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Abstract

Vertical Federated Learning (VFL) involves multiple clients
collaborating to train a global model, with distributed fea-
tures of shared samples. While it becomes a critical privacy-
preserving learning paradigm, its security can be significantly
compromised by backdoor attacks, where a malicious client
injects a target backdoor by manipulating local data. Exist-
ing attack methods in VFL rely on the assumption that the
malicious client can obtain additional knowledge about task
labels, which is not applicable in VFL. In this work, we inves-
tigate a new backdoor attack paradigm in VFL, Label-Free
Backdoor Attacks (LFBA), which does not require any addi-
tional task label information and is feasible in VFL settings.
Specifically, while existing methods assume access to task la-
bels or target-class samples, we demonstrate that the gradients
of local embeddings reflect the semantic information of labels.
It can be utilized to construct the target poison sample set.
Besides, we uncover that backdoor triggers tend to be ignored
and under-fitted due to the learning of original features, which
hinders backdoor task optimization. To address this, we pro-
pose selectively switching poison samples to disrupt feature
learning, promoting backdoor task learning while maintaining
accuracy on clean data. Extensive experiments demonstrate
the effectiveness of our method in various settings.

Code — https://github.com/shentt67/LFBA/

1 Introduction
Vertical Federated Learning (VFL) (Hardy et al. 2017; Yang
et al. 2019, 2023) has become a significant privacy-preserving
collaboration paradigm. It involves training a global model
with distributed features but shared samples across different
clients, with only one client owning the task labels. Com-
pared with Horizontal Federated Learning (HFL), where
clients possess the same feature space (McMahan et al. 2017;
Yang et al. 2019; Hu et al. 2023; Ye et al. 2023, 2024a,b;
Huang et al. 2024; Wang et al. 2024b; Tan et al. 2024), VFL
has shown promising results and applications particularly in
cross-domain applications (Song et al. 2021; Huang, Wang,
and Han 2023; Yan et al. 2024). However, despite adhering
to privacy protocols, VFL remains vulnerable to security
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Figure 1: An Example of Backdoor Attacks in VFL. Consider
the short video platform collaborates with the e-commerce
company for recommending videos. The e-commerce com-
pany can act as the attacker to induce the target output of
specific advertisement recommendations.

concerns, especially with malicious attacks when the trust-
worthiness of participants is uncertain. A crucial concern lies
in the backdoor attacks (Liu et al. 2021b; Chen et al. 2023,
2024), which involve maliciously adding triggers to the data
and inducing the target output. In VFL, the malicious client
can introduce a backdoor by altering the local raw features
to control the model behavior. For example, as shown in Fig-
ure 1, in a collaboration between a short video platform and
an e-commerce platform, the e-commerce platform can inject
backdoors into the VFL model and induce target recommen-
dations in the short video platform by adding triggers.
While backdoor attacks introduce security vulnerabilities in
VFL, thoroughly investigating backdoor attacks in VFL is
crucial for developing effective security measures. Unlike
HFL scenarios where attackers have full access to samples
and corresponding labels (Gu, Dolan-Gavitt, and Garg 2017;
Li et al. 2022), executing backdoor attacks in VFL presents
unique challenges: attackers lack access to task labels, com-
plicating the execution of backdoor attacks. Existing research
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has explored several backdoor attacks in VFL (Liu et al.
2021b; Gu and Bai 2023; Chen et al. 2023; He et al. 2023;
Chen et al. 2024). For instance, Gu et al. propose LR-BA (Gu
and Bai 2023), which trains a classifier with a few labeled
samples and then minimizes the feature distance between the
poison data and the target-class data. TECB (Chen et al. 2023)
uses a universal trigger that is optimized with a few target-
class samples in preset, and directly poisons the target-class
sample to learn the target-trigger correspondence. However,
these methods rely on strong preset knowledge of task labels,
such as direct access to task labels or a predefined target-class
sample set (one or more samples), which is often not feasible
for attackers. Chen et al. (Chen et al. 2024) propose an ap-
proach that assumes the attacker knows the task labels involve
an imbalanced binary classification problem. They suggest
inferring labels by identifying head-class samples with the
largest gradients and optimizing a universal trigger. However,
it requires prior knowledge and makes strong assumptions
about the prediction tasks, limiting its applicability.
Existing works rely on knowledge or strong assumptions
of task labels, which are typically unavailable to attackers
in VFL. Beyond these limitations, the key challenge in ex-
ecuting backdoor attacks in VFL is: How can triggers be
associated with the backdoor target without accessing task
labels? We identify clean-label attacks (Turner, Tsipras, and
Madry 2018; Zhao et al. 2020; Huynh et al. 2024) as a suit-
able solution, as they directly poison target-class samples
without altering the labels. To construct a target poison set,
we leverage the fact that embedding gradients, which are
related to task label information, are returned to all clients, in-
cluding the attacker. Inspired by this, we introduce Gradient-
Guided Poison-Set Construction (GPC), which builds the
target poison set by calculating consistency of embedding
gradients. The attacker defines a local anchor sample, and the
attack goal is to classify trigger samples into the anchor class.
Samples with the most consistent embedding gradients to the
anchor are included in the poison set. By using embedding
gradients as guidance, the attacker can construct a poison
sample set consistently drawn from the target class, enabling
backdoor attacks without task labels.
Besides, to effectively inject backdoors in VFL, we propose a
novel poison method Selectively SAmple SWitching (SAW).
When optimizing the backdoor tasks, the trigger and the tar-
get should be associated. However, since the chosen samples
consistently come from the backdoor target, we argue that the
model will focus on learning the reflection between the origin
features and the target, leading to the trigger being ignored
and under-fitted. Motivated by it, we propose an intuitive
solution to disrupt feature learning, which encourages the
model to focus on learning the trigger. Specifically, we switch
the poison samples with other local samples, to disturb the
feature learning and enhance backdoor optimization. Addi-
tionally, to maintain the clean data accuracy, we purposefully
select only a subset of samples with the maximum gradients
in the poison set to add the trigger and perform the switching.
These are considered ‘hard samples’, and manipulating them
has minimal impacts on the benign performance, achieving a
better trade-off between the main task and the backdoor task.
In summary, our contributions can be outlined as follows:

• We propose a label-free backdoor attack method that is
applicable in the VFL setting. Specifically, we construct
the target-class poison set guided by embedding gradients,
choosing samples consistently from the target class without
requiring additional knowledge of task labels.

• We introduce a novel poison method that selectively
switches the poison samples. It disrupts the original feature
learning, enhances trigger learning, and achieves a better
trade-off between the main and backdoor tasks.

• We conduct extensive experiments to demonstrate that our
proposed method Label-Free Backdoor Attacks (LFBA),
is effective to perform backdoor attacks in various settings,
without additional knowledge for task labels.

2 Related Work
Vertical Federated Learning. Vertical Federated Learning
(VFL) (Hardy et al. 2017; Yang et al. 2023; Liu et al. 2024c;
Ye et al. 2024b) is a privacy-preserving learning paradigm,
where participants share overlapping sample spaces but have
distinct data feature spaces. It has been widely explored in
recent research (Zhang et al. 2021; Wu, Li, and He 2022; Wu,
Hou, and He 2024; Gao et al. 2024; Qiu et al. 2024; Wang
et al. 2024a), showing promising results and potentials in
cross-domain collaborations, such as finance (Zheng et al.
2020; Long et al. 2020), healthcare (Huang, Wang, and Han
2023; Song et al. 2021; Yan et al. 2024), and recommenda-
tion systems (Zhang and Jiang 2021; Yuan et al. 2022; Wei
et al. 2023), among others (Jin et al. 2021; Liu et al. 2021a;
Zhang and Jiang 2021; Fan et al. 2024; Shen, Ye, and Huang
2024; Ye et al. 2024c; Liang et al. 2024a,b). In this paper,
we investigate backdoor attacks in VFL without task labels,
providing insights for exploring security threats in VFL.
Backdoor Attacks. Backdoor attacks (Gu, Dolan-Gavitt,
and Garg 2017; Li et al. 2022; Fang et al. 2024; Liu et al.
2024b,d; An et al. 2024) were first proposed to inject a fixed
activation pattern into images, to target a specific class. The
original method in (Gu, Dolan-Gavitt, and Garg 2017) in-
volved changing the labels of random samples to the target
class, and then adding a fixed trigger to the samples, thereby
training the model to learn the correspondence between the
trigger and the target class. Besides, some research focuses
on backdoor attacks that do not require label manipulation,
making them more stealthy, known as clean-label attacks
(Turner, Tsipras, and Madry 2018; Zhao et al. 2020; Ning
et al. 2021; Hu et al. 2022; Gao et al. 2023; Huynh et al.
2024). Clean-label attacks assume the attacker adds triggers
to the samples of the target class, enabling the model to learn
the trigger-target correspondence without altering the labels.
In this work, we explore the paradigm of clean-label attacks,
where the malicious client in VFL cannot alter the labels.
Backdoor Attacks in VFL. Backdoor attacks have been ex-
tensively studied in Horizontal Federated Learning (HFL)
settings (Bagdasaryan et al. 2020; Lyu et al. 2023; Qin et al.
2024; Liu et al. 2024a), where malicious clients can directly
add triggers and alter the labels of local samples. However,
additional challenges make these attacks difficult to execute
in VFL settings. The primary challenge is that task label
information is inaccessible to the malicious client in VFL,
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complicating the attack. Several works have explored back-
door attacks in VFL settings (Liu et al. 2021b; Gu and Bai
2023; Chen et al. 2023; He et al. 2023; Chen et al. 2024). Nev-
ertheless, they assume that the attacker has preset knowledge
or assumptions about the task labels, which is not feasible
in VFL. In this work, we propose a label-free approach to
perform backdoor attacks, which is feasible in VFL.

3 Preliminary
3.1 Formal Problem Definition
Objective of Vertical Federated Learning. In VFL, clients
share overlapping sample spaces but possess private feature
spaces. Each client holds a local model to extract embeddings
of origin data. The goal is to collaboratively train a prediction
model where only one client, i.e., the active client, holds
the task labels. The other clients, i.e., the passive clients,
send embeddings of the shared samples to the active client
and participate in training the global prediction model. The
gradients are then sent back to each client for local model
updates. Define K as the number of clients, and N is the
shared samples discovered by alignment protocols (Hardy
et al. 2017) across clients, defined as D = {(xi, yi)}Ni=1,
where xi ∈ Rd is the raw data with d dimensions, and yi is
the corresponding label. The features of each sample xi are
distributed across clients as xi = {xk

i }Kk=1, with xk
i ∈ Rdk

.
The sample features in each client P k can be defined as
Dk = {xk

i }Kk=1. The objective of VFL can be formulated:

min
Θ

1

N

N∑
i=1

L(G(H1
i , ..., H

K
i ; θg), yi), (1)

where each client P k holds a local model fk(·; θk) that com-
putes the embeddings Hk

i = fk(x
k
i ; θ

k) from the raw fea-
tures. The final prediction is made at the active client P a, a ∈
{1, ...,K} with a global model G(·; θg). The parameters of
the overall VFL model are defined as Θ = {θ1, ..., θK , θg}.
Define L as the loss function, where a cross-entropy loss can
be employed for classification tasks.
Objective of Backdoor Attacks in VFL. The goal of back-
door attacks is to establish the reflection between the de-
signed trigger and the target class, with poisoned data from
the attacker Pm,m ∈ {1, ...,K} (the other benign clients
are defined as {P k}Kk=1 − {Pm}). Besides, the performance
on clean data is maintained. Define the whole VFL model as
F (·; Θ), the objective of backdoor attacks can be formulated:

min
Θ

1

Nc

Nc∑
i=1

L(F (xi; Θ), yi)

︸ ︷︷ ︸
Main Task

+
1

Np

Np∑
i=1

L(F (xi + δ; Θ), τ)

︸ ︷︷ ︸
Backdoor Task

,

(2)
where Nc and Np represent the numbers of samples in the
clean dataset Dc ⊆ D and poisoned sample set Dp ⊆ D
with Dc ∪ Dp = D. The trigger for the backdoor attacks
is denoted by δ and the backdoor target is denoted by τ .
In previous backdoor attacks, data poisoning often relies
on knowledge of the target label information, where sample
labels were altered to the target, or the poison set was selected

based on the sample labels belonging to the target class.
However, in VFL, the sample labels of collaboration tasks
are private information, posing challenges for the attacker
to alter the labels or construct the poison set. To overcome
these limitations, in this work, we explore a backdoor attack
approach applicable to VFL in a label-free manner.

3.2 Threat Model
We explore the scenario where one of the passive clients in
VFL assumes the attacker. It is a plausible assumption that
malicious clients intend to inject their intended backdoor into
the VFL model while obeying the VFL protocol.
Attacker Capability. As a passive client, the attacker has
access to its local data, model, and the gradients of interme-
diate embeddings during the training process. The attacker
does not possess any information about the task labels. It can
manipulate all of its local data and model parameters, but
cannot alter any labels in the active client.
Attacker Objective. The goal of the attacker is to inject a tar-
get backdoor into the VFL model, which will be activated by
a predefined trigger pattern. Once the VFL model is deployed,
the attacker can add the trigger to the local data of samples,
and the final predictions in the active client will be inten-
tionally misclassified to the backdoor target. However, the
classification accuracy on clean data should be maintained.

4 Methodology
To bypass label limitations in VFL, we follow a clean-label
setting (Turner, Tsipras, and Madry 2018; