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ABSTRACT

In open-set recognition (OSR), classifiers should be able to reject unknown-class
samples while maintaining robust closed-set classification performance. To solve
the OSR problem based on pre-trained Softmax classifiers, previous studies investi-
gated offline analyses, e.g., distance-based sample rejection, which can limit the
feature space of known-class data items. Since such classifiers are trained solely
based on known-class samples, one can use background class regularization (BCR),
which employs background-class data as surrogates of unknown-class ones during
training phase, to enhance OSR performance. However, previous regularization
methods have limited OSR performance, since they categorized known-class data
into a single group and then aimed to distinguish them from anomalies. In this
paper, we propose a novel distance-based BCR method suitable for OSR, which
limits the feature space of known-class data in a class-wise manner and then makes
background-class samples located far away from the limited feature space. Instead
of conventional Softmax classifiers, we use distance-based classifiers, which utilize
the principle of linear discriminant analysis. Based on the distance measure used
for classification, we design a novel regularization loss function that can contrast
known-class and background-class samples while keeping robust closed-set classifi-
cation performance. Through our extensive experiments, we show that the proposed
method provides robust OSR results with a simple inference process.

1 INTRODUCTION

In machine learning (ML), classification algorithms have achieved great success. Through recent
advances in convolutional neural networks, their classification performance already surpassed the
human-level performance in image classification (He et al., 2015). However, such algorithms are
usually developed under a closed-set assumption, i.e., the class of each test sample is assumed to
always belong to one of the pre-defined set of classes. Although this conventional assumption can
be easily violated in real-world applications (classifiers can face unknown-class data), traditional
algorithms are likely to force unknown-class samples to be classified into one of the known classes.
To tackle this issue, the open-set recognition (OSR) problem (Scheirer et al., 2013) aims to properly
classify unknown-class samples as “unknown” and known-class samples as one of the known classes.

According to the definition of OSR (Scheirer et al., 2013), it is required to properly limit the feature
space of known-class data. To satisfy the requirement, various OSR methods were developed based
on traditional ML models. Previously, Scheirer et al. (2014) calibrated the decision scores of support
vector machines (SVMs). Based on the intuition that a large set of data samples of unknown classes
can be rejected if those of known classes are accurately modeled, Jain et al. (2014) proposed PI -SVM,
which utilized the statistical modeling of known-class samples located near the decision boundary of
SVMs. Afterward, Júnior et al. (2016) attempted to solve the OSR problem based on the principle
of the nearest neighbors. Taking distribution information of data into account, Rudd et al. (2018)
proposed the extreme value machine by utilizing the concept of margin distributions.

Since deep neural networks (DNNs) have robust classification performance by learning high-level
representations of data, OSR methods for DNNs have received great attention. Based on the theoretical
foundations used in traditional ML-based OSR methods, Bendale & Boult (2016) proposed the first
OSR strategy for DNNs called Openmax, which calibrates the output logits of pre-trained Softmax
classifiers. To improve Openmax, Yoshihashi et al. (2019) proposed the classification-reconstruction
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(a) Latent feature space (b) Closed-set classification (c) Open-set classification

Figure 1: Given (a) a latent feature space, we demonstrate (b) closed-set and (c) open-set classification
examples, where KKCs and UUCs are known and unknown classes, respectively.

learning to make robust latent feature vectors. Afterward, Oza & Patel (2019) proposed to exploit a
class-conditioned autoencoder and use its reconstruction error to assess each input sample. Sun et al.
(2020) employed several class-conditioned variational auto-encoders for generative modeling.

Although previous OSR methods using discriminative models applied offline analyses to pre-trained
Softmax classifiers or employed complicated DNN models, they have limited performance since the
classifiers were trained solely based on known-class samples. To mitigate the problem, one can use
background class regularization (BCR) to achieve robust empirical results. However, previous BCR
methods (Dhamija et al., 2018; Hendrycks et al., 2019; Liu et al., 2020) are insufficient to properly
solve the OSR problem. To design an effective open-set classifier that can overcome the previous
limitations, we propose a novel BCR method suitable for OSR, which uses a distance-based classifier
and a novel loss function for regularization. We provide detailed description in the next section.

2 PRELIMINARIES AND OUR CONTRIBUTIONS

2.1 THE OPEN-SET RECOGNITION PROBLEM

The OSR problem addresses the classification setting that can face test samples from classes unseen
during training. In this setting, open-set classifiers aim to properly classify known-class samples while
rejecting unknown-class samples simultaneously. A similar problem to OSR is out-of-distribution
(OOD) detection (Hendrycks & Gimpel, 2017), which typically aims to reject data items drawn far
away from the training data distribution. In previous OOD detection studies (Hendrycks & Gimpel,
2017; Liang et al., 2018; Lee et al., 2018a;b), OOD samples tend to be drawn from other datasets or
even images of noise. In this paper, we aim to reject test data whose classes are unknown but related
to the training data, which narrows down the scope of conventional OOD detection tasks.

Previously, Scheirer et al. (2013) introduced a formal definition of the OSR problem based on the
notion of open-space risk RO, which is a relative measure of a positively labeled union of balls SV

and open space O located far from SV . Since labeling any data item in O incurs open-space risk, it is
straightforward that a classifier cannot be a solution for the OSR problem if the classifier accepts data
in infinitely wide regions, i.e., its open-space risk is unbounded (RO = ∞). The definition implies
that essential requirements to solve the OSR problem are 1) bounding open-space risk and 2) ideally
balancing it with empirical risk to maintain a low classification error rate.

Unlike traditional closed-set classifiers, open-set classifiers are required to limit the space of known-
class data to bound their open-space risk. To ensure bounded open-space risk, Scheirer et al. (2014)
proposed to formulate compact abating probability (CAP) models. The principle of CAP models is
that if the support region of a classifier decays in all directions from the training data, thresholding the
region will bound the classifier’s open-space risk (Boult et al., 2019). As depicted in Figure 1, which
compares traditional closed-set and open-set classification problems, properly building class-wise
CAP models is an effective strategy to satisfy the two essential requirements of OSR.

2.2 POST-CLASSIFICATION ANALYSIS FOR PRE-TRAINED SOFTMAX CLASSIFIER

In this paper, we aim to solve the OSR problem by using a standard DNN-based classifier architecture
f as a latent feature extractor. Applying a fully-connected layer to f , a conventional Softmax classifier
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computes the posterior probability of an input x belonging to the c-th known class by

Ps(y = c|x) = exp(wT
c f(x) + bc)∑C

i=1 exp(w
T
i f(x) + bi)

, (1)

where c ∈ {1, · · · , C}, f(x) ∈ Rn is the latent feature vector of x, and wc and bc are the weight and
the bias for the c-th class, respectively. For pre-trained Softmax classifiers, Hendrycks & Gimpel
(2017) proposed a baseline to detect anomalous samples, which imposes a threshold on the predictive
confidence of Eq. (1). When using the baseline method to solve the OSR problem, one can estimate
the class of each known-class sample and recognize unknown-class data by

ŷ =

{
argmaxc∈{1,··· ,C} Ps(y = c|x), if maxc∈{1,··· ,C} Ps(y = c|x) ≥ τ,

C + 1 (unknown class), otherwise.
(2)

However, Eq. (2) cannot formally bound open-space risk since it only rejects test samples near the
decision boundary of classifiers, thereby having infinitely wide regions of acceptance (Boult et al.,
2019). Therefore, additional post-classification analysis methods using an auxiliary measure other
than the Softmax probability are necessary to bound open-space risk, where distance measures have
been widely used to build auxiliary CAP models in the latent feature space of f .

