

000 001 002 003 004 005 DECOMPOSITION OF CONCEPT-LEVEL RULES 006 IN VISUAL SCENES 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

027 ABSTRACT 028

029 Human cognition is compositional, and one can parse a visual scene into indepen-
030 dent concepts and the corresponding concept-changing rules. By contrast, many
031 vision-language systems process images holistically, with limited support for ex-
032 plicit decomposition. And previous methods of decomposing concepts and rules
033 often rely on hand-crafted inductive biases or human-designed priors. We intro-
034 duce a framework (CRD) to decompose concept-level rules with Large Vision-
035 Language Models (LVLMs), which explains visual input by extracting LVLM-
036 extracted concepts and the rules governing their variation. The proposed method
037 operates in two stages: (1) a pretrained LVLM proposes visual concepts and con-
038 cept values, which are employed to instantiate a space of concept rule functions
039 that model concept changes and spatial distributions; (2) an iterative process to
040 select a concise set of concepts that best account for the input according to the
041 rule function. We evaluate CRD on an abstract visual reasoning benchmark and a
042 real-world image caption dataset. Across both settings, our approach outperforms
043 baseline models while improving interpretability by explicitly revealing underly-
044 ing concepts and compositional rules, advancing explainable and generalizable
045 visual reasoning.
046

047 1 INTRODUCTION 048

049 Human cognition is compositional: we can interpret complex scenes by identifying independent
050 concepts and the change of the concepts (Lake et al., 2017). A Visual Concept (Lake et al., 2015)
051 (Meta-Attribute) is a high-level, interpretable visual properties that describe specific semantic cate-
052 gories or abstract traits present (e.g., concept *Color* describes attributes such as *Blue*, *Red*, or *Green*).
053 A Rule specifies the allowable pattern of how a concept’s values vary across space (e.g., *Color* darkens
054 smoothly from left to right) (Tenenbaum et al., 2011; Kemp & Tenenbaum, 2008). Many visual
055 scenes can be interpreted through such a decomposition into concepts and rules. For instance, a
056 matrix reasoning problem is defined by human-specified meta-attributes and logical rules, while a
057 physical video reveals entities moving according to physical laws.
058

059 Early approaches attempt to decompose concepts and rules through hierarchical Bayesian inference,
060 enabling the analysis of spatial arrangement rules in structured data (Kemp & Tenenbaum, 2008;
061 Tenenbaum et al., 2011) as well as the compositional structure of handwriting characters (Lake
062 et al., 2011; 2015). Recently, more approaches aim to disentangle the visual perception process
063 from the high-level rule inference process by designing specialized modules (Zhang et al., 2021a).
064 In addition, structured generative priors, such as latent Gaussian processes (Shi et al., 2021), or
065 algebraic reasoning backends (Zhang et al., 2021b), have been incorporated to provide principled
066 inductive biases, which have proven effective for abstract visual reasoning. Another line of work
067 enforces concept-specific latent functions to capture distinct factors of variation (Shi et al., 2023),
068 which is evaluated on three different scenes.
069

070 Prior works often rely on strong inductive biases or manually designed priors to extract interpretable
071 structure. Although these inductive biases can lead to interpretable results, they also limit their
072 adaptability to various visual scenes. Therefore, building frameworks that can automatically dis-
073 cover such compositional structure remains challenging. Motivated by these limitations, we lever-
074 age Large Vision-Language Models (LVLMs) as rich, data-driven priors for concept discovery and
075 rule induction (Liu et al., 2023). LVLMs encode extensive world knowledge and fine-grained visual-

linguistic correspondences (Wang et al., 2025b; Tong et al., 2024), and we could exploit these capacities to automatically perceive scene content, propose semantically meaningful concept candidates, and estimate their patch-wise values without manual attribute taxonomies or rule templates.

In this work, we propose a two-step framework that leverages a pre-trained LVLM to derive interpretable visual concepts and rules. **First**, the LVLM is used to propose a Visual Concept Set (VCS), i.e., meta-attributes. And we instantiate a space of Concept Rule Functions (CRFs) capturing how visual concepts change or are spatially distributed. **Second**, given the space of CRFs grounded in these visual concepts, our framework performs an iterative sampling process to select a VCS that best accounts for the visual input. Through the sampling process, the method converges on a combination of visual concepts and associated rule functions that together provide an interpretable explanation of the patterns observed in the visual data. To evaluate the proposed framework, we also constructed a subset derived from VStar Bench (Wu & Xie, 2024), consisting of high-quality, open-domain real-world images paired with their corresponding meta-attributes.

In summary, our work makes the following contributions:

- We propose **CRD**, a novel and general framework for concept-level rules decomposition of visual inputs that leverages Large Vision-Language Models (LVLMs).
- We demonstrate that our framework can automatically extract and decompose visual concept level rules from natural image data, improving the visual representation capabilities of several LVLM baselines.
- **We show that applying CRD to LVLMs enables them to surpass both traditional concept-rule decomposition methods and standard LVLMs on abstract visual reasoning tasks, highlighting its ability of decomposing the visual concepts and rules.**

2 RELATED WORKS

Decomposition of Concepts and Rules. Hierarchical Bayesian models have been early employed to analyze spatial arrangement rules on image panels that are organized in grid or lattice structures (Tenenbaum et al., 2011; Kemp & Tenenbaum, 2008). In parallel, character modeling approaches decompose whole characters into strokes through a designed process and recombine them into new characters according to specific rules (Lake et al., 2011; 2015). Some methods leverage hand-crafted or learned feature representations to address abstract visual reasoning tasks (Lovett & Forbus, 2017; Little et al., 2012; Lovett et al., 2010). Recent works model concepts and rules more explicitly by combining latent encodings with probabilistic induction or adversarial learning (Pekar et al., 2020; Zhang et al., 2021a;b), while alternative approaches capture concepts and concept-changing rules through latent functions (Shi et al., 2021; 2023). Nevertheless, these methods still depend on auxiliary supervision or task-specific inductive biases, often involving human-injected knowledge like the specific form of rules.

Large Vision-Language Models. Large Vision-Language Models (LVLMs) have evolved significantly, starting with early models (Liu et al., 2023; Li et al., 2023; Chen et al., 2025) connected pre-trained visual encoders (e.g., CLIP-based ViTs (Radford et al., 2021)) to language models for open-ended visual question answering. These models paved the way for later LVLMs (Liu et al., 2024; Chen et al., 2024b), which improved input image resolution and enhanced vision-language alignment. Notably, InternVL3.5 (Wang et al., 2025a) and QwenVL2.5 (Bai et al., 2025) exemplify the latest advancements, with both introducing new training strategies and frameworks to optimize reasoning performance. Several recent approaches have sought to leverage the capabilities of large vision-language models (LVLMs) to perform visual reasoning (Tong et al., 2024; Wang et al., 2025b; Chen et al., 2024a). These innovations have closed the performance gap with proprietary models such as GPT4-V (Achiam et al., 2023), making open LVLMs competitive in vision-language tasks, offering impressive improvement in fine-grained visual perception and multimodal reasoning.

Despite substantial progress, current LVLMs remain limited in visual rule extraction and abstract visual reasoning: trained largely for pattern recognition and caption-style objectives, they receive little supervision for inferring compositional rules or conducting systematic relational reasoning. Empirical analyses report weak compositional understanding of concept-relation bindings (Anis et al., 2025) and persistent failures on abstract rule-induction tasks (Ahrabian et al., 2024). This motivates

108 our approach, which harnesses LVLM priors while introducing a decomposition mechanism into
 109 human-interpretable concepts and rules, enabling more robust abstract visual reasoning.
 110

111 **3 METHOD**

114 In this section, we describe how CRD decomposes visual inputs into visual concepts and rules. We
 115 first introduce the probabilistic formulation of the visual concepts and rules in overview, and then
 116 describe the two-stage process by which the model learns both components from raw data.
 117

118 **3.1 VISUAL CONCEPT SET**

120 The set of candidate visual concepts contains a vast collection of possible concepts, often covering
 121 the majority of words in the vocabulary. Let $[M] = \{1, \dots, M\}$ denote the universe of all M
 122 candidate visual concepts (we use their indices for convenience). Each element in $[M]$ corresponds
 123 to a primitive visual concept that could potentially be used to describe the input data. While $[M]$
 124 defines the full conceptual vocabulary, only a small portion of these concepts is related to the input.
 125

126 **Definition 1** (Visual Concept Set). *Given the candidate concepts $[M]$, a Visual Concept Set (VCS)
 127 is defined as a subset $G \subseteq [M]$ with cardinality $|G| = K$.*

128 According to Definition 1, CRD selects a subset of size K to form the VCS, which contains K
 129 concepts that are actually relevant for explaining the given visual input X . For each visual concept
 130 $i \in [M]$, we assume that $p_i \in (0, 1)$ is the probability that i is included in the VCS G , and the logit
 131 $\theta_i = \log \frac{p_i}{1-p_i}$. The probability distribution of G is given by

$$132 \quad p_K(G | \theta) = \frac{1}{Z} \prod_{i \in G} e^{\theta_i}, \quad \text{where } Z = \sum_{\substack{S \subseteq [M] \\ |S|=K}} \prod_{j \in S} e^{\theta_j}. \quad (1)$$

136 The prove of Equation 1 is provided in the appendix. A higher θ_i indicates a higher probability that
 137 concept i should participate in G . In CRD, θ establishes the connection between VCS and the rules
 138 and reflects the likelihood that the concept values are supported by specific rules. Therefore, $p_K(G |$
 139 $\theta)$ considers the underlying rules, biasing the selection toward concepts that exhibit more clearer
 140 rules for structured decomposition of visual inputs. In the following section, we will introduce how
 141 CRD bridges the visual concepts and rules.
 142

143 **3.2 CONCEPT RULE FUNCTION**

144 The rules in CRD capture the spatial distribution of concept values within an image. While concepts
 145 describe attributes such as color, the rules specify how these concept values are arranged and interact
 146 spatially, e.g., whether they follow symmetry.
 147

148 CRD learns rules by analyzing patch-wise concept values, capturing value changes and their spatial
 149 dependencies. As illustrated in [Figure 1], CRD first splits the input image X into N non-
 150 overlapping patches $\{x_1, \dots, x_N\}$, ordered in a raster-scan manner from left to right and top to
 151 bottom. A LVLM is employed to generate a set of concepts G_{rule} according X . For each concept
 152 $i \in G_{\text{rule}}$, the LVLM further extracts concept values on each patch. Let p_n denote the spatial position
 153 of x_n , and $v_{i,n}$ is the observed value of concept i on the n -th patch.
 154

155 **Definition 2** (Concept Rule Function). *For a given input image X , the observed values of concept i extracted by the LVLM is $\mathbf{v}_i = [v_{i,1}, \dots, v_{i,N}]^\top$. The position vector of patches is
 156 $\mathbf{p} = [p_1, \dots, p_N]^\top$ where $p_i = i/N$. The Concept Rule Function (CRF) of the concept is a mapping
 157 $f : \mathbf{p} \mapsto \mathbf{v}_i$. The function space \mathcal{F} of the mapping is a Gaussian Process (GP) (Williams &
 158 Rasmussen, 1995) with a deep kernel:*

$$159 \quad f \sim \mathcal{GP}(0, k_\phi(\cdot, \cdot)), \quad \text{where } k_\phi(p_i, p_j) = \exp\left(-\frac{1}{2} \|g_\phi(p_i) - g_\phi(p_j)\|_2^2\right), \quad 1 \leq i, j \leq N,$$

160 and g_ϕ is a neural network that maps input positions into a high-dimensional representations.
 161

Figure 1: **Overview of the proposed CRD framework.** The process consists of two stages: (i) CRF learning stage, where visual concepts are extracted from images and a Gaussian process prior is used to construct the function space over CRFs; (ii) VCS sampling stage, where a iterative sampling procedure is applied to generate concept subsets G from the distribution $p_K(G | \theta)$.

Under the GP prior, the marginal likelihood of the concept values \mathbf{v}_i is a Gaussian

$$p(\mathbf{v}_i | \mathbf{p}, \phi) = \mathcal{N}(\mathbf{v}_i; \mathbf{0}, \mathbf{K}_\phi), \quad (2)$$

where $\mathbf{K}_\phi \in \mathbb{R}^{N \times N}$ is the kernel matrix with entries $(\mathbf{K}_\phi)_{ij} = k_\phi(p_i, p_j)$. The logarithmic marginal likelihood is

$$\mathcal{L}_{LML}(\mathbf{p}, \mathbf{v}_i) = -\frac{1}{2} \mathbf{v}_i^\top \mathbf{K}_\phi^{-1} \mathbf{v}_i - \frac{1}{2} \log \det(\mathbf{K}_\phi) - \frac{N}{2} \log(2\pi). \quad (3)$$

Intuitively, a CRF characterizes how visual concepts vary across spatial positions of an image. Since the concepts with specific distribution pattern are considered more related to the input, CRD defines θ_i through a CRF and the function space \mathcal{F} , i.e., $\theta_i = \mathcal{L}_{LML}(\mathbf{p}, \mathbf{v}_i)$.

3.3 LVLM-BASED TWO-STAGE LEARNING PROCESS

Based on Definitions 1 and 2, the main challenges that CRD needs to address are twofold:

1. how to construct the function space \mathcal{F} to fit the rules on input images;
2. how to efficiently sample G from the complex probability distribution $p_K(G | \theta)$.

To tackle these challenges, we propose a LVLM-based two-stage learning process. In the *CRF learning stage*, a LVLM is taken to extract visual concepts and learn an appropriate function space \mathcal{F} over CRFs. In the second *VCS sampling stage*, according to the learned function space, we employ a sampling procedure like Metropolis-Hastings to generate G from $p_K(G | \theta)$. In the following sections, we will provide a detailed description of this two-stage process.

3.3.1 CRF LEARNING STAGE

Given a batch of input images, we construct the patches and extract the patch positions and the concept values using a LVLM, forming the training set for the corresponding CRFs. The training set is denoted as $\mathcal{D} = \{(\mathbf{p}_i, \mathbf{v}_i)\}_{i=1}^N$, where \mathbf{p}_i denotes the spatial positions of patches and \mathbf{v}_i is

216 the predicted concept values. To train the CRF, we minimize the negative logarithmic marginal
 217 likelihood defined in Equation 3 on the observed concept values. The parameters ϕ are optimized by
 218 gradient-based methods. We compute the gradient of the negative logarithmic marginal likelihood
 219 with respect to ϕ . This gradient is then used in standard gradient descent or adaptive optimizers (e.g.,
 220 Adam (Kingma & Ba, 2014)) to update ϕ . By iteratively processing batches of images, computing
 221 the marginal likelihood, and performing gradient-based updates, the deep kernel parameters are
 222 learned such that the GP prior over CRFs captures the underlying rules of visual concepts across
 223 spatial positions.

225 3.3.2 VCS SAMPLING STAGE

227 Once the distribution $p_K(G | \theta)$ and the function space \mathcal{F} have been defined, the second stage of
 228 our framework aims to obtain samples of G that are consistent with both the probabilistic distribu-
 229 tion. Direct sampling from $p_K(G | \theta)$ is computationally intractable due to the combinatorial size
 230 of the candidate concepts. To address this, we design a Metropolis–Hastings (MH) sampling pro-
 231 cedure (Chib & Greenberg, 1995), denoted as *LVLM-MH*, which leverages the proposal distribution
 232 informed by a LVLM.

233 Starting from a current VCS G , we propose a new VCS $G' = G \setminus \{i\} \cup \{j\}$ by replacing the concept
 234 $i \in G$ with the candidate concept $j \in [M] \setminus G$. The transition probability of the concept replacement
 235 process is decomposed as

$$237 Q(G, G') = r(i | G) q(j | i, G), \quad (4)$$

239 where $r(i | G)$ denotes the probability of selecting concept i of G for replacement, and $q(j | i, G)$
 240 denotes the proposal probability of selecting the candidate concept j as its replacement. We consider
 241 the following design choices for $r(i | G)$. (1) Select $i \in G$ uniformly at random, i.e., $r(i | G) =$
 242 $1/|G|$. (2) Weight the selection by the inverse importance of concepts, i.e., $r(i | G) \propto e^{-\theta_i}$, such
 243 that less related concepts are more likely to be replaced. CRD determines the replaced concept
 244 by selecting $i \in G$ uniformly at random, which avoids dependence on the score θ assigned to
 245 each concept. This choice removes the necessity of evaluating θ over the entire set G and brings
 246 a computational advantage. At the same time, uniform sampling guarantees an exploration of the
 247 concepts, ensuring that every candidate has equal opportunity to be selected.

248 After determining the replaced concept i , we introduce a LVLM to instantiate the distribution $q(j |$
 249 $i, G)$ to propose a target concept j from the candidate concepts $[M] \setminus G$. The distribution leverages
 250 the semantic prior captured by the LVLM, thereby assigning higher probability to concepts that are
 251 semantically or visually more consistent with the input image. This mechanism ensures that the
 252 sampling process is guided by high-level semantic knowledge, facilitating the discovery of more
 253 meaningful candidate concepts. To avoid degenerate cases where the LVLM assigns an extremely
 254 small probability to certain concepts, we impose a constraint on the logits before normalization. The
 255 output logits produced by the LVLM are clipped to ensure that no concept receives a probability
 256 arbitrarily close to zero.

257 With the transition probability $Q(G, G')$, the acceptance probability of LVLM-MH is computed as

$$259 \alpha(G, G') = \min \left\{ 1, \frac{p_K(G' | \theta)}{p_K(G | \theta)} \cdot \frac{r(j | G') q(i | j, G')}{r(i | G) q(j | i, G)} \right\}, \quad (5)$$

$$261 \quad = \min \left\{ 1, e^{\theta_j - \theta_i} \cdot \frac{q(i | j, G')}{q(j | i, G)} \right\}. \quad (6)$$

265 A Bernoulli variable is sampled with the acceptance rate $\alpha(G, G')$. The proposal $G \rightarrow G'$ will be
 266 executed if the variable is 1; otherwise, the current state of VCS is retained. For an input image, we
 267 run multiple iterations of the LVLM-MH sampler. At each iteration, a candidate concept is proposed
 268 and accepted or rejected with probability $\alpha(G, G')$. Over repeated iterations, the VCS converges to
 269 the target distribution $p_K(G | \theta)$, thus providing samples of concept sets consistent with the complex
 probability distribution of VCS.

270 4 EXPERIMENTS
271272 4.1 BASELINES
273

274 To assess robustness and model-agnostic generality, we benchmark CRD against a diverse panel
275 of large vision-language models that span families and parameter scales. Specifically, we include
276 InternVL-3.5 at 4B/8B (Wang et al., 2025a), InternVL-3 at 2B/8B (Zhu et al., 2025), Qwen-VL-2.5
277 at 3B/7B (Bai et al., 2025), LLaVA-NeXT-7B (Liu et al., 2024), DeepSeek-VL2-Tiny (Wu et al.,
278 2024) and GPT-4o (Achiam et al., 2023). We use publicly released checkpoints and official inference
279 pipelines without any additional fine-tuning. To ensure comparability, we harmonize evaluation
280 along three axes: (i) prompting—standardized instruction templates for all baselines (detailed in
281 Appendix C); (ii) decoding—deterministic generation (temperature 0); and (iii) preprocessing—we
282 adopt each model’s native image preprocessor (including any built-in high-resolution tiling or sub-
283 image partition mechanisms). We also compare our method with three deep-learning based ap-
284 proaches in the abstract visual reasoning tasks: PrAE (Zhang et al., 2021a), LGPP (Shi et al., 2021),
285 and CLAP-NP (Shi et al., 2023), LEN (Zheng et al., 2019), ResNet+DRT (Zhang et al., 2019) and
286 SRAN (Hu et al., 2021). These traditional deep learning methods are not general-purpose models
287 in the sense of LVLMs. They are typically designed for a single dataset or a limited set of tasks,
288 with architectures and training objectives specifically designed to capture dataset-dependent rules
289 and concepts. In contrast, LVLMs provide a universal modeling paradigm, pretrained on large-scale
290 multimodal corpora, and are capable of zero-shot or few-shot reasoning across diverse tasks.

291 4.2 DATASETS
292

293 **Meta-Attribute Extraction.** We derived VSB-MA by selecting all high-quality images from VS-
294 tar Bench (Wu & Xie, 2024), aiming to establish a standardized set of meta-attributes for general
295 visual scenes. Each image was first processed with a GPT4-V (Achiam et al., 2023) model using
296 a carefully engineered prompt (detailed in the appendix) to automatically extract an initial pool of
297 descriptive attributes. These raw attributes were then rigorously reviewed and cleaned by human
298 annotators to ensure conceptual uniqueness of each attribute and clear inter-attribute distinctiveness.
299 The cleaning process involved removing redundant or ambiguous descriptors, merging semantically
300 overlapping terms under unified labels, and verifying consistency across similar scenes. As a result,
301 we developed a curated and standardized meta-attribute set for each image, which serves as a high-
302 quality reference for assessing the ability of models to extract visual features and rules in complex
303 real-world scenarios.

303 **Abstract Visual Reasoning.** We evaluate our framework on RAVEN (Zhang et al., 2019) and I-
304 RAVEN (Hu et al., 2021), two widely used datasets for abstract visual reasoning. Both datasets
305 consist of seven image configurations with diverse layouts (e.g., single-object, inside-outside, and
306 grid-based), where images are governed by compositional rules over attributes such as shape, size,
307 and position. In addition, both datasets introduce noisy attributes (e.g., random rotations, colors, and
308 object positions in grids), which increase the difficulty to learn concept-rule composition from only
309 the raw data.

310 4.3 META-ATTRIBUTE EXTRACTION
311312 4.3.1 QUANTITATIVE RESULTS
313

314 Let $\hat{\mathcal{A}}$ denote the set of predicted attributes and \mathcal{A} the gold attributes. For any pair $(i, j) \in \hat{\mathcal{A}} \times$
315 \mathcal{A} , let $s(i, j) \in [-1, 1]$, the cosin similarity score $s(i, j)$ is computed from sentence-transformer
316 embeddings of the two attributes. We obtain a one-to-one alignment $M \subseteq \hat{\mathcal{A}} \times \mathcal{A}$ (e.g., via the
317 Hungarian algorithm (Japrapto, 2010)) that maximizes the total similarity. *Average Similarity* is the
318 mean similarity over aligned pairs,

$$319 \text{AvgSim} = \frac{1}{|M|} \sum_{(i,j) \in M} s(i, j),$$

320 providing a graded measure of alignment quality across the matched concepts. We report Precision,
321 Recall, F1, and (derived from the similarity scores) AUPRC and ROC-AUC, providing a compre-
322

324
325
326
327 Table 1: **Meta-attribute extraction performance on VSB-MA**. We compare models before and
328 after optimization using our CRD framework.
329
330
331
332
333

Method	Avg Sim	Precision	Recall	F1	AUPRC	ROC-AUC
DeepSeek-VL2-Tiny	16.8	39.1	21.1	27.4	36.3	50.8
DeepSeek-VL2-Tiny + CRD	20.4	44.8	23.2	30.6	40.1	58.3
Qwen2.5-VL-3B	31.5	77.1	26.9	39.9	42.5	65.8
Qwen2.5-VL-3B + CRD	36.7	77.3	32.8	46.1	47.9	68.1
Qwen2.5-VL-7B	46.9	73.7	38.0	50.2	54.1	74.6
Qwen2.5-VL-7B + CRD	51.6	76.3	44.4	56.1	58.0	75.7
InternVL3.5-4B	38.5	75.1	35.3	48.0	48.8	68.7
InternVL3.5-4B + CRD	44.5	76.4	42.7	54.8	52.4	70.1
InternVL3.5-8B	59.9	75.7	51.2	61.1	65.2	83.9
InternVL3.5-8B + CRD	64.0	77.4	55.6	64.7	68.3	84.8
Human	77.4	84.7	74.6	79.3	79.0	87.7

334
335
336
337
338
339
340
341 hensive evaluation of the model’s attribute extraction performance in terms of accuracy, coverage,
342 and separability.
343

