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Abstract

Large language models (LLMs) are increas-
ingly integrated into users’ daily lives, leading
to a growing demand for personalized outputs.
Previous work focuses on leveraging a user’s
own history, overlooking inter-user differences
that are crucial for effective personalization.
While recent work has attempted to model such
differences, the reliance on language-based
prompts often hampers the effective extraction
of meaningful distinctions. To address these is-
sues, we propose Difference-aware Embedding-
based Personalization (DEP), a framework that
models inter-user differences in the latent space
instead of relying on language prompts. DEP
constructs soft prompts by contrasting a user’s
embedding with those of peers who engaged
with similar content, highlighting relative be-
havioral signals. A sparse autoencoder then
filters and compresses both user-specific and
difference-aware embeddings, preserving only
task-relevant features before injecting them into
a frozen LLM. Experiments on personalized re-
view generation show that DEP consistently
outperforms baseline methods across multiple
metrics. Our code is available on an Anony-
mous GitHub.

1 Introduction

With continuous advancements in general-
purpose intelligence, large language models
(LLMs) (Achiam et al., 2023; Grattafiori et al.,
2024; Yang et al., 2024; Guo et al., 2025) are
increasingly integrated into everyday life, assisting
users in making decisions (Yao et al., 2023;
Deng et al., 2023), retrieving information (Gao
et al., 2023; Asai et al., 2024), and task manage-
ment (Shen et al., 2024). This growing presence
has raised expectations for LLMs to go beyond
generic, one-size-fits-all responses and instead
produce responses that align with individual users’
unique preferences. To meet these heightened
expectations, there appears the interests of LLM

personalization (Zhang et al., 2024; Xu et al.,
2025; Liu et al., 2025), which aims at tailoring
model outputs based on user-specific information.

Widely used methods generally follow the
memory-retrieval framework, where user history
is stored in memory, and key information is then
retrieved as a steering prompt to guide model gener-
ation. Previous works focused solely on retrieving
information about the user themselves for person-
alization. However, recent work such as DPL (Qiu
et al., 2025) argues that effective personalization
should also capture how a user differs from others.
This view is grounded in insights from psychology
and behavioral science (Snyder and Fromkin, 1977,
2012; Irmak et al., 2010), which highlight that inter-
user variability determines individuality and shapes
users’ distinct preferences. Accordingly, DPL in-
corporates inter-user comparison in the retrieval
history, formulating the comparison as a language
task performed by the LLM.

Despite DPL’s demonstrated effectiveness, we
argue that its language-based inter-user compari-
son paradigm using LLMs is structurally ill-suited
for accurately extracting inter-user differences. On
one hand, controlling the extraction of differences
using an LLM is challenging; although providing
extraction criteria can help, some aspects of distinc-
tion may be missed due to the difficulty of defining
comprehensive standards. On the other hand, in-
cluding other users’ raw data for comparison in
LLMs can result in verbose prompts that strain the
model’s context window, ultimately hindering the
extraction of meaningful inter-user differences.

To address these limitations, we propose shifting
to latent-space difference modeling, where task-
relevant differences between users are structurally
represented and compared in the latent embedding
space (Doddapaneni et al., 2024; Liu et al., 2024;
Zeldes et al., 2025). Compared to natural language,
latent embeddings offer two key advantages: (1)
they encode fine-grained, context-dependent behav-
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ioral patterns in a compact form; and (2) they inher-
ently support inter-user comparison through vector
operations, enabling direct integration of compari-
son signals. Together, these properties make latent
embeddings a more suitable medium for modeling
inter-user differences within LLMs.

Building on this idea, we propose a new method
called Difference-aware Embedding-based Person-
alization (DEP), which models task-relevant inter-
user differences in the latent space and injects
them into LLMs as soft prompts for personaliza-
tion. DEP extracts a difference-aware embedding
as a soft prompt by subtracting and aggregating the
user’s embedding against those of other users who
engaged with similar items. At the same time, the
original user-specific embedding is provided as a
reference to supply contextual information. Both
embeddings are essential: the user-specific em-
bedding defines the behavioral context, while the
difference-aware embedding captures deviations
from that context. Together, they form a contextu-
alized inter-user signal that reflects both individu-
alized preferences and relative differences.

Taking a step further, latent differences can be re-
dundant, as not all aspects are task-relevant—some
may simply constitute noise for the task. To ex-
tract essential information while filtering out irrel-
evant signals, we process both user-specific and
difference-aware embeddings using a sparse au-
toencoder (SAE) (Huben et al., 2024), which en-
forces sparsity to retain only key features. The
resulting compressed representations are then in-
jected into a frozen LLM as soft prompts. The
SAE is fine-tuned to align these representations
with the LLM’s internal understanding, allowing
the model to effectively leverage inter-user differ-
ences for improved personalization. We conduct
extensive experiments on one representative task,
review generation (Ni et al., 2019), where DEP
achieves state-of-the-art performance across multi-
ple evaluation metrics.

Our main contributions are as follows:

* We propose modeling inter-user differences in
the latent space to enable more comprehensive
and flexible extraction of preference signals for
LLM personalization.

* We propose a novel method, DEP, to achieve la-
tent difference modeling, equipped with a sparse
autoencoder to extract task-relevant differences
while filtering out noise.

» Extensive experiments show that our DEP con-

sistently outperforms baseline methods with sig-
nificant improvements.

2 Preliminary

Problem Formulation. This work studies the task
of LLM personalization, where the goal is to pro-
duce user-aligned output that reflects the individual
preferences of a given user. We assume that each
user has a set of historical texts. These histori-
cal texts are utilized to help the LLM infer the
user’s interests and generate personalized content.
Formally, let D denote the collection of historical
records from all users. Each record in D is repre-
sented as (u, i, %), where u is a user, 4 is an item
(or object) the user has focused on, and y; denotes
the text written or preferred by user u for item 1.
When the target user u/ submits a request to gener-
ate text for a target item 4, the LLM is expected to
produce an output that aligns with the preference
of u/ based on D.

Without loss of generality, this work focuses on
review generation, a representative personalization
task. The goal is to generate reviews tailored to
a user’s style and preferences, ensuring the out-
put aligns with how the user typically expresses
opinions on items such as movies or products.

Memory-retrieval framework. A common ap-
proach to enabling LL.Ms to perform personalized
generation is to store users’ history and retrieve
relevant signals at inference. Following DPL (Qiu
et al., 2025), effective personalization should cap-
ture both a user’s own behavioral patterns and how
they differ from others. This involves extracting
key preference signals from two sources: the user’s
own history, which reflects individual tendencies,
and other users’ behaviors, which provide materi-
als for modeling inter-user differences. Formally,
given a target user v’ and a target item i, the per-
sonalized generation process can be formulated as:

98, = LLM(«, 7, ¢(Dys; D)), (1)

where QZ, denotes the generated text, D, denotes
the history of the target user v/, and ¢(D,; D) de-
notes the process that extracts user-specific and
difference-aware preference signals from D,, and
D. This memory retrieval framework supports life-
long user modeling without requiring LLM retrain-
ing (Zhuang et al., 2024), making it both adaptable
and resource-efficient for real-world personaliza-
tion scenarios.
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Figure 1: Overview of the proposed DEP method, which introduces user-specific and difference-aware embeddings
to capture both individual preferences and inter-user differences. A sparse autoencoder (SAE) refines these
representations, which are then injected into a frozen LLM as soft prompts to guide personalized text generation.

3 Methodology

This section introduces our proposed Difference-
aware Embedding-based Personalization (DEP).
We begin with its motivation and an overview of
the framework, followed by detailed descriptions
of each key steps.

3.1 Overview

Personalization modeling requires capturing not
only a user’s own behavioral patterns, but also how
this user differs from others. In modeling inter-
user differences, existing work (Qiu et al., 2025)
relies on LLMs to summarize inter-user compar-
isons in natural language, which may miss some
key aspects of distinctions during the summariza-
tion. To address this limitation, we propose the
DEP method, which aims to model inter-user dif-
ferences in the latent space. DEP has three main
parts: (1) constructing two representations to cap-
ture difference-aware preference: a user-specific
embedding to model the behavioral context, and
a difference-aware embedding to model how the
user deviates from others within that context; (2)
distilling the representations with a sparse autoen-
coder to retain informative preference signals; and
(3) injecting the compressed representation into a
frozen LLM as soft prompts and fine-tuning the
autoencoder to align this representation with the
LLM’s internal understanding. Figure 1 provides
an overview of our proposed DEP. Next, we elabo-
rate the three parts in detail.

3.2 Difference-aware Embedding-based
Personalization (DEP)

In this section, we introduce three key steps of DEP:
constructing difference-aware representations, dis-
tilling them via a sparse autoencoder, and injecting
them into an LLM for personalization.

3.2.1 Latent-space Difference-aware
Representation Modeling

The core of DEP is to model inter-user differ-
ences in the latent space through contrastive signals
grounded in shared item contexts. To achieve this,
following the memory-retrieval paradigm (Salemi
et al., 2024; Kumar et al., 2024; Qiu et al., 2025),
DEP first retrieves a set of representative interac-
tions from the user’s history, which serve as an-
chors for inter-user comparison. For a given user v/,
we assume a subset of N key interactions, denoted
as D7, can be obtained via retrieval (Zhang et al.,
2024) from D,,. Then, for each retrieved interac-
tion (v/,4,y’,) € D},, we aim to compare it with
reviews written by other users for the same item ¢,
which provides a natural basis for inter-user com-
parison. To this end, we first encode the user’s own
review yi, using a frozen text embedding model
femp () to obtain the user-specific embedding:

eflis = femb(yi’)v 2

where eﬁn-s denotes the user-specific embedding
that reflects the preference pattern of user v’ on
item y. Next, to construct inter-user embeddings,
we identify the set of peer users who also interacted



with item 4, excluding v/, as {uy,ug,...,umn},
where u; denotes the j-th peer user of item ¢. Each
peer user u; provides a review ny]_, which is en-
coded into an embedding:

€u; = Femb(Yu,))- ©)

Then we compute the difference-aware embedding
by aggregating the vector differences between the
target user and each peer:

m

) 1 . .
cdiff = > (ehis — €u,); “

j=1

where efﬁff denotes the difference-aware embed-
ding. These two embeddings capture complemen-
tary perspectives: the user-specific embedding efﬁs
represents the behavior pattern of the target user
and serves as a reference of context, while the
difference-aware embedding efﬁff models how this
behavior pattern relatively deviates from others un-
der the context. Together, they form a structured
representative to capture the inter-user differences.

3.2.2 Sparse Representation Distillation

While the user-specific and difference-aware em-
beddings capture rich semantic and contrastive
signals, they may contain redundant or irrelevant
information that hinders efficient personalization.
To address this, we apply a sparse autoencoder
(SAE) (Huben et al., 2024) to compress the high-
dimensional embeddings into informative repre-
sentations. The SAE adopts an encoder-decoder
architecture with an ¢;-based sparsity constraint
on the latent space, encouraging the model to re-
tain only the most salient features. Given a history
embedding e} and a difference-aware embedding
efﬁff, the encoder produces their respective low-
dimensional latent vectors, 2}, and 2%, formally:

éflis = fdec(zli)is)v

ehite = faee (Zigr),

Zhis = Jenc(€his),
i i ®)
Zgitt = fenc(€qite),
where fenc(+) and fgec(+) denote the encoder and de-
coder networks, respectively. The encoder outputs
2pis and zg; are used as sparse preference represen-
tations for downstream soft prompt construction.

3.2.3 Representation Injection

After obtaining the distilled latent representations
from the sparse autoencoder, we aim to integrate
personalized signals into the generation process
of a frozen LLM. To achieve this, we adopt a

soft prompt injection mechanism, where the com-
pressed user-specific and difference-aware embed-
dings are projected into the input space of the LLM
and used to condition its output without updating
model parameters.

Soft Prompt Construction and Injection. For
each retrieved history (u/,4,y), we obtain 2
and zéiff from the SAE encoder, corresponding to
the user-specific and difference-aware embeddings.
These representations are projected into the LLM
input space via a lightweight projection network
M,,(-), which aligns their dimensionality with that
of the LLM’s embedding layer:

Phis = Mp(2his), Pt = Mo (2gigr) (6)

where p}. and pl are resulting soft prompt vec-
tors, which are injected into the input sequence at
designated positions. Then, the personalized gener-
ation process given the target user v’ and the target
item 4’ is performed as:

QZ/ =LLM (S(Z,7 {iapflisapéiff}ielz,)) ) (7)

where I, denotes the top-IN retrieved items
from the target user’s interacted history, and
S, {i, plss, pgiff}iGIZ,) is a textual prompt con-
structed from both the target item 7' and the soft
prompts to model inter-user differences, and the
original user’s original review history to model
user’s own writing patterns. The template can be
found in Figure 6 in Appendix F.

Training Objectives. To guide the SAE learn-
ing informative representation for LLM personal-
ization and make the soft prompts align with the
LLM internal understanding, we jointly optimize
two components: the SAE for latent representation
learning and the LLM for personalized generation.
The LLM is trained using a standard generation
loss, denoted as Lge,, computed based on the gen-
erated output and ground-truth personalized text.
The SAE is trained with two standard objectives: a
reconstruction loss to ensure information preserva-
tion, and a sparsity loss to promote selective pref-
erence encoding. For the reconstruction loss, we
adopt the Smooth L1 loss, which is formulated as
follows:

Erecon = SmoothL1 (eﬁis, éfllﬂ) + SmoothL1 (eéiff, ééiff)'
8

The sparsity loss is applied to the distilled latent
vector 2y, € R% and Zgife € R, encouraging the
preservation of the most informative signals. For



each, we compute the average activation ppis and
Pdiff as:

1< 1
Phis = D hiss  Adiff = i > Zigr- ©)
=1 i=1
We then compute the sparsity loss by applying KL
divergence between each of pyis and pgir and a
predefined sparsity target p.

d’ d’
Lsparse = % Z KL(PHﬁflis) + % Z KL(pHﬁZﬁff)'
= = (10)
The final training objective combines the genera-
tion loss from the LLM and the SAE loss, including

both reconstruction and sparsity terms:

Liotal = Lgen + A - (Lrecon + v - Lsparse)- (11)

where ) and ~ balance the contributions of the SAE
loss and the sparsity constraint, respectively.

4 Experiment

We conduct experiments in real-world datasets to

answer the following research questions:

* RQ1: How does DEP compare with baseline
methods on the personalized text generation task?

¢ RQ2: What is the contribution of each individual
component of DEP to its overall effectiveness?

* RQ3: What is the impact of the number of re-
trieved histories on the performance of DEP?

* RQ4: How does DEP perform under different
levels of user uniqueness compared to DPL?

4.1 Experimental Setup

Datasets. Building upon prior work, we focus
on the representative task of item review gener-
ation for LLM personalization (Ni et al., 2019;
Peng et al., 2024; Kumar et al., 2024; Au et al.,
2025). Specifically, we adopt the Amazon Reviews
2023 dataset' (Hou et al., 2024) preprocessed by
DPL? (Qiu et al., 2025), which covers three cate-
gories: Books, Movies & TV, and CDs & Vinyl. To
maximize data utilization, we follow the setting of
REST-PG (Salemi et al., 2025) to train a unified
model across categories. For training, we retain
each user’s most recent interaction per category.
For validation, we randomly select 512 instances

"https://amazon-reviews-2023.github.io/
https://huggingface.co/datasets/SnowCharmQ/
DPL-main & https://huggingface.co/datasets/

SnowCharmQ/DPL-meta

from the merged validation set across all three cat-
egories, while for testing, we follow the original
test splits provided by DPL. More details about the
dataset are provided in Appendix A.

Baselines. We compare our proposed DEP with

the following baseline methods. Further imple-

mentation details of all baselines can be found in

Appendix B.

* Non-Perso: A non-personalized baseline that
generates reviews using only item information,
along with the review’s title and rating.

e RAG (Salemi et al., 2024): A retrieval-based
method that incorporates the user’s history
records to provide contextual personalization.

* PAG (Richardson et al., 2023): An extension of
RAG that summarizes the user’s history records
into a compact profile and combines it with re-
trieved content for higher-level personalization.

* DPL (Qiu et al., 2025): A prompt-based method
that enhances personalization by explicitly com-
paring a user’s recent behavior with representa-
tive peers and summarizing the differences into a
profile integrated into the LLM input.

* PPlug (Liu et al., 2024): A plug-and-play ap-
proach that encodes user history into a dense
embedding, which is projected into the LLM’s
input space to guide generation.

Evaluation Metrics. Following previous works on
personalized text generation (Salemi et al., 2024;
Kumar et al., 2024; Zhang et al., 2025; Au et al.,
2025), we evaluate all methods using ROUGE-
1 (Lin, 2004), METEOR (Banerjee and Lavie,
2005), and BLEU? (Papineni et al., 2002).

Implementation Details. We use the Qwen2.5
Instruct?* (Yang et al., 2024) series models (7B
and 32B) as backbone LLM:s for all baseline meth-
ods and DEP. To retrieve user histories, we adopt
a recency-based strategy, selecting the most recent
history for each user. Additionally, we employ
bge-m3> (Chen et al., 2024a) as the embedding
model to map user reviews into vector representa-
tions. We train DEP for 5 epochs and select the
checkpoint with the highest METEOR score on the
validation set for testing. For more details, please
refer to Appendix C.

3We use the standard SacreBLEU (Post, 2018) library to
calculate the BLEU score: https://github.com/mjpost/
sacrebleu.

4https: //huggingface.co/Qwen

Shttps://huggingface.co/BAAL/bge-m3
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Table 1: Performance comparison between the baselines and our DEP across the three datasets. 7B and 32B represent
the size of base LLMs. The best results are highlighted in bold, and the second-best results are underlined. “R-17,
“MET.”, and “BL.” respectively denote ROUGE-1, METEOR, and BLEU. Higher values indicate better performance

across all metrics.

Datasets (—) Books Movies & TV CDs & Vinyl
Methods () R-1 MET. BL. R-1 MET. BL. R-1 MET. BL.
Non-Perso 0.3025 0.1949 2.6728 0.2608  0.1666 1.1226  0.2765  0.1767 1.6597
328 RAG 0.3404 0.2735 6.8178 0.2983  0.2142  2.8680 0.3092 0.2177  3.1588
PAG 0.3276  0.2830 6.8920 0.2816  0.2130 2.7751  0.2971  0.2215 3.2164
DPL 0.3392 03003  7.7423  0.2967  0.2238  3.2965 0.3119 0.2337  3.8271
Non-Perso 0.2907  0.1735 1.9766  0.2469  0.1503  0.7242  0.2604  0.1561 1.0997
RAG 0.3149  0.2101  3.6874 0.2693  0.1701 1.3021  0.2796  0.1733 1.6129
7B PAG 0.3136  0.2378 4.6762  0.2761 0.1905 1.9360  0.2882  0.1979  2.4740
DPL 0.3194 0.2459 56623 0.2845 0.1958  2.2451 0.2952  0.2003  2.6943
PPlug 0.3033  0.2234  7.0469 02530 0.1724 3.2291 02619 0.1711  3.0753
DEP (ours) 0.3745 0.3156 13.5300 0.3092 0.2381 6.6835 0.3165 0.2364 6.5166

4.2 Main Results (RQ1)

We first evaluate the overall performance of all
compared methods. Table 1 presents the main ex-
perimental results across three datasets, from which
we draw the following observations:

* Incorporating user context significantly im-
proves the model’s capability for personal-
ized text generation. Methods like RAG and
PAG leverage retrieved user information to con-
dition generation, significantly outperforming the
Non-Perso baseline. DPL further improves upon
these by explicitly modeling inter-user differ-
ences, achieving the relatively best performance
among all ICL-based methods. This shows that
capturing user differences yields better personal-
ization than simple relevance or summarization.

* Scaling up the model size leads to stronger
performance across different personalization
methods. For methods where both 7B and 32B
models are evaluated, we observe consistent im-
provements across three metrics. This trend high-
lights the capacity of larger models to capture
more nuanced personalization patterns.

* Using a single soft prompt for user history,
PPlug lacks informative signals and overlooks
inter-user differences. Although PPlug out-
performs the Non-Perso baseline by introduc-
ing lightweight user modeling through the soft
prompt, its gains remain limited. This limita-
tion motivates our design of a more effective soft
prompt strategy.

* DEP consistently outperforms all baselines
across datasets and metrics. Despite operat-

ing on a much smaller model scale, DEP not
only significantly outperforms all 7B-based meth-
ods, but also surpasses all baselines under the
32B backbone. Notably, averaged across three
datasets, DEP yields relative improvements of
5.05% in ROUGE-1, 4.21% in METEOR, and
82.59% in BLEU compared to the strongest base-
line. This substantial performance gain is primar-
ily attributed to the integration of implicit mod-
eling of user history and inter-user differences,
which provides more informative and discrimina-
tive signals for personalization.

4.3 Ablation Studies (RQ2)

To better understand the contribution of different
components in our personalization framework, we
conduct extensive ablation studies from two per-
spectives: user embedding configuration and repre-
sentation refinement.

We report METEOR scores on all three datasets
here, and leave results for the other two metrics in
Appendix D.

4.3.1 User Embedding Configuration

To assess the effectiveness of incorporating dif-
ferent types of user embeddings, we conduct a
detailed study comparing various configurations
of personalized signals. Specifically, we consider
two types of embeddings: (1) user-specific embed-
dings (his_emb), which represent the user’s past
interactions, and (2) difference-aware embeddings
(diff_emb), which encode inter-user differences by
contrasting the target user’s review history with
those of other users. We examine these embedding
configurations individually and in combination, un-



Table 2: Ablation study on different configurations of
user embeddings. his_emb and diff_emb denote user
history and difference-aware embeddings. w/o text and
w/ text refer to the exclusion or inclusion of retrieved
review texts.

Datasets (—) Books Movies CDs &
Methods () & TV Vinyl
Non-Perso-7B 0.1735 0.1503 0.1561

5 his_emb 0.1718  0.1625  0.1711
S diff_emb 0.1839  0.1546  0.1616
= his_emb +diff emb  0.2227  0.1871  0.1853
- his_emb 03110 02332  0.2268
\i diff_emb 02781 02128  0.2108
his_emb + diff_emb o 3,56 02381 0.2364

(ours)

Table 3: Ablation study on representation refinement.
w/o DR uses raw embeddings, w/ AE uses a standard
autoencoder, and w/ SAE is our implementation.

Datasets (—) Books Movies CDs &
Methods (]) &TV Vinyl
w/o DR 0.3016 0.2325 0.2283
w/ AE 0.2994 0.2350 0.2355
w/ SAE (ours) 0.3156 0.2381 0.2364

der two settings: with retrieved review text (w/ text)
and without it (w/o text).

Results in Table 2 show that both his_emb
and diff emb individually outperform the non-
personalized baseline, demonstrating the effective-
ness of modeling both user history and inter-user
differences. Combining the two leads to further
improvements, suggesting that user-specific em-
bedding and difference-aware embedding capture
complementary aspects of personalization. Addi-
tionally, incorporating retrieved texts (w/ text) con-
sistently enhances all configurations, highlighting
the benefit of contextual grounding.

4.3.2 Representation Refinement

We further evaluate the impact of different strate-
gies for refining user embeddings before soft
prompt injection. Specifically, we compare three
variants: (1) w/o DR, where raw high-dimensional
embeddings are directly projected without dimen-
sionality reduction, (2) w/ AE, which uses a stan-
dard autoencoder for compression without sparsity,
and (3) w/ SAE, which applies our sparse autoen-
coder to introduce the sparsity constraint.

Table 3 shows that removing dimensionality re-
duction (w/o DR) generally results in weaker per-
formance. While the standard autoencoder (w/ AE)
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Figure 2: Effect of the number of retrieved user histories
(K) on BLEU performance across datasets.

brings partial improvements on Movies & TV and
CDs & Vinyl datasets, it does not consistently out-
perform the raw embedding variant, suggesting that
compression alone is insufficient. In contrast, we
introduce a sparse autoencoder (w/ SAE), achieving
the best results across all datasets, highlighting the
effectiveness of sparsity constraint in enhancing
representation quality for personalization.

4.4 In-Depth Analysis

We conduct additional experiments to further study
the design and effectiveness of our approach.

4.4.1 Impact of History Number (RQ3)

Figure 2 shows how the number of retrieved user
histories (K) affects the performance on BLEU
across datasets. A key observation is the substantial
jump in performance from K = 0to K = 1, which
marks the transition from the non-personalized set-
ting to the personalized framework of DEP. This
single-step increase highlights the substantial bene-
fit of incorporating even one user-specific history
with both the user-specific and difference-aware
embeddings, demonstrating the effectiveness of our
method once personalization is engaged. As K in-
creases further, performance continues to improve,
though with diminishing returns.

For a more comprehensive view, we provide
the full results across all evaluation metrics and
datasets in Appendix D.3.
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4.4.2 Impact of User Uniqueness (RQ4)

Following the procedure in DPL (Qiu et al., 2025),
we further investigate how user uniqueness affects
personalization performance. Similarly, we adopt a
grouping strategy based on the user embedding de-
rived from historical reviews. Specifically, we com-
pute the Euclidean distance between each user’s re-
view embedding and the global average embedding
across all users, and divide users into two groups:
the top 50% as Unique users and the bottom 50%
as Non-Unique users.

As shown in Figure 3, both DPL and DEP out-
perform the non-personalized baseline across user
groups. DEP consistently achieves the best results
and maintains stable improvements for both Unique
and Non-Unique users. Similar to DPL, larger
gains are observed in the Unique group, highlight-
ing the importance of modeling user distinctiveness.
Unlike DPL, which relies on prompt-level repre-
sentations, DEP models inter-user differences in
the latent space, enabling more compact and robust
personalization, leading to better performance.

5 Related Work

The personalization of LLMs has become a critical
research direction, aiming to adapt general-purpose
models to individual user preferences (Chen et al.,
2024b; Li et al., 2025; Chen et al., 2025; Zhao
et al., 2025). Among various approaches, the
memory-retrieval framework is widely adopted for
its interpretability and scalability. It retrieves user-
specific signals from interaction history to guide
the model without changing its parameters. Meth-
ods under this framework generally fall into two
types: retrieval-augmented generation (RAG) and
profile-augmented generation (PAG). RAG-based
approaches retrieve relevant past interactions to

construct a personalized prompt. For example,
HYDRA (Zhuang et al., 2024) employs a person-
alized reranker to refine retrieval quality, while
PERAL (Mysore et al., 2024) trains a retriever
with a scale-calibrated objective to select useful
information. In contrast, PAG-based methods sum-
marize the user’s behavior into a condensed profile,
which is then integrated into the prompt to guide
generation (Richardson et al., 2023).

Beyond retrieving individual histories, recent
studies have explored incorporating other users’
information as auxiliary signals to enhance indi-
vidual personalization. CFRAG (Shi et al., 2025),
Persona-DB (Sun et al., 2025), and AP-Bots (Yazan
et al., 2025) borrow the concept of collaborative fil-
tering (He et al., 2017; Wang et al., 2019) to retrieve
similar users’ histories and incorporate them into
the prompt to guide the generation. DPL (Qiu et al.,
2025) further highlights that individual uniqueness
lies in the differences from others and proposes to
model such differences by formulating inter-user
comparison as a language modeling task performed
directly by the LLM. While this method has shown
promising results, modeling inter-user differences
through prompt engineering poses challenges. In
contrast, our method shifts this process to the latent
embedding space, which avoids prompt-length con-
straints and enables more structured and nuanced
modeling of user differences.

6 Conclusion

In this work, we propose DEP, a novel person-
alization framework that models inter-user dif-
ferences in the latent embedding space to guide
LLMs for personalized text generation. Unlike
prior approaches that rely only on prompt-level
construction to integrate user histories and inter-
user contrastive signals, our method jointly en-
codes both user-specific and difference-aware em-
beddings, and refines them through a sparse autoen-
coder to retain only task-relevant personalization
cues. These embeddings are then injected into a
frozen LLM via soft prompts, enabling efficient per-
sonalization. Experimental results across multiple
domains show that DEP achieves state-of-the-art
performance, especially for users with distinctive
behavior patterns, confirming the effectiveness of
latent inter-user difference modeling. For future
work, we plan to explore privacy-preserving inter-
user comparison, real-time embedding updates, and
extensions to tasks such as conversational agents.



Limitations

While our proposed method DEP demonstrates
strong performance in personalized text genera-
tion, it also introduces several limitations. First,
the method relies on sufficient user history to con-
struct meaningful embeddings; in cold-start or
data-sparse settings, its effectiveness may degrade.
Second, although more efficient than language-
based comparison methods, the computation of
difference-aware embeddings and sparse autoen-
coding introduces additional overhead compared to
standard prompting pipelines. Lastly, our evalua-
tion is centered on review generation, where prefer-
ences are explicit; adapting the approach to broader
tasks like dialogue or recommendation requires fur-
ther study.

Ethical Statements

This work explores user-level personalization
through the use of retrieved historical data and inter-
user relational modeling. While effective for im-
proving generation quality, such approaches raise
important ethical considerations. In particular, ac-
cessing and processing users’ historical interactions
requires careful attention to data privacy, consent,
and security. Moreover, modeling inter-user dif-
ferences may inadvertently expose sensitive behav-
ioral patterns or amplify existing biases.

To mitigate these concerns, any real-world de-
ployment of our method should incorporate privacy-
preserving techniques such as anonymization, en-
cryption, and transparent consent protocols. Spe-
cial care should be taken to avoid unintended infer-
ences or misuse of user-level representations.

All experiments are conducted on publicly avail-
able datasets that have been preprocessed and re-
leased by prior work. The original raw data is
open-source and distributed under the MIT license.
We ensure that our use of the data adheres to estab-
lished ethical standards and respects the original
data usage guidelines.
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A Dataset Details

In this paper, we focus on the task of review gen-
eration. Specifically, we adopt the Amazon (Hou
et al., 2024) dataset preprocessed by DPL (Qiu
et al., 2025). We select each user’s most recent
interaction from the training sets of the three cat-
egories and merge them into a unified training
dataset, which is used to train the model. For vali-
dation, we also aggregate the three categories and
randomly sample 512 instances. For testing, we
directly use the test splits preprocessed by DPL.
During data preprocessing, we construct complete
prompts as model inputs by concatenating the tar-
get item title, target item description, output review
title, output review rating, and the retrieved user’s
past reviews. For clarity, we provide an example
of the dataset preprocessed by DPL as shown in
Figure 4, and dataset statistics after processing are
summarized in Table 4.

B Baseline Details

We compare our proposed DEP with several base-
line methods. The comparison between different
baselines and our method is shown in Table 5. In
this section, we further introduce each baseline
method in detail:

* Non-Perso: This method generates reviews with-
out leveraging any user-specific information. The
input to the model includes only the item’s title
and description, along with the output review’s
rating and title.

¢ RAG (Salemi et al., 2024): This method uses a
simple recency-based retrieval strategy to select
the most recent reviews from the user’s history.
The retrieved reviews are then directly formatted
and incorporated into the LLM’s input to provide
contextual personalization.

* PAG (Richardson et al., 2023): Building upon
RAG, this method first summarizes the most re-
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{
"user_id": "AHFGIFWFRGG4UKGJVMUS5XJQH36RA",
"profile”: [
{
"asin": "BOO005RDSN",
"title": Flawed, but entertainig flick from Disney.
"timestamp": 1645076985230,
"rating": 4.0,
"text": "It seems as though Disney always takes hits whenever it
tries to do something daring and different..."
h

1
"data": {
"asin": "BOOONQRETE",
"title": "Actually lives up to the hype.",
"timestamp": 1645076985230,
"rating": 5.0,
"text": "James Cameron\'s TITANIC was one of those movies that
could have been a major disaster, what with all the bad word of
mouth about its production process..."

}

}

]

BLURAY"+ DV DIGITAL ?v_v'
(3.3
- !
= ] 4

{

"asin": "BO0O005RDSN",

“title": "Titanic (Four-Disc Combo:
Blu-ray / DVD / Digital Copy)",

"description": "Experience Academy
Award-winning director James
Cameron’ s epic masterpiece Titanic
like never before..."
}

Figure 4: An example of the user review from the main
dataset (above) and the corresponding item from the
meta dataset (below).

Table 4: Overview of dataset statistics across the three
benchmark categories.

Categories (/) #data  Profile Size Output Length
Training Dataset 3996 37.474+33.53 1608.82+1476.99
Validation Dataset 512 39.14+36.01 1557.29+£1378.43
Books 317  34.84+22.55 1194.90+802.44

DUESt  Movies & TV 1925 411143590 1704.61+1752.44

CDs & Vinyl 1754 38.504+32.37 1600.04+1419.89

cent reviews from the user’s history into a com-
pact profile. The generated profile, along with
the retrieved records, is included in the input to
the LLLM, allowing it to generate personalized
reviews guided by a higher-level understanding
of the user.

DPL (Qiu et al., 2025): The method prompts the
LLM to find inter-user differences by compar-
ing the target user’s most recent interactions with
representative users selected via clustering from
predefined dimensions (e.g., writing, emitional
tone, and semantics), and summarizes them with
the user’s history to form a user profile. This pro-
file, along with recent reviews, is incorporated
into the model input to enhance generation. To
select representative users, DPL employs an em-
bedding model; in our implementation, we use



the same embedding model as in our method.

* PPlug (Liu et al., 2024): A plug-and-play per-
sonalization method that encodes a user’s history
into a dense user-specific embedding through a
lightweight user embedder. This embedding is
constructed via input-aware attention over user
histories. The resulting embedding, along with
an instruction embedding, are projected into the
LLM input space via a trainable projector and
prepended to the input to guide a frozen LLM. In
our implementation of PPlug, we adopt the same
user embedder as used in our proposed method.

C Implementation Details

C.1 Running Environments

We implement all baseline methods and DEP
with Python 3.11.11, PyTorch® (Paszke et al.,
2019), transformers’ (Wolf et al., 2020), and
vLLM® (Kwon et al., 2023). To train the model,
we utilize the transformers library. Besides, we
employ the vLLM library as the inference engine for
both validation and testing, and adapt our model
accordingly to ensure compatibility.

C.2 Hyperparameter Configurations

C.2.1 Method Parameters

In our implementation, the SAE model is im-
plemented as a two-layer feed-forward network,
consisting of an encoder that projects input em-
beddings from dimension d = 1024 to a lower-
dimensional latent space of size d = 512, and a
decoder that reconstructs the input. For the sparsity
parameter p, we set it to 0.05. To align the SAE
output with the LLM input space, we employ two
independent projection networks Mp;s and M gig,
each implemented as a two-layer MLP with GELU
activations, mapping the latent representation z to
the LLM embedding space. Additionally, we use
A = 100 and v = 1e—3 to balance the reconstruc-
tion and sparsity losses during training.

A maximum of 8 user history entries are re-
trieved for each instance. If the input exceeds the
context length limit, excess histories are discarded
to ensure compatibility.

https://pytorch.org/
"https://huggingface.co/
8h’ctps ://github.com/v11lm-project/vllm
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Figure 5: Detailed evaluation results across all three
datasets (Books, Movies & TV, CDs & Vinyl) with
varying numbers of retrieved user histories (/). The
left figure shows ROUGE-1 and METEOR scores, and
the right figure demonstrates BLEU scores.

C.2.2 Training Settings

Before training, we initialize the model param-
eters using Xavier uniform initialization (Glorot
and Bengio, 2010). We train the model using the
AdamW (Loshchilov and Hutter, 2019) optimizer for
a maximum of 8 epochs. The learning rate is set
to le-5 with a weight decay of 0.025. We apply a
warmup ratio of 0.01 at the beginning of training.
The batch size per device is 1, and the gradient accu-
mulation steps are 16 to achieve an effective batch
size of 16. We also enable bfloat16 mixed pre-
cision and incorporate flash attention (Dao, 2023).
Additionally, the training is conducted using Deep-
Speed’ (Rajbhandari et al., 2020; Rasley et al.,
2020) ZeRO Stage 1 optimization.

C.2.3 Inference Settings

We configure the model with a maximum length of
2048 tokens for both input and output. During in-
ference for both validation and test, the temperature
is set to 0.8, and the parameter top_p is 0.95.


https://pytorch.org/
https://huggingface.co/
https://github.com/vllm-project/vllm

Table 5: We provide a comparison between the different baseline methods and our proposed DEP, focusing on the
following aspects: (1) retrieval augmentation, (2) embedded representation, and (3) inter-user difference.

Methods (]) |, Retrieval Augmentation Embedded Representation Inter-User Difference
Non-Perso X X X
RAG X X
PAG X X
DPL X
PPlug X X
DEP

Table 6: Complete ablation study on different configurations of user embeddings.

Datasets (—) Books Movies & TV CDs & Vinyl
Methods (|) R-1 MET. BL. R-1 MET. BL. R-1 MET. BL.
Non-Perso-7B 0.2907 0.1735 1.9766 0.2469 0.1503 0.7242 0.2604 0.1561 1.0997
5 his_emb 0.2912 0.1718 2.4364  0.2545 0.1625 1.7048 0.2726 0.1711 2.1962
'\S diff_emb 0.3022 0.1839 2.6648 0.2542 0.1546 0.8574 0.2690 0.1616 1.2601
= his_emb + diff emb  0.2970 0.2227 5.5622 0.2586 0.1871 3.5629 0.2713 0.1853 3.3092
] his_emb 0.3722 03110 129361 0.3026  0.2332 6.0120  0.3051 0.2268 5.3390
é diff_emb 0.3596 0.2781 10.6435 0.2964 0.2128 5.1985 0.3049 0.2108 49141
h‘s—emz’o:rg;ff—emb 03745 03156 135300 03092 02381 6.6835 03165 02364 65166
Table 7: Complete ablation study on representation refinement.
Datasets (—) Books Movies & TV CDs & Vinyl
Methods ({) R-1 MET. BL. R-1 MET. BL. R-1 MET. BL.
w/o DR 0.3704 0.3016 13.3651 0.3091 0.2325 6.5149 0.3039 0.2283 5.6812
w/ AE 0.3691 0.2994 12.5453 0.3084 0.2350 6.5949 0.3167 0.2355 6.4352
w/ SAE 0.3745 0.3156 13.5300 0.3092 0.2381 6.6835 0.3165 0.2364 6.5166

Complete Ablation Studies & In-Depth
Analysis

D.1 User Embedding Configuration

In this section, we provide the complete results for
different user embedding configurations evaluated
in our ablation study. While the main paper only re-
ports METEOR scores in Table 2, we include here
the full results for all three metrics (ROUGE-1,
METEOR, and BLEU) across all datasets. The re-
sults in Table 6 offer a more comprehensive view of
how different embedding types (his_emb, diff_emb)
and the presence or absence of retrieved text affect
personalization performance.

9https ://github.com/deepspeedai/DeepSpeed
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D.2 Representation Refinement

This section presents the complete results for the
different representation refinement strategies dis-
cussed in our ablation study. Table 7 reports
ROUGE-1, METEOR, and BLEU scores for the
w/o DR, w/ AE, and w/ SAE settings across all
datasets, providing a more detailed understanding
of their relative effectiveness.

D.3 Impact of History Number

We provide the full results across all evaluation met-
rics in Figure 5. As shown in the figure, all three
evaluation metrics (ROUGE-1, METEOR, and
BLEU) exhibit a consistent upward trend across the
three datasets as the number of retrieved histories
(K) increases. This improvement can be attributed
to the additional contextual information provided


https://github.com/deepspeedai/DeepSpeed

Table 8: Performance comparison between different retrieval strategies across the three datasets.

Datasets (—) Books Movies & TV CDs & Vinyl
Methods () R-1 MET. BL. R-1 MET. BL. R-1 MET. BL.
Random 0.3287 0.2573 5.4657 0.2955 0.2125 2.6946 0.3064 0.2138 2.9218
BM25 0.3325 0.2650 5.9851 0.2953 0.2123 2.7802 0.3066 0.2148 2.9832
Contriever 0.3325 0.2608 5.7479 0.2958 0.2128 2.7584 0.3077 0.2160 3.0204
Recency 0.3404 0.2735 6.8178 0.2983 0.2142 2.8680 0.3092 0.2177 3.1588

Table 9: Performance comparison with and without system prompt guidance.

Datasets (—) Books Movies & TV CDs & Vinyl
Methods ({) R-1 MET. BL. R-1 MET. BL. R-1 MET. BL.
w/o Guidance  0.3704 0.3016 13.3651 0.3091 0.2325 6.5149 0.3039 0.2283 5.6812
w/ Guidance ~ 0.3745 0.3156 13.5300 0.3092 0.2381 6.6835 0.3165 0.2364 6.5166
+Improvement  0.0041 0.0140 0.1649 0.0001 0.0056 0.1686 0.0126 0.0081 0.8354

by retrieved histories, along with our injected user-
specific embedding and difference-aware embed-
ding. Notably, the most significant gains occur
when K increases from 0 to 3, especially for the
BLEU metric. Beyond this range, the performance
tends to plateau, with only marginal improvements
or slight fluctuations. A slight dip is observed in
METEOR on the CDs & Vinyl dataset when K in-
creases from 0 to 1, which may result from noise or
limited informativeness in the single retrieved his-
tory. As more histories are incorporated, the signal
becomes more stable and representative, leading to
consistent improvements.

Overall, these results demonstrate that our
method substantially enhances the RAG pipeline.
The retrieve-and-inject paradigm we adopt proves
to be a strong and effective framework for person-
alization.

E Additional Experiment & Analysis
E.1 Retrieval Method

To investigate the impact of different retrieval
strategies and identify the most effective one for use
in both the baselines and our method, we evaluate
four retrieval approaches: random, BM25 (Robert-
son et al., 2009), Contriever (Izacard et al., 2022),
and recency (the most recent). Experiments are con-
ducted using the Qwen2.5-32B-Instruct model,
and the results are presented in Table 8.

As shown in Table 8, the choice of retrieval
strategy has a notable impact on generation per-
formance. The random retrieval baseline yields the
lowest performance, indicating the importance of
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relevant context in guiding generation. BM25 and
Contriever perform comparably, with slight advan-
tages in different metrics. Among the four methods
evaluated, the recency-based retrieval consistently
outperforms the others across all metrics. Based on
these results, we adopt the recency retrieval strat-
egy in all subsequent experiments.

E.2 System Prompt Guidance

As described in Section 6, we incorporate addi-
tional information into the system prompt to help
the model better understand the injected person-
alization prompts. To assess its effectiveness, we
conduct experiments to analyze the impact of this
guidance. Table 9 reports the results across all
datasets and evaluation metrics. We observe that
incorporating system prompt guidance consistently
improves performance across the board. Hence, we
adopt the system prompt guidance by default in all
experiments.

F Overview of Templates & Prompts

In this section, we illustrate the prompt de-
sign used in our framework. As shown in Fig-
ure 6, the upper part depicts the system prompt,
which defines the model’s global behavior and
task instruction. The lower part shows an ex-
ample of the input prompt, including retrieved
user histories and object descriptions, which
are fed into the model for generation. This
prompt structure follows the retrieve-and-inject
paradigm, where both user-specific and difference-
aware embeddings are embedded via soft



Template

Given the title and description of an item, along with the user's
past reviews (including item title, item description, review rating,
review title, review text, review embedding, review difference
embedding), and the output review rating and review title,
generate a personalized item review for the user.

Note: [Review Embedding] denotes a soft prompt of the review
text and [Review Difference Embedding] denotes a soft prompt
showing the difference between the review text and other
reviews on the same item. [Review Embedding] and [Review
Difference Embedding] should serve as hints for personalized
review text generation.

Input

[Item Title]: </item title>
[Iltem Description]: </item description>
[User’ s Past Reviews]:

- [Review </>]:

- [ltem Title]: </tem title>

- [Item Description]: </tem description>

- [Review Rating]: <review rating>

- [Review Title]: < review title>

- [Review Text]: <review text>

- [Review Embedding]:
<his_token_start>[HIS_TOKEN_</>]<his_token_end>

- [Review Difference Embedding]:
<diff_token_start>[DIFF_TOKEN_</>]<diff_token_end>

(K blocks are concatenated by the new line symbol)

[Output Review Ratingl: <output review rating>
[Output Review Title]: <output review title>

Figure 6: The system prompt template and input tem-
plate for the base LLM.

prompts [HIS_TOKEN_i] and [DIFF_TOKEN_i]
to guide the generation. The four spe-
cial tokens <his_token_start>, <his_token_end>,
<diff _token_start>, and <diff_token_end> are in-
troduced to explicitly mark the boundaries of user-
specific and difference-aware embeddings in the
input sequence.

G Case Study

In this section, we present a case study to illustrate
the output generated by our framework as shown
in Figure 7.

In this example, the review generated by DEP
closely aligns with the user’s real review in both
content and sentiment. Both reviews highlight the
central observation that Avengers: Age of Ultron
feels very similar to the first Avengers movie, with
the main difference being the villain. Moreover,
DEP incorporates additional signals such as the
user’s familiarity with the franchise and a moder-
ately positive tone that matches the provided 3-star
rating. This case demonstrates that DEP can gener-
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ate reviews that are not only coherent but also well-
aligned with the user’s original opinion, supporting
the effectiveness of difference-aware modeling in
the embedding space for personalization.



[Item Title]: Marvel's Avengers: Age of Ultron
[Review Rating]: 3.0
[Review Title]: Same as Avengers One with different bad guys

DEP Generated Review:

| went to see this movie because of the previous reviews | read here. | liked the first one, but |
didn't think it was a great movie, but I'm really glad | saw it. | loved this one. | thought it was a
much better movie. I've seen all the Avengers movies so | was already familiar with the
characters, so that helped me get into the movie more. It's basically the same story as the first
one, but with a different bad guy. The same thing happens. Avengers team together, save the
day. In this case the bad guy is a terrible Al robot, who has been programmed to think it can
save the world. It doesn't work of course, but the Avengers do save the day. This movie was very
good. | would recommend it. 3 stars.

User’ s Real Review:

If you saw the first Avengers and most people have, the second will look very, very familiar. The
first movie made over $1.5 Billion at the box office. Not being fools, Disney and Marvel chose to
stay very close to the same formula for the second. Once again the good guys battle each other,
then realize the importance of team work before finally being able to combat and destroy the
enemy. In the first movie it was Loki and the Chitauri. In the second it's Ultron and the Ultron
clones. The clones by the way are like metal pi&ntilde;atas. They blow up and explode very
easily when hit. One terminator would be more challenging than 100 clones. But Avengers 2
also has the usual back and forth one lines and joking banter between the team members, the
usual &#34;end of the world&#34; threat and the usual deep sigh &#34;boy that was a close
one&#34; ending. I'm sure Avengers 3 will also be very similar to the first two. Between one and
two, | preferred one. But the CGl is good and the popcorn was OK.

Figure 7: A case study which compares the DEP-generated review and the user’s real review for the item
Avengers: Age of Ultron.
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