To construct class-wise CAP models, Openmax (Bendale & Boult, 2016) defined radial-basis decaying
functions {s(x, i)}Ci=1, each of which measures the class-belongingness of x for the c-th class, in the
latent feature space of f . For each s(x, c), the authors employed distance measures between f(x) and
an empirical class mean vector µc, e.g., s(x, c) = D2

E(f(x),µc) = (f(x)− µc)
T (f(x)− µc). To

formulate effective CAP models based on s(x, c), they statistically modeled the distribution of s(x, c)
for known-class data based on the extreme value theory (EVT) (Scheirer, 2017), which provides a
theoretical foundation that the Weibull distribution is suitable for modeling known-class samples
located far from the class mean vectors (extreme samples). To be specific, Openmax fits a Weibull
distribution on extreme samples of the c-th class having the highest DE(f(x),µc) values, where its
cumulative distribution function (CDF) formulates the probability of inclusion PI(x, c) (Jain et al.,
2014; Rudd et al., 2018), i.e., PI(x, c) = 1 − WeibullCDF, which rapidly decays near extreme
samples. Based on PI(x, c), the decision rule of Eq. (2) can be calibrated to conduct robust OSR.

2.3 GENERALIZED OPEN-SET RECOGNITION AND BACKGROUND CLASS REGULARIZATION

Although they require additional inference procedures (e.g., EVT modeling) to bound the open-space
risk of pre-trained Softmax classifiers, previous post-classification analyses may have limited OSR
performance since the classifiers are trained solely based on known-class samples. To empirically
obtain robust OSR results without complicated post-classification analyses, one can use the strategy
of BCR at the training phase, which exploits background-class samples as surrogates of unknown-
class samples. Geng et al. (2020) argued that the generalized OSR setting that utilizes background
samples is still less-explored and an important research direction to improve OSR performance. In
the generalized OSR setting, classifiers should consider the following data classes among the infinite
label space of all classes Y (Dhamija et al., 2018; Geng et al., 2020).

• Known known classes (KKCs; K = {1, · · · , C} ⊂ Y) include distinctly labeled positive
classes, which also have side information, where U = Y \ K is the entire unknown classes.

• Known unknown classes (KUCs; B ⊂ U ) include background classes, e.g., labeled negative
classes which are not necessarily grouped into a pre-defined set of KKCs K.

• Unknown unknown classes (UUCs; A = U \B) represent the rest of U , where UUC samples
are not available at training time and have no side information, but occur at inference time.

Throughout this paper, we denote the corresponding datasets for the data classes as follows. Dt is
a training set consisting of multiple pairs of a KKC data sample and the corresponding class label
y ∈ {1, · · · , C}. Dk

test and Du
test are test sets of KKCs and UUCs, respectively. Db is a background

dataset of KUCs. Then, a loss function for training classifiers with BCR can be formulated by

L = Lcf + λLbg = E(xk,y)∼Dt

[
− logPs(y|xk) + λExb∼Db

[
freg

(
xk, y,xb

)]]
, (3)

where Lcf and Lbg are the losses for classification and BCR, respectively, and λ is a hyperparameter
that balances Lcf and Lbg. For Lbg, previous studies designed their own freg, where Dhamija et al.
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(2018) proposed the objectosphere loss for OSR, and Hendrycks et al. (2019) and Liu et al. (2020)
employed the uniformity and the energy losses for OOD detection, respectively.

In this paper, we tackle the following limitations of the previous BCR methods.

• In the previous BCR methods, Lbg were designed to make normal data and anomalies more
distinguishable in terms of the corresponding anomaly scores. Since they categorized normal
samples into a single group (do not consider the classes) in Lbg , the previous methods cannot
be suitable for rejecting UUC samples located relatively close to KKC data and maintaining
robust closed-set classification results.

• The previous methods using the decision rule of Eq. (2) (e.g., objectosphere (Dhamija et al.,
2018) and uniformity (Hendrycks et al., 2019)) cannot bound open-space risk. Although one
can use post-classification analyses to bound open-space risk, trained latent feature spaces
are likely to be inappropriate for using another metric such as distance measures.

• To increase the gap between KKC and KUC samples in terms of latent feature magnitude
and energy value in the objectosphere (Dhamija et al., 2018) and the energy (Liu et al., 2020)
losses, respectively, it is necessary to find proper margin parameters for each dataset.

2.4 OUR CONTRIBUTIONS

Based on a standard DNN-based classifier architecture f , we aim to design open-set classifiers having
a simple yet effective inference process by using the principle of BCR. To overcome the limitations
described in Section 2.3, we use distance-based classifiers and propose a novel BCR strategy based
on the framework of Eq. (3). In the following, we summarize our proposed strategy.

• Instead of applying fully-connected layers to feature extractors f , we use the principle of
linear discriminant analysis (LDA) (Murphy, 2012) to classify each input based on a distance
measure. By imposing a threshold on the distance measure as in Eq. (2), such distance-based
classifiers can bound their open-space risk without additional offline analyses.

• To enhance the OSR performance of distance-based classifiers, we propose a novel distance-
based BCR strategy. For Lbg , we design a loss function that does not require data-dependent
margin parameters. Our method first limits the feature space of KKC data by formulating
class-wise boundaries based on the concept of the probability of inclusion, and then forces
KUC data to be located outside the entire boundaries. By imposing additional regularization
on each KKC data item to be located inside the corresponding class-wise boundary, our
proposed method can also maintain robust closed-set classification performance.

3 PROPOSED METHOD

3.1 DISTANCE-BASED CLASSIFICATION MODELS

To train a robust open-set classifier as we described in Section 2.4, we use a distance-based classifier

Pd(y = c|x) = P (y = c) · N (f(x)|µc, I)∑C
i=1 P (y = i) · N (f(x)|µi, I)

=
P (y = c) · exp

(
−D2

E(f(x),µc)
)∑C

i=1 P (y = i) · exp (−D2
E(f(x),µi))

(4)

as an alternative of Eq. (1), where Eq. (4) uses the principle of LDA in f(x). In Eq. (4), we exploit an
identity covariance matrix I and P (y = c) = C−1 for all c for KKC data. Then, Eq. (4) classifies
each x by computing D2

E(f(x),µc) = (f(x)− µc)
T (f(x)− µc), the Euclidean distance between

f(x) and µc ∈ Rn, where we call µc a class-wise anchor. Instead of updating or computing empirical
µc, we randomly sample each µc from the standard Gaussian distribution for all c and then fix it as
an anchor during the training process. Such strategy also showed successful results in Izmailov et al.
(2020), which formulated generative classifiers based on the principle of Gaussian mixture models.

At inference time, each KKC sample x can be classified by ŷ = argminc∈{1,··· ,C} D
2
E(f(x),µc).

It is noteworthy that thresholding D2
E(f(x),µc), which is the same metric used for classification,

can bound the open-space risk of a distance-based classifier by formulating class-wise CAP models.
Therefore, one can properly conduct OSR without additional post-classification analyses as follows:

ŷ =

{
argminc∈{1,··· ,C} D

2
E(f(x),µc), if maxc∈{1,··· ,C} −D2

E(f(x),µc) ≥ τ,

C + 1 (unknown class), otherwise.
(5)
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Distance-based classification methods were also employed in prototypical networks (Snell et al.,
2017), nearest class mean classifiers (Mensink et al., 2012), and the previous studies of the center loss
function (Wen et al., 2019) and convolutional prototype classifiers (Yang et al., 2020). Furthermore,
polyhedral conic classifiers (Cevikalp et al., 2021) used the idea of returning compact class regions for
KKC samples based on distance-based feature analyses. It is noteworthy that our main contribution
is a novel BCR method that can effectively utilize KUC samples in a distance-based classification
scheme (described in Sections 3.2 and 3.3), not the distance-based classifier method itself. To the
best of our knowledge, we are the first to discuss the necessity of distance-based BCR methods for
OSR and propose a reasonable regularization method for distance-based classifiers.

3.2 BACKGROUND CLASS REGULARIZATION FOR DISTANCE-BASED CLASSIFIERS

To obtain robust OSR performance based on distance-based classifiers using the simple inference of
Eq. (5), we aim to design a BCR method, which uses Dt and Db as surrogates of Dk

test and Du
test at

training time, respectively. Although it cannot provide any information of Du
test, Db can be effective

to limit the latent feature space of KKC data, while reserving space for UUC samples. Note that the
decision rule of Eq. (5) conducts both closed-set classification and unknown-class rejection based on
a single distance measure D2

E(f(x),µc). Thus, it is intuitive that the primary objective of our BCR
method is to make KUC samples located far away from µi for all i ∈ {1, · · · , C}.

Before we illustrate our BCR method, we first introduce hypersphere classifiers (HSCs) (Ruff et al.,
2020), whose concept was also used in (Liznerski et al., 2021). An HSC conducts anomaly detection
by using a DNN-based feature extractor g, where its anomaly score is the Euclidean distance between
a center vector µ and the latent feature vector g(x) of each input x. When training the HSC model,
the authors used normal and background data, Dt and Db, respectively, and a loss function

Lhsc = Exk∼Dt

[
h
(
D2

E

(
g(xk),µ

))]
− Exb∼Db

[
log

(
1− exp

(
−h

(
D2

E

(
g(xb),µ

))))]
, (6)

which aims to decrease the Euclidean distances between normal samples xk and µ while increasing
the distances for background samples xb. In Eq. (6), h(x) =

√
x+ 1 − 1, which implies that the

Euclidean distance D2
E(g(x),µ) is scaled into the range of (0, 1] via exp(−h(D2

E(g(x),µ))).

It is straightforward that the decision rule of Eq. (5) for distance-based classifiers uses the principle of
HSCs in a class-wise manner, where the original HSC formulates its decision boundary for anomaly
detection as a hypersphere having a constant radius. In other words, the class-wise HSC for the c-th
class determines whether a test input belongs to the c-th class by computing D2

E(f(x),µc), where
the input is determined as an unknown-class sample if the entire class-wise HSCs reject the data item.
Thus, a proper BCR strategy for distance-based classifiers should force each KUC sample xb to be
rejected by the entire class-wise HSCs (increase D2

E(f(x
b),µi) for all i). Since it is inefficient to

consider the entire class-wise HSCs to regularize xb at each iteration, we approximate the process by
only taking the closest class-wise HSC into account (increase mini∈{1,··· ,C} D

2
E(f(x

b),µi)).

Although one can adopt Eq. (6) to formulate Lbg for distance-based classifiers, scaling D2
E(f(x),µc)

into (0, 1] via exp(−h(D2
E(f(x),µc))) can be inappropriate to guarantee sufficient spaces for KKC

data and simultaneously move KUC samples far away from the limited space of KKC data, since
exp(−h(D2

E(f(x),µc))) rapidly decays near µc. To overcome the issue, we propose to design Lbg

based on the principle of the probability of inclusion (Jain et al., 2014; Bendale & Boult, 2016).

3.3 PROBABILITY OF INCLUSION AND CLASS-INCLUSION LOSS

As we described in Section 2.2, the probability of inclusion builds effective CAP models, since it is
designed to rapidly decay near extreme data, i.e., PI(x, c) ≈ 1 in the region that a majority of class-c
KKC samples are located. In the following, we describe how to utilize the principle of the probability
of inclusion when training distance-based classifiers, and then formulate a loss function for BCR.

Based on pre-trained Softmax classifiers, Openmax (Bendale & Boult, 2016) formulated the probabil-
ity of inclusion via EVT modeling of latent features at inference time. However, it is intractable to use
such EVT-based analyses during the training phase of f , since it is inappropriate to limit the space
of KKC data by analyzing extreme samples at each training iteration. Thus, we use the underlying
assumption of LDA to formulate PI(x, c), since we define the training and the inference processes
of distance-based classifiers based on the principle of LDA. Under the assumption that each class-c
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latent feature vector is drawn from a unimodal Gaussian distribution N (f(x)|µc, I), the Euclidean
distance D2

E(f(x),µc), a simplified version of the Mahalanobis distance, can be assumed to follow
the Chi-square distribution having the degree of freedom n. Then, we have

P
(
D2

E(f(x),µc) = t
)
=

t
n
2 −1

2
n
2 · Γ(n/2)

· exp
(
− t

2

)
, (7)

where t ≥ 0, Γ(·) is the Gamma function, and n is equivalent to the dimension of f(x).

As previous studies (Jain et al., 2014; Bendale & Boult, 2016; Rudd et al., 2018) formulated the
probability of inclusion by computing the CDF of the Weibull distribution, we define our PI(x, c) as

PI(x, c) = 1−
∫ D2

E(x,c)/2

0

t
n
2 −1

Γ(n/2)
· exp (−t) dt =

Γ(n/2, D2
E(f(x),µc)/2)

Γ(n/2)
(8)

by using the CDF of Eq. (7), where Γ(·, ·) is the upper incomplete Gamma function. It is noteworthy
that Eq. (8) can be easily computable via igammac function in PyTorch (Paszke et al., 2019).

Figure 2: PH and PI (Ours)

Based on Dt, Db, and PI(x, c) of Eq. (8), the primary objective
of our BCR, which is to make each KUC sample located far away
from the closest class-wise HSC, can be achieved by using a loss
function Lbg,u = Exb∼Db

[− log(1−maxi∈{1,··· ,C} PI(x
b, i))]. To

compare PI(x, c) and PH(x, c) = exp(−h(D2
E(f(x),µc))), which

was used in Eq. (6), we plot PI(x, c) and PH(x, c) in Figure 2 with
respect to ||f(x)− µc|| by assuming n = 128. The figure implies
that unlike PH(x, c), our PI(x, c) can effectively assign space for
KKC data and force KUC samples to be located outside the space.

At training time, note that each PI(x, c) = 0.5 builds an auxiliary decision boundary between the
c-th class KKC sample and the others, where Lbg,u ensures a majority of KUC samples located
outside the entire class-wise boundaries. However, Lbg,u can be insufficient to achieve robust UUC
rejection and closed-set classification results, since it does not control correctly classified KKC
samples to be located inside the corresponding class-wise boundaries. Thus, in addition to Lcf , we
impose a regularization Lbg,k on KKC data to maintain closed-set classification performance and
enhance the gap between KKC and KUC data in terms of the Euclidean distance. By formulating
Lbg,k = E(xk,y)∼Dt

[−1(y = ĉ) log(PI(x
k, ĉ))], where ĉ = argmaxi∈{1,··· ,C} PI(x

k, i), we define
our BCR loss as Lbg = Lbg,k + Lbg,u and call Lbg the class-inclusion loss. In summary, we use

L = Lcf + λLbg = Lcf + λ(Lbg,k + Lbg,u)

= E(xk,y)∼Dt

[
− logPd(y|xk)− λExb∼Db

[
1(y = ĉ) log(PI(x

k, ĉ)) + log(1− P ∗
I (x

b))
]] (9)

as our total loss, where ĉ = argmaxi∈{1,··· ,C} PI(x
k, i) and P ∗

I (x
b) = maxi∈{1,··· ,C} PI(x

b, i).

4 EXPERIMENTS

In this section, we compared our class-inclusion loss for distance-based classifiers to the objecto-
sphere (Dhamija et al., 2018), the uniformity (also widely known as OE) (Hendrycks et al., 2019),
and the energy (Liu et al., 2020) losses for Softmax classifiers. Through our extensive experiments,
we aim to show that whether our proposed framework provides competitive UUC rejection results in
comparison with the previous BCR methods, while keeping robust closed-set classification results.

4.1 EXPERIMENTAL SETTINGS

To assess the OSR performance of each method, we used two experimental settings, which correspond
to Sections 4.1.1 and 4.1.2, respectively. When evaluating the OSR performance, we first measured
the closed-set classification accuracy. To quantify the performance of UUC data rejection, we also
measured the area under the receiver operating characteristic curve (AUROC). Furthermore, we
used the open-set classification rate (OSCR) measure by quantifying the correct classification rate at
the false positive rate of 10−1. For in-depth explanation of the OSCR measure, readers are referred
to (Dhamija et al., 2018). As Db, we used ImageNet (Russakovsky et al., 2015), which was also
employed in (Li & Vasconcelos, 2020). To ensure that the classes of Db and our test sets are disjoint,
we used only the remaining classes of the ImageNet dataset, which are not included in the test sets.
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Table 1: Comparison with the previous BCR methods in the first setting of our OSR experiments.

Experiments
Accuracy (↑) AUROC (↑) OSCR (↑)

Objectosphere / Uniformity / Energy / Class-inclusion (Ours)

SVHN 0.968 / 0.966 / 0.972 / 0.972 0.914 / 0.908 / 0.894 / 0.919 0.809 / 0.785 / 0.760 / 0.828
CIFAR10 0.964 / 0.964 / 0.956 / 0.973 0.942 / 0.923 / 0.933 / 0.946 0.851 / 0.814 / 0.807 / 0.869

CIFAR+10 0.958 / 0.969 / 0.949 / 0.976 0.945 / 0.950 / 0.936 / 0.960 0.839 / 0.867 / 0.808 / 0.880
CIFAR+50 0.944 / 0.942 / 0.937 / 0.955 0.837 / 0.837 / 0.808 / 0.865

TinyImageNet 0.778 / 0.779 / 0.715 / 0.801 0.755 / 0.771 / 0.727 / 0.784 0.484 / 0.488 / 0.357 / 0.492

4.1.1 OPEN-SET RECOGNITION - SETTING 1

In Setting 1, we split a single dataset into KKCs and UUCs, where we used the KKCs in the training
set as Dt, and the KKCs and UUCs in the test set as Dk

test and Du
test, respectively. Following the

experiment protocol in (Neal et al., 2018), which were also employed in (Oza & Patel, 2019; Sun et al.,
2020), we conducted experiments by using the following standard image datasets: SVHN (Netzer
et al., 2011), CIFAR10 & CIFAR100 (Krizhevsky, 2009), and TinyImageNet (Le & Yang, 2015).

SVHN, CIFAR10 For the SVHN and CIFAR10 datasets, each of which consists of images of 10
classes, each dataset was randomly partitioned into 6 KKCs and 4 UUCs.

CIFAR+10, CIFAR+50 For the CIFAR+M experiments, we used 4 randomly selected classes of
CIFAR10 as KKCs and M randomly selected classes of CIFAR100 as UUCs.

TinyImageNet For experiments with a large number of classes, we randomly selected 20 classes
of TinyImageNet as KKCs and then used the remaining 180 classes as UUCs.

4.1.2 OPEN-SET RECOGNITION - SETTING 2

By using the training and the test sets of a single dataset as Dt and Dk
test, respectively, we employed

the test set of another dataset relatively close to Dt as Du
test in Setting 2. Adopting the experiment

settings in (Yoshihashi et al., 2019) and (Liang et al., 2018), we used the entire classes of a dataset as
KKCs for CIFAR10 & CIFAR100. For UUC dataset, TinyImageNet, LSUN (Yu et al., 2015), and
iSUN (Xu et al., 2015) were selected. TinyImageNet and LSUN consists of 10,000 test samples each,
where the samples in each dataset were resized (RE) or cropped (CR) into the size 32 × 32. The
iSUN dataset has 8,925 test samples and they were also resized into the size of 32× 32. The modified
datasets can be obtained in the Github repository of (Liang et al., 2018).

4.2 TRAINING DETAILS

For f , we employed the Wide-ResNet (WRN) (Zagoruyko & Komodakis, 2016) and then used its
penultimate layer f(x) ∈ Rn for the latent feature vector of each input sample x. For CIFAR10 and
TinyImageNet, we used WRN 40-2 with a dropout rate of 0.3, where WRN 28-10 was employed for
CIFAR100 with the same dropout rate. For SVHN, we used WRN 16-4 with a dropout rate of 0.4.

For the entire BCR methods, we set the mini-batch sizes of KKC training samples and KUC samples
to 128. We kept λ as a constant during training, i.e., each f was trained with the BCR method from
scratch. To select hyperparameters and margin parameters of the previous regularization methods, we
followed the official implementations 1,2,3. For SVHN, CIFAR10, CIFAR100, and TinyImageNet, we
trained the corresponding classifiers for 80, 100, 200, and 200 epochs, respectively, where we used
the stochastic gradient descent for optimization. For SVHN and the other datasets, we used initial
learning rates of 0.01 and 0.1, respectively, and a cosine learning rate decay (Loshchilov & Hutter,
2016). We also used the learning rate warm-up strategy for the first 5 epochs of each training process.

Average runtime We conducted all the experiments with PyTorch and a single GeForce RTX 3090
GPU. At each trial in the CIFAR10 experiment of Setting 1, the running time of each training epoch

1https://github.com/Vastlab/Reducing-Network-Agnostophobia
2https://github.com/hendrycks/outlier-exposure
3https://github.com/wetliu/energy_ood
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Table 2: Comparison with the previous methods in the second setting of our OSR experiments. The
corresponding classification accuracy values are reported in the first column.

Dt/Dk
test Du

test

AUROC (↑) OSCR (↑)

Objectosphere / Uniformity / Energy / Class-inclusion (Ours)

CIFAR10
0.940 / 0.939 / 0.925 / 0.947

ImageNet-CR 0.988 / 0.986 / 0.981 / 0.987 0.929 / 0.928 / 0.894 / 0.931
ImageNet-RE 0.979 / 0.984 / 0.972 / 0.984 0.923 / 0.926 / 0.886 / 0.927

LSUN-CR 0.994 / 0.990 / 0.989 / 0.993 0.938 / 0.931 / 0.904 / 0.940
LSUN-RE 0.985 / 0.988 / 0.984 / 0.990 0.928 / 0.931 / 0.897 / 0.935

iSUN 0.985 / 0.989 / 0.984 / 0.991 0.928 / 0.932 / 0.896 / 0.936
Average 0.986 / 0.987 / 0.982 / 0.989 0.929 / 0.930 / 0.895 / 0.934

CIFAR100
0.727 / 0.735 / 0.705 / 0.779

ImageNet-CR 0.886 / 0.929 / 0.925 / 0.922 0.641 / 0.686 / 0.652 / 0.693
ImageNet-RE 0.815 / 0.910 / 0.934 / 0.902 0.572 / 0.674 / 0.658 / 0.683

LSUN-CR 0.967 / 0.931 / 0.901 / 0.965 0.685 / 0.680 / 0.643 / 0.751
LSUN-RE 0.844 / 0.930 / 0.959 / 0.945 0.608 / 0.695 / 0.684 / 0.731

iSUN 0.842 / 0.923 / 0.954 / 0.943 0.603 / 0.689 / 0.680 / 0.729
Average 0.871 / 0.925 / 0.935 / 0.935 0.621 / 0.685 / 0.663 / 0.717

took 28 seconds for our method, where its OSR evaluation required approximately 6.5 seconds. We
observed that the other methods take similar running time at their training and inference phases.

4.3 EXPERIMENT RESULTS

The OSR results of our framework and the previous methods are reported in Tables 1 and 2. All the
reported values were averaged over five randomized trials, by randomly sampling seed, split of KKCs
and UUCs, and class-wise anchors. In the tables, ↑ indicates that it is better to have larger values for
the corresponding measure. Also, an underlined value is marginally worse than the best score (bold).

Setting 1 For the first setting, Table 1 compares our proposed BCR methods for distance-based
classifiers with the previous methods designed for Softmax classifiers. The results demonstrate that
our proposed method obtained robust UUC rejection results, which were superior to the results of the
previous approaches. It is noteworthy that our method achieved higher classification accuracy values,
which were critical in acquiring better OSR results in terms of OSCR, than the previous methods.
Such results imply that the proposed framework effectively satisfies the two essential requirements
described in Section 2.1, bounding open-space risk and ideally balancing it with empirical risk.

Setting 2 In Table 2, we present our experiment results of the second setting. When using CIFAR10
and CIFAR100 as KKC datasets, the table shows that our model can achieve the highest closed-set
classification accuracy, which is consistent with the experiment results of Setting 1. Furthermore, by
averaging the AUROC and the OSCR values over the various UUC datasets, the table shows that our
model outperformed the previous methods in UUC sample rejection and OSR.

In summary, the experiment results show that our proposed method can successfully train a robust
open-set classifier. To further investigate the effectiveness of our framework in another domain, we
compared our class-inclusion loss to the uniformity loss in text classification applications.

Text classification For text classification, we used 20 Newsgroups and WikiText103 for KKCs
and KUCs, respectively, and trained a simple GRU model (Cho et al., 2014) for f as in (Hendrycks
et al., 2019). For UUCs, we used Multi30K, WMT16, and IMDB. Since the margin parameters of the
objectosphere and the energy losses selected for image classification were not suitable for the text
classification, we tested the uniformity loss for comparison. In Table 3, we present the results, where
we additionally reported the area under the precision-recall curve (AUPR) and the false-positive rate
at 95% true-positive rate (FPR95). As it outperformed the uniformity loss in image classification
tasks, our method also showed significantly better performance in text classification experiments.

4.4 ABLATION STUDY AND DISCUSSIONS

For ablation study, we further analyzed our BCR method by using various λ and class-wise anchor
initialization & updating methods in our loss function. Also, we compared the proposed method to the
triplet loss (Schroff et al., 2015) and analyzed each component of our class-inclusion loss. Using the
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Table 3: Comparison with the previous BCR method in text classification experiments.

Dt/Dk
test Du

test

AUROC (↑) AUPR (↑) FPR95 (↓) OSCR (↑)

Uniformity / Class-inclusion (Ours)

20 Newsgroups
0.719 / 0.749

Multi30k 0.997 / 0.997 0.998 / 0.997 0.002 / 0.010 0.715 / 0.745
WMT16 0.997 / 0.996 0.997 / 0.995 0.010 / 0.016 0.715 / 0.742
IMDB 0.805 / 0.999 0.692 / 0.999 0.367 / 0.003 0.585 / 0.747

Average 0.933 / 0.997 0.896 / 0.997 0.126 / 0.010 0.672 / 0.745

CIFAR10 and TinyImageNet experiments in Setting 1, we present quantitative results in Appendix.

Selecting λ Conducting OSR experiments with λ ∈ {0.1, 0.5, 1, 5, 10}, we observed that λ = 5
and λ = 1 showed the best OSR results in the CIFAR10 and TinyImageNet experiments of Setting 1,
respectively, where the results are presented in Section A.1. In our additional experiments, λ = 5
yielded the best results in the SVHN and CIFAR + M experiments of Setting 1 and the CIFAR10
experiments of Setting 2, where λ = 0.5 showed the best results in the CIFAR100 experiments. Since
the other λ values did not significantly degrade OSR performance, one can flexibly select λ, where
we empirically observed that a lower λ value is better when handling more KKCs.

Class-wise anchors In Section 3.1, we mentioned that each class-wise anchor was sampled from
the standard Gaussian distribution. Although one can use data-dependent initialization approaches,
which are 1) train a Softmax classifier and then use its empirical class mean vectors as class-wise
anchors of a distance-based classifier and 2) compute class mean vectors from the initial feature
representations of a distance-based classifier and then use the vectors as class-wise anchors, such
approaches showed worse results than the random initialization method. In addition, we observed
that the strategy of updating or training class-wise anchors was not effective to achieve robust OSR
performance. We present the corresponding experiment results and discussions in Section A.2.

Triplet loss To the best of our knowledge, we propose the first distance-based BCR method for
the OSR problem. Since the triplet loss (Schroff et al., 2015) has been widely employed to control
the distances between latent feature vectors effectively, we formulated another distance-based BCR
strategy with the triplet loss for comparison. We present in-depth details and experiment results for the
regularization method using the triplet loss in Section A.3, where the experiment results demonstrate
that our class-inclusion loss is more effective than the triplet loss-based regularization.

Loss function Note that our loss function consists of three components Lcf , Lbg,k, and Lbg,u. By
using various compositions of the components, we verified in Section A.4 that the three components
are necessary to obtain robust closed-classification and UUC rejection results in our BCR method.

Vanilla distance-based classifiers To show the effectiveness of our method, we assessed the OSR
performance of vanilla distance-based classifiers (trained solely based on Lcf ), where we present the
results in the form of (Accuracy / AUROC / OSCR). For the CIFAR10 and TinyImageNet experiments
of Setting 1, we obtained the results of (0.962 / 0.757 / 0.470) and (0.785 / 0.629 / 0.315), respectively.
In addition, for the CIFAR10 and CIFAR100 experiments of Setting 2, the OSR results averaged over
the five UUC test sets in vanilla distance-based classifiers were (0.936 / 0.838 / 0.709) and (0.766 /
0.807 / 0.549), respectively. Comparing these results to the results in Tables 1 and 2, we show that our
regularization strategy can significantly improve the OSR performance of distance-based classifiers.

5 CONCLUDING REMARKS

In this paper, we propose a novel BCR method to train open-set classifiers that can provide robust
OSR results with a simple inference step. By employing distance-based classifiers with the principle
of LDA, we designed a novel class-inclusion loss based on the principle of probability of inclusion,
which effectively limits the feature space of KKC data in a class-wise manner and then regularizes
UUC samples to be located far away from the limited space. Through our extensive experiments and
ablation study, we present that our method can achieve robust UUC rejection performance, while
maintaining high closed-set classification accuracy. As this paper aims to improve the reliability of
modern DNN-based classifiers, we hope our work to enhance reliability and robustness in various
classification applications by providing a novel methodology of handling UUC samples.
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6 ETHICS STATEMENT

Although there are many beneficial applications of classifiers and anomaly detectors, they may lead
to inadvertent discrimination and encoding societal biases in decision-making systems. This is one of
the cases where ethical considerations depend strongly on the specific applications.

We use several standard datasets including the ImageNet dataset. Although they have been widely
used in research, some of the datasets, created from images available on the web, include images of
people, raising ethical questions related to human-derived data, such as encoding of biases and under-
representation issues. The creators of ImageNet are also aware of some of these concerns, and have
been attempted to address them for the past few years (https://image-net.org/update-sep-17-2019.php).

7 REPRODUCIBILITY STATEMENT

We describe details about distance-based classifiers, our loss function, and the corresponding training
process in Sections 3.1, 3.3, and 4.2. Also, Section 4.1 provide the list of the datasets, which are used
in this paper. Our source code and the corresponding instructions will be released.
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A EXPERIMENT RESULTS OF ABLATION STUDIES

To supplement our discussions in Section 4.4, this section provides quantitative experiment results.
Based on the CIFAR10 and TinyImageNet experiments of Setting 1, we present OSR results with
various selections of λ (Section A.1). Also, we report OSR results by using various class-wise anchor
initialization & updating methods (Section A.2). For the settings of fixed and trainable anchors in
Section A.2, we compare our class-inclusion loss to the triplet loss (Section A.3). Furthermore, we
provide additional OSR results by varying the components of our class-inclusion loss (Sections A.4).

A.1 HYPERPARAMETER λ

This subsection presents OSR results by employing various selections of the hyperparameter λ in our
loss function L = Lcf + λLbg . In Table 4, we report the OSR experiment results of our method with
λ ∈ {0.1, 0.5, 1, 5, 10}. Since the other λ values did not significantly degrade OSR performance, one
can flexibly select the parameter λ to balance empirical and open-space risks. The experiment results
in Sections A.2 and A.3 are also provided by using various λ ∈ {0.1, 0.5, 1, 5, 10}.

Table 4: OSR experiment results by using various λ in our class-inclusion and the triplet losses. In
each cell, the results are presented in the form of (Accuracy (↑) / AUROC (↑) / OSCR (↑)).

Parameter λ
CIFAR10 TinyImageNet

Class inclusion Triplet Class inclusion Triplet

0 (Vanilla) 0.962 / 0.757 / 0.470 – 0.785 / 0.629 / 0.306 –
0.1 0.966 / 0.894 / 0.740 0.963 / 0.820 / 0.537 0.789 / 0.766 / 0.442 0.787 / 0.746 / 0.431
0.5 0.968 / 0.927 / 0.810 0.968 / 0.842 / 0.572 0.793 / 0.775 / 0.463 0.785 / 0.729 / 0.426
1 0.973 / 0.934 / 0.839 0.966 / 0.860 / 0.628 0.801 / 0.784 / 0.492 0.793 / 0.714 / 0.423
5 0.973 / 0.946 / 0.869 0.965 / 0.872 / 0.628 0.795 / 0.784 / 0.479 0.785 / 0.707 / 0.360
10 0.967 / 0.946 / 0.862 0.958 / 0.856 / 0.597 0.785 / 0.698 / 0.358 0.738 / 0.637 / 0.220

A.2 CLASS-WISE ANCHORS

This subsection presents OSR results by using various initialization and updating methods of anchors
in our approach. In Table 5, we first present OSR results based on trainable class-wise anchors. In this
setting, we set each entry of µc as a trainable parameter and then optimized the anchors along with
our model parameters via the same training objective L = Lcf + λLbg and optimization processes.

Table 5: OSR experiment results using trainable class-wise anchors in our loss and the triplet loss. In
each cell, the results are presented in the form of (Accuracy (↑) / AUROC (↑) / OSCR (↑)).

Parameter λ
CIFAR10 TinyImageNet

Class inclusion Triplet Class inclusion Triplet

0.1 0.966 / 0.894 / 0.740 0.964 / 0.767 / 0.318 0.795 / 0.443 / 0.038 0.798 / 0.383 / 0.052
0.5 0.968 / 0.927 / 0.810 0.967 / 0.829 / 0.540 0.782 / 0.487 / 0.050 0.795 / 0.380 / 0.043
1 0.966 / 0.937 / 0.833 0.968 / 0.840 / 0.577 0.765 / 0.503 / 0.061 0.798 / 0.383 / 0.046
5 0.971 / 0.946 / 0.860 0.967 / 0.872 / 0.667 0.768 / 0.457 / 0.041 0.769 / 0.420 / 0.055
10 0.967 / 0.940 / 0.827 0.956 / 0.845 / 0.580 0.588 / 0.516 / 0.050 0.771 / 0.426 / 0.051

Comparing the CIFAR10 experiment results in Tables 4 and 5, we observed that there exist only
a negligible difference of OSR performance between our fixed and the trainable anchor strategies.
However, the TinyImageNet experiment results in the tables show that the fixed anchor strategy with
random initialization can yield more accurate UUC rejection and OSR results.

To further investigate various anchor initialization and updating methods, we additionally assess the
OSR performance of our method by employing the following three initialization methods:

Initial Compute anchors from the initial feature representations of a distance-based classifier.
Transfer Train a Softmax classifier and then use its empirical means for a distance-based classifier.
Random (Ours) Randomly sample each class-wise anchor from a standard Gaussian distribution.
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For each initialization method, we tested two anchor updating strategies: 1) fix the anchors during our
training phase, 2) update the anchors via moving average, which was also used in (Wen et al., 2019).

Table 6: OSR experiment results by using various initialization and updating methods for class-wise
anchors. In each cell, the results are shown in the form of (Accuracy (↑) / AUROC (↑) / OSCR (↑)).

Anchor λ
CIFAR10 TinyImageNet

Fix Update Fix Update

Initial

0.1 0.956 / 0.801 / 0.498 0.962 / 0.852 / 0.490 0.576 / 0.378 / 0.012 0.775 / 0.415 / 0.049
0.5 0.964 / 0.897 / 0.638 0.967 / 0.915 / 0.768 0.576 / 0.596 / 0.042 0.734 / 0.446 / 0.058
1 0.957 / 0.893 / 0.756 0.967 / 0.919 / 0.801 0.536 / 0.530 / 0.017 0.740 / 0.429 / 0.042
5 0.958 / 0.913 / 0.727 0.961 / 0.918 / 0.742 0.506 / 0.426 / 0.007 0.726 / 0.377 / 0.027
10 0.901 / 0.917 / 0.760 0.957 / 0.894 / 0.650 0.228 / 0.481 / 0.052 0.632 / 0.438 / 0.036

Transfer

0.1 0.969 / 0.890 / 0.719 0.965 / 0.863 / 0.715 0.792 / 0.539 / 0.092 0.765 / 0.390 / 0.035
0.5 0.972 / 0.923 / 0.803 0.971 / 0.909 / 0.765 0.802 / 0.554 / 0.111 0.777 / 0.425 / 0.049
1 0.972 / 0.938 / 0.838 0.971 / 0.924 / 0.808 0.796 / 0.544 / 0.093 0.780 / 0.392 / 0.054
5 0.970 / 0.937 / 0.815 0.972 / 0.926 / 0.790 0.779 / 0.551 / 0.120 0.738 / 0.421 / 0.038
10 0.963 / 0.941 / 0.828 0.964 / 0.928 / 0.776 0.757 / 0.448 / 0.078 0.761 / 0.377 / 0.046

Random

0.1 0.966 / 0.894 / 0.740 0.959 / 0.782 / 0.263 0.789 / 0.766 / 0.395 0.784 / 0.436 / 0.041
0.5 0.968 / 0.927 / 0.810 0.960 / 0.862 / 0.604 0.793 / 0.775 / 0.463 0.777 / 0.412 / 0.049
1 0.973 / 0.934 / 0.839 0.960 / 0.860 / 0.558 0.801 / 0.784 / 0.492 0.767 / 0.438 / 0.044
5 0.973 / 0.946 / 0.869 0.953 / 0.778 / 0.262 0.795 / 0.784 / 0.479 0.738 / 0.409 / 0.042
10 0.967 / 0.946 / 0.862 0.947 / 0.740 / 0.191 0.785 / 0.698 / 0.358 0.683 / 0.440 / 0.046

The results of Tables 5 and 6 present that the OSR results of our approach, which randomly sampled
class-wise anchors and then fixed them, are superior to those of the other initialization and updating
methods. In the following, we discuss the advantages of random sampling and fixed anchor strategies.

• In contrast to classical closed-set classification, our BCR method for OSR should ensure
sufficient distance gaps between inter-class latent features (inter-class separability) and force
class-wise features to have compact feature space (intra-class compactness) by contrasting
KKC samples and KUC data located near the KKC data. As discussed in (Izmailov et al.,
2020), the Euclidean distances between anchors drawn from a standard Gaussian distribution
are sufficiently large in expectation, which is suitable for our BCR method.

• Our loss is based on the probability of inclusion of Eq. (8), where PI = 0.5 builds a hyper-
sphere decision boundary in a class-wise manner at training time. The class-inclusion loss
makes repulsion forces between KUC samples and the corresponding closest anchors, while
simultaneously making KKC samples to be located inside the corresponding hypersphere
boundary. In this regularization method, it is desirable to fix class-wise anchors to control
each KKC or KUC sample in a consistent direction. In other words, the strategy of updating
or training class-wise anchors, which also changes the location of class-wise hypersphere
boundaries, is likely to obstruct the process of contrasting KKC and KUC samples.

A.3 TRIPLET LOSS-BASED REGULARIZATION

This section compares our BCR method to a regularization method based on the triplet loss Ltri, in
order to show that our class-inclusion loss is an effective BCR method for distance-based classifiers.
Following the conventional definition of the triplet loss, we simply formulated Ltri by setting class-
wise anchors, KKC training data, and KUC data as anchors, positive samples, and negative samples,
respectively. Then, we compared our loss to Ltri in fixed and trainable anchor settings.

In Tables 4 and 5, which presented the OSR results of distance-based classifiers with fixed class
means and trainable class means, respectively, we reported experiment results by using the triplet loss
as Lbg. Since we observed that training classifiers solely based on the triplet loss L = Ltri yields
significantly worse OSR results in comparison with the regularization method L = Lcf + λLtri,
we employed Ltri as a regularization loss function for BCR. The results show that our proposed
method (class-inclusion loss) outperforms the regularization method using the triplet loss. Also, the
discussions in Sections A.1 and A.2 can also be applicable to the triplet loss-based regularization.
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A.4 LOSS FUNCTION FORMULATION

In our class-inclusion loss L = Lcf +λ(Lbg,k+Lbg,u), Lcf is a conventional negative log-likelihood
loss for the distance-based classifier of Eq. (4). Based on our probability of inclusion of Eq. (8),
we formulated Lbg,k and Lbg,u for regularization. This subsection investigates the necessity of the
three terms Lcf , Lbg,k, and Lbg,u, since both of the Lcf and Lbg,k terms aim to force KKC training
samples located close to the corresponding class-wise anchors. We employed various compositions
of the three terms to formulate loss functions and then reported their OSR results in Table 7.

As our original Lbg,k term only controls KKC training samples having correct class predictions with
Lbg,k = E(xk,y)∼Dt

[−1(y = ĉ) log(PI(x
k, ĉ))] and ĉ = argmaxi∈{1,··· ,C} PI(x

k, i), we define a
modified version L∗

bg,k = E(xk,y)∼Dt
[− log(PI(x

k, y))] to correctly remove Lcf from L.

Table 7: OSR experiment results based on various settings of loss functions.

