

Figure 2 shows how the number of retrieved user 520

histories (K) affects the performance on BLEU 521

across datasets. A key observation is the substantial 522

jump in performance from K = 0 to K = 1, which 523

marks the transition from the non-personalized set- 524

ting to the personalized framework of DEP. This 525

single-step increase highlights the substantial bene- 526

fit of incorporating even one user-specific history 527

with both the user-specific and difference-aware 528

embeddings, demonstrating the effectiveness of our 529

method once personalization is engaged. As K in- 530

creases further, performance continues to improve, 531

though with diminishing returns. 532

For a more comprehensive view, we provide 533

the full results across all evaluation metrics and 534

datasets in Appendix D.3. 535
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Figure 3: Results of the performance of DEP across
different levels of uniqueness. The experiments are
conducted on CDs & Vinyl and evaluated in METEOR.

4.4.2 Impact of User Uniqueness (RQ4)536

Following the procedure in DPL (Qiu et al., 2025),537

we further investigate how user uniqueness affects538

personalization performance. Similarly, we adopt a539

grouping strategy based on the user embedding de-540

rived from historical reviews. Specifically, we com-541

pute the Euclidean distance between each user’s re-542

view embedding and the global average embedding543

across all users, and divide users into two groups:544

the top 50% as Unique users and the bottom 50%545

as Non-Unique users.546

As shown in Figure 3, both DPL and DEP out-547

perform the non-personalized baseline across user548

groups. DEP consistently achieves the best results549

and maintains stable improvements for both Unique550

and Non-Unique users. Similar to DPL, larger551

gains are observed in the Unique group, highlight-552

ing the importance of modeling user distinctiveness.553

Unlike DPL, which relies on prompt-level repre-554

sentations, DEP models inter-user differences in555

the latent space, enabling more compact and robust556

personalization, leading to better performance.557

5 Related Work558

The personalization of LLMs has become a critical559

research direction, aiming to adapt general-purpose560

models to individual user preferences (Chen et al.,561

2024b; Li et al., 2025; Chen et al., 2025; Zhao562

et al., 2025). Among various approaches, the563

memory-retrieval framework is widely adopted for564

its interpretability and scalability. It retrieves user-565

specific signals from interaction history to guide566

the model without changing its parameters. Meth-567

ods under this framework generally fall into two568

types: retrieval-augmented generation (RAG) and569

profile-augmented generation (PAG). RAG-based570

approaches retrieve relevant past interactions to571

construct a personalized prompt. For example, 572

HYDRA (Zhuang et al., 2024) employs a person- 573

alized reranker to refine retrieval quality, while 574

PERAL (Mysore et al., 2024) trains a retriever 575

with a scale-calibrated objective to select useful 576

information. In contrast, PAG-based methods sum- 577

marize the user’s behavior into a condensed profile, 578

which is then integrated into the prompt to guide 579

generation (Richardson et al., 2023). 580

Beyond retrieving individual histories, recent 581

studies have explored incorporating other users’ 582

information as auxiliary signals to enhance indi- 583

vidual personalization. CFRAG (Shi et al., 2025), 584

Persona-DB (Sun et al., 2025), and AP-Bots (Yazan 585

et al., 2025) borrow the concept of collaborative fil- 586

tering (He et al., 2017; Wang et al., 2019) to retrieve 587

similar users’ histories and incorporate them into 588

the prompt to guide the generation. DPL (Qiu et al., 589

2025) further highlights that individual uniqueness 590

lies in the differences from others and proposes to 591

model such differences by formulating inter-user 592

comparison as a language modeling task performed 593

directly by the LLM. While this method has shown 594

promising results, modeling inter-user differences 595

through prompt engineering poses challenges. In 596

contrast, our method shifts this process to the latent 597

embedding space, which avoids prompt-length con- 598

straints and enables more structured and nuanced 599

modeling of user differences. 600

6 Conclusion 601

In this work, we propose DEP, a novel person- 602

alization framework that models inter-user dif- 603

ferences in the latent embedding space to guide 604

LLMs for personalized text generation. Unlike 605

prior approaches that rely only on prompt-level 606

construction to integrate user histories and inter- 607

user contrastive signals, our method jointly en- 608

codes both user-specific and difference-aware em- 609

beddings, and refines them through a sparse autoen- 610

coder to retain only task-relevant personalization 611

cues. These embeddings are then injected into a 612

frozen LLM via soft prompts, enabling efficient per- 613

sonalization. Experimental results across multiple 614

domains show that DEP achieves state-of-the-art 615

performance, especially for users with distinctive 616

behavior patterns, confirming the effectiveness of 617

latent inter-user difference modeling. For future 618

work, we plan to explore privacy-preserving inter- 619

user comparison, real-time embedding updates, and 620

extensions to tasks such as conversational agents. 621
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Limitations622

While our proposed method DEP demonstrates623

strong performance in personalized text genera-624

tion, it also introduces several limitations. First,625

the method relies on sufficient user history to con-626

struct meaningful embeddings; in cold-start or627

data-sparse settings, its effectiveness may degrade.628

Second, although more efficient than language-629

based comparison methods, the computation of630

difference-aware embeddings and sparse autoen-631

coding introduces additional overhead compared to632

standard prompting pipelines. Lastly, our evalua-633

tion is centered on review generation, where prefer-634

ences are explicit; adapting the approach to broader635

tasks like dialogue or recommendation requires fur-636

ther study.637

Ethical Statements638

This work explores user-level personalization639

through the use of retrieved historical data and inter-640

user relational modeling. While effective for im-641

proving generation quality, such approaches raise642

important ethical considerations. In particular, ac-643

cessing and processing users’ historical interactions644

requires careful attention to data privacy, consent,645

and security. Moreover, modeling inter-user dif-646

ferences may inadvertently expose sensitive behav-647

ioral patterns or amplify existing biases.648

To mitigate these concerns, any real-world de-649

ployment of our method should incorporate privacy-650

preserving techniques such as anonymization, en-651

cryption, and transparent consent protocols. Spe-652

cial care should be taken to avoid unintended infer-653

ences or misuse of user-level representations.654

All experiments are conducted on publicly avail-655

able datasets that have been preprocessed and re-656

leased by prior work. The original raw data is657

open-source and distributed under the MIT license.658

We ensure that our use of the data adheres to estab-659

lished ethical standards and respects the original660

data usage guidelines.661
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A Dataset Details959

In this paper, we focus on the task of review gen-960

eration. Specifically, we adopt the Amazon (Hou961

et al., 2024) dataset preprocessed by DPL (Qiu962

et al., 2025). We select each user’s most recent963

interaction from the training sets of the three cat-964

egories and merge them into a unified training965

dataset, which is used to train the model. For vali-966

dation, we also aggregate the three categories and967

randomly sample 512 instances. For testing, we968

directly use the test splits preprocessed by DPL.969

During data preprocessing, we construct complete970

prompts as model inputs by concatenating the tar-971

get item title, target item description, output review972

title, output review rating, and the retrieved user’s973

past reviews. For clarity, we provide an example974

of the dataset preprocessed by DPL as shown in975

Figure 4, and dataset statistics after processing are976

summarized in Table 4.977

B Baseline Details978

We compare our proposed DEP with several base-979

line methods. The comparison between different980

baselines and our method is shown in Table 5. In981

this section, we further introduce each baseline982

method in detail:983

• Non-Perso: This method generates reviews with-984

out leveraging any user-specific information. The985

input to the model includes only the item’s title986

and description, along with the output review’s987

rating and title.988

• RAG (Salemi et al., 2024): This method uses a989

simple recency-based retrieval strategy to select990

the most recent reviews from the user’s history.991

The retrieved reviews are then directly formatted992

and incorporated into the LLM’s input to provide993

contextual personalization.994

• PAG (Richardson et al., 2023): Building upon995

RAG, this method first summarizes the most re-996

Figure 4: An example of the user review from the main
dataset (above) and the corresponding item from the
meta dataset (below).

Table 4: Overview of dataset statistics across the three
benchmark categories.

Categories (↓) #data Profile Size Output Length

Training Dataset 3996 37.47±33.53 1608.82±1476.99

Validation Dataset 512 39.14±36.01 1557.29±1378.43

Test
Dataset

Books 317 34.84±22.55 1194.90±802.44
Movies & TV 1925 41.11±35.90 1704.61±1752.44
CDs & Vinyl 1754 38.50±32.37 1600.04±1419.89

cent reviews from the user’s history into a com- 997

pact profile. The generated profile, along with 998

the retrieved records, is included in the input to 999

the LLM, allowing it to generate personalized 1000

reviews guided by a higher-level understanding 1001

of the user. 1002

• DPL (Qiu et al., 2025): The method prompts the 1003

LLM to find inter-user differences by compar- 1004

ing the target user’s most recent interactions with 1005

representative users selected via clustering from 1006

predefined dimensions (e.g., writing, emitional 1007

tone, and semantics), and summarizes them with 1008

the user’s history to form a user profile. This pro- 1009

file, along with recent reviews, is incorporated 1010

into the model input to enhance generation. To 1011

select representative users, DPL employs an em- 1012

bedding model; in our implementation, we use 1013
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the same embedding model as in our method.1014

• PPlug (Liu et al., 2024): A plug-and-play per-1015

sonalization method that encodes a user’s history1016

into a dense user-specific embedding through a1017

lightweight user embedder. This embedding is1018

constructed via input-aware attention over user1019

histories. The resulting embedding, along with1020

an instruction embedding, are projected into the1021

LLM input space via a trainable projector and1022

prepended to the input to guide a frozen LLM. In1023

our implementation of PPlug, we adopt the same1024

user embedder as used in our proposed method.1025

C Implementation Details1026

C.1 Running Environments1027

We implement all baseline methods and DEP1028

with Python 3.11.11, PyTorch6 (Paszke et al.,1029

2019), transformers7 (Wolf et al., 2020), and1030

vLLM8 (Kwon et al., 2023). To train the model,1031

we utilize the transformers library. Besides, we1032

employ the vLLM library as the inference engine for1033

both validation and testing, and adapt our model1034

accordingly to ensure compatibility.1035

C.2 Hyperparameter Configurations1036

C.2.1 Method Parameters1037

In our implementation, the SAE model is im-1038

plemented as a two-layer feed-forward network,1039

consisting of an encoder that projects input em-1040

beddings from dimension d = 1024 to a lower-1041

dimensional latent space of size d′ = 512, and a1042

decoder that reconstructs the input. For the sparsity1043

parameter ρ, we set it to 0.05. To align the SAE1044

output with the LLM input space, we employ two1045

independent projection networks Mhis and Mdiff,1046

each implemented as a two-layer MLP with GELU1047

activations, mapping the latent representation z to1048

the LLM embedding space. Additionally, we use1049

λ = 100 and γ = 1e−3 to balance the reconstruc-1050

tion and sparsity losses during training.1051

A maximum of 8 user history entries are re-1052

trieved for each instance. If the input exceeds the1053

context length limit, excess histories are discarded1054

to ensure compatibility.1055

6https://pytorch.org/
7https://huggingface.co/
8https://github.com/vllm-project/vllm

Figure 5: Detailed evaluation results across all three
datasets (Books, Movies & TV, CDs & Vinyl) with
varying numbers of retrieved user histories (K). The
left figure shows ROUGE-1 and METEOR scores, and
the right figure demonstrates BLEU scores.

C.2.2 Training Settings 1056

Before training, we initialize the model param- 1057

eters using Xavier uniform initialization (Glorot 1058

and Bengio, 2010). We train the model using the 1059

AdamW (Loshchilov and Hutter, 2019) optimizer for 1060

a maximum of 8 epochs. The learning rate is set 1061

to 1e-5 with a weight decay of 0.025. We apply a 1062

warmup ratio of 0.01 at the beginning of training. 1063

The batch size per device is 1, and the gradient accu- 1064

mulation steps are 16 to achieve an effective batch 1065

size of 16. We also enable bfloat16 mixed pre- 1066

cision and incorporate flash attention (Dao, 2023). 1067

Additionally, the training is conducted using Deep- 1068

Speed9 (Rajbhandari et al., 2020; Rasley et al., 1069

2020) ZeRO Stage 1 optimization. 1070

C.2.3 Inference Settings 1071

We configure the model with a maximum length of 1072

2048 tokens for both input and output. During in- 1073

ference for both validation and test, the temperature 1074

is set to 0.8, and the parameter top_p is 0.95. 1075
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Table 5: We provide a comparison between the different baseline methods and our proposed DEP, focusing on the
following aspects: (1) retrieval augmentation, (2) embedded representation, and (3) inter-user difference.

Methods (↓) Retrieval Augmentation Embedded Representation Inter-User Difference

Non-Perso ✗ ✗ ✗

RAG ✓ ✗ ✗

PAG ✓ ✗ ✗

DPL ✓ ✗ ✓

PPlug ✗ ✓ ✗

DEP ✓ ✓ ✓

Table 6: Complete ablation study on different configurations of user embeddings.

