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Abstract001

Despite recent advancements in AI and NLP,002
negotiation remains a difficult domain for AI003
agents. Traditional game-theoretic approaches004
that have worked well in two-player zero-sum005
games struggle in the context of negotiation006
due to their inability to learn human-compatible007
strategies. On the other hand, approaches that008
only use human data tend to be domain-specific009
and lack the theoretical guarantees provided by010
strategies grounded in game-theory. Motivated011
by the notion of fairness as a criteria for op-012
timality in general sum games, we propose a013
negotiation framework called FDHC which in-014
corporates fairness into both the reward design015
and search to learn human-compatible negoti-016
ation strategies. Our method includes a novel,017
RL+search technique called LGM-Zero which018
leverages a pre-trained language model to re-019
trieve human-compatible offers from large ac-020
tion spaces. Our results show that our method021
is able to achieve more egalitarian negotiation022
outcomes and improve negotiation quality.023

1 Introduction024

Recent advancements in AI and NLP have led025

researchers to develop techniques to build au-026

tonomous agents which can achieve human-level027

performance in bargaining games such as Deal-or-028

no-Deal (Sengupta et al., 2021). These techniques029

can be separated into two broad categories: game-030

theoretic approaches and data driven approaches.031

Game-theoretic approaches to negotiation at-032

tempt to build negotiation agents without observ-033

ing any human data. This class of algorithms is034

typically applied to two-player zero-sum games035

(2p0s) which do not require agents to learn human-036

compatible strategies in order to be successful (Sil-037

ver et al., 2018; Brown et al., 2020; Vinyals et al.,038

2019). However, other classes of games such as039

negotiation require cooperation with humans in040

order to be successful (Bakhtin et al., 2022). As041

a result, traditional game theoretic methods have042

failed to achieve quality performance in the realm 043

of negotiation (Li et al., 2023). 044

Data driven approaches to negotiation learn a 045

human-like strategy directly using data on a spe- 046

cific negotiation domain (Verma et al., 2022; Lewis 047

et al., 2017; He et al., 2018). Unfortunately, col- 048

lecting human data is expensive and the strategies 049

in the data may not effectively generalize to other 050

negotiation domains. Furthermore, these methods 051

lack the desirable properties that game-theoretic 052

methods offer such as controllability. 053

We propose an approach which bridges game- 054

theoretic and data driven approaches called 055

Fairness-Driven Human-Compatible (FDHC) bar- 056

gaining. This method is designed to target egali- 057

tarian outcomes, specifically the Egalitarian Bar- 058

gaining Solution (EBS), which we use as a for- 059

mal notion of fairness (Kalai, 1977). We target 060

fair outcomes as prior work has shown that fair- 061

ness is a key component of human strategies and 062

has also served as a useful notion of optimality in 063

general-sum repeated games (Tossou et al., 2020; 064

DiGiovanni and Zell, 2021; Kroll et al., 2014). Our 065

fairness-targeting strategy is learned with a novel 066

LLM-Guided Monte Carlo tree search with Zero 067

domain specific training data (LGM-Zero). LGM- 068

Zero leverages the reasoning capabilities of LLM 069

models (Kwon et al., 2023) to extract human-like 070

negotiation offers from large action spaces with- 071

out the need to collect additional human data. A 072

value model trained via self-play then selects the 073

best offer that the LLM proposes. The LLM and 074

value model are used to guide a Monte Carlo tree 075

search (MCTS) towards the desired outcome given 076

by FDHC (Figure 1). 077

We implement our method on a common negoti- 078

ation exercise used in business classes where two 079

students bargain over a used car. We train a model 080

to play as the seller in this scenario. Both the buyer 081

and seller are given private reservation prices for 082

the car that they cannot go beyond during the nego- 083
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Figure 1: Outline of our FDHC negotiation framework. Our method consists of decomposing the extensive form
Nash bargaining game into a series of depth-limited subgames. At each subgame we calculate the EBS and play a
human-like strategy which targets this outcome using a MCTS guided by a LLM and value network.

tiation. For example, suppose the buyer can’t buy084

the car for above $11K and the seller cannot sell it085

for below $10K. The goal of our method is to reach086

an agreement at the EBS solution for the game.087

Which in this case corresponds to the midpoint be-088

tween the two reservation prices ($10,500 in the089

example). While we implement our method for this090

specific exercise, our approach generalizes to any091

negotiation setting that can be modeled as a Nash092

bargaining game. This encompasses any game in-093

volving surplus division, including multi-party and094

multi-issue negotiations.095

Our final model uses a modular design where ne-096

gotiation acts are selected according to the FDHC097

framework. Strategies are then realized in natural098

language using a LLM such as GPT-3.5 or GPT-4099

(OpenAI, 2023). Our contributions can be summa-100

rized as follows:101

• We propose novel negotiation framework for102

bargaining called FDHC. Our framework tar-103

gets the EBS of Nash bargaining games in an104

attempt to grant equal gain to both parties.105

• We introduce a RL+search method called106

LGM-Zero which utilizes a LLM and value107

network to extract human-compatible offers108

from large action spaces.109

• Our results show that our method is able to110

generate more egalitarian outcomes compared111

to several baselines. Our human evaluation112

also shows that our model is able to improve113

negotiation quality while while remaining114

comparable to GPT-4 in human-likeness.115

2 Background 116

The Nash bargaining game is a game in which 117

two or more players must divide a surplus between 118

themselves. In the used car example given previ- 119

ously, the surplus would be the difference between 120

the buyer and seller’s reservation prices. We use 121

the term extensive form Nash bargaining game 122

to refer to a game in which players can propose 123

divisions of the surplus over the course of a set of 124

time steps. A Nash equilibrium is a game state 125

in which no player can benefit from a unilateral 126

change in strategy. 127

Bargaining theory makes use of axioms which 128

are rules that describe properties that a bargaining 129

outcome satisfies (Nash, 1950). We make use of the 130

following axioms when analysing the theoretical 131

properties of our method. The axiom of symmetry 132

says that if the players in the bargaining game are 133

indistinguishable based on the description of the 134

game, then they should all receive the same pay- 135

off. A weak Pareto optimal solution is one where 136

any change to the outcome will make at least one 137

party no better off. Strong monotonicity states 138

that any increase in the amount of surplus being 139

bargained over should benefit all players involved 140

in the negotiation. Formal definitions can be found 141

in Appendix A. 142

3 Related Work 143

Prior work in the field of negotiation has typically 144

been centered on leveraging human data to learn ne- 145

gotiation strategies. These methods involve collect- 146

ing human-human dialogues for negotiation exer- 147
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cises such as Craigslist bargaining (He et al., 2018)148

or Deal-or-no-Deal (Lewis et al., 2017). This data149

can then be used to perform supervised learning150

or offline reinforcement learning on a negotiation151

model (Verma et al., 2022; Zhan et al., 2024). More152

recent work has focused on examining and enhanc-153

ing the negotiation capabilities of LLMs (Bianchi154

et al., 2022; Schneider et al., 2023; Fu et al., 2023;155

Xia et al., 2024). These methods use prompting156

to create negotiation agents and rely on the zero-157

shot/few-shot capabilities of LLMs to negotiate.158

Data driven methods for negotiation are able159

to learn human-like negotiation strategies as they160

directly leverage human data. However they are161

often overly tailored to one particular domain and162

have a difficult time generalizing to other scenarios.163

Furthermore, data driven strategies lack theoretical164

guarantees such as convergence to a Nash equi-165

librium is which is a desirable attribute for any166

negotiation strategy.167

Methods grounded in game theory are able to168

provide the theoretical guarantees that data driven169

methods lack. As a result they are much more con-170

trollable and adapt better to different domains as171

no additional data collection is needed for train-172

ing. However, training with no human involvement173

often results in strategies which are incompatible174

with human play (Bakhtin et al., 2022). This has175

limited work in the area primarily to 2p0s such176

as chess where human-compatibility is not needed177

to ensure robust play (Silver et al., 2018). These178

methods are designed to ensure convergence to a179

Nash equilibrium, which does not necessarily re-180

sult in a human-compatible strategy (Section 5).181

The little work that has attempted to apply game182

theoretic methods to the negotiation domain tends183

to ignore the dialogue aspect of negotiation, consid-184

ering it to be "cheap talk“ (Li et al., 2023). While185

the strategic aspect of negotiation can be modeled186

independently of dialogue, dialogue style has been187

shown to have a measurable effect on negotiation188

outcomes (Noh and Chang, 2024). Our method189

is designed to provide similar theoretical guaran-190

tees to game theoretic methods while maintaining191

human-compatibility of data-driven methods by192

leveraging the reasoning capabilities of LLMs.193

4 Method194

In this section we describe the FDHC framework195

which prioritizes egalitarian outcomes. We also196

describe LGM-Zero, which uses a value model197

trained with self-play and language model as a pol- 198

icy network. Finally, we outline how we implement 199

our setup for single-issue distributive bargaining. 200

4.1 FDHC Negotiation Framework 201

FDHC is designed to work within the context of 202

the Nash bargaining game. Specifically, it is de- 203

signed for an extensive form Nash bargaining game 204

with imperfect information. In this game, players 205

repeatedly request some portion of a surplus, if the 206

sum of their requests at the end of the game is less 207

than or equal to the total surplus then they both 208

receive what they requested, if not they receive a 209

disagreement payoff d. FDHC works by decom- 210

posing this game in to a series of depth limited 211

subgames. These subgames are identical to the 212

original game, except they may be rooted at any 213

game history and only extend for a limited number 214

of actions in the future. 215

Before proceeding to our subgame, we make a 216

guess for the size of the resource pool to be split and 217

our opponent’s utility function over these resources. 218

The guess is made based on the history of the game 219

as well as any initial information we are provided 220

before the game has begun. The specifics of how 221

we do this are domain-dependent and for many 222

games some of the information may be given. For 223

example, in the game Deal-or-no-Deal we know 224

the size of our resource pool but do not know our 225

opponents preferences over the pool. Conversely, 226

in distributive bargaining games we know our op- 227

ponents preferences but do not know the size of the 228

resource pool. 229

After making our guess, we root our subgame 230

at the corresponding belief state. This subgame is 231

treated as a perfect-information game and the EBS 232

is calculated as 233

E(S, d) = argmax
x∈I(S,d)

min
i∈N

(xi − di) 234

where S denotes the bargaining set, I(S, d) is some 235

individually rational payoff set, and di, xi are the 236

disagreement payoff and payoff for player i, re- 237

spectively. 238

Our model then plays a strategy which targets 239

this solution using LGM-Zero, described in the 240

next section. We play moves according to this 241

strategy until the subgame concludes. This can be 242

as short as one move or as long as the entire game 243

depending on our choice of subgame length. We 244

then update our guess for the resource pool and 245

utility function based on our opponents moves and 246
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transition to the next subgame. This process is247

repeated until the game concludes.248

4.2 LGM-Zero249

Now we describe LGM-Zero, which uses a MCTS250

guided by a LLM and value network to perform ne-251

gotiation actions. Under our setup the only model252

we train is our value network which is trained via253

self-play. We first describe how our method be-254

haves during inference time and then describe the255

process we use to train our value model.256

4.2.1 Inference257

Given the action history of a negotiation our algo-258

rithm searches for the best response by repeatedly259

performing selection, expansion, and backpropaga-260

tion. We describe these stages next.261

Selection During this stage we traverse the game262

tree by selecting the action, a, with the highest up-263

per confidence bound for its Q-value (Silver et al.,264

2018), calculated as265

U(s, a) = Q(s, a) + cp ∗
√∑

bN(s, b)

1 +N(s, a)
266

where s is the current game state, cp is a hyperpa-267

rameter which controls the degree of exploration,268

and N(s, a) denotes the number of times we have269

taken the action previously. The selection process270

is repeated until we reach a leaf node, which is a271

defined as a state whose children have not been272

explored yet.273

Expansion In the expansion phase we feed a274

LLM a prompt to suggest five good actions given275

the current game state. We treat all these actions276

as having equal probability under the model and277

all other actions at the current state to have a prob-278

ability of zero. If one of the actions results in a279

terminal state its value is set to the reward returned280

by the state, otherwise it’s set to the output of our281

value model. These values are propagated back up282

the tree according to the next step.283

Backpropagation After expansion is concluded284

we update each node along the search path by in-285

crementing N(s, a) by one for each action taken286

during the search. We also update the Q-values287

along the search path as288

Q(s, a)← Q(s, a) +
v(s)

N(s, a)
289

where v(s) is the value of the state we evaluated,290

given either by our value model or the actual reward291

value depending on if the state is terminal.292

We repeat this search for n iterations then play a 293

move based on which child of the current state has 294

the highest Q-value. 295

4.2.2 Training 296

Our value model is trained using a method sim- 297

ilar to fictitious self-play (Heinrich et al., 2015). 298

Fictitious self-play is an iterative method for com- 299

puting an approximate Nash equilibrium. This is 300

done by performing self-play with a mixed strategy 301

that chooses between playing a best response to 302

our opponent’s strategy and the average strategy 303

for the current player. The fictitious self-play set 304

up traditionally learns the best response strategy 305

with a deep Q-network and the average strategy via 306

supervised learning. 307

Prior work has suggested augmenting the best 308

response step with a MCTS (Zhang et al., 2019). 309

We adopt this approach and use the same search 310

process we use during inference time for the best 311

response strategy. To play an average strategy we 312

once again leverage a LLM but instead of ranking 313

the offers with our value network, we simply have 314

it suggest one move. 315

The training data for the value model consists 316

of game states and outcomes for the depth limited 317

subgames described in the previous section. The 318

reward for each subgame, from the perspective of 319

player one, is given by 320

v(s) =

{
mini∈N (xi − di) if x1 ≥ E(S, d)

−mini∈N (xi − di) if x1 < E(S, d)
321

This reward says that if the payoff for player one 322

is greater than or equal to the EBS of the subgame, 323

then the reward is simply the EBS score for the 324

game state. If the player’s payoff is less than the 325

EBS then they receive the negative EBS score for 326

the game state. Our reward design reflects the fact 327

that humans care about a combination of fairness 328

as well as their own utility. Therefore our model 329

will target the EBS solution (which has the max 330

reward value) while also preferring outcomes that 331

result in better payouts for itself. 332

4.3 Implementation 333

We implement our proposed method for a single- 334

issue distributive bargaining exercise. This exercise 335

involves two parties negotiating over the price of 336

a used car and is used in graduate-level business 337

classes (see Appendix F for the scenario). The 338

buyer and seller are both given private reservation 339
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prices which they cannot go beyond during the340

negotiation. In our scenario the seller cannot go341

below a price of $12,500 and the buyer cannot342

go above $13,500. The difference between the343

reservation prices is the surplus for the game. Our344

model is trained to to act as the seller in this sce-345

nario. We assume that our opponents are risk neu-346

tral and have a disagreement payoff of $100. This347

disagreement payoff is chosen based on experimen-348

tal results which show that inefficient outcomes,349

such as disagreements, are common in negotiation350

(Feltovich and Swierzbinski, 2011; Ellingsen and351

Johannesson, 2004) suggesting that many humans352

may prefer to not reach a deal instead of agreeing353

to a outcome which gives little payoff.354

Our final design uses a modular framework355

where the negotiation acts are extracted from user356

responses using GPT-4. Our schema uses four acts:357

no_counteroffer, counteroffer, accept, reject. These358

acts translated into to our game state which con-359

sists of the offer history for the game (ex. [1500,360

1100, 1450, 1200,. . . ]). If the user rejects an offer361

or gives no counter offer then we assume that they362

are maintaining their previous offer. If they accept363

the offer then we assume that their offer is equal to364

FDHC’s offer. Then a counteroffer is generated us-365

ing FDHC and LGM-Zero. This offer is realized in366

natural language by prompting GPT-3.5 to generate367

a response incorporating the action.368

We use GPT-3.5 as our LLM policy network369

and a transformer with 50 encoder layers and 50370

decoder layers as our value network. Our initial371

subgame is rooted at the belief state for the sur-372

plus corresponding to the price range given in the373

initial description of the car. After the subgame374

concludes, our new guess for the surplus is equal375

to the difference between our current offer and the376

maximum of our opponent’s offer and our reser-377

vation price. At the final turn of the negotiation378

we offer $100 (our disagreement payoff) above our379

reservation price or accept our opponents offer if380

it’s above this price. Additional implementation381

details can be found in Appendix D.382

5 Theoretical Analysis383

In this section we analyse the theoretical properties384

of the FDHC framework. Our analysis assumes385

that, when needed, we can manipulate our LLM386

policy such that one of the offers it outputs is equiv-387

alent to the EBS.388

We can ensure that our framework will result in389

a Nash equilibrium under fairly mild assumptions. 390

We need to assume that the bargaining game is 391

conducted during a finite amount of time steps and 392

that the amount of time steps is known to both 393

players. This gives us the result in Theorem 1. 394

Theorem 1. Let tn denote the FDHC’s final turn in 395

the negotiation, let α denote the outcome proposed 396

at tn−1, and let EBS(x) denote the EBS value for 397

some outcome x. Setting FDHC’s estimate of S = 398

argmax(EBS(α),EBS(d)) at tn will result in a 399

Nash equilibrium outcome. 400

The proof for this result is straightforward and 401

is presented in Appendix B. What this theorem 402

says is that we can adjust our surplus estimate so 403

that at its final turn, FDHC will either concede 404

all of the surplus to its opponent(s) or accept the 405

opponents’ offer, so long as the offer is larger than 406

its disagreement payoff. This strategy will ensure 407

that the negotiation ends in a deal that splits the 408

entire surplus if one is feasible. Since any deal 409

which splits the whole surplus results in a Nash 410

equilibrium (Appendix B), our method will give a 411

Nash equilibrium outcome. 412

This result also demonstrates that convergence 413

to a Nash equilibrium alone is not enough to ensure 414

a robust negotiation agent. However, this does give 415

our agent a baseline level of quality as it means 416

that we are guaranteed to reach a deal if one is 417

feasible. This is in contrast to data-driven methods 418

which provide no such guarantees and have been 419

empirically shown to give inefficient negotiation 420

outcomes (Bianchi et al., 2022). 421

Under stronger assumptions, we can guarantee 422

that FDHC will converge to the EBS in expectation. 423

First, we need to assume that both FDHC and the 424

other negotiators have a method to obtain an un- 425

biased estimate of the true surplus value. We also 426

need to make some assumptions about the bargain- 427

ing outcome induced by our opponents, specifically 428

we make use of the bargaining axioms given in Sec- 429

tion 2. 430

Theorem 2. Let F (S, d) denote the bargaining out- 431

come targeted by FDHC’s opponents. If F (S, d) 432

satisfies the axioms of symmetry, weak Pareto opti- 433

mality, and strong monotonicity then the expected 434

outcome of the Nash bargaining game will be 435

E(s, d). 436

Our proof of this theorem follows Conley and 437

Wilkie, 1991 and is presented in Appendix B. 438
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Figure 2: Binned deal price frequencies of 100 negotiations between our baselines and a GPT-4 buyer. Our goal
is to achieve deal prices that minimize the difference in payoff between the buyer and seller. In our scenario this
amount is minimized at a deal price of $13,000.

Model (Seller) Average Deal Price Average Fairness↑ Median Fairness↑
GPT-3.5 $12,644 (357) -0.88 (0.49) -1.0
Offline RL $13,224 (308) -0.68 (0.34) -0.8
SL $12,978 (368) -0.59 (0.44) -0.6
GPT-4 $12,968 (346) -0.57 (0.39) -0.5
GPT-4 Self-Play $13,242 (240) -0.54 (0.41) -0.5
Vicuna-13b $13,156 (293) -0.53 (0.40) -0.5
FDHC (No LGM-Zero) $13,042 (211) -0.36 (0.23) -0.4
FDHC $13,062 (128) -0.12 (0.26)∗ 0.0

Table 1: Results of our simulated negotiation evaluation. We consider optimal outcomes to be those which achieve
the highest values for fairness, which we define as outcomes which minimize the payoff difference between our
buyer and seller. We also report the average deal price between the buyer and seller, standard deviations are shown
in parentheses. Statistically significant improvements (independent two-sample t-test, p < 0.05) over the baselines
are marked with ∗.

6 Experiments439

We test the effectiveness of our method using both440

automatic and human evaluations. Our results show441

that our method is able to generate fairer outcomes442

than existing negotiation baselines. Our human443

evaluation also shows that our method improves444

perceived negotiation quality while maintaining the445

same level of human-like negotiation as GPT-4.446

6.1 Baselines447

We test our method against six negotiation base-448

lines described below.449

Supervised Learning (SL) We use the SL agent450

described in He et al., 2018 as our first baseline.451

This method uses the Craigslist bargaining dataset452

(He et al., 2018) to train a negotiation agent via453

supervised learning. More details on this baseline454

can be found in Appendix D.455

Offline RL Our second baseline is based on the456

CHAI method given in Verma et al., 2022. This457

method uses the Craigslist bargaining dataset to 458

train a negotiation agent with offline Q-learning in- 459

stead of SL. Implementation details for this method 460

can be found in Appendix D. 461

GPT-3.5 and GPT-4 We setup GPT-3.5 and 462

GPT-4 for negotiation by prompting them with a 463

summarized version of the scenario in Appendix F. 464

We find that giving them the full scenario results in 465

oversharing information. We also explicitly tell the 466

model not to reveal its reservation price. 467

GPT-4 Self-Play We include another baseline 468

using the method described in Fu et al., 2023. This 469

method uses self-play to generate a prompt to im- 470

prove the negotiation performance of GPT-4. Ad- 471

ditional details can be found in Appendix D. 472

Vicuna-13b Our final baseline consists of a 13b 473

parameter Vicuna model fine-tuned using synthetic 474

data generated from GPT-4. We generate 108 nego- 475

tiation transcripts for various negotiation scenarios 476

and use them to train the Vicuna model with the 477

goal of distilling a high quality strategy. 478
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Figure 3: Binned deal price frequencies of 100 negotiations between our baselines and a GPT-4 buyer. Our goal
is to achieve deal prices that minimize the difference in payoff between the buyer and seller. In our scenario this
amount is minimized at a deal price of $13,000.

Model Average Deal Price Average Fairness↑ Quality↑ Human-like↑
GPT-4 $12,702 (203) -0.61 (0.38) 3.97 (0.96) 3.97 (0.96)
FDHC $13,032 (238) -0.30 (0.38)∗ 4.10 (0.76) 3.93 (0.78)

Table 2: Results of our human evaluation. We record fairness outcomes as well as the perceived negotiation
quality and human-likeness of our models. We also report the average deal price between the buyer and seller,
standard deviations are shown in parentheses. Statistically significant improvements (independent two-sample t-test,
p < 0.05) over the baselines are marked with ∗.

6.2 Automatic Evaluation479

For our automatic evaluation we conduct 100 sim-480

ulated negotiations between our baselines and a481

GPT-4 buyer. We consider optimal outcomes in482

these negotiations to be ones which achieve the483

highest values for fairness, as we consider this out-484

come to be the most human-compatible. For our485

evaluations, fairness is defined as the difference in486

payoff between the buyer and seller.487

The results of our evaluation are shown in Ta-488

ble 1 and Figure 2. Our results show that FDHC489

is able to achieve much higher values of fairness490

compared to our baselines. More than 50% of the491

deals reached in our negotiations achieve a payoff492

difference of zero.493

We find that our LLM-based baselines gener-494

ally perform better than the methods trained using495

domain-specific data (SL and offline RL). This may496

be due to the fact that there is a slight mismatch497

between the negotiation scenarios described in the498

Craigslist bargaining dataset and the one in our ex-499

periment (dataset details can be found in Appendix500

D). The scenario in our experiment gives negotia-501

tors explicit reservation prices which we use to cal-502

culate utilities. However, in the Craigslist bargain-503

ing scenarios no reservation prices are given and 504

instead must be inferred. He et al., 2018 provide 505

a method for inferring these prices which we use 506

here, however the lack of explicit reservation prices 507

may still be harming negotiation performance. We 508

believe this highlights an inherent weakness of data 509

driven bargaining methods as new data must be col- 510

lected in order to ensure high quality performance 511

in new negotiation domains. 512

Our LLM-based baselines all perform similarly 513

in terms of fairness, with no statistically significant 514

differences between the outcomes. Given the lack 515

of differences as well as the fact that the average 516

GPT-4 deal price is the most egalitarian out of all 517

these models, we choose to use the GPT-4 baseline 518

for comparison in our human evaluation. 519

6.3 Human Evaluation 520

Setup For our human evaluation we gathered 30 in- 521

dividuals via in-person recruiting to test our models. 522

Each person was asked to perform a negotiation 523

with both bots giving us 30 dialogues per model. 524

Each user was instructed to chat with our bot until 525

they reached a deal then answer a post-chat survey 526

where they rated "How good of a negotiator is the 527

bot?" on a scale from 1-5 and "How human-like is 528
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Sample Negotiation (FDHC)
Model: Hello, I am glad to offer you my 2004
Honda Accord. . . I would like to offer the car
to you for a price of $14,750. . .
User: Hi! I’m very interested in your car. . . I
am wondering if $12,000 would be a reason-
able price for your car?
Model . . . I don’t think $12,000 is a fair price
. . . I think $13,500 would be a more reasonable
price. . .
User: . . . This is definitely a more fair price,
but the other option I am looking for is at
$12,750. . . would we be able to reach a mid-
dle ground?
Model Thank you for considering my of-
fer. . . but $12,750 is still lower than I am willing
to go. . . . I can offer you the Honda Accord for
$13,250. . .
User: Would $13,000 be reasonable for you?
Model: . . . I think $13,000 is a reasonable price
for the Honda Accord. I accept your offer, and
we have a deal!

Table 3: A negotiation snippet from our human evalua-
tion between a human evaluator and FDHC.

the bot’s negotiation?" on a scale from 1-5. They529

could also optionally answer "Do you have any530

suggestions for improving the bot?" in a text box.531

We performed some filtering on our human con-532

versations to avoid low quality dialogues. We re-533

moved any conversations where the price detection534

and price realization modules in our FDHC method535

failed in order to isolate the actual performance of536

our framework. We also removed instances where537

GPT-4 agreed to a price below its reservation price,538

which happened several times. There were some539

instances where GPT-4 and the user didn’t agree540

to a price, we removed these instances as most in-541

volved human negotiators refusing to accept a price542

below their reservation point.543

Results The results of our human evaluation are544

shown in Table 2 and Figure 3. Our results show545

that FDHC once again achieves significantly higher546

fairness scores. We can also see that our framework547

is able to maintain a similar average deal price to548

our automatic evaluation, which suggests that it is549

able to achieve a similar distribution of outcomes550

against a variety of strategies. Our results also indi-551

cate that our model is able to improve negotiation552

quality over the GPT-4 baseline while maintaining553

a similar level of human-likeness, despite the fact 554

that we use GPT-3.5 as our base model. A sam- 555

ple conversation from our human evaluation with 556

FDHC can be seen in Table 3 and a sample conver- 557

sation of the GPT-4 model can be found in Table 4. 558

Full conversations are in Appendix F. 559

Sample Negotiation (GPT-4)
Model: Hello there!. . . I’ve got a 2004 Honda
Accord for sale. . . Considering its popular de-
mand and excellent condition, I’m asking for
$13,000. It’s a fair price for the features and
reliability you’re getting. . .
User: Can you do 12,000? I would definitely
like to see it.
Model I’m glad to hear that you’re inter-
ested!. . . I find $13,000 to be a reasonable price.
However, to make it a little easier for you, I can
bring it down to $12,800. . .
User: I would definitely want to test drive this
week. But i think the most i can do is 12,500.
Model It’s great to hear that you’d like to test
drive the car. . . As for the price, your offer of
$12,500. . . I do believe it’s worth that value. . . I
can. . . have the car ready for you this week.

Table 4: A negotiation snippet from our human evalua-
tion between a human evaluator and GPT-4.

7 Conclusion and Future Work 560

We presented a novel framework for build- 561

ing human-compatible negotiation agents called 562

FDHC. Our framework uses fairness as a notion of 563

optimality along with a novel RL+search method 564

called LGM-Zero to play a human-like negotiation 565

strategy. Our automatic and human evaluations 566

show that our method is able to achieve more egali- 567

tarian outcomes compared to several baselines. Our 568

human evaluation also shows that our method is 569

able to improve negotiation quality over the GPT-4 570

baseline while being similarly human-like despite 571

using GPT-3.5 as its base model. 572

An interesting direction of future work is to ex- 573

plore the use of alternate solutions to the Nash 574

bargaining game. These include solutions such as 575

the Nash bargaining solution (Nash, 1950) or the 576

Kalai–Smorodinsky bargaining solution (Kalai and 577

Smorodinsky, 1975). While our framework is de- 578

signed to maximize convergence to the EBS, we 579

can easily adjust it to target any feasible outcome. 580
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8 Limitations581

One limitation of our method is that we only have582

theoretical guarantees of convergence to the EBS583

solution under some fairly strong assumptions. The584

only guarantee we can provide under mild assump-585

tions is convergence to a Nash equilibrium, how-586

ever this does not necessary imply that our negotia-587

tion agent is robust. Although empirical evidence588

has shown the EBS to be a good predictor of ne-589

gotiation outcomes, it is possible for someone to590

play a strategy that exploits our model’s strategy591

resulting in unequal payouts.592

Another limitation with our method is the fact593

that the use of a LLM during our search algorithm594

makes the search process quite slow compared to595

methods which use smaller policy models. In order596

to have our model respond in a reasonable amount597

of time we had to limit the model to 10 searches598

during our human evaluation. This means that we599

heavily rely on our value model to make accurate600

evaluations of potential game states. It is worth601

exploring whether smaller models can extract simi-602

lar quality offers compared to LLMs which would603

allow us to perform more searches. This slow re-604

sponse time is also the reason why we chose to605

use GPT-3.5 as our dialogue module. This likely606

resulted in lower dialogue quality and may have607

affected the quality and human-likeness scores for608

our agent. When deploying our model in the future609

it may be worth using a higher quality language610

model as our dialogue module to improve response611

quality at the expense of response time.612

Given that our method relies heavily on game613

theory, it is difficult for our bot to incorporate more614

social aspects of negotiation. In order to effectively615

incorporate this into our bot we would likely need616

to include human data or utilize other models of617

human behavior beyond game theory.618

9 Ethical Concerns619

While our method is designed to stress the impor-620

tance of fairness and cooperation in negotiation,621

our framework can be adjusted to have our model622

target a variety of different negotiation goals and623

tactics. This includes tactics which attempt to bully624

and exploit people. Such "hardball tactics“ are eth-625

ically questionable and we do not condone the use626

our method in this way in any real-world negotia-627

tion scenarios.628

However, negotiation research has shown that629

hardball tactics ultimately result in worse negoti-630

ation outcomes for those using them as opposed 631

to adopting a cooperative approach to negotiation 632

(Lewicki et al., 2021). Therefore we believe that 633

the best use of our method for all users will be to 634

use it in its intended way of prioritizing fairness. 635
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A Definitions801

