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Abstract

Hand-Object Interaction (HOI) generation has significant application potential.
However, current 3D HOI motion generation approaches heavily rely on prede-
fined 3D object models and lab-captured motion data, limiting generalization ca-
pabilities. Meanwhile, HOI video generation methods prioritize pixel-level visual
fidelity, often sacrificing physical plausibility. Recognizing that visual appear-
ance and motion patterns share fundamental physical laws in the real world, we
propose a novel framework that combines visual priors and dynamic constraints
within a synchronized diffusion process to generate the HOI video and motion
simultaneously. To integrate the heterogeneous semantics, appearance, and mo-
tion features, our method implements tri-modal adaptive modulation for feature
aligning, coupled with 3D full-attention for modeling inter- and intra-modal de-
pendencies. Furthermore, we introduce a vision-aware 3D interaction diffusion
model that generates explicit 3D interaction sequences directly from the synchro-
nized diffusion outputs, then feeds them back to establish a closed-loop feedback
cycle. This architecture eliminates dependencies on predefined object models or
explicit pose guidance while significantly enhancing video-motion consistency.
Experimental results demonstrate our method’s superiority over state-of-the-art ap-
proaches in generating high-fidelity, dynamically plausible HOI sequences, with
notable generalization capabilities in unseen real-world scenarios. Project page at
https://droliven.github.10/S ViMo_project.

1 Introduction

Human-object or hand-object interaction (HOI) generation serves critical applications across gam-
ing, animation, digital human creation, and robotic action retargeting [[[6l, 37, 53, 58]. Some stud-
ies [, T3, 7] construct high-precision 3D interaction datasets through laboratory-based multi-
view camera arrays and motion capture systems, then train diffusion-based motion generators.
These object-centric approaches typically predict parametric human/hand motions and the corre-
sponding object pose sequences given object meshes and initial configurations. However, existing
datasets [39, [71], BX] collected in laboratory environments lack diversity in object types and inter-
action patterns, constraining model generalization and resulting in ambiguous object boundaries,
implausible or inconsistent actions (Fig. [, left). Moreover, the reliance on precise 3D object mod-
els fundamentally limits their zero-shot generation capabilities.
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Figure 1: Different HOI generation methods. Approaches like MDM [57] rely on limited mocap data
without visual guidance, resulting in blurred boundaries and compromised plausibility and consis-
tency. Methods like Animate Anyone [[Z1] leverage large-scale visual priors but exhibit distortions
and inconsistencies because of inadequate physical awareness. Our method marries visual priors
with 3D motion constraints and eliminates dependency on pre-defined object models or pose guid-
ance.

Recent advances in large video foundation models based on Diffusion Transformers (DiT) [44]
(e.g., Sora [8], CogVideo [0, BY], HunyuanVideo [Z6]), have shown impressive capabilities in
modeling physical dynamics through large-scale video training. These models can generate inter-
action videos with high visual fidelity end-to-end from text or reference images. However, their
pixel-level generation approaches often struggle to produce accurate and coherent hand-object inter-
actions due to limited explicit modeling of motion dynamics and physical constraints. To address
this, some methods extend image-based diffusion models (e.g., SVD [B]) by adding pose-guided
pipelines [b6, 21, [79, 6b5]. These approaches combine pose conditions and appearance features to
improve human-object interaction generation. While effective, they require pose sequences or ex-
ternally estimated motion trajectories as inputs, preventing full end-to-end text/image-conditioned
generation. Additionally, their single-frame generation leads to poor temporal coherence, causing
flickering and identity inconsistencies (Fig. [, middle).

These challenges reveal a longstanding methodological contradiction: motion generation systems
excel at physical constraint modeling but suffer from limited data scales. In contrast, video genera-
tion models leverage massive visual priors but lack motion plausibility. We argue that this division
stems from neglecting the co-evolution mechanism between visual appearance and motion patterns:
they not only share the same foundation of physical dynamics but also could leverage similar diffu-
sion processes. Based on this insight, we propose SViMo, a Synchronized Video-Motion diffusion
framework that enables synchronous HOI video generation and motion synthesis within a unified
architecture (Fig. [, right). The core innovation lies in extending a pretrained image-to-video foun-
dation model into the multimodal joint generation framework through the scalable DiT architecture.
To better integrate the heterogeneous features of text semantics, visual appearance, and motion dy-
namics, we introduce the triple modality adaptive modulation to align feature scales and employ a
3D full-attention mechanism to learn their synergistic and complementary dependencies. Addition-
ally, it is difficult for video foundation models to learn explicit 3D interaction motions directly. To
bridge the representation gap and reduce optimization complexity, we project 3D motions onto 2D
image planes, constructing “rendered motion videos” as SViMo’s motion representation.

To further enhance the video-motion consistency, we design a Vision-aware 3D Interaction Dif-
fusion model (VID). This model generates explicit 3D hand poses and object point clouds using
denoised latent codes from the synchronized diffusion, which are then reinjected into the SViMo
as interaction guidance and gradient constraints. Unlike methods requiring pre-specified action se-
ries, our approach integrates video synthesis and 3D interaction generation within an end-to-end
denoising pipeline. This creates a closed-loop feedback mechanism where motion guidances refine
video generation while video latents update motion results, enabling synergistic co-evolution of both
modalities.

In summary, our contributions are threefold:



* A novel synchronized diffusion model for joint HOI video and motion denoising, effec-
tively integrating large-scale visual priors with motion dynamic constraints.

* A vision-aware 3D interaction diffusion that generates explicit 3D interaction sequences,
forming a closed-loop optimization pipeline and enhancing video-motion consistency.

* Our method generates HOI video and motion synchronously without requiring pre-defined
poses or object models. Experiment results demonstrate superior visual quality, motion
plausibility, and generalization capability to unseen real-world data.

2 Related Work

3D interaction synthesis relies on high-precision motion capture datasets, some of which focus on
human action conditioned on static objects [I8, [/3], while others simultaneously capture interactions
of both human and dynamic objects [, 39, 67, [71], 38, 54, T4]. Building upon these datasets, existing
3D interaction generation methods employ diffusion models to either introduce intermediate contact
maps or milestones for modeling kinematic features [[2, 73, 29, &6, &5, [72, 62, I8, 77, B0, 36, 31, B7]
or leverage physical simulations to ensure physical dynamics plausibility [b4, b0, 8, 63, &1]. How-
ever, due to the limited availability of 3D interaction data, the generalization capability of these
approaches remains constrained. In contrast, our method leverages large-scale visual priors, oper-
ates conveniently without requiring 3D object models, and demonstrates promising generalization
potential.

Interaction Video Generation. The success of image generation models [I9, 50-57] has inspired
significant advances in video generation. Several approaches [B, bf, &3, 1, 79, b, BI] extend
2D image denoising U-Nets to video by incorporating temporal attention layers, while improving
controllability via pose guidance and reference networks. Alternatively, native large video mod-
els [B, 20, BY, A, D5] directly generate videos using spatiotemporal DiT architectures [24]. A sepa-
rate line of work aims to generate both video and interactive motion dynamics [9, IT]. For instance,
VideoJAM [9] produces video frames alongside 2D optical flow to improve visual fidelity and mo-
tion coherence. In contrast, our method generates videos with explicit 3D motion representation.
This enables direct modeling of object geometry, scale, and spatial relationships, leading to superior
physical plausibilityparticularly in complex scenarios involving occlusions or intricate interactions.
Notably, Vlogger [[LT] employs a two-stage pipeline: it first generates 3D human poses using one net-
work, then synthesizes video via a separate model conditioned on the predicted motions. In contrast,
we unify video and motion generation within a single, synchronized diffusion framework. Since
human-object interaction videos and their corresponding motion dynamics inherently obey the same
physical laws, joint modeling allows the system to learn intrinsic co-evolutionary patterns, thereby
enhancing the quality and consistency of both modalities.

Multimodal Generative Models. Driven by advancements in vision-language models [0, 34, 59,
2, B8], researchers have explored versatile generative models that align with the multimodal essence
of the physical world. Some works [23, [70] cascade single-modality generators into asynchronous
pipelines, yet suffer from complex workflows and noise accumulation. Others develop end-to-end
multimodal joint generation frameworks that rely on massive aligned multimodal data [, B2, 7, [76],
indirect bridging mechanisms [55], or intricate hierarchical attention strategy [33] to ensure cross-
modal synchronization. Differently, our method extends a native large video model into synchro-
nized video-motion generation systems, aligning heterogeneous modality features through multi-
modal adaptive modulation and closed-loop feedback strategies.

3 Methodology

We define the HOI video and motion generation task as follows: Given a reference image frame
I € REXWX3 and a textual prompt P, generate the future video V' € RY*HXWx3 and 3D motion
sequence M = {(h;,0;)}Y; with N time steps. Here h; € R7*3 and 0; € RX*3 are the hand
joints trajectories and object point clouds, each has J and K nodes respectively. The following
sections detail each component of our approach. See the Appendix for training/inference pseudo-
code and additional details.
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Figure 2: Our method comprises: (1) A synchronous diffusion model that jointly generates HOI
videos and motions (Sec. B3). (2) A vision-aware interaction diffusion model that generates 3D
hand pose trajectories and point clouds from the former’s outputs (Sec. B4), then feeds them back
into the synchronized denoising process to establish closed-loop optimization (Sec. B3).

3.1 Preliminary: Basic Large Video Generation Model

The core of large video generation models is diffusion and its reverse denoising process [I9]. The
diffusion process adds Gaussian noise to video latent codes z step-by-step using ¢(z¢|z¢—1) =
N (z4; Voizi—1, B I), where f; € [0, 1] increases monotonically with time step ¢, and oy = 1 — 3,
Repeated application of this formula yields the marginal distribution:

t

q(z¢|z0) = N(zy; Vg zo, (1—a)I), o= H(1 - B). (D

1
The above distribution converges to an isotropic Normal distribution when ¢ grows large.
Correspondingly, the reverse denoising generator G with trainable weights 6 predicts the clean latent
code 2 g, and is optimized by:
2
Exo-prediction = Ez,c,t7e~N(0,I) [”ZO - g@(zt7 (& t)HQ] . (2)

During the inference phase, the trained model is utilized to iteratively denoise from pure Gaussian
noise step by step, following the procedure:

20,9 - g@ (zt7 C, t)u

2o~ N (\/CTt(l - @t—l)z n Va1 (1 —ay) , 1- 07;—1 (1- ozt)I) . 3)

1—a t 1—ay

Finally, we obtain the clean denoised latent code 26, which is then decoded to the raw video space.

3.2 Framework Overview

Based on the insight that visual appearance and motion dynamics share inherent physical laws of the
real world, we propose an end-to-end framework that unifies HOI video and 3D motion generation by
integrating visual priors with dynamic constraints. Our framework consists of two key components.
The first is SViMo, which focuses on video generation (Fig. O, top; Sec. B3). It extends a pre-trained
image-to-video foundation model into a joint video-motion generation architecture. During joint



denoising, SViMo dynamically aligns visual appearance with high-level motion signals, improving
both visual quality and motion plausibility. Notably, the motion representations in SViMo refer
not to explicit 3D hand trajectories or object point cloud sequences. Because there is a significant
gap between 3D motion data and 2D video representations, directly modeling explicit 3D motions
would disrupt the pre-trained foundation model’s visual priors and degrade performance. Instead,
we project explicit 3D interactions onto the 2D image plane to create “rendered motion videos” as
intermediate representations for SViMo. The second component is VID, which generates explicit
3D motions (Fig. O, bottom; Sec. B4). It maps the output of SViMo, both the generated video and
the 2D rendered motion video, into target 3D interactions, i.e., hand-object trajectories and object
point clouds. Additionally, the collaboration between SViMo and VID forms a closed-loop feedback
pipeline, ensuring consistency between generated videos and 3D motions (Sec. BF).

3.3 Synchronized Video-Motion Diffusion

The SViMo learns to predict the video and motion, given the time step, text prompt, and reference

image: (2 ,20") = Gy ((z{,z"),(P,I),t). The entire video-motion generation process com-

prises feature embedding, multimodal feature modulation and fusion, and joint denoising.

Feature Embedding. Time step ¢ is sampled from a uniform distribution and then added sinusoidal
position encoding, followed by a simple two-layer linear mapping to obtain the time embedding e; €
R%me . For the text prompt, we use a frozen pre-trained language model, Google T5 [4X], to extract
text embedding eex; € RE*4r | and then calculate the semantics features S iext With linear projection,
where L is the max length of textual tokens. Thirdly, for the original reference image I, to ensure
a certain level of robustness, we first add random noise yielding I noised: Then we compute the
compressed latent code z; through a 3D video VAE, z; = &(Ioised) € R X 7 X dvae . Additionally,
for the target video V', we also map it to the latent space with the same VAE. Then the noised latent
code 2z} € R +1)x 5 35 Xdwe gre obtained based on the forward diffusion process in Eq. [
To better align it with the image condition signal during the video denoising process, we repeat
the image feature z; along the temporal axis, and concatenate them along the channel-axis to get

video feature embedding e € R +1)x X35 x (2xdvae) — zV 2z I Then the visual feature

w
is patchified through a 2D stride convolution, esulting in fy € R[( U)X o X ot | X The
rendered motion video is encoded through the same VAE and diffused to obtain 2. In contrast, to
get motion embedding e, the diffused latent code here are concatenated with interaction guidance

2(])” provided by VID (Sec. B-4), rather than being combined with z;. After that, the motion feature
f ar 1s obtained in the same way as that of f,.

Multimodal Feature Modulation and Fusion. In our SViMo framework, the DiT token sequence
comprises three distinct modalities: text tokens f., video tokens f,  and motion tokens f,,,
which differ significantly in both feature spaces and numerical scales. To bridge these disparities
while preserving modality-specific characteristics, we adopt a triple modality adaptive modulation
method that learns modulation parameters from the timestep signal e;. These parameters determine
the scaling, shifting, and gating operations of each modality’s features separately. Additionally, a
3D full-attention mechanism is employed to capture intra- and inter-modal relationships. Take the
processing of text features as an example, the DiT Block B proceeds as follows:

{atexnﬁtexn’)’text}z 1 = MLP(ey),
Flext = LN(fiex) © (1 + allexl) + 18116)([7
B() = ftext ftext + '7text O Miext (3DFA ( (f{exl’ f?/a .f/M))) , ¢ same for fy, and f,/, (4)
Frow = IN(Flew) © (14 ) + Bexs
Flowe = Froxe T Vst © Niet (FFD (U(Frexs F1s Fr)))

where “3DFA” and “FFD” are unified multi-head 3D full-attention and feedforward layers, U and N
denote token concatenation and segmentation along the sequence dimension, respectively.

Video-Motion Joint Denoising. The video and motion features output by the final DiT block then

go through an MLP to reconstruct the VAE latent codes, yielding 2(‘)/ for video and fzé” for motion.
Finally, the SViMo is optimized according to Eq. I:

Lsvimo = Ezv 200y (p.nyse (120 — Go(z, (P, 1), 0|5 + 20" — Go(2", (P, I),0)|3]. (5



3.4 Vision-aware 3D Interaction Diffusion

The VID M generates the explicit 3D hand pose trajectories ﬁo and object point cloud sequences
0¢ given latent codes of videos zy and motions (rendered motion video) z,{” at any time. The
framework operates as follows: First, a dual-stream 3D convolutional module encodes multi-scale
spatiotemporal features from both video and motion codes. Then they are fused and subsequently
injected into the 3D interaction denoising modules through cross-attention mechanisms to synthesize
3D HOI trajectory sequences. Following the x(-prediction formula in Eq. [, the model is optimized
through the following loss function:

(ho,6,00.6) = My [(he,00), (2!, 211, 1],

~ X (6)
Lvip = E(p o), (2¥ 20 1. [MSE(hO, ho,¢) + Dehamfer (00, 00,6 | -

3.5 Close-loop Feedback and Training Objectives

Close-loop Feedback. To enhance the mutual promotion and co-evolution between SViMo and
VID, and improve the consistency between video and 3D motions, we design a closed-loop feed-
back mechanism. This mechanism includes two pathways: interaction guidance and gradient
constraint. Specifically, for the straightforward interaction guidance strategy (Eq. O, row Ist),
we first generate the 3D interaction from the video and motion inputs of SViMo: (hg,09) =
Mo-grad ((ht, o), (z),zM), t), then projected it onto the 2D image plane to obtain rendered mo-

tion video M, which are subsequently embedded into the VAE latent space yielding éé”. Finally, it
is concatenated with the noised motion latent code z¥ mentioned in Sec. B3, forming an additional
interaction guidance for the SViMo. On the other hand, the input of VID could come from the output
of the SViMo. Therefore, the gradient of VID will be backpropagated into the SViMo during the
training process, forming a gradient constraint path and thereby promoting its optimization (Eq. [,
row 2nd).

’ VIDno-grad  , 5 ~ Proj. . VAEE . )s Inter. Guid. to SViMo ~ N
( ; M) = (hOaOO) M ZM (zyvzi]\/l@zg[)’

252 0
SViMo VID Loss (7)
v _M =M 2V M AN
2V, 2M @My ——— (2, 2M) T—— (ho,60) —— L.
t <t 0 E 05><0 . ’ .
Gradient Gradient Gradient

Training Objectives. The training process of our method involves two phases: initially warming up
the VID based on Eq. B, followed by closed-loop training where the SViMo and the VID are jointly
optimized according to Eq. B and Eq. B: £ = w; Lsvimo + w2 LviD-

4 Experiments

We conducted extensive experiments to validate the effectiveness of our proposed method. More
information, such as additional results and limitation discussions, is provided in the Appendix.

4.1 Experimental Setup

TACO dataset [B¥] is a large-scale bimanual hand-object interaction dataset capturing diverse tool-
use behaviors via multi-view video recordings and high-fidelity 3D motion annotations. Each task
is defined as a triplet <tool category, action type, target object category>, describing tool-mediated
interactions with objects. The dataset includes 2.5k interaction sequences, covering 20 object cat-
egories, 196 3D models, 14 participants, and 15 daily interaction types. It provides allocentric
(4096 x3000) and egocentric (1920x 1080) video streams, totaling 5.2M frames at 30 Hz. To re-
duce computational load, we crop hand-object interaction regions, adjust their aspect ratio to 3:2,
and downsample to 49 frames at 8 FPS. This results in videos with spatiotemporal resolution
416x624x49, aligning with CogVideoX’s [hY] default settings while lowering spatial resolution. To
mitigate overlap between test and training sets that might compromise evaluation of generalization,
we implemented a two-stage data partitioning strategy. First, we reserved all instances involving
specific actions (e.g., hit), tools (e.g., glue gun), and objects (e.g., toy) as the initial test set, ensur-
ing these elements are absent from the training set. Second, from the remaining instances grouped



Table 1: Comparison of video generation results. The best and second-best results are highlighted
with bold and underline formatting.

| | || Content Quality | Dynamic Quality |
Method Type Training - Overall 1
|| Subj. T Bkg.t | TSmoo.t Dyn. 1 ||
0.9632  0.9627 0.9889 0.4900 0.4493
0.9576  0.9620 0.9829 0.8476 0.7675

0.9206  0.9302 0.9671 0.9867 0.8172
0.9243  0.9358 0.9657 0.9933 0.8297

0.9404  0.9477 0.9858 0.9933 0.8727
0.9500 0.9533 0.9898 0.9801 0.8785

Hunyuan-13B [26]
Wan-14B [3]

Animate Anyone [Z1]
Easy Animate [h1]

|
25DV ‘ H

CogVideoX-5B [hY] 3DV
Ours 3D V&M

by <action, tool, object> triplets, we applied weighted sampling according to group sizes to obtain
additional test data. Finally, the ratio of the training set to the test set is 9:1.

Evaluation Metric. For video evaluation, we use VBench [22] to assess two key dimensions: Con-
tent Quality (including Subject Consistency and Background Consistency) and Dynamic Quality
(Temporal Smoothness and Dynamic Degree). More details about these metrics can be found in
the Appendix. To address the partiality of individual metrics, we multiply them to derive a Overall
score for holistic evaluation. For 3D interaction evaluation, we separately assessed hand poses and
object point cloud sequences. For the former, we calculated MPJPE (Mean Per Joint Position Er-
ror) and Motion Smoothness metrics. For object evaluation, we measured the Chamfer Distance
between generated and ground-truth point clouds. Additionally, we compute a comprehensive FID
score via a pretrained interaction autoencoder.

4.2 Implementation Details

Network Architecture. Our proposed model generates hand-object interaction videos with resolu-
tion [H, W, N] = [416,624,49] and 3D motion sequences containing J = 42 hand keypoints and
K = 298 object nodes. During training, timesteps are uniformly sampled from [0, 1000], and the
embedding dimension is diime = 512, while only 50 steps are sampled during inference for accelera-
tion. Text prompts (max length L = 226) are embedded into features of dimension d,, = 4096. The
video VAE uses spatial-temporal compression ratios [rw, rh, rn| = [8, 8, 4], producing latent codes
of size [52 x 78 x 13] with dyag = 16 channels. After patchification via two-step stride convolution,
video and motion tokens are compressed to 13182 tokens each. This results in a total multimodal
token sequence length of 226 + 13182 x 2 = 26590 (text + video + motion). The DiT backbone
comprises 42 DiT Blocks, each with 48 attention heads, totaling 6.02B parameters.

Training Details. All models are trained on 4 NVIDIA A800-80G GPUs. With memory opti-
mization techniques including DeepSpeed ZeRO-3 [4Y9], gradient checkpointing, and BF16 mixed-
precision trick, we achieve a per-GPU batch size of 4. We first warm up the VID for 5k steps, then
conduct joint training with the SViMo. To enhance computational efficiency, we initially train at
reduced resolution [H’, W’] = [240, 368] for 30k steps before fine-tuning at full resolution for 5k
steps. The weights of SViMo and VID terms in the training objectives are w; = 1 and ws = 0.05.

4.3 Comparison with Previous Approaches

Baselines. For video generation performance, we compare with video models that follow the
image-animation paradigm (2.5D Video Models), including Animate Anyone [21] and Easy Ani-
mate [b1], as well as native 3D large video models, including Hunyuan-13B [26], Wan-14B [25],
and CogVideoX-5B [6Y]. Particularly, due to the high training costs of the first two 3D models, we
directly utilized them for zero-shot inference. For 3D motion generation quality, we compare with
the classic MDM [57] and its latest improved version EMDM [[74]. Our method generates motion
from both images and text (image+text-to-motion), whereas MDM and EMDM are inherently text-
to-motion systems. For fair comparison, we adapted both baselines into text-and-image-to-motion
generators by supplying additional reference frames to their CLIP encoders.

Quantitative and Qualitative Evaluation. As shown in Table [, our method achieves the highest
overall score in video generation. Notably, individual metrics often conflict: high scores in one
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Figure 3: Visualization of videos. Red boxes highlight artifacts such as deformation, hallucinations,
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Figure 4: Quantitative comparison of motion generation results. Our method achieves smoother
motions, sharper object point clouds, and higher instruction compliance.

aspect may compromise others. For instance, Hunyuan-13B [26] attains top subject/background
consistency and second-highest temporal smoothness, but its near-static outputs (dynamic degree:
0.49) yield the lowest overall score. Wan-14B [5] also exhibits the same phenomenon, and the
lack of TACO dataset fine-tuning results in poor instruction adherence and hallucinations (Fig. B,
Row 1). The 2.5D image animation methods [, B1]] achieve high dynamic degree yet exhibit
inadequate content consistency and temporal smoothness, visually manifesting as distortions and
temporal flickering (Fig. B, Row 2). CogVideoX-5B [6Y] achieves the second-highest overall score,
but the generated videos still exhibit inconsistencies, as shown on the left of the last row of Fig. B.
In contrast, our method benefits from the synchronized modeling of visual and dynamic, resulting
in better comprehensive performance.

For motion generation, our method achieves su-

perior performance across all metrics, as shown  Tyble 2: Quantitative comparison against motion

in Tab. 2. Qualitative results in Fig. Breveal that  generation methods. The best results are in bold.
MDM [57] and EMDM [[74] produce motions
with poor instruction compliance and frame \ Hand Object  HOI
consistency. This stems from two limitations: Method | MPJPE| MSmoo.| Cham.| FID|
1) They compress both reference images and MDM [57] | 0.3382 0.0365 07915 04056
text prompts into 512 dimensions through the = EMDM [7] | 0.3255 0.0306 0.7788  0.3681
CLIP encoder, then simply concatenate them as Ours 0.1087 0.0255 01577 0.1050
denoising conditions, which dilutes the instruction signal. 2) Their motion models lack vision aware-
ness, causing large discrepancies between generated point clouds and references. Contrastingly, our
approach not only preserves input condition effectiveness through a triple-modality adaptive modu-
lation mechanism, but also enhances object point cloud consistency with low-level visual priors.

User Study. To validate our method’s effectiveness, we conducted user studies for video and motion
generation (Fig. B). For video generation, 26 image-prompt pairs were used to generate videos with
six models each, yielding 1,066 valid responses from 41 participants. Our method achieved a 78.42%
preference rate, significantly outperforming all baselines. In motion generation, 10 image-prompt
pairs produced 410 valid responses, with our results surpassing the baseline in 97.56% of cases.
These results demonstrate the clear advantages of our video-motion synchronous diffusion model.
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Figure 5: User studies for generated videos (a) and motions (b). We received 1,066 and 410 valid
responses respectively, and our method significantly outperforms other baselines.
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Figure 6: Zero-shot inference on real-world data. We collect data with everyday objects and gen-
erate high-fidelity, plausible HOI videos and 3D motions, demonstrating the generalizability of our
method.

Table 3: Ablation studies on the synchronized diffusion and the vision-aware 3D interaction diffu-
sion.

I Content | Dynamic | Overall 1 | Hand | Object | HOI
| Subj.© Bkg. 1 | TSmoo.? Dyn.7 | — "' | MPJPE| MSmoo. | | Cham. | | FID |
SViMo w/ VID (Ours) 0.9534  0.9546 0.9883 0.9784 0.8800 0.0121 0.0053 0.0019 0.0100

Varients

SViMo w/ Inter. Guid. || 0.9522  0.9546 0.9877 0.9768 0.8770 0.0157 0.0060 0.0022 | 0.0100
SViMo w/ Grad. Cons. || 0.9499  0.9525 0.9881 0.9757 0.8723 0.0141 0.0058 0.0021 | 0.0124

SViMo w/o VID 0.9543  0.9545 0.9883 0.9686 0.8719 0.0195 0.0070 0.0037 | 0.0546
VModel w/ Pred. Mot. || 0.9356  0.9392 0.9858 0.9675 0.8381 0.0202 0.0074 0.0040 | 0.0575

4.4 Generalization and Extensibility

We evaluate our method on manipulation tasks involving common household objects such as rollers,
spatulas, spoons, and bowls, for which we collect image-prompt pairs. These inputs are processed
by our synchronized diffusion model to generate human-object interaction (HOI) videos and corre-
sponding 3D interactions, as shown in Fig. B. The successful generation of plausible interactions on
real-world object categories demonstrates the generalization capability of our approach. This gen-
eralization stems from two key design principles. First, our plug-and-play synchronized diffusion
architecture effectively leverages the visual-semantic priors encoded in large video foundation mod-
els. Second, the use of 3D point clouds as object representations provides detailed spatial geometry
and enhanced physical awareness, which supports robust reasoning across different viewpoints.

Furthermore, the framework is inherently extensible to diverse HOI scenarios. By adjusting point
cloud configurations, it readily handles multiple objects, complex geometries, or articulated struc-
tures. For example, adding objects only requires including additional point clouds, and articulated
objects (e.g., drawers) can be decomposed into rigid sub-components modeled as separate point
clouds. Increasing point density captures fine details in deformable or complex shapes. This flexi-
bility highlights the method’s practical potential for modeling varied real-world interactions.



4.5 Ablation Study

Effectiveness of Synchronized Diffusion. We argue that integrating visual priors and physical
dynamics into a synchronized diffusion process is essential for HOI video and motion genera-
tion. To validate our synchronized diffusion mechanism: (1) We first remove VID to avoid con-
founding factors (SViMo w/o VID). (2) Then we decompose it into two independent components:
a motion generation model with only motion loss and a video generation model conditioned on
groundtruth motion (VModel w/ GT Mot. Guid.). After training these models independently, we
use the predicted motions from the former as conditions for the latter during inference (VModel
w/ Pred. Mot.). The last two rows of Tab. B show that modeling video and motion indepen-
dently not only leads to a 3.88% decrease in video overall score (0.8719 vs. 0.8381), but also re-
sults in a 5.31% degradation in motion FID (0.0546 vs. 0.0575). This highlights the importance
of our synchronous diffusion model in enabling feature-level synergy between video and motion.
This highlights the advantage of integrating visual priors
and motion dynamics for our method.

—e— SViMo w/o VID

SViMo w/ Grad. Cons.
—e— SViMo w/ Inter. Guid.
—e— SViMo w/ VID (Ours)
—*— VModel w/ GT Mot. Guid.

RN A

Impact of Vision-aware 3D Interaction Diffusion. The
vision-aware 3D interaction diffusion model forms a 2
closed-loop feedback and co-evolution mechanism with
the synchronized video-motion diffusion, by injecting in-
teraction guidance and gradient constraints into the latter.
To validate its effectiveness, we conduct four variants: re-
moving VID entirely (SViMo w/o VID), applying only =
gradient constraints (SViMO w/ Grad. COnS.), provid- 0 200 400 600 800 1000 1200
ing only interaction guidance (SViMo w/ Inter. Guid.), e

and preserving the full VID (SViMo w/ VID). Evaluation Figure 7: Video loss curves of different
results in Tab. B and training loss curves in Fig. @ show variants during the training process.
that direct interaction guidance slightly outperforms gradient constraints, while the complete VID
achieves the best performance.

Loss (log)

Influence of 3D Data on Convergence Speed and Performance. Our method simultaneously
generates 2D videos and 3D motions. To evaluate the contribution of 3D motion data to training
convergence and output quality, we conduct an ablation study in which 3D motion are replaced with
2D data (Ours-2D-VID).

The comparison is performed using three met-

rics: motion FID, video loss at 1K training Taple 4: Ablation analysis of the impact of 3d data

steps, and overall video quality. As shown in g convergence speed and performance.
Tab. B, incorporating 3D motion diffusion leads

to more plausible motions, faster convergence, Method | Mo. FID |  Vid. Loss @1K |  Over. Qual.
and a higher overall video score. In contrast, SViMow/oVID | -3.4883 -4.1912 0.8719
h . h letel h lici Ours-2D-VID 0.0522 3.8265 0.8721
the variant that completely removes the explicit Ours 0.0100 49119 0.8800

motion generation module (SViMo w/o VID)
exhibits further degradation in both convergence speed and final performance. This can be largely
attributed to the fact that 3D motion representation enhances the model’s understanding of object
scale and spatial occlusion relationships.

5 Conclusion

In conclusion, we propose a synchronized diffusion model that unifies hand-object interaction video
generation and motion synthesis in a single diffusion process. By jointly modeling the co-evolution
of appearance and motion, our method produces visually realistic and dynamically plausible results.
A key component is the vision-aware 3D interaction diffusion model, which guides the denoising
process via gradient constraints in a closed-loop pipeline, greatly improving video-motion consis-
tency. The framework requires no predefined conditions and shows strong zero-shot generalization
in real-world settings. It is also inherently extensible, easily adapting to diverse HOI scenarios, such
as those with multiple, complex, or articulated objects, through simple adjustments to the 3D point
cloud representation. This paradigm offers a promising direction for multimodal alignment and
building world models that understand complex physical interactions.
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper does not have a dedicated limitations section in the main body. We
addressed potential limitations in the appendix due to space constraints, allowing the main
text to focus on methodological details and results.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

» The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-

dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper presents the theoretical componentsincluding synchronized video-
motion diffusion (SViMo), vision-aware 3D interaction diffusion (VID), and their closed-
loop co-evolution mechanismin Sec. B. This section describes the network architecture and
loss functions. Additional training and inference pseudocode are included in the Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a detailed experimental setup, including datasets, hyper-
parameters, and evaluation metrics. Reproduction steps are clearly outlined in the main
text (Sec. H). Both qualitative and quantitative results are presented for comparison. We
commit to releasing the source code upon paper acceptance.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The TACO dataset [BR] and the CogVideoX [bY] foundation model we use are
already open-sourced, and we commit to releasing the source code upon paper acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in the experimental section (Sec. B)
and the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:

Justification: We follow the convention in prior works and report the performance number
on the standard benchmarks.

Guidelines:

18


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

 Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources and other train-
ing details in Sec B2

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Due to space limitations, we discuss both potential positive societal impacts
and negative societal impacts in the appendix.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit the creators or original owners of the assets (e.g., code,
data, models) used in the paper, and explicitly mention and respect the corresponding li-
censes and terms of use in the references section.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

20



13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects requiring IRB Ap-
provals.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.
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SViMo: Synchronized Diffusion for Video and Motion Generation in
Hand-object Interaction Scenarios (Appendix)

In this supplementary material, we provide additional details on our methodology and experiments,
and discuss the limitations, thereby enabling a more comprehensive and in-depth understanding of
our proposed Synchronized diffusion for video and motion generation (SViMo). Below is the outline
of all contents.

A Pseudo-code for the Training and Inference Phases

In the main text, we introduced the Synchronized Video-Motion Diffusion Gy (SViMo, Sec. B3),
which focuses on video generation. We also presented the Vision-aware 3D Interaction Diffusion
My (VID, Sec. B4), designed for motion generation. Additionally, we described a closed-loop
feedback mechanism between these two components (Sec. B5). Next, we will provide a more
detailed description of the training (Alg. [) and inference process (Alg. D) using pseudocode. Note
that our method does not require the rendered motion video as input during inference. We only
require a reference image and a prompt as inputs, and we initialize the target outputs (2D video, 2D
motion video, and 3D motion) with pure noise, and iteratively denoise them to obtain the final results.
As detailed in Alg. D, Line 4, denote the triple noisy latents at timestep ¢ as {z}, 2™, (h;,0;)} , we
first apply single-step denoising using VID M to produce the refined (but still noisy) 3D motion

(fl,o,()o). The refined 3D motions are then rendered back into a noisy 2D motion video latent ééw .

Since 234 represents a more refined estimate than the original noisy latent 2}, we concatenated it

with the latter as auxiliary information and input them into SViMo Gy.

Algorithm 1 Joint training process of SViMo and VID.

Input: Reference image I, text prompt P, target video V, target 3D motion (h, 0), frozen video
VAE encoder £, SViMo network Gg, VID network M.
Output: Optimized parameters of SViMo (6*) and VID (¢*).

1: M = Proj(h, o) > rendered motion video projection
20 2y =E(V), 2 =E&(M), z; = E(I) > calculate latent codes
3: while not converged do
4: t~Uu{l,---,T} > sample time step ¢
5: Calculate diffused data z}/ s zéw , hy, o > following Eq. @
6: (ho, 00) = Mo grad ((ht, oy),(z),zM), t) > following Eq. B
7: M = Proj(ho, d0), 25" = E(M) > direct interaction guidance following Eq.
8: (2(‘)/’9, 2(%) =Go(z) Dz, 2zl z) P,t) > inverse denoising
9: (fzo,¢, 00,6) = My ((ht, o), (2(‘)/’0, 2(%)7 t) > indirect gradient constraint (Eq. B, @)
10: L = w1 Lsvimo + w2 Lvip > calculate loss following Eq. B, B
11: update parameters 6 and ¢ by gradient descent

12: end while
13: return 6* =0, ¢* = ¢

B More Implementation Details

B.1 VBench Metrics

We use some of the evaluation metrics from VBench [22] for quantitative analysis of the generated
videos. The details of its implementation could not be fully presented in Sec. Bl of the main text
due to page constraints, so we provide a supplement here.

Subject Consistency score is used to evaluate whether a subject (e.g., a person or an object) re-
mains consistent throughout a video. Specifically, we first extract image features from each frame
of the video using DINO [6]. Then we calculate the cosine similarity between features of consec-
utive frames and between each frame and the first frame to characterize subject consistency. The
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Algorithm 2 Generation process of videos and motions.

Input: Reference image I, text prompt P, parameters of the noise scheduler {oy, 5;}1_;, frozen
video VAE encoder £ and corresponding decoder D, trained SViMo network Gy and VID net-

work M.
Output: Generated HOI video V' and 3D motion (hg, 0p).
zr=&) > calculate latent codes
2 2¥ ~ N(O, I), M ~ N(0,1), (h7,0r) ~ N(0,I) > initialization
fort=T,---,1do
4: (ho7 00) = Mho-grad ((ht, 0:), (2}, zM), t) > following Eq. B
M = Proj(hg, &o), 231 = £(M) > direct interaction guidance following Eq. [
6: (28, 201) = Go(2V @ zr,z2M @ 2} Pt) > inverse denoising
(ho,60) = M, ((ht, 01), (27,230, t) > indirect gradient constraint (Eq. B, @)
8 py = (rgl o D2V 4 Vafll(;t o) 5V ) same as 1 and py, ,
0% = 11117;“1(1 —ay) > constant value
10: Zy71 NN(IJJV7JQI) Zt 1 NN(HA{,J I) (htfl,otfl) NN(Hh’O7O'2I)
end for
12: V=D(z})) > decode into raw video

return V, (hg, 09)

calculation formula is as follows:

T
Ssubj. = 75— 12

t=2

+(de—1 - dp)) ®

l\')\»—l

where d; is the DINO feature of the t*" video frame.

Background Consistency. High-quality videos should not only ensure the subject’s appearance
remains consistent throughout the video, but also should not overlook the consistency of the back-
ground, such as scenes, rooms, and tabletops. VBench [22] computes the background consistency
score by utilizing the cosine similarity of CLIP [47] image features, with the calculation process
being similar to Eq. B:

<Ct71 : Ct>) , 9)

SBkg. =

N)\»—l

T
i

where ¢; is the CLIP feature of the t** video frame. Notably, we crop the HOI region, following
the common practice in HOI generation [?4], because the global background context has a limited
influence on fine-grained local interactions. Our experiments demonstrate that baseline models still
exhibit hallucinated artifacts even with cropped regions. These artifacts, which include the spon-
taneous generation of objects, violate temporal coherence (see Fig. B, rows 1-2). Therefore, this
metric remains valuable for assessing video consistency.

Temporal Smoothness score is based on prior knowledge that video motion should be smooth, i.e.,
linear or quadratic, over very short time intervals (a few consecutive video frames). To quantify the

smoothness of a generated video V' = {vy, vs, - -+ , var }, VBench [27] first removes odd-numbered
frames (v1,vs, - ,var—1). Then it uses a video frame interpolation model [B3] to generate the
removed odd-numbered frame sequence (01, U3, - - - , Dor—1). Next, it calculates the mean absolute

error between the reconstructed frames and the original removed frames to measure whether the
generated video satisfies the prior knowledge embedded in the video frame interpolation model.
Finally, this value is normalized to the range [0, 1]:

255 — MAE(vay 1, U 1)
STSmno - T Z 255 : (10)

Dynamic Degree. The three metrics mentioned above, i.e., Subject Consistency, Background Con-
sistency, and Temporal Smoothness, can individually quantify the performance of generated videos
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in certain specific aspects. However, a completely static video may achieve very high scores in them,
which is not the desired outcome. To evaluate the dynamic degree of generated videos, VBench [22]
employs RAFT [56] to calculate optical flow strengths between adjacent frames. The average of
the top 5% highest optical flow intensities is taken as the video’s dynamic score. Once this score
exceeds a predefined threshold 7, the video is considered dynamic, otherwise, it is deemed static.
The overall dynamic score is calculated as follows:

N
Spyn. = % I (Avg (Toprg:T (RAFT(;_, vt>)) > To,,) : (11)

n=1

where NV is the number of generated videos.

B.2 Training Loss for 3D Motions

We generate 3D motions using a vision-aware 3D interaction diffusion model. During training, we
apply separate supervision for hand and object motions. The hand loss is computed as:

2

; (12)
2

where the three terms represent the hand pose and its first-order and second-order differences be-
tween frames. For the 3D object point cloud sequence o € RIBN:K:31 we first split the object
into tool 00 € RIENK/2:3] apd target Ogprger € RIB-N.K/2.3] then calculate losses separately for
these two components and average them to obtain the final object loss. Firstly, we directly compute
the Chamfer distance between each frame’s generated point cloud and the ground truth to ensure
consistency in shape contours. Furthermore, to enforce smoothness of the inter-frame motion, we
first reshape the data into [B x N, K /2, 3], then calculate pairwise Chamfer distances between con-
secutive frames for both ground truth and generated motion, which captures the movement dynamic
in the point cloud sequence. Finally, we compute the mean absolute error (MAE) between predicted
values and ground truth motion dynamics:

£1 = AVg {Dchamf (Oa 6)} )

~ 1

~ 112 12
Lhand = Hh . hH2 +02- ‘ . h’H2 £0.05- Hh” —h

N
1 A .
£2 == AVg {]V—l Z MAE (Dchamf(ona On—l)a Dchamf(ona On—l))} ) (13)

n=2

Eobj =Ly +0.1-Ls,

where o consists of 0y and Ogarget.

B.3 Pretrained 3D Interaction Reconstruction Model

To assess the difference between the distribution of the generated 3D interactions and that of the
ground truth motions, we trained a 3D action reconstruction model on the TACO [B¥] dataset using
the variational autoencoder architecture from Diverse Sampling [IZ]. During evaluation, we utilized
features from the residual graph convolutional layers of this model to compute the FID score.

C Additional Experimential Results

C.1 More Ablation Studies

Our model is built upon the CogVideoX-5B [69] model and extended to a video-motion joint genera-
tion model. Additional parameters include the input and output projection layers, and triple modality
modulation modules in all 42 DiT Blocks, resulting in a total of 6.02 billion parameters. To reduce
training computational consumption, we tested two model variants. First, we added motion modal-
ity modulation modules only to even-numbered DiT Blocks while retaining only the original text
and video modulation modules in odd-numbered DiT Blocks, i.e., Only Even Layers. This de-
sign slightly reduced the total parameter count. Second, we applied LoRA Training, which uses
low-rank decomposition of the original model parameters to significantly decrease the number of
trainable parameters. Experimental results in Tab. B show that both variants produce lower-quality
videos and motion compared to our default settings. This indicates that effective alignment and
fusion of video and motion modality features are essential for generating high-quality outputs.
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Table 5: Ablation studies on the synchronized diffusion and the vision-aware 3D interaction diffu-
sion.

[ Content | Dynamic | [ Hand | Object | HOI
Varients - Overall 1
|| Subj. T Bkg. 1 | TSmoo. T Dyn. 71 | || MPJPE | MSmoo. | | Cham. | | FID |
Ours 0.9534  0.9546 0.9883 0.9784 0.8800 0.0121 0.0053 0.0019 | 0.0100
Only Even Layers || 0.9535 0.9552 0.9884 0.9757 0.8783 0.0297 0.0103 0.0127 0.1368
LoRA Training 0.9458  0.9523 0.9892 0.9688 0.8631 0.0671 0.0211 0.0555 | 0.4671
Table 6: Generalization performance on more distant HOI scenarios.
HOI Data for Evaluation | Overall Video Quality + 3D Motion FID |
Ours (on diverse camera viewpoint data) 0.8703 0.0214
Ours (on completely unseen verbs) 0.8712 0.0197
Ours (on TACO test data) 0.8800 0.0100

C.2 More Results of Our SViMo

Qualitative Results of Our SViMo. We present two additional videos and motion generation results
as shown in Figure B. These results demonstrate videos and motions that are both reasonable and
consistent. Considering that image frames cannot effectively showcase video effects, we provide
videos in the supplementary materials for a more vivid demonstration.

Ref. Img & Prompts Generated Video Frames and Motion Sequences

use spoon to
scrape off plate

use spatula to
put out bowl

Figure 8: Visualization of the generated videos and motions. We provide vivid demonstrations in
the video of the supplementary materials.

Generalization to More Distant HOI Scenarios. To enable a more rigorous evaluation of gener-
alization capability, we curated an additional test set of 100 instances, consisting entirely of unseen
human-object interaction (HOI) categories with novel verbs. These were sourced from TACO [BX],
OaklInk?2 [[7T], and GigaHands [5]. While TACO provides 12 camera views, we further enhanced
viewpoint diversity by selecting approximately 70 instances from OakInk?2 (4 views) and GigaHands
(51 views). As shown in Tab. B, both video and motion metrics on this unseen HOI set remain com-
parable to those on the main TACO test set. For the generation involving novel verbs, although a
slight performance drop is observed, the results stay reasonably close to the main set.

C.3 Comparisons of Our SViMo and Other Methods

Diversity and Physical Metrics of 3D Motions. We add three new evaluation metrics: diversity,
penetration rate, and contact rate. The results in Tab. I show that our method achieves lower diver-
sity scores than baselines. This occurs because baseline methods produce 3D motions with visible
artifacts, including chaotic object point clouds and significant shape/scaling distortions relative to
reference images (Fig. H). Consequently, higher diversity scores don’t necessarily indicate better
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Table 7: Additional metrics of the generated 3D motion.
Method \ Diversity T Penetration Rate | Contact Rate 1

MDM [57] 6.5308 0.0904 0.8107
EMDM (4] 5.7847 0.0844 0.8251
Ours 2.4135 0.0473 0.8328

Table 8: The influence of motion information on baseline video models.

Method | Motion Availability | Motion Type | Overall Video Quality +
Easy Animate [61] wlo wlo 0.8330
CogvideoX-5B [hY] 0.8684
Animate Anyone [Z1] | |  Input GT Motion | 0.8209
Easy Animate [61] w/ 0.8366
CogvideoX-5B [BY] Train with motion data 0.8698
Ours 0.8800
Table 9: Comparison on memory and time consumption.
| Training | Inference
Method
\ Params (B) Peak VRAM (G) Time Per Step (s) \ Peak VRAM (G) Latency for 50 steps (s)
Animate Anyone [Z1] 2.17 39.98 2.45 6.84 20.81
CogVideoX-5B [bY] 5.57 56.32 11.61 20.59 48.35
Ours 5.82 61.52 18.06 23.35 71.31

motion quality. Additionally, our method achieves superior performance in both penetration rate
and contact rate metrics, indicating superior physical plausibility.

Influence of Motion Information on Baseline Video Models. Compared to baseline methods
performing video generation alone, our approach jointly generates video and motion, and learns a
visual-motion joint representation through adaptive multimodal modulation. To enable fair compar-
isons with baselines and assess the contribution of the modulation mechanism to our performance
gains, We augmented baseline video models with the motion modality. Specifically, Animate Any-
one [21] inherently uses Motion GT as input. For EasyAnimate [b1] and CogVideoX [hY], we
trained them using both the original video and the rendered motion video. Results in Tab. B show that
Animate Anyone produces videos of notably lower overall quality due to severe inter-frame flicker-
ing (see Fig. B in the main text and supplementary videos). For EasyAnimate and CogVideoX, while
motion-aware training yielded marginal gains, improvements remained modest. This suggests that
multimodal modulation fusion plays a more critical role in our approach than the motion modality
alone.

VRAM Consumption and Training/Inference Time. We compared VRAM consumption and
training/inference time with Animate Anyone [Z1] and CogVideoX-5B [AY]. Results in Tab. B
show that Animate Anyone requires significantly lower VRAM consumption and shorter time for
both training and inference. This efficiency stems from its incremental design: it extends a 2D
image generation model with temporal attention modules to enable video synthesis. In contrast,
both CogVideoX and our method employ unified spatial-temporal full attention. Compared with
CogVideoX, our approach simultaneously generates both 2D videos and 3D motion sequences, intro-
ducing only minimal additional parameters and maintaining computational cost within a reasonable
range.

Additional Comparisons of Video Generation Results. We present additional video generation
results from three more cases, as shown in Figures B, [0, and . Other baseline methods’ generated
results exhibit certain artifacts, such as flickering, distortion, and implausible movements, which are
highlighted in red. Our method demonstrates superior performance compared to theirs.

C.4 Failure Cases

While our approach can generate high-realistic videos and plausible motions in most cases, it oc-
casionally exhibits certain artifacts such as penetration, low dynamics, and object inconsistency, as
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Figure 9: Comparison of video generation results. The artifacts in the videos generated by the
baseline methods are highlighted in red. Refer to the video in the supplementary material for vivid
demonstrations.
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Figure 10: Comparison of video generation results. The artifacts in the videos generated by the
baseline methods are highlighted in red. Refer to the video in the supplementary material for vivid
demonstrations.

shown in Figure M. However, the overall performance is still better than the baseline method. Ad-
dressing these issues, we need to explore stronger foundational models on one hand and leverage
larger-scale video-motion datasets for training on the other hand.

28



g
E g
g 3
5 £
- =
= ;
S A w _ __Ahhef _SBh™d _SR2™d A0 d _A0ned @&
= o)
g BE
T @« =
>
= EE
= =
z

Juouy
Neuwnuy
uonIISIq
SuLdIy

>
Z 5
£ 1
o
=)
2 z
LS .
< 5
z g
g Z
* z.

samQ

Figure 11: Comparison of video generation results. The artifacts in the videos generated by the
baseline methods are highlighted in red. Refer to the video in the supplementary material for vivid
demonstrations.

Ref. Img & Prompts Generated Video Frames and Motion Sequences
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Figure 12: Visualization of failure cases. Red boxes highlight artifacts.

D Limitations and Future Work

In fine-grained hand-object interaction scenarios, simultaneously generating visually high-fidelity
videos and physically plausible motions remains a challenging task. While our synchronized dif-
fusion model has made significant progress in addressing this challenge, three key limitations still
exist. First, our method relies on a foundation model trained on large-scale video data, which is then
fine-tuned on a smaller dataset of video-3D motion pairs. Although the latter has a relatively smaller

29



data scale, it remains essential for the expansion. Second, while our approach can generate diverse
interaction motions, the produced 3D object point clouds are currently restricted to rigid, simple
objects and struggle with structurally complex geometries. Third, the capabilities of the pre-trained
foundation model directly impact both training efficiency and final performance. For instance, using
lightweight LoRA (low-rank adaptation) strategies with the CogVideoX [6Y] foundation model re-
sults in suboptimal outcomes, even a full-parameter finetuned model has potential blurring artifacts
when sampling at reduced resolution.

To address these challenges, future work should focus on three directions. First, replacing the non-
differentiable 3D trajectory representation with differentiable neural representations (e.g., NeRF-
style formulations [27]) could enable video-only supervision without requiring explicit 3D annota-
tions. This would transform our vision-aware 3D interaction diffusion model (VID) into a large
reconstruction model, potentially resolving the second limitation. Second, continuous following of
advanced open-source foundation models is necessary, as their evolving capabilities directly affect
training stability and output quality. Third, integrating visual reinforcement learning strategies [40]
could further enhance generation fidelity. These improvements would collectively advance the field
toward more robust and scalable hand-object interaction synthesis.

E Broader Impacts

Our proposed synchronized video-motion diffusion model generates hand-object interaction videos
alongside corresponding motion sequences, achieving both visual realism and physically plausible
dynamics. This overcomes the limitations of prior approaches that prioritized only visual quality or
physical accuracy in isolation. The model demonstrates generalization capabilities to real-world sce-
narios, making significant progress in this research domain. Moreover, the joint diffusion paradigm
offers valuable insights for cross-modal information integration in multimodal generative models.
Practical applications span multiple fields, including game development, digital human animation,
and embodied robotics, with potential societal benefits across these domains.

While acknowledging the positive impacts of this technology, we also recognize its dual-use nature.
The system could be misused to generate synthetic media that violates privacy or perpetuates biases.
To address these concerns, we commit to ethical development practices and transparent implementa-
tion protocols. Our research emphasizes proactive risk mitigation to ensure responsible innovation
that maximizes social benefits while minimizing potential harms.
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