Datasets (→) Books Movies & TV CDs & Vinyl

Methods (↓) R-1 MET. BL. R-1 MET. BL. R-1 MET. BL.

Non-Perso-7B 0.2907 0.1735 1.9766 0.2469 0.1503 0.7242 0.2604 0.1561 1.0997

w
/o

te
xt his_emb 0.2912 0.1718 2.4364 0.2545 0.1625 1.7048 0.2726 0.1711 2.1962

diff_emb 0.3022 0.1839 2.6648 0.2542 0.1546 0.8574 0.2690 0.1616 1.2601
his_emb + diff_emb 0.2970 0.2227 5.5622 0.2586 0.1871 3.5629 0.2713 0.1853 3.3092

w
/t

ex
t his_emb 0.3722 0.3110 12.9361 0.3026 0.2332 6.0120 0.3051 0.2268 5.3390

diff_emb 0.3596 0.2781 10.6435 0.2964 0.2128 5.1985 0.3049 0.2108 4.9141
his_emb + diff_emb

(ours) 0.3745 0.3156 13.5300 0.3092 0.2381 6.6835 0.3165 0.2364 6.5166

Table 7: Complete ablation study on representation refinement.

Datasets (→) Books Movies & TV CDs & Vinyl

Methods (↓) R-1 MET. BL. R-1 MET. BL. R-1 MET. BL.

w/o DR 0.3704 0.3016 13.3651 0.3091 0.2325 6.5149 0.3039 0.2283 5.6812

w/ AE 0.3691 0.2994 12.5453 0.3084 0.2350 6.5949 0.3167 0.2355 6.4352

w/ SAE 0.3745 0.3156 13.5300 0.3092 0.2381 6.6835 0.3165 0.2364 6.5166

D Complete Ablation Studies & In-Depth1076

Analysis1077

D.1 User Embedding Configuration1078

In this section, we provide the complete results for1079

different user embedding configurations evaluated1080

in our ablation study. While the main paper only re-1081

ports METEOR scores in Table 2, we include here1082

the full results for all three metrics (ROUGE-1,1083

METEOR, and BLEU) across all datasets. The re-1084

sults in Table 6 offer a more comprehensive view of1085

how different embedding types (his_emb, diff_emb)1086

and the presence or absence of retrieved text affect1087

personalization performance.1088

9https://github.com/deepspeedai/DeepSpeed

D.2 Representation Refinement 1089

This section presents the complete results for the 1090

different representation refinement strategies dis- 1091

cussed in our ablation study. Table 7 reports 1092

ROUGE-1, METEOR, and BLEU scores for the 1093

w/o DR, w/ AE, and w/ SAE settings across all 1094

datasets, providing a more detailed understanding 1095

of their relative effectiveness. 1096

D.3 Impact of History Number 1097

We provide the full results across all evaluation met- 1098

rics in Figure 5. As shown in the figure, all three 1099

evaluation metrics (ROUGE-1, METEOR, and 1100

BLEU) exhibit a consistent upward trend across the 1101

three datasets as the number of retrieved histories 1102

(K) increases. This improvement can be attributed 1103

to the additional contextual information provided 1104
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Table 8: Performance comparison between different retrieval strategies across the three datasets.

Datasets (→) Books Movies & TV CDs & Vinyl

Methods (↓) R-1 MET. BL. R-1 MET. BL. R-1 MET. BL.

Random 0.3287 0.2573 5.4657 0.2955 0.2125 2.6946 0.3064 0.2138 2.9218

BM25 0.3325 0.2650 5.9851 0.2953 0.2123 2.7802 0.3066 0.2148 2.9832

Contriever 0.3325 0.2608 5.7479 0.2958 0.2128 2.7584 0.3077 0.2160 3.0204

Recency 0.3404 0.2735 6.8178 0.2983 0.2142 2.8680 0.3092 0.2177 3.1588

Table 9: Performance comparison with and without system prompt guidance.