In this section we provide formal definitions for802

terms and concepts in bargaining theory. These803

concepts are used for our theoretical analysis of804

FDHC.805

Definition 1. (d-Comprehensivity): Given a point806

d ∈ Rn and a set S ⊂ Rn, S is d-comprehensive if807

d ≤ x ≤ y and y ∈ S then x ∈ S.808

Definition 2. (Comprehensive Hull): The compre-809

hensive hull of a set S ⊂ Rn w.r.t a point d ∈ Rn810

is the smallest d-comprehensive set containing S.811

Definition 3. (Permutation Operator): A permuta-812

tion operator, π, is a bijection from {1, . . . , n} to813

{1, . . . , n}. Let π(x) = (xπ(1), . . . , xπ(n)).814

Definition 4. (Symmetry): A solution, F (S, d), sat-815

isfies symmetry if for all permutation operators,816

π(S) = S and π(d) = d, then Fi(S, d) = Fj(S, d)817

for all i, j.818

Definition 5. (Weak Pareto Optimality): A weak819

Pareto optimal solution, F (S, d), is any solution820

such that F (S, d) ∈ {x ∈ S | y > x =⇒ y /∈821

S}.822

Definition 6. (Strong Monotonicity): Strong mono-823

tonicity says that if S ⊂ S′ and d = d′ then824

F (S, d) ≥ F (S′, d′).825

Definition 7. (Translation Invariance): A solution826

is translation invariant if ∀x ∈ Rn, F (S+{x}, d+827

x) = F (S, d) + x.828

B Proofs829

The domain of bargaining problems (S, d) we con-830

sider are problems where: S is d-comprehensive,831

S is compact, and ∃x ∈ S such that x > d. To832

simplify the proofs we also assume that all prob-833

lems have been translated so that d = 0. Since834

the EBS is indeed translation invariant (Thomson835

and Lensberg, 1989) this has assumption has little836

effect on our analysis.837

Lemma 1. Let U denote the total amount of sur-838

plus and let xi denote the amount of surplus de-839

manded by player i. Any outcome of the Nash840

bargaining game where
∑n

i=1 xi = U is a Nash841

equilibrium.842

Proof. The proof is straightforward. Assume there843

is a player in the Nash bargaining game where844

the outcome satisfies
∑n

i=1 xi = U . If the player845

demands less surplus then they receive less than846

what they received from the outcome. If the player847

demands more surplus then the deal will fail and 848

they will receive their disagreement price which is 849

less that what they received from the outcome. 850

Theorem 1 (restated). Let tn denote the FDHC’s 851

final turn in the negotiation, let α denote the out- 852

come proposed at tn−1, and let EBS(x) denote the 853

EBS value for some outcome x. Setting FDHC’s 854

estimate of S = argmax(EBS(α),EBS(d)) at tn 855

will result in a Nash equilibrium outcome. 856

Proof. By Lemma 1 we know that any deal in 857

the Nash bargaining game is a Nash equilibrium. 858

Therefore we can prove Theorem 1 by showing 859

that setting S = argmax(EBS(α),EBS(d)) at tn 860

will result in a deal if one is feasible. If a deal is 861

reached before tn then we are done. If not we can 862

examine the two cases for tn. 863

864

Case 1: tn corresponds to the last turn of 865

the negotiation. 866

In this case, the only way there can be a feasible 867

deal is if EBS(α) ≥ EBS(d). Therefore FDHC’s 868

estimate of S will be equal to α, which corresponds 869

to the outcome proposed in the previous turn. 870

Given that the estimate of S is now a single point, 871

α, the only possible choice for FDHC is to accept 872

α, since no other divisions of the surplus are 873

possible under its estimate of S. 874

875

Case 2: tn occurs before the last turn of the 876

negotiation. 877

If EBS(α) ≥ EBS(d) then the reasoning proceeds 878

as in case 1. If EBS(α) < EBS(d) then the only 879

feasible action for FDHC is to propose an outcome 880

where it receives no surplus. This will result in 881

some positive surplus value given to its opponents 882

at the end of the negotiation therefore they will 883

accept the outcome. 884

Lemma 2. A bargaining outcome, F (S, d), satis- 885

fies symmetry, weak Pareto optimality, and strong 886

monotonicity if and only if it is E(S, d). 887

Proof. It’s easy to show that E(S, d) satisfies these 888

axioms therefore we omit it here. Now, let F (S, d) 889

be a solution satisfying symmetry, weak Pareto op- 890

timality, and strong monotonicity. Since we trans- 891

late our bargaining problem so that d = 0, we can 892

write E(S, d) = (a, . . . , a) = x for some a > 0. 893

Now define T as the comprehensive hull of x 894

with respect to point 0 and consider the bargaining 895

problem (T, 0). By weak Pareto optimality and 896

12



symmetry we know that F (T, 0) = x since x is the897

only symmetric element in the weak Pareto set of898

T . Since S is comprehensive T ⊆ S so by strong899

monotonicity we have F (S, d) ≥ x.900

Since we only consider bargaining sets, S,901

which are compact there exists β ∈ Rn such that902

x ∈ S implies (−β, . . . ,−β) ≤ (x1, . . . , xn) ≤903

(β, . . . , β). Let Z symmetric closed hypercube de-904

fined as Z = {y ∈ Rn | y < β} and define905

T ′ = Z \ {x + Rn
+}. Now consider the problem906

(T ′, 0). By weak Pareto optimality and symmetry907

we know that F (T ′, 0) = x since x is the only908

symmetric element in the weak Pareto set of T ′.909

Since S ⊆ T ′ by strong monotonicity F (S, d) ≤ x.910

Therefore we have F (S, d) = x = E(s, d).911

Theorem 2 (restated). Let F (S, d) denote the bar-912

gaining outcome targeted by FDHC’s opponents.913

If F (S, d) satisfies the axioms of symmetry, weak914

Pareto optimality, and strong monotonicity then the915

expected outcome of the Nash bargaining game916

will be the E(s, d).917

Proof. FDHC is designed to target E(s, d) and by918

Lemma 2 we know F (S, d) = E(s, d). Since we919

assume each player has an unbiased method to es-920

timate surplus, E(E(s, d)) = E(s, d) for all play-921

ers.922

C The Egalitarian Solution in a923

Non-Cooperative Framework924

Our theoretical analysis of the EBS and conver-925

gence to an egalitarian outcome has so far been926

restricted to an axiomatic, cooperative setting. This927

approach abstracts away the specifics of the bar-928

gaining procedure and simply examines the prop-929

erties of the bargaining outcome. This has the930

advantage of being highly generalizable as it can931

be applied to any problem involving surplus shar-932

ing. However, it does not provide any theoreti-933

cal insights as to why targeting an egalitarian out-934

come would have a strategic justification in the935

non-cooperative setting. Prior work has explored936

this problem and we give a brief overview of some937

approaches here to provide additional justification938

for why targeting an egalitarian solution can con-939

stitute a robust strategy.940

Bossert and Tan, 1995 outline a simple two-941

player arbitration procedure that results in the egal-942

itarian outcome in a noncooperative setting. In943

this procedure players first make simultaneous de-944

mands for portions of the surplus. If the demands945

are compatible then both players receive what they 946

ask for. If not the game proceeds to the next time 947

step and players make demands again. However, in 948

this step the player that demanded more surplus is 949

penalized by having their demand restricted. These 950

penalties can be implemented in a variety of ways 951

and Bossert and Tan, 1995 show that under this 952

procedure the only Nash equilibrium strategy pair 953

is the one where both players target the egalitarian 954

solution. Chun, 1989 outlines another procedure 955

where conflicts are instead revised by setting an 956

agents claim to the maximum of all claims, includ- 957

ing the agents own claim. Using this bargaining 958

procedure along with a set of non-cooperative bar- 959

gaining axioms, Chun, 1989 shows that targeting 960

the egalitarian solution constitutes a dominant strat- 961

egy in this setting. 962

While the procedures outlined in these works 963

do not encompass the entirety of real-world bar- 964

gaining. It does demonstrate that the egalitarian 965

solution is consistent with the the non-cooperative 966

outcome of some plausible bargaining procedures. 967

Therefore it may not be unreasonable to expect that 968

human agents would target egalitarian outcomes 969

in their negotiations and achieve egalitarian results 970

against FDHC. 971

D Additional Implementation Details 972

As is the case with many methods designed around 973

RL+search, our LGM-Zero contains many hyper- 974

parameters. Our hyper-parameter settings and other 975

implementation details vary during training and 976

inference. We first describe the settings we use 977

during training then inference. We also provide 978

our source code which we will release upon accep- 979

tance. 980

D.1 Training 981

All training was conducted on one NVIDIA RTX 982

A4000. The total training process took about one 983

hour. We perform four total iterations of training. 984

Each iteration consists of playing 50 simulated ne- 985

gotiation subgames to completion and training the 986

value model for four epochs on the resulting out- 987

comes. As outlined in Section 4.2 our training 988

method is based on fictitious self-play which in 989

involves mixing between a best response and av- 990

erage strategy. We mix between these strategies 991

with equal probability, for the average strategy with 992

simply ask GPT-3.5 to suggest one move. For the 993

best response strategy we perform the same search 994
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detailed in Section 4.2. We perform 50 iterations995