Loss function L Parameter λ
CIFAR10 TinyImageNet

Accuracy (↑) / AUROC (↑) / OSCR (↑)

L∗
bg,k + Lbg,u – 0.937 / 0.932 / 0.798 0.629 / 0.688 / 0.334

Lcf + λLbg,u

0.1 0.963 / 0.821 / 0.509 0.793 / 0.734 / 0.408
0.5 0.961 / 0.810 / 0.488 0.779 / 0.732 / 0.424
1 0.958 / 0.806 / 0.485 0.787 / 0.726 / 0.392
5 0.963 / 0.812 / 0.503 0.767 / 0.737 / 0.397
10 0.960 / 0.798 / 0.459 0.779 / 0.732 / 0.424

Lcf + λ(L∗
bg,k + Lbg,u)

0.1 0.965 / 0.868 / 0.674 0.795 / 0.781 / 0.483
0.5 0.972 / 0.930 / 0.822 0.800 / 0.763 / 0.461
1 0.973 / 0.933 / 0.835 0.785 / 0.720 / 0.378
5 0.966 / 0.931 / 0.815 0.639 / 0.630 / 0.278
10 0.956 / 0.919 / 0.771 0.458 / 0.629 / 0.178

Lcf + λ(Lbg,k + Lbg,u)

0.1 0.966 / 0.894 / 0.740 0.789 / 0.766 / 0.442
0.5 0.968 / 0.927 / 0.810 0.793 / 0.775 / 0.463
1 0.973 / 0.934 / 0.839 0.801 / 0.784 / 0.492
5 0.973 / 0.946 / 0.869 0.795 / 0.784 / 0.479
10 0.967 / 0.946 / 0.862 0.785 / 0.698 / 0.358

In Table 7, it is shown that our loss function (Lcf +λ(Lbg,k+Lbg,u)) can achieve robust OSR results
for various selections of λ. As L∗

bg,k (or Lbg,k) only forces KKC samples to be located inside the
class-wise hypersphere boundaries of the probability of inclusion, which rapidly decays from 1 to 0,
the loss term is not sufficient to achieve high closed-set classification accuracy. On the contrary, KKC
samples cannot be forced to be located inside the boundaries when using Lcf without Lbg,k, thereby
making inaccurate OSR results. In summary, both Lcf and Lbg,k are necessary to conduct accurate
classification and increase the distance gap between KKC and KUC data, respectively. It is noteworthy
that our formulation (using both Lcf and Lbg,k) is beneficial in maintaining robust classification
accuracy. Also, our method, which only regularizes KKC samples having correct class prediction,
can mitigate overfitting issues in comparison with the approach of (Lcf + λ(L∗

bg,k + Lbg,u)).

B ADDITIONAL EXPERIMENTS

In additional experiments, we employed CIFAR10 for Dt. For Setting 1 of our OSR experiments, we
split the 10 classes of CIFAR10 into 6 known known classes (KKCs) and 4 unknown unknown classes
(UUCs). In Setting 2, we used CIFAR10 and another dataset as KKCs and as UUCs, respectively. For
the first setting of our experiments, we report quantitative results in the form of (Accuracy / AUROC
/ OSCR). In this section, we denote Settings 1 and 2 by S1 and S2 for simplicity.

B.1 QUANTITATIVE RESULTS WITH RESNET-18 ARCHITECTURE

In Section 4, we used the Wide-ResNet (WRN) architectures as feature extractors for the image
datasets. To further investigate the effectiveness of our method, we used another standard classifier
architecture, ResNet-18 (He et al., 2016). In S1, we obtained quantitative results of (0.963 / 0.945 /
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0.844), (0.966 / 0.950 / 0.845), (0.967 / 0.945 / 0.848), and (0.971 / 0.947 / 0.850) for the regularization
methods using the objectosphere (Dhamija et al., 2018), the uniformity (Hendrycks et al., 2019), the
energy (Liu et al., 2020), and our class-inclusion losses, respectively. Such quantitative OSR results
and the results in Table 8 imply that our method can outperform the previous BCR methods with
ResNet-18, as we observed in the experiments using the WRN architectures.

Table 8: Comparison with the previous methods in the second setting of our OSR experiments using
ResNet-18. The corresponding classification accuracy values are reported in the first column.

Dt/Dk
test Du

test

AUROC (↑) OSCR (↑)

Objectosphere / Uniformity / Energy / Class-inclusion (Ours)

CIFAR10
0.937 / 0.949 / 0.933 / 0.951

ImageNet-CR 0.982 / 0.979 / 0.983 / 0.987 0.932 / 0.928 / 0.917 / 0.941
ImageNet-RE 0.977 / 0.982 / 0.975 / 0.988 0.918 / 0.934 / 0.909 / 0.945

LSUN-CR 0.991 / 0.984 / 0.987 / 0.993 0.934 / 0.935 / 0.919 / 0.946
LSUN-RE 0.987 / 0.987 / 0.986 / 0.990 0.932 / 0.938 / 0.918 / 0.942

iSUN 0.987 / 0.986 / 0.987 / 0.994 0.932 / 0.938 / 0.919 / 0.946
Average 0.985 / 0.984 / 0.984 / 0.991 0.930 / 0.935 / 0.916 / 0.944

B.2 LATENT FEATURE SPACE VISUALIZATION

By visualizing feature spaces via t-SNE (Van der Maaten & Hinton, 2008), we compared Softmax
classifiers and distance-based classifiers, and their regularized versions in S1 and S2. We selected
ImageNet-RE for UUC data in S2, since the results of Table 2 imply that the dataset is more difficult
to be recognized by open-set classifiers than the others. In each t-SNE result, black dots indicate
UUC samples. For the other colors, each distinct color represents the corresponding class of KKCs.

B.2.1 VANILLA CLASSIFIERS (NO BACKGROUND-CLASS REGULARIZATION)

(a) S1 - Softmax (b) S1 - Distance (c) S2 - Softmax (d) S2 - Distance

Figure 3: t-SNE results of vanilla Softmax classifiers and distance-based classifiers.

Figure 3 depicts the t-SNE results of vanilla Softmax and distance-based classifiers, which are trained
only with L = Lcf , in S1 and S2. The visualization results imply that in comparison with the UUC
data used in S2, it would be much more difficult to distinguish UUC samples in S1 from KKCs.

B.2.2 BACKGROUND CLASS REGULARIZED CLASSIFIERS

(a) S1 - Uniformity (b) S1 - Ours (c) S2 - Uniformity (d) S2 - Ours

Figure 4: t-SNE results of regularized Softmax classifiers and distance-based classifiers.
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Figure 4 presents the t-SNE results of Softmax and distance-based classifiers trained with BCR
(L = Lcf + λLbg) in S1 and S2. For the Softmax and distance-based classifiers, we employed
the uniformity loss (Hendrycks et al., 2019) and our class-inclusion loss as Lbg, respectively. In
comparison with Figure 3, Figure 4 shows that such regularization techniques assist classifiers to
learn robust latent feature representations in distinguishing UUCs from KKCs, especially in S1.
Also, as mentioned in Section 2.3, the figure shows that the latent feature space regularized by the
uniformity loss can yield inaccurate results in distance-based post-classification analysis. By applying
the Openmax approach (Bendale & Boult, 2016) to the model regularized by the uniformity loss in
S1 (Figure 4. (a)), we obtained the OSR performance of (0.923 / 0.886 / 0.752), which is worse than
the original result (0.964 / 0.923 / 0.814) and the result of our framework (0.973 / 0.946 / 0.869).
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