Datasets (→) Books Movies & TV CDs & Vinyl

Methods (↓) R-1 MET. BL. R-1 MET. BL. R-1 MET. BL.

w/o Guidance 0.3704 0.3016 13.3651 0.3091 0.2325 6.5149 0.3039 0.2283 5.6812

w/ Guidance 0.3745 0.3156 13.5300 0.3092 0.2381 6.6835 0.3165 0.2364 6.5166

+Improvement 0.0041 0.0140 0.1649 0.0001 0.0056 0.1686 0.0126 0.0081 0.8354

by retrieved histories, along with our injected user-1105

specific embedding and difference-aware embed-1106

ding. Notably, the most significant gains occur1107

when K increases from 0 to 3, especially for the1108

BLEU metric. Beyond this range, the performance1109

tends to plateau, with only marginal improvements1110

or slight fluctuations. A slight dip is observed in1111

METEOR on the CDs & Vinyl dataset when K in-1112

creases from 0 to 1, which may result from noise or1113

limited informativeness in the single retrieved his-1114

tory. As more histories are incorporated, the signal1115

becomes more stable and representative, leading to1116

consistent improvements.1117

Overall, these results demonstrate that our1118

method substantially enhances the RAG pipeline.1119

The retrieve-and-inject paradigm we adopt proves1120

to be a strong and effective framework for person-1121

alization.1122

E Additional Experiment & Analysis1123

E.1 Retrieval Method1124

To investigate the impact of different retrieval1125

strategies and identify the most effective one for use1126

in both the baselines and our method, we evaluate1127

four retrieval approaches: random, BM25 (Robert-1128

son et al., 2009), Contriever (Izacard et al., 2022),1129

and recency (the most recent). Experiments are con-1130

ducted using the Qwen2.5-32B-Instruct model,1131

and the results are presented in Table 8.1132

As shown in Table 8, the choice of retrieval1133

strategy has a notable impact on generation per-1134

formance. The random retrieval baseline yields the1135

lowest performance, indicating the importance of1136

relevant context in guiding generation. BM25 and 1137

Contriever perform comparably, with slight advan- 1138

tages in different metrics. Among the four methods 1139

evaluated, the recency-based retrieval consistently 1140

outperforms the others across all metrics. Based on 1141

these results, we adopt the recency retrieval strat- 1142

egy in all subsequent experiments. 1143

E.2 System Prompt Guidance 1144

As described in Section 6, we incorporate addi- 1145

tional information into the system prompt to help 1146

the model better understand the injected person- 1147

alization prompts. To assess its effectiveness, we 1148

conduct experiments to analyze the impact of this 1149

guidance. Table 9 reports the results across all 1150

datasets and evaluation metrics. We observe that 1151

incorporating system prompt guidance consistently 1152

improves performance across the board. Hence, we 1153

adopt the system prompt guidance by default in all 1154

experiments. 1155

F Overview of Templates & Prompts 1156

In this section, we illustrate the prompt de- 1157

sign used in our framework. As shown in Fig- 1158

ure 6, the upper part depicts the system prompt, 1159

which defines the model’s global behavior and 1160

task instruction. The lower part shows an ex- 1161

ample of the input prompt, including retrieved 1162

user histories and object descriptions, which 1163

are fed into the model for generation. This 1164

prompt structure follows the retrieve-and-inject 1165

paradigm, where both user-specific and difference- 1166

aware embeddings are embedded via soft 1167
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Figure 6: The system prompt template and input tem-
plate for the base LLM.

prompts [HIS_TOKEN_i] and [DIFF_TOKEN_i]1168

to guide the generation. The four spe-1169

cial tokens <his_token_start>, <his_token_end>,1170

<diff_token_start>, and <diff_token_end> are in-1171

troduced to explicitly mark the boundaries of user-1172

specific and difference-aware embeddings in the1173

input sequence.1174

G Case Study1175

In this section, we present a case study to illustrate1176

the output generated by our framework as shown1177

in Figure 7.1178

In this example, the review generated by DEP1179

closely aligns with the user’s real review in both1180

content and sentiment. Both reviews highlight the1181

central observation that Avengers: Age of Ultron1182

feels very similar to the first Avengers movie, with1183

the main difference being the villain. Moreover,1184

DEP incorporates additional signals such as the1185

user’s familiarity with the franchise and a moder-1186

ately positive tone that matches the provided 3-star1187

rating. This case demonstrates that DEP can gener-1188

ate reviews that are not only coherent but also well- 1189

aligned with the user’s original opinion, supporting 1190

the effectiveness of difference-aware modeling in 1191

the embedding space for personalization. 1192
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Figure 7: A case study which compares the DEP-generated review and the user’s real review for the item
Avengers: Age of Ultron.
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