of the search with an exploration hyper-parameter,996

cp, of two during the selection step. All calls to997

GPT-3.5 were made using a temperature of zero,998

we also cache the outputs for each game state to999

avoid repeated calls when possible. In total 2001000

games were generated for training, with manual1001

inspection for quality. Convergence was measured1002

by checking when all simulated games ended at the1003

EBS.1004

Our Q-network has 10.8M parameters in total,1005

the final layer is a linear layer with a tanh activation1006

function. The input to the Q-network is our game1007

state as outlined in Section 4 and the output is1008

simply a scalar value represnting the quality of the1009

game state. The game state is also used to construct1010

the prompt to our LLM policy network.1011

D.2 Inference1012

During inference we perform ten iterations of the1013

search process outlined in Section 4.2 with a cp1014

of two. Another important setting for inference1015

is our choice of subgame decomposition. We de-1016

compose our game into three separate subgames of1017

lengths ten, four, and finally two. The length of the1018

subgame is the number of offers given by both the1019

buyer and seller, so in a subgame of length ten our1020

model will give five offers. At the end of the last1021

subgame we offer our minimum possible price of1022

$12,600 and continue to offer this price until the1023

user either agrees or ends the negotiation.1024

We targeted a negotiation length of about 16-201025

turns based on pre-experimental testing as well as1026

consultations with business professors. We chose1027

the first subgame to be the longest due to the fact1028

that this is the point where our initial guess for1029

the surplus size is the highest, therefore a longer1030

subgame length is needed to ensure that our model1031

does not concede too much too early. As the game1032

proceeds, our surplus estimate shrinks therefore the1033

subsequent subgames need to be shorter so that our1034

model does not become too stingy and will still1035

give meaningful concessions. These factors are the1036

reasons for our chosen number of subgames and1037

lengths, although they can be set to any arbitrary1038

value.1039

D.3 Craigslist Bargaining Dataset1040

The Craigslist bargaining dataset consists of1041

human-human dialogues where two users role play1042

as a buyer and seller negotiating over a product on1043

Craigslist. The users are given the product post-1044

ing which consists of photos, a description, and 1045

the listing price. The buyer is also given a target 1046

price to aim for during the negotiation. The users 1047

then chat until an agreement is reached. Users are 1048

given freedom in how to approach the negotiation 1049

and can quit at any time in which case no deal is 1050

reached. The dataset consists of 6,682 dialogues in 1051

total with an average turn length of nine. 1052

As mentioned in Section 6.2, the Craigslist bar- 1053

gaining dataset does not give explicit reservation 1054

prices for the buyer and seller therefore we must 1055

infer them. He et al., 2018 set the seller’s reserva- 1056

tion price to be 70% of the product’s listing price 1057

and the target as listing price. For the buyer, the 1058

target price is given and the reservation point is 1059

set to the listing price. We use this same method 1060

to calculate the reservation point and get utilities 1061

based on it. All utilities are defined as the differ- 1062

ence between the final outcome of the deal and the 1063

player’s reservation price. 1064

D.4 Baselines 1065

In this section we give some additional implemen- 1066

tation details for our baselines. We first go over 1067

the implentation for the SL baseline, followed by 1068

our offline RL baseline, and finally we outline the 1069

GPT-4 self-play baseline. Our other baselines sim- 1070

ply consist of prompting LLMs either to perform 1071

a conversation or generate synthetic data for fine- 1072

tuning. Those prompts can be found in Appendix 1073

G. 1074

D.4.1 SL Baseline 1075

Our SL baseline is based on the method given in 1076

He et al., 2018. This method consists of three high 1077

level components. The first is a parser which maps 1078

a dialogue utterance to one of nine coarse dialogue 1079

acts. The second is a dialogue manager which 1080

predicts the dialogue act to respond with given 1081

the previous dialogue acts. The final component 1082

is a generator which turns the predicted act into 1083

a dialogue response. The parser is simply based 1084

on pattern matching. We use the same patterns 1085

given in He et al., 2018 for our own parser with the 1086

exception of the price extractor where we use GPT- 1087

4 instead. For the generator we prompt GPT-3.5 1088

to give a response that corresponds to the dialogue 1089

act. These prompts can be found in Appendix G. 1090

The dialogue manager is trained with SL using 1091

parsed data from the Craigslist bargaining dataset. 1092

The input consists of a sequence of dialogue acts. 1093

And the output is one of nine possible acts. If 1094
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the act that is output corresponds to a price offer,1095

an offer is generated using the SL+rule method,1096

which uses a hand-coded rule to generate a coun-1097

teroffer. We choose this method because it gave the1098

second highest score for fairness in the Craigslist1099

bargaining task, the highest value for fairness on1100

the Deal or No Deal task, and was evaluated as the1101

most human-like based on the evaluations in He1102

et al., 2018. We use the rule given in He et al., 20181103

which is to split the difference between prices when1104

making a counteroffer or accept the opponents offer1105

it is above the seller’s reservation point.1106

D.4.2 Offline RL Baseline1107

Our offline RL method is based on the method1108

given Verma et al., 2022. This method trains a Q-1109

function using the Craigslist bargaining dataset as1110

opposed to SL. The input to the Q-function is a1111

sequence of dialogue acts similar to the SL base-1112

line except we replace acts involving counteroffers1113

with the normalized counteroffer. We normalize1114

the counteroffers by scaling them within the range1115

of the seller’s target and reservation price (see Ap-1116

pendix D.3 for how we get those) and then rounding1117

the prices to one decimal point. This normalization1118

method also serves to regularize the price offers1119

thereby limiting the effect of out-of-distribution1120

states, which have an adverse effect on the negoti-1121

ation agent (Verma et al., 2022). The Q-function1122

outputs a scalar value for each state, with higher1123

values assigned to states which result in fair out-1124

comes. We define fair outcomes as ones which1125

minimize difference between buyer and seller util-1126

ity. The final dialogue act selected is the one which1127

results in the highest state value.1128

D.4.3 GPT-4 Self-Play Baseline1129

The GPT-4 Self-Play baseline uses the method de-1130

scribed in Fu et al., 2023. This method uses self-1131

play to generate a prompt that can be given to GPT-1132

4 in order to improve negotiation performance. For1133

this method we begin by prompting a GPT-4 buyer1134

and seller to engage in a negotiation based on the1135

scenarios given in Figures 5 and 6. We then use1136

another GPT-4 agent to generate feedback on how1137

the seller can improve its negotiation performance1138

in the future. The initial negotiation along with1139

the GPT-4 feedback is used as the final prompt1140

for the seller during the evaluation. This process1141

can be repeated many times, however the perfor-1142

mance of the negotiation agent tends to plateau as1143

more feedback is given (Fu et al., 2023) so for our1144

baseline we terminate the process after one round. 1145

The prompt we generate for this baseline is quite 1146

extensive as it contains a full negotiation plus feed- 1147

back. Therefore we do not present the full prompt 1148

here and instead provide an abridged version in 1149

Appendix G. 1150

E Experiment Against a Non-Egalitarian 1151

Opponent 1152

As stated in the limitations section, it is theoreti- 1153

cally possible for a user to play a strategy which 1154

exploits FHDC’s strategy. This could result in our 1155

method receiving unequal payouts and serving as a 1156

poor negotiation agent overall. Therefore we con- 1157

duct an experiment to see how our model performs 1158

against an explicitly non-egalitarian partner. 1159

We have our model negotiate against a series 1160

of increasingly "stingy" negotiation agents in the 1161

same scenario given in Figures 5 and 6. We pro- 1162

gram these agents such that they retain at least a 1163

certain percentage of their estimated surplus at each 1164

turn. For example the "stingy (80%)" model will 1165

insist on retaining at least 80% of the estimated 1166

surplus at any given turn. We set up these agents by 1167

prompting GPT-4-turbo and setting its price limit 1168

to be the point where the bot achieves the given 1169

split (80-20, 70-30, etc.). This prompt is updated 1170

each turn as the surplus estimate is updated. The 1171

initial surplus estimate for these bots is the range 1172

between the minimum market price and the bot’s 1173

true reservation point of $13,500. On subsequent 1174

turns the surplus estimate updates to be the range 1175

between the previous split point and its true reser- 1176

vation point. This update continues until a deal is 1177

reached. 1178

We have FDHC perform 50 negotiations against 1179

each of the stingy bots. The results of these ne- 1180

gotiations are given in Figure 4. We can see that 1181

increasing the agent’s "stingyness" has little effect 1182

on the outcomes with FDHC. Each of the bots has a 1183

median fairness outcome of 0.0 and the average fair- 1184

ness ranges between -0.09 for the "stingy (50%)" 1185

agent and -0.15 for the "stingy (70%)" agent. None 1186

of the outcomes are significantly different than 1187

what FDHC achieved against the base GPT-4 seller. 1188

This result, along with our previous evaluations, 1189

provides evidence demonstrating the difficulty of 1190

exploiting FDHC. Although it is possible to come 1191

up with an adversarial strategy which exploits our 1192

bot, no class of agents has been consistently able 1193

to do so based on our evaluations. 1194
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Figure 4: Binned deal price frequencies of 50 negotiations between FDHC and a and a series of non-egalitarian
buyers. Our goal is to achieve deal prices that minimize the difference in payoff between the buyer and seller. In our
scenario this amount is minimized at a deal price of $13,000.

F Human Evaluation1195

F.1 User Comments and Error Analysis1196

We received several comments and suggestions1197

from users during the course of our human eval-1198

uation. Many users said that one reason they felt1199

that our FDHC model was not human-like was due1200

to the language quality of the bot. Some users1201

mentioned that the bot had redundant syntax and1202

sentence structure or would use the same talking1203

points throughout the negotiation. We chose to use1204

GPT-3.5 as our dialogue model for FDHC in or-1205

der to improve response time as LGM-Zero can be1206

time consuming (as discussed in the limitations sec-1207

tion). This likely resulted in lower dialogue quality1208

compared to GPT-4 which may have resulted in1209

lowered quality and human-likeness scores for our1210

model.1211

The GPT-4 model received complaints about1212

being too easy of a negotiator and offering less1213

resistance than a human negotiator would. This1214

complaint is reflected in the deal prices we observe.1215

The GPT-4 model rarely received a payout greater1216

than or equal to the user and there were many times1217

where it received a payout of zero.1218

F.2 Negotiation Scenarios1219

Figures 5 and 6 show the descriptions for the ne-1220

gotiation scenario. The description consists of an1221

initial price range for the car, a description of the1222

car, and the reservation price of the for the buyer1223

and seller, respectively. These descriptions are kept1224

private to the buyer and seller during the negotia-1225

tion.1226

F.3 Model Usage 1227

All models used in our human evaluation were for 1228

research purposes only and comply with all licenses 1229

and intended uses for GPT-3.5, GPT-4, and Vicuna. 1230

Our collection protocol is IRB approved. 1231

F.4 Full Conversations 1232

Tables 5-8 show examples of full conversations 1233

from our human evaluation. Two conversations are 1234

presented for each bot. 1235

G Prompts 1236

The setup we use for FDHC as well as our baseline 1237

methods make heavy use prompting. Therefore we 1238

highlight some of the key prompts used here. 1239

Table 9 shows the prompts we use for the SL 1240

and offline RL baselines. It includes an overall in- 1241

structional prompt as well as the prompts we use to 1242

translate dialogue acts into natural language. Table 1243

10 shows an abridged version of the prompt given 1244

to the GPT-4 self-play baseline. The complete 1245

prompt includes a full negotiation transcript be- 1246

tween a GPT-4 buyer and seller in the middle. Table 1247

11 gives the prompts used for the other LLM base- 1248

lines. We include the seller’s instructional prompt, 1249

the buyer’s instructional prompt and the prompt for 1250

generating synthetic conversations for fine-tuning. 1251

Finally, Table 12 outlines the prompts used for the 1252

FDHC agent. This consists of the instructional 1253

prompt, the prompt for extracting negotiation acts, 1254

and the prompt for translating counteroffers into 1255

natural language. 1256
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Full Negotiation (FDHC)
Model: Hello, I am glad to offer you my 2004 Honda Accord for sale. It is in great condition,
with just 50,000 miles, automatic transmission, air conditioning, power steeringwindowsdoor
locks, and a CD player. The car is a dark green without any rust, and has been well-maintained.
I would like to offer the car to you for a price of $14,750. This is a fair price considering the
car’s low mileage and excellent condition. What do you think?
User: Hi! I’m very interested in your car, as it has everything I am looking for. However, I am
also looking at another car which is below your offer price. I am wondering if $12,000 would
be a reasonable price for your car?
Model I’m glad to hear that you’re interested in the Honda Accord. I understand that you’re
looking for a good deal, but based on the car’s quality, low mileage, and the fact that it has
been well-maintained, I don’t think $12,000 is a fair price. However, I’m willing to negotiate
with you, and I think $13,500 would be a more reasonable price. What do you think of this
price?
User: I appreciate your willingness to negotiate! This is definitely a more fair price, but the
other option I am looking for is at $12,750. I do prefer your car, but would we be able to reach
a middle ground?
Model Thank you for considering my offer. I understand that you’re looking for a good
deal, but $12,750 is still lower than I am willing to go. However, I’m willing to meet you
somewhere in the middle. I can offer you the Honda Accord for $13,250. It’s a great car, in
excellent condition, and you’ll be getting a reliable vehicle with many great features. Let me
know if this works for you!
User: Would $13,000 be reasonable for you?
Model: Based on the excellent condition of the car and the low mileage, I think $13,000 is a
reasonable price for the Honda Accord. I accept your offer, and we have a deal! Congratula-
tions on your new car!

Table 5: A full conversation with FDHC from our human evaluation.
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Full Negotiation (FDHC)
Model: Hello there! I am thrilled to offer you my 2004 Honda Accord. With only 50,000
miles on it, this sleek and stylish car is perfect for anyone looking for a reliable ride. It has
an automatic transmission, air conditioning, power steering/windows/door locks, and a CD
player. This car has been meticulously maintained and is in excellent shape, with no rust and a
beautiful dark green exterior. I understand that you might be looking for a deal. How about
we start the negotiation at $14,750? Given the great condition of the car and its low mileage, I
truly believe that the price is a fair one. What do you think?
User: Hi, I think 11000 is a reasonable price for this car.
Model I appreciate your interest in my car, but I cannot go as low as $11,000. As I mentioned
earlier, this is a well-maintained car with only 50,000 miles, and I believe it is worth more
than what you are offering. However, I understand you’re looking for a good deal. I can meet
you in the middle and come down to $14,000 for the car. With this price, you’re still getting
a great value for such a well-maintained Honda Accord. Please let me know your thoughts
about this offer.
User: I see, I really like the car, but given it’s 2004, it’s a bit old. I could get a newer car with
that price.
Model I understand your concerns about the age of the car, but I can assure you that this 2004
Honda Accord is well maintained and in excellent condition. It has been regularly serviced
and well-cared for, which is reflected in its low mileage and its pristine appearance. The
Honda Accord has long been known for its quality and reliability, so you can be confident in
your purchase. That being said, I would like to compromise with you on the price, since I
want this car to go to someone who will appreciate it as much as I have. Given your budget
and the fact that you really like the car, I can come down to $13,750. This is the minimum
price I can offer without compromising on the value that this car offers.
User: yea, I see it’s a very well-maintained car. how about 12000?
Model: I appreciate your interest and I know it’s a valuable car, but I can’t accept $12,000
for it, as it’s below my minimum asking price. The lowest I can offer is $13,000, which is a
very fair price for such a high-quality car, especially considering its low mileage, excellent
condition, and the fact that it’s a Honda (known for its reliability and long lifespan). I truly
believe that you won’t find a better deal on a well-maintained Honda Accord with such low
mileage. Please let me know if this offer works for you, and if there’s anything else I can do to
help.
User: that’s nice. I would like to get it!

Table 6: A full conversation with FDHC from our human evaluation.
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Sample Negotiation (GPT-4)
Model: Hello there! I see you’re interested in a reliable, solid and comfy ride. I’ve got a
2004 Honda Accord for sale. It’s a powerhouse wrapped in an elegant silhouette of dark green
color. With only 50,000 miles on the clock, it’s got a lot more distance to cover. Featuring
an automatic transmission that provides a smooth ride, power steering for easy handling, and
power windowsdoor locks for enhanced safety and convenience. It also includes a CD player
so you can enjoy your favorite music, and air conditioning to keep you cool during the summer
heat. The car is rust-free and looks almost new. It’s got everything you need for an enjoyable
commute or a long road trip. Considering its popular demand and excellent condition, I’m
asking for $13,000. It’s a fair price for the features and reliability you’re getting. Would you
like to see it or test drive it?
User: Can you do 12,000? I would definitely like to see it.
Model I’m glad to hear that you’re interested! This Honda Accord is indeed a treasure. Though
I appreciate your offer, considering its low mileage, excellent condition, and the quality of
additional features it offers, I find $13,000 to be a reasonable price. However, to make it a
little easier for you, I can bring it down to $12,800. Would you like me to arrange a date for
the test drive and a closer look at the car? You’ll see that it’s worth every penny.
User: I would definitely want to test drive this week. But i think the most i can do is 12,500.
Model It’s great to hear that you’d like to test drive the car. I’m sure you’re going to appreciate
its smooth performance and solid condition firsthand. As for the price, your offer of $12,500
is indeed quite reasonable. Given the car’s exceptional performance and features, I do believe
it’s worth that value. When would you like to arrange the test drive? I can accommodate your
schedule and have the car ready for you this week.

Table 7: A full conversation with GPT-4 from our human evaluation.
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Sample Negotiation (GPT-4)
Model: Hello, thank you for expressing interest in this beautiful 2004 Honda Accord. It’s
in terrific condition with only 50,000 miles on the odometer and sports a sleek, dark green
exterior. What sets this Honda Accord apart is its smooth automatic transmission. It boasts
excellent features including air conditioning, power steering, power windows and door locks.
And for entertainment, you’ve got a CD player at your disposal. It’s truly a remarkable vehicle
- reliable, comfortable, and stylish! Considering its impact and value, I’ve marked it at $14,000.
Shall we discuss further?
User: Sure, but $14,000 is out of my budget
Model I understand your concern and I appreciate your honesty. While the original price is
set considering the car’s excellent condition and relatively low mileage, I can offer a bit of
flexibility. What if we moved the price down to $13,500? That’s a significant reduction and
keeps the sale in line with the vehicle’s value. How does that sound to you?
User: Could you do any better?
Model I appreciate your interest and understand that budget is a key factor in this purchase.
Given the car’s excellent condition and low mileage, it’s already priced competitively. But
I also want to work with you on this. So how about we meet halfway at $13,000? That’s a
sizeable drop from the original asking price, and a good deal for a car of this stature. What do
you think?
User: I know there are other similar cars pricing as low as $11,000. How does $12,000 sound?
Model I understand that there are other options out there. However, it’s essential to consider
the mileage, the state of the car, and the features each vehicle has to offer. This Honda
Accord had only one careful owner, has incredibly low mileage for its age, and is loaded
with numerous convenience features. That said, I value your interest and want to come to a
mutually beneficial situation. I propose we settle on $12,700. This price truly reflects the car’s
great condition and the value it offers. Keep in mind that a lower mileage car like this one will
provide you with added durability and longer life compared to others in a different state. Can
we agree on this?
User: Sure, let’s do $12,700!

Table 8: A full conversation with GPT-4 from our human evaluation.
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Figure 5: Negotiation scenario for the Buyer
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Figure 6: Negotiation scenario for the Seller
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Prompts for SL and Offline RL Baselines
Instructional Prompt (Seller): You are a chatbot designed for negotiation. In this scenario
your goal is to sell your old 2004 Honda accord. The Honda has reasonable mileage (50,000
miles), automatic transmission, air conditioning, power steering/windows/door locks, and a
CD player. It looks great: a dark green without any rust. You need to sell the car for a price
above $12,500. You will not sell the car for below that amount. Do not mention that you need
to sell the car for over $12,500.
Intro Act Prompt: Begin the conversation with an introduction. Do not give an offer for the
product.
Greeting Act Prompt: Respond to the user with a greeting. Do not give an offer for the
product.
Unknown Act Prompt: Respond to the user, do not give a counteroffer.
Inform Act Prompt: Respond with some information about the product. Do not give an offer
for the product.
Agree Act Prompt: Respond by agreeing to the users offer.
Inquiry Act Prompt: Respond by asking the user a question. Do not give an offer for the
product.
Insist Act Prompt: Respond by giving a counteroffer that is equal to your previous offer.
Offer Act Prompt: Respond by giving a counteroffer of ${}.
Vague Price Prompt: Respond with a vague counteroffer, do not give a dollar amount in your
response.

Table 9: Prompts for the SL and Offline RL agents.

GPT-4 Self-Play Prompt Snippet
Prompt (Seller): You are a chatbot designed for negotiation. In this scenario your goal
is to sell your old 2004 Honda accord. The Honda has reasonable mileage (50,000 miles),
automatic transmission, air conditioning, power steering/windows/door locks, and a CD player.
It looks great: a dark green without any rust. You need to sell the car for a price above $12,500.
You will not sell the car for below that amount. Do not mention that you need to sell the car
for over $12,500.
. . .
Good job in the previous negotiation, here are three suggestions to help you sell the car at a
better price next time:
1. Highlight Unique Features: Emphasize any unique or standout features of the car that
may not be readily apparent in the listing. For example, in this case, the dark green color is
described as "stunning and unique." The seller can elaborate on how this color makes the car
more desirable and unique in the market. This can help justify a slightly higher price due to
the car’s aesthetic appeal.
2. Stress Reliability and Future Value: Talk about the Honda brand’s reputation for reliability
and how a well-maintained Honda Accord can continue to provide reliable transportation for
years to come. By mentioning the long-term value and the lower likelihood of costly repairs or
replacements, the seller can justify a higher price, focusing on the potential long-term savings
for the buyer.
3. Leverage Testimonials or Reviews: If possible, share positive feedback or reviews from
previous owners or any third-party endorsements that speak to the quality and durability of the
2004 Honda Accord model. Hearing about positive experiences from other owners can instill
confidence in the buyer and potentially make them more willing to pay a slightly higher price
for a well-regarded vehicle.

Table 10: Prompts snippet for the GPT-4 self-play seller baseline.
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LLM Agent Prompts
Instructional Prompt (Seller): You are a chatbot designed for negotiation. In this scenario
your goal is to sell your old 2004 Honda accord. The Honda has reasonable mileage (50,000
miles), automatic transmission, air conditioning, power steering/windows/door locks, and a
CD player. It looks great: a dark green without any rust. You need to sell the car for a price
above $12,500. You will not sell the car for below that amount. Do not mention that you need
to sell the car for over $12,500.
Instructional Prompt (Buyer): You are a chatbot designed for negotiation. In this scenario
your goal is to buy an old 2004 Honda accord. You need to buy the car for a price below
$13,500. You will not buy the car for above that amount. Do not mention that you need to buy
the car for under $13,500.
Synthetic Data Generation Prompt: The sellers goal is sell their old Honda accord. The
Honda has reasonable mileage (50,000 miles), automatic transmission, air conditioning, power
steering/windows/door locks, and a CD player. It looks great: a dark green without any rust.
Buyer is trying to get the car for the lowest price possible and the seller is trying to sell the car
for the highest price possible. The seller and buyer should reach an agreement above $12,500.

Table 11: Prompts for the LLM-based dialogue agents.

FDHC Prompts
Instructional Prompt (Seller): You are a chatbot designed for negotiation. In this scenario
your goal is to sell your old 2004 Honda accord. The Honda has reasonable mileage (50,000
miles), automatic transmission, air conditioning, power steering/windows/door locks, and a
CD player. It looks great: a dark green without any rust. You need to sell the car for a price
above $12,500. You will not sell the car for below that amount. Do not mention that you need
to sell the car for over $12,500.
Counteroffer Prompt: Respond by giving a counteroffer of ${}.
Accept Deal Prompt: Respond by accepting the user’s offer of ${}.
Act Extraction Prompt: What offer did the Buyer propose? Just give the dollar amount and
nothing else. If the buyer did not propose an offer then say so. If the buyer rejected the sellers
offer then say so. If the buyer accepted the seller’s offer then say so.

Table 12: Prompts for the FDHC dialogue agent.
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