344 As shown in Table 1, applying our CRD framework consistently boosts meta-attribute extraction
345 performance for every model and scale evaluated. For each architecture with our method outper-
346 forms its base counterpart across all metrics. For example, the InternVL-3.5-4B’s Average Simi-
347 larity (AvgSim) rises from 39.0 to 44.1 and its F1 score from 46.4 to 51.6 after applying CRD. We
348 observe similar improvements for the larger InternVL-3.5-8B and Qwen2.5-VL-7B when optimized
349 with CRD. Even smaller models benefit: Qwen2.5-VL-3B and DeepSeek-VL2-Tiny both show no-
350 table gains in all metrics after using our method. **We also include the performance of human experts**
351 **on the meta-attribute extraction task as a reference**. Collectively, these results suggest that our CRD
352 framework enables the models to more fully tap into their vast pre-trained knowledge, substantially
353 strengthening their ability to interpret complex visual rules and to extract the relevant attributes with
354 higher fidelity. **More experimental results are provided in Appendix D.**
355

356 4.3.2 ABLATION STUDY

357
358 Table 2: **Ablation study on acceptance probability components in VCS sampling stage**. We
359 analyze the impact of different components in the acceptance probability $\alpha(G, G')$ using InternVL-
360 3.5-8B as the baseline model on VSB-MA dataset.
361
362
363
364

Method	Avg Sim	Precision	Recall	F1	AUPRC	ROC-AUC
InternVL3.5-8B + CRD	64.0	77.4	55.6	64.7	68.3	84.8
w/o LVLM Proposal Ratio	<u>61.0</u>	<u>77.1</u>	<u>51.3</u>	<u>61.6</u>	<u>65.8</u>	<u>84.2</u>
w/o CRF Score Term	<u>59.2</u>	<u>74.6</u>	<u>59.8</u>	<u>57.4</u>	<u>64.8</u>	<u>84.1</u>
InternVL3.5-8B	59.9	75.7	51.2	61.1	65.2	84.8

365
366 Table 2. indicates the impact of removing each component from the acceptance probability $\alpha(G, G')$
367 in our VCS sampling stage. Removing any single component of the acceptance probability causes a
368 notable drop in performance. This consistent decline confirms the effectiveness of our framework.
369 The rule-based CRF score (the term $e^{\theta_j - \theta_i}$ derived from the Concept Rule Function) effectively
370 guides the update of the concept set, while the LVLM proposal ratio (based on the LVLM’s proposal
371 probability) helps the large model thoroughly explore the concept space. Together, these components
372 drive significant performance gains over the baseline.
373

374 Furthermore, we compare the two ablated variants in detail. **Removing the LVLM proposal ratio**
375 **results in a performance decline** (e.g., Avg Sim drops from 64.0 to 61.0), **remaining above the**
376 **baseline (59.9)**. This suggests that the CRF score term alone is a strong contributor to performance.
377 And LVLM proposal ratio provides additional benefit by allowing some proposals with lower CRF
378 scores to be accepted, it encourages broader exploration of the concept space and yields higher
379 overall performance. In contrast, removing the CRF score term causes a severe drop, and even below

378 the baseline on most metrics. Without the CRF score to steer the sampling toward concept sets,
 379 unguided exploration can degrade results. [Appendix D](#) provides more analyses of our framework.
 380

381 4.3.3 QUALITATIVE RESULTS

394 **Figure 2: Qualitative case studies of meta-attribute extraction on VSB-MA dataset.**

395 As shown in Figure 2, given a natural image, the pretrained LVLM first proposes an initial pool
 396 of candidate meta-attributes. Our CRD framework then performs an iterative propose-judge-update
 397 loop. In each iteration, CRD suggests a refinement or replacement aimed at increasing semantic
 398 abstraction and rule consistency (e.g., replacing the vague design with the concept plant, or lifting
 399 instance-level house to the category-level building). Proposals inconsistent with the meta-attribute
 400 definition (e.g., sky → blue, which collapses to a specific color instance) are rejected. Repeating
 401 this process converges to a concise, interpretable meta-attribute set that better aligns with the scene’s
 402 underlying organization. [More qualitative results](#) can be found in [Appendix E](#).

405 4.4 ABSTRACT VISUAL REASONING

406 In the abstract visual reasoning tasks, we compare our method with the deep-learning methods
 407 which requires dataset-specific hyperparameter tuning (e.g., representation dimensions and number
 408 of rules) to adapt to different data. We apply CRD to InternVL3, Qwen2.5-VL, and DeepSeekVL2,
 409 and compare the resulting models against their original baselines as well as other representative
 410 LVLMs. In this setting, the context panel and all candidate images are concatenated into a single
 411 problem image, where the candidates are annotated from A to H. The complete prompt construction
 412 procedure is described in [Appendix C](#). To solve abstract visual reasoning tasks with LVLM-CRD,
 413 the right-bottom panel of the problem matrix is iteratively replaced with each candidate image. For
 414 every replacement, the corresponding CRF score is computed to evaluate how well the completed
 415 matrix conforms to the learned rules. Finally, the candidate with the highest CRF score among all
 416 eight options is selected as the predicted answer for model evaluation.

418 4.4.1 QUANTITATIVE RESULTS

419 [Table 3](#) reports the experimental results on the RAVEN and I-RAVEN datasets, where the mod-
 420 els are evaluated by the accuracy of selecting the correct answer from eight candidates. The deep
 421 learning-based baselines achieve higher accuracy than most LVLMs, while LVLMs exhibit limited
 422 performance on both RAVEN and I-RAVEN. Open-source models such as InternVL3 and LLaVA-
 423 Next, as well as the closed-source GPT-4o, achieve accuracies close to random guessing (12.5%).
 424 An exception is Qwen2.5-VL, which reaches over 60% accuracy on RAVEN, substantially outper-
 425 forming other LVLMs. Notably, when applied to Qwen, CRD already achieves performance that
 426 surpasses several of these task-specific models, especially on I-RAVEN. Recent work (Jiang et al.,
 427 2025) has also observed similar anomalies. Qwen2.5-VL performs well on the final answer selection
 428 task, which is the original RAVEN task, but struggles on simpler intermediate reasoning subtasks,
 429 leading the authors to suspect potential data contamination. Our experiments reveal a similar incon-
 430 sistency. The proposed method mostly outperforms both deep learning-based baselines and LVLMs
 431 on these benchmarks, demonstrating its advantage in abstract reasoning. We hypothesize that the
 432 poor reasoning performance of LVLMs stems from their lack of explicit problem decomposition

432 **Table 3: The performance on abstract visual reasoning.** We show the accuracy (%) of selecting
 433 answers on subsets of RAVEN/I-RAVEN. * Qwen2.5-VL shows an abnormal performance differ-
 434 ence. It achieves much higher accuracy on RAVEN but drops to near-random accuracy on I-RAVEN,
 435 despite the two datasets sharing the same context panels and differing only in the candidate set, rais-
 436 ing the concern of data contamination.

438	439	440	RAVEN																				
			441 Models	442 Center	443 L-R	444 U-D	445 O-IC	446 O-IG	447 2Grid	448 3Grid	449 Average												
445	446	447	448	449	450	451	452	453	454	455	456												
PrAE	14.5	7.1	11.1	7.1	9.5	13.1	11.1	10.5	RAVEN	Models	Center												
LGPP	9.2	4.7	5.2	4.0	3.1	8.6	10.4	6.5		L-R													
CLAP-NP	30.4	13.4	12.2	16.4	9.5	16.0	24.3	17.5		U-D													
ResNet+DRT	14.1	11.9	12.8	13.6	13.1	16.8	16.1	14.1		O-IC													
SRAN	75.8	31.0	33.2	39.3	68.0	66.9	79.3	56.2		O-IG													
LEN	69.3	74.5	74.2	72.8	77.6	65.0	73.5	72.4		2Grid													
InternVL3-2B	9.0	17.0	14.0	13.0	10.0	13.0	10.0	12.3		3Grid													
InternVL3-2B-Instruct	13.0	15.0	15.0	14.0	7.0	13.0	14.0	13.0		Average													
InternVL3-8B	16.0	6.0	12.0	11.0	17.0	13.0	6.0	11.6															
InternVL3-8B-Instruct	12.0	12.0	11.0	12.0	16.0	10.0	8.0	11.6															
GPT-4o	16.0	13.0	10.0	13.0	10.0	8.0	11.0	11.6															
LLaVA-NeXT-7B	14.0	13.0	20.0	10.0	10.0	9.0	13.0	12.7															
DeepSeek-VL2-Tiny	18.0	22.0	11.0	21.0	20.0	17.0	10.0	17.0															
Qwen2.5-VL-3B*	68.0	54.0	33.0	71.0	54.0	55.0	44.0	54.1															
Qwen2.5-VL-7B*	78.0	53.0	55.0	73.0	65.0	52.0	42.0	59.7															
InternVL3.5-8B+CRD	22.0	19.0	31.0	33.0	47.0	33.0	36.0	31.6															
Qwen2.5VL-7B+CRD	77.0	97.0	95.0	87.0	98.0	84.0	88.0	89.4															
I-RAVEN																							
455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	
PrAE	22.6	21.2	26.5	16.9	24.4	21.4	18.9	21.7	Models	Center	L-R	U-D	O-IC	O-IG	2Grid	3Grid	Average						
LGPP	20.1	18.9	21.2	13.9	12.3	13.7	13.9	16.3															
CLAP-NP	42.9	35.1	32.1	37.5	26.0	20.1	35.8	32.8															
ResNet+DRT	13.2	13.4	12.1	12.1	13.3	12.4	12.8	12.8															
SRAN	89.6	67.6	70.9	75.7	52.2	38.6	32.2	61.0															
LEN	15.3	14.6	15.5	12.8	15.7	15.1	16.1	15.0															
InternVL3-2B	9.0	13.0	16.0	10.0	13.0	9.0	12.0	11.7															
InternVL3-2B-Instruct	8.0	11.0	18.0	11.0	13.0	12.0	17.0	12.9															
InternVL3-8B	15.0	14.0	13.0	13.0	14.0	11.0	17.0	13.9															
InternVL3-8B-Instruct	16.0	10.0	11.0	11.0	15.0	10.0	18.0	13.0															
GPT-4o	13.0	13.0	6.0	11.0	17.0	13.0	12.0	12.1															
LLaVA-NeXT-7B	14.0	13.0	17.0	9.0	12.0	15.0	12.0	13.1															
DeepSeek-VL2-Tiny	17.0	15.0	11.0	7.0	15.0	11.0	11.0	12.4															
Qwen2.5-VL-3B	17.0	17.0	11.0	11.0	15.0	5.0	8.0	12.0															
Qwen2.5-VL-7B	19.0	18.0	14.0	18.0	12.0	9.0	15.0	15.0															
InternVL3.5-8B+CRD	24.0	29.0	37.0	44.0	49.0	20.0	32.0	33.6															
Qwen2.5VL-7B+CRD	81.0	93.0	95.0	89.0	98.0	80.0	89.0	89.3															

ability. Unlike CRD, which transforms the problems into structured concept-rule learning process, LVLMs tend to rely on holistic pattern matching, making it difficult to capture the underlying abstract rules behind problems. Appendix E provides qualitative results and analyses.

5 CONCLUSION

We presented CRD, a model-agnostic framework that leverages pretrained LVLMs to propose visual concepts, which is employed to learn rule functions that capture how these concepts vary and organize spatially. Followed by an iterative sampling process, CRD selects a proper set of visual concepts and concept-level rules for the input. Across natural-image and abstract visual reasoning evaluations, CRD improves performance over LVLM baselines, demonstrating its ability to decompose concepts and rules. By minimizing hand-crafted inductive biases and harnessing data-driven priors, CRD offers a general route to explainable, compositional visual understanding. In future work, we plan to extend the framework to temporal and broader settings and to explore richer rule spaces and sampling strategies.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Kian Ahrabian, Zhivar Sourati, Kexuan Sun, Jiarui Zhang, Yifan Jiang, Fred Morstatter, and Jay
492 Pujara. The curious case of nonverbal abstract reasoning with multi-modal large language models.
493 *arXiv preprint arXiv:2401.12117*, 2024.

494 Ahmad Mustafa Anis, Hasnain Ali, and Saquib Sarfraz. On the limitations of vision-language
495 models in understanding image transforms. *arXiv preprint arXiv:2503.09837*, 2025.

496 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
497 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
498 2025.

499 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
500 Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In *Proceedings
501 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14455–14465,
502 2024a.

503 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua
504 Lin. Sharegpt4v: Improving large multi-modal models with better captions. In *ECCV*, pp. 370–
505 387, 2025.

506 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
507 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
508 for generic visual-linguistic tasks. In *CVPR*, pp. 24185–24198, 2024b.

509 Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings algorithm. *The
510 american statistician*, 49(4):327–335, 1995.

511 Sheng Hu, Yuqing Ma, Xianglong Liu, Yanlu Wei, and Shihao Bai. Stratified rule-aware network
512 for abstract visual reasoning. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
513 volume 35, pp. 1567–1574, 2021.

514 Benjamin Agus Japrapto. Hungarian algorithm. 2010.

515 Yanbei Jiang, Yihao Ding, Chao Lei, Jiayang Ao, Jey Han Lau, and Krista A Ehinger. Be-
516 yond perception: Evaluating abstract visual reasoning through multi-stage task. *arXiv preprint
517 arXiv:2505.21850*, 2025.

518 Charles Kemp and Joshua B Tenenbaum. The discovery of structural form. *Proceedings of the
519 National Academy of Sciences*, 105(31):10687–10692, 2008.

520 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
521 arXiv:1412.6980*, 2014.

522 Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning of
523 simple visual concepts. In *Proceedings of the annual meeting of the cognitive science society*,
524 volume 33, 2011.

525 Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
526 through probabilistic program induction. *Science*, 350(6266):1332–1338, 2015.

527 Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
528 machines that learn and think like people. *Behavioral and brain sciences*, 40:e253, 2017.

529 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
530 pre-training with frozen image encoders and large language models. In *International conference
531 on machine learning*, pp. 19730–19742. PMLR, 2023.

540 Daniel R Little, Stephan Lewandowsky, and Thomas L Griffiths. A bayesian model of rule induction
 541 in raven’s progressive matrices. In *Proceedings of the Annual Meeting of the Cognitive Science
 542 Society*, volume 34, 2012.

543

544 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*,
 545 pp. 34892–34916, 2023.

546 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae
 547 Lee. Llava-next: Improved reasoning, ocr, and world knowledge, 2024. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

548

549 Andrew Lovett and Kenneth Forbus. Modeling visual problem solving as analogical reasoning.
 550 *Psychological review*, 124(1):60, 2017.

551

552 Andrew Lovett, Kenneth Forbus, and Jeffrey Usher. A structure-mapping model of raven’s progres-
 553 sive matrices. In *Proceedings of the Annual Meeting of the Cognitive Science Society*, 2010.

554

555 Niv Pekar, Yaniv Benny, and Lior Wolf. Generating correct answers for progressive matrices intel-
 556 ligence tests. *arXiv preprint arXiv:2011.00496*, 2020.

557

558 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 559 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 560 models from natural language supervision. pp. 8748–8763, 2021.

561

562 Fan Shi, Bin Li, and Xiangyang Xue. Raven’s progressive matrices completion with latent gaussian
 563 process priors. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp.
 9612–9620, 2021.

564

565 Fan Shi, Bin Li, and Xiangyang Xue. Compositional law parsing with latent random functions. In
 566 *The Eleventh International Conference on Learning Representations*, 2023.

567

568 Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman. How to grow a
 569 mind: Statistics, structure, and abstraction. *science*, 331(6022):1279–1285, 2011.

570

571 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 572 shut? exploring the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF
 573 Conference on Computer Vision and Pattern Recognition*, pp. 9568–9578, 2024.

574

575 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 576 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal
 577 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025a.

578

579 Yikun Wang, Siyin Wang, Qinyuan Cheng, Zhaoye Fei, Liang Ding, Qipeng Guo, Dacheng Tao,
 580 and Xipeng Qiu. Visuothink: Empowering lvlm reasoning with multimodal tree search. *arXiv
 581 preprint arXiv:2504.09130*, 2025b.

582

583 Christopher Williams and Carl Rasmussen. Gaussian processes for regression. *Advances in neural
 584 information processing systems*, 8, 1995.

585

586 Penghao Wu and Saining Xie. V?: Guided visual search as a core mechanism in multimodal llms.
 587 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 588 13084–13094, 2024.

589

590 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 591 Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language
 592 models for advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024.

593

594 Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for relational
 595 and analogical visual reasoning. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 596 and Pattern Recognition*, pp. 5317–5327, 2019.

597

598 Chi Zhang, Baoxiong Jia, Song-Chun Zhu, and Yixin Zhu. Abstract spatial-temporal reasoning via
 599 probabilistic abduction and execution. In *Proceedings of the IEEE/CVF Conference on Computer
 600 Vision and Pattern Recognition*, pp. 9736–9746, 2021a.

594 Chi Zhang, Sirui Xie, Baoxiong Jia, Ying Nian Wu, Song-Chun Zhu, and Yixin Zhu. Learning
595 algebraic representation for systematic generalization in abstract reasoning. *arXiv preprint*
596 *arXiv:2111.12990*, 2021b.

597 Kecheng Zheng, Zheng-Jun Zha, and Wei Wei. Abstract reasoning with distracting features. *Ad-*
598 *vances in Neural Information Processing Systems*, 32, 2019.

600 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
601 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
602 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 **A PROOFS**

649

650 **A.1 PROOFS OF EQUATION 1**

651

652 We consider the probability distribution of a visual concept set G , where each concept $i \in [M]$ is
 653 included in G with probability $p_i \in (0, 1)$. Denote $|G| = K$ and define $\theta_i = \log \frac{p_i}{1-p_i}$. The goal is
 654 to derive

$$655 \quad p_K(G | \theta) = \frac{1}{Z} \prod_{i \in G} e^{\theta_i}, \quad \text{where } Z = \sum_{\substack{S \subseteq [M] \\ |S|=K}} \prod_{j \in S} e^{\theta_j}.$$

655656657

658

659 **Proof.** Without the constraint $|G| = K$, the probability of G is a product of independent Bernoulli
 660 distributions:

$$661 \quad p(G) = \prod_{i \in G} p_i \prod_{i \notin G} (1 - p_i).$$

661662

663

663 Imposing the constraint $|G| = K$, the conditional probability is

$$664 \quad p_K(G) = \frac{\prod_{i \in G} p_i \prod_{i \notin G} (1 - p_i)}{\sum_{S \subseteq [M], |S|=K} \prod_{j \in S} p_j \prod_{j \notin S} (1 - p_j)}.$$

664665666

667 Factor out the term $C(p) = \prod_{t=1}^M (1 - p_t)$:

$$668 \quad \sum_{\substack{S \subseteq [M] \\ |S|=K}} \prod_{j \in S} p_j \prod_{j \notin S} (1 - p_j) = C(p) \cdot \sum_{\substack{S \subseteq [M] \\ |S|=K}} \prod_{j \in S} \frac{p_j}{1 - p_j} = C(p) \cdot \sum_{\substack{S \subseteq [M] \\ |S|=K}} \prod_{j \in S} e^{\theta_j},$$

$$669 \quad \prod_{i \in G} p_i \prod_{i \notin G} (1 - p_i) = C(p) \cdot \prod_{i \in G} \frac{p_i}{1 - p_i} = C(p) \cdot \prod_{i \in G} e^{\theta_i}.$$

669670671

672673674

675

675 Then, we obtain

$$676 \quad p_K(G | \theta) = \frac{\prod_{i \in G} e^{\theta_i}}{\sum_{S \subseteq [M], |S|=K} \prod_{j \in S} e^{\theta_j}}.$$

676677678

□

679

680

681 **B DATASETS**

682

683

683 **B.1 ABSTRACT VISUAL REASONING**

684

685 We evaluate the methods on two commonly used abstract visual reasoning datasets: RAVEN (Zhang
 686 et al., 2019) and I-RAVEN (Hu et al., 2021). Both datasets contain seven distinct image configu-
 687 rations, as illustrated in Figure 3. The *Center* configuration contains a single central object, while
 688 *L-R* and *U-D* consist of two objects arranged horizontally or vertically. *O-IC* and *O-IG* adopt inside-
 689 outside layouts, and *2Grid* and *3Grid* contain 2×2 and 3×3 object grids, respectively. While most
 690 configurations involve rules applied to a single component, *O-IG* and grid-based configurations ad-
 691 ditionally introduce rules defined over object grids.

692

693

692 Each configuration involves abstract rules that govern visual attributes, including four main cate-
 693 gories: **Constant**, **Progress**, **Arithmetic**, and **Distribution Three**.

694

695

696

697

698

699

700

701

1. **Constant**: the attribute keeps unchanged in rows;
2. **Progress**: the attribute increases or decreases with the same stride in rows;
3. **Arithmetic**: the attribute of the third image is computed from the attributes of the first two images via specific arithmetic operations (e.g., addition and subtraction operations);
4. **Distribution Three**: the attributes in rows are three fixed values in different orders.

In addition, both datasets contain noise attributes, which are randomly sampled from the feasible set (e.g., object rotation in non-grid settings, or rotation, color, and grid position in grid-based settings).

Figure 3: **Visualization of the RAVEN dataset.** There are seven configurations on RAVEN/I-RAVEN. The images with red borders are correct answers that fix the rules defined in the panels.

Figure 4: **VSB-MA dataset examples.** Sample images from the VSB-MA dataset derived from VStar Bench, showing diverse visual scenes with their corresponding meta-attributes for concept-rule decomposition evaluation.

B.2 META-ATTRIBUTE EXTRACTION.

As shown in Figure 4, VSB-MA is a full set of all high-quality natural images sampled from VStar Bench, created to provide a standardized reference for meta-attribute based concept level rules evaluation. For each image, we first elicit an initial attribute pool with GPT-4V using a tightly engineered prompt (specification included below). We then conduct rigorous human curation to enforce conceptual uniqueness and inter-attribute separability: redundant or ambiguous descriptors are removed, semantically overlapping items are merged under a unified label, and cross-scene con-

756 consistency is verified. Meta-attributes are defined as high-level, interpretable properties (e.g., vehicle,
 757 building, furniture, plant, shadow, road, sky), rather than instance-level categories (e.g., car, chair)
 758 or low-level appearances (e.g., specific colors like blue). The resulting per-image meta-attribute
 759 sets form a clean, taxonomy-consistent target that spans diverse indoor/outdoor scenes and supports
 760 reliable assessment of both concept extraction and rule identification in complex real-world imagery.
 761

762 C IMPLEMENTATION DETAILS

764 C.1 LVLMs BASELINES AND COMMON PROTOCOL

766 We evaluate CRD on a diverse panel of pretrained LVLMs spanning families and parameter scales:
 767 InternVL-3.5 (4B/8B), InternVL-3 (2B/8B), Qwen-VL-2.5 (3B/7B), LLaVA-NeXT-7B, DeepSeek-
 768 VL2-Tiny, and GPT-4o. We use the publicly released checkpoints (or official API for GPT-4o) and
 769 their native inference pipelines. As reported by their authors, the InternVL series employ high-
 770 performance dynamic sub-image partitioning to accommodate ultra-high-resolution inputs, pair
 771 these with larger vision encoders, and align-tune the vision backbone directly to the LLM backbone.
 772 The Qwen-VL-2.5 series accept high-resolution images without explicit tiling, leveraging a strong
 773 vision encoder and high-quality training for broad coverage. DeepSeek-VL2 follows an architecture
 774 conceptually similar to LLaVA (vision encoder + projection + LLM), but reports stronger empirical
 775 performance across many multimodal tasks. We keep each model’s native image preprocessor
 776 (including any built-in tiling/partition logic or resize policy) to avoid confounding changes.
 777

778 To ensure comparability, we standardize prompting, decoding, and preprocessing across baselines.
 779 We use fixed instruction templates for all models (the exact prompts are shown in the Figure 5
 780 6 7), and adopt deterministic generation with $temperature = 0$ and $do_sample = False$ (no
 781 nucleus/top-k sampling). **For logit clipping, we retain only candidate tokens whose probabilities are
 782 at least 10% of the maximum logit. For the replacement selection step, we substitute tokens only
 783 when their replacement probability exceeds 0.9, and we perform 5 replacement-selection iterations
 784 in total.** Unless otherwise stated, we make no architectural changes, apply no additional fine-tuning,
 785 and perform no extra training on any baseline; all results are obtained with the official inference
 786 code and default checkpoints under the above common protocol.

Task: Extract meta-attributes from the image as **single English words** only (no phrases, no compound words, no hyphenated words). Return exactly one word per attribute. **Sort by representativeness** (high → low).

Rules:

- **Visible evidence only.** No guessing or external knowledge.
- **Form:** lowercase letters a-z only; no numbers, symbols, punctuation, proper nouns, acronyms, or abbreviations.
- **Granularity:** choose **abstract category-level** concepts, not specific instances.
- If selecting a category like **color**, do **not** include specific colors (avoid "blue", "red", "yellow").
- If selecting **furniture**, do **not** include items (avoid "chair", "table", "desk").
- Similarly: prefer **animal** over "dog/cat", **vehicle** over "car/bus", **fruit** over "apple/orange".
- **Diversity:** maximize semantic coverage. Each attribute must come from a **different semantic domain** (e.g., scene/place, object class, material, texture/pattern, geometry/layout, lighting/weather, activity, era/style, composition, quantity/density, symmetry, depth).
- Avoid redundancy, near-synonyms, hypernyms/hyponyms of existing choices, and trivial morphological variants (singular/plural, -s/-es/-ing).
- **Stopping criterion:** stop adding words when additional candidates would be duplicates, same-category overlaps, or marginal in contribution.
- **Determinism (tie-breakers):** if two candidates are equally valid, prefer (1) the broader term; if still tied, (2) the one with clearer visual evidence; if still tied, (3) the alphabetically earlier word.

Output format:

[attribute1',attribute2',attribute3',...]

• Output **only** the JSON array (no quotes around the array, no extra text).

[attribute1',attribute2',attribute3',...]

809 Figure 5: Prompt-1. Initialize the meta-attributes list for the given image.

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

Figure 6: Prompt-2. Replace exactly meta-attribute with one new attribute that better represents the image and increases semantic coverage.

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Task: Replace exactly {meta_attribute} with one new attribute that better represents the image and increases semantic coverage.

Inputs:

- One image.
- Current attribute list: {meta_attributes}.

Selection strategy (think internally; do NOT output reasoning):

- Identify semantic domains already covered by {meta_attributes} (e.g., scene/place, objects, materials, texture/pattern, geometry/layout, activity, lighting/weather, era/style).
- Search for a **different** domain evidenced in the image; prefer the concept with the **highest marginal coverage** (adds the most new information).
- Exclude duplicates, near-synonyms, hypernyms/hyponyms, and trivial morphological variants of any existing attribute.
- If multiple candidates are equally good, choose the **most general yet still informative** term that is visibly supported; if still tied, pick the **alphabetically earliest**.

Hard rules:

- Visible evidence only.** No guessing or external knowledge.
- Diversity required.** Do not propose a term semantically similar or homogeneous with any existing one.
- Examples: if "playroom" exists, do **not** output "playground", "classroom", "nursery";
- if "furniture" exists, do **not** output "chair", "table", "cabinet";
- if "color" exists, do **not** output "hue", "shade", "tint" or specific colors.
- Must not duplicate anything in {meta_attributes} (treat singular/plural and near-synonyms as duplicates).
- Prefer cross-domain complementarity (maximize semantic diversity across the list).
- Format constraint:** one lowercase English word matching ^[a-z]+\$, length ≤ 20 .

Output (Text Only):

- Output **only** the new word, with no quotes or extra text.

['attribute1','attribute2','attribute3_new',...]

Task: Given one input image, estimate the value of the attribute [{attr}] appears over a grid you choose.

Rules:

- Grid selection:** Choose integers **m** (rows) and **n** (columns), with equal-sized, axis-aligned cells. Pick them adaptively based on spatial variability of [{attr}] (finer grid for highly localized variation, coarser for uniform scenes). Constraints: $2 \leq m, n \leq 4$ and $m \cdot n \leq 16$. If unsure, default to $m=3, n=3$.
- Ignore separators:** Any overlaid lines (e.g., prior preprocessing) are just visual separators; **do not** treat them as image content.
- Scoring:** For each cell, output a score in **[0,1]** representing the value that region exhibits [{attr}]. For example, for the attribute color, the value difference between red and blue should be larger than that between blue and cyan.
- Use a **consistent scale across all cells** for the same image; **no normalization** (no softmax, no rescaling to sum to 1).
- If a cell shows **no evidence** of [{attr}], output **0** for that cell.
- Base scores on **perceptual similarity within the attribute space**. Example for color attributes: ensure **black vs. white** yields a large difference, while **blue vs. cyan** yields a smaller difference.
- Use only **visible evidence**: no guessing.
- Determinism:** If multiple grids are equally valid, prefer the **smallest** (coarsest) grid that still captures salient variation of [{attr}].

Output format (JSON only, no extra text):

- {"rows": m, "cols": n, "scores": [c_11, c_12, ..., c_1n, c_21, ..., c_mn]} scores are **m**·**n** floats in row-major order (left→right within a row, top→bottom across rows).

{"rows": 3, "cols": 3, "scores": [0.12, 0.35, ..., 0.90, 0.46, ..., 0.59]}

Figure 7: The prompt-3. Given one input image, estimate the value of a attribute appears over a grid.

Figure 8: The prompt construction process of LVLMs on RAVEN/I-RAVEN.

875 C.2 PROMPT CONSTRUCTION FOR ABSTRACT VISUAL REASONING

877 For the LVLMs that support visual inputs, including InternVL3 (Wang et al., 2025a), LLaVA-NeXT
 878 (Liu et al., 2024), Qwen2.5-VL (Bai et al., 2025), and GPT-4o (Achiam et al., 2023), each RAVEN
 879 problem is transformed into a single composite image. The left part shows the 3×3 matrix with
 880 the bottom-right cell missing, while the left part contains the eight candidate images labeled from A
 881 to H. This composite image is then provided to the LVLMs along with a prompt that describes the
 882 task and specifies the required output format. An illustration of this construction process is shown
 883 in Figure 8.

884 D SUPPLEMENTARY EXPERIMENT

885 D.1 VSB-MA BENCHMARK WITH HUMAN ANNOTATION

886 Table 4: **Performance on VSB-MA benchmark with human annotation.** We compare the performance
 887 of different LVLMs with and without CRD on the only human-annotated VSB-MA dataset.
 888 The metrics include Average Similarity (Avg Sim), Precision, Recall, F1 Score, AUPRC, and ROC-
 889 AUC.

890 Model	891 Avg Sim	892 Precision	893 Recall	894 F1	895 AUPRC	896 ROC-AUC
897 InternVL3.5-4B	898 50.36	899 66.72	900 40.21	901 50.18	902 68.33	903 78.10
904 +CRD	905 58.30	906 82.15	907 47.76	908 60.40	909 72.06	910 82.85
911 InternVL3.5-8B	912 58.56	913 72.31	914 51.39	915 60.08	916 72.71	917 89.51
918 +CRD	919 69.22	920 80.02	921 60.81	922 69.10	923 79.13	924 92.17
925 Qwen2.5-VL-3B	926 43.81	927 60.37	928 33.31	929 42.93	930 65.63	931 76.47
932 +CRD	933 49.40	934 73.92	935 37.68	936 49.92	937 69.58	938 82.24
939 Qwen2.5-VL-7B	940 55.27	941 64.03	942 47.21	943 54.35	944 69.87	945 82.74
946 +CRD	947 61.86	948 76.19	949 52.50	950 62.16	951 73.67	952 87.31
953 DeepSeek-VL2-Tiny	954 25.72	955 31.00	956 23.37	957 26.65	958 55.04	959 66.19
960 +CRD	961 29.01	962 40.25	963 26.16	964 31.71	965 57.12	966 69.64

905 Table 4 summarizes model performance on the human-annotated VSB-MA benchmark. We report
 906 six metrics that reflect both similarity-based and classification-based accuracy. Across all LVLM
 907 backbones, applying CRD leads to clear improvements, with gains observed in Average Similarity,
 908 Precision, Recall, F1, AUPRC, and ROC-AUC. Larger models such as InternVL3.5-8B and
 909 Qwen2.5-VL-7B benefit the most, but even smaller models like DeepSeek-VL2-Tiny show consis-
 910 tent enhancements. These results indicate that CRD provides reliable and transferable benefits when
 911 evaluated against human-labeled ground truth.

912 D.2 SPATIALEVAL BENCHMARK

913 Table 5 reports the results on the SpatialEval benchmark (Wang et al., 2024), which evaluates four
 914 types of spatial reasoning abilities: SpatialMap, MazeNav, SpatialGrid, and SpatialReal. We com-
 915 pare the original LVLMs with two variants of our method: CRD-meta, which uses only the extracted
 916 meta-attributes as additional prompts, and CRD-full, which further incorporates patch-level scores.

918
 919 **Table 5: Performance on SpatialEval Benchmark.** SpatialEval includes four spatial reasoning
 920 tasks (SpatialMap, MazeNav, SpatialGrid, SpatialReal). CRD-meta denotes only the meta-attributes
 921 extracted by CRD are used as prompts to guide the LVLM’s responses. CRD-full further incorpo-
 922 rates both the meta-attributes and the patch scores as additional prompts for the LVLMs.
 923

Model	SpatialMap	MazeNav	SpatialGrid	SpatialReal	Overall
SpatialVLM	48.87	22.60	87.03	34.81	50.27
Qwen2.5VL-3B	50.93	27.40	83.33	91.85	54.00
Qwen2.5VL-3B+CRD-meta	50.93	29.07	85.20	96.30	56.27
Qwen2.5VL-3B+CRD-full	51.67	29.00	86.40	96.30	56.87
Qwen2.5VL-7B	63.00	28.93	85.60	91.11	60.11
Qwen2.5VL-7B+CRD-meta	64.20	29.13	87.93	95.56	61.45
Qwen2.5VL-7B+CRD-full	65.26	33.33	88.46	97.04	63.37

931
 932 Across both Qwen2.5VL-3B and Qwen2.5VL-7B, CRD-meta already provides clear gains over the
 933 base models, and CRD-full yields further improvements, particularly in SpatialReal and MazeNav.
 934 These results show that both types of CRD-derived signals contribute meaningful guidance to spatial
 935 reasoning tasks.
 936

937 D.3 EFFICIENCY ANALYSIS

938
 939 **Table 6: Efficiency analysis on VSB-MA benchmark.** We report the average latency per token
 940 (ms), computational cost (TFLOPs), GPU memory usage (GiB), KV-Cache size (MB), and input
 941 token count for different models with and without CRD.
 942

Model	Latency Per Token (ms)	TFLOPs	GPU Memory (GiB)	KV-Cache (MB)	Input Token
InternVL3.5-8B	77.3	39.02	17.02	1287.0	2288
+CRD	234.3	42.93	17.46	1405.7	2499
Qwen2.5VL-7B	39.7	6.47	16.49	171.1	447
+CRD	190.1	8.91	17.32	234.7	613
DeepSeekVL2-Tiny	59.6	1.06	11.82	114.8	1224
+CRD	264.1	1.16	12.53	124.9	1332

950 We include a table summarizing the inference efficiency of different models with and without CRD.
 951 As shown in Table 6, the GP-based CRF and sampling procedure do introduce additional compu-
 952 tation compared to direct LVLM inference. However, this extra cost comes with more accurate
 953 concept-rule decomposition, which in turn leads to significantly improved performance on the eval-
 954 uated reasoning tasks.
 955

956 D.4 ABLATION ON NUMBER OF PATCHES

957
 958 **Table 7: Efficiency analysis with different number of patches.** We analyze the impact of patch
 959 granularity on computational efficiency by varying the number of patches (2×2 , 3×3 , 4×4) for
 960 InternVL3.5-8B on VSB-MA benchmark.
 961

Model	Latency Per Token (ms)	Total Time (s)	FLOPs (T)	GPU Memory (GiB)	KV-Cache (MB)	Input Token
InternVL3.5-8B	77.3	557.1	39.02	17.02	1287.0	2288
+CRD- 2×2	234.3	968.8	42.93	17.46	1405.7	2499
+CRD- 3×3	236.1	973.1	43.23	17.67	1414.7	2515
+CRD- 4×4	239.5	980.2	43.71	17.95	1429.3	2541

967
 968 In our setting, the number of patches per image is kept small: the default CRD configuration uses
 969 a 2×2 spatial grid (i.e., $N = 4$ patches), so the theoretical $O(N^3)$ cost of GP inference remains
 970 negligible in practice. We provide a complexity/latency table (Table 7) reporting inference time
 971 and memory usage under different patch counts, showing that runtime grows modestly and remains
 practical within the patch range we consider. Scalable GP variants such as SVG or SKI are mainly

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
beneficial when N is very large (e.g., thousands of patches); since our method operates in a low- N regime by design, approximate inference is not considered here.

E CASE STUDY

E.1 CASE STUDY OF META-ATTRIBUTE EXTRACTION

Figure 9 presents a case study from the VSB-MA dataset, where we extract multiple meta-attributes from a single image. Meta-attributes that are truly present in the image are annotated in black, whereas those absent from the scene are annotated in red. For each meta-attribute, we visualize a heatmap that reflects its spatial association with the image regions. This heatmap is obtained by computing the cosine similarity between the image-patch embeddings and the meta-attribute embedding, and then mapping the similarity scores back to the corresponding image tokens. We further annotate each image patch with the score assigned by CRD for that attribute, along with the attribute’s final CRD Score. The spatial patterns align well with the semantics of the scene: for example, *People* receives its highest patch-level score exactly in the regions where humans appear, and the dominant meta-attribute *Building* obtains a strong positive CRD Score. Attributes that are absent in the image (e.g., *Bridge* and *Beach*) receive negative scores, which makes them more likely to be replaced during the iterative rule refinement process.

Figure 10 further visualizes the non-object meta-attribute *Wearing* across different images. In the image on the right, the people are wearing different styles of clothing, and in the middle image, the person is not wearing a top, which is also considered a form of *wearing*, while the image on the left does not show any clear clothing-related features. CRD learns rules that assign appropriate scores to different patches. These results indicate that CRD can robustly extract interpretable rules for both object-centric and non-object meta-attributes.

E.2 CASE STUDY OF ABSTRACT VISUAL REASONING

As shown in Figure 11, each row presents an example of an abstract reasoning problem. When the correct answer is filled in, the image matrix shows a coherent transformation pattern, such as object size increasing with a consistent step. When an incorrect answer is inserted, the scores of the corresponding meta attributes change accordingly. For example, if an incorrect size is provided, the size score drops by 2.6. This demonstrates that the meta attribute scores computed by CRD reliably capture whether the attribute values across the image patches follow the expected pattern.

F HUMAN ANNOTATION ETHICS AND PROCEDURES

In conducting our human annotation process, we followed established ethical practices to ensure that the data collection was responsible, transparent, and respectful of annotators. All annotators were recruited voluntarily and were informed of the purpose of the study, the nature of the tasks involved, and the expected time commitment. Before participating, each annotator provided explicit consent and was reminded that they could withdraw from the task at any time without consequence. To protect privacy, no personal identifying information was collected, and all annotations were stored in a secure environment accessible only to the research team. Annotators were given clear guidelines on how to perform the tasks and were compensated fairly in accordance with local standards. We also implemented quality control procedures, including multi-round checks and consistency reviews, to maintain the reliability of the collected labels. These measures aim to ensure that the dataset creation process is ethical, reproducible, and aligned with responsible research practices.

G LLM USAGE STATEMENT

We use Large Language Models (LLMs) as auxiliary tools during the preparation of this paper. The usage is limited to correcting grammatical issues, improving readability, and polishing the presentation. In addition, Large Vision-Language Models (LVLMs) is a critical component of the proposed framework. They are employed to extract visual concepts from visual input and to iteratively update the visual concept set for further refinement.

1026 REFERENCES
10271028 Sheng Hu, Yuqing Ma, Xianglong Liu, Yanlu Wei, and Shihao Bai. Stratified rule-aware network
1029 for abstract visual reasoning. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
1030 volume 35, pp. 1567–1574, 2021.1031 Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, Yixuan Li, and Neel Joshi. Is a
1032 picture worth a thousand words? delving into spatial reasoning for vision language models. In
1033 *The Thirty-Eighth Annual Conference on Neural Information Processing Systems*, 2024.1034 Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for relational
1035 and analogical visual reasoning. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
1036 and *Pattern Recognition*, pp. 5317–5327, 2019.

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Figure 9: **Additional case studies on VSB-MA dataset.** Meta-attributes present in the image are marked in black, while those not present are marked in red.

1148 Figure 10: **Additional case study with meta-attribute *Wearing*.** The visualization shows the effect
1149 of meta-attribute *Wearing* in different images.

1183 Figure 11: **Visualization of abstract visual reasoning examples.** Each row shows a reasoning
1184 problem where the correct answer produces coherent attribute patterns, while incorrect answers lead
1185 to notable score drops in the corresponding meta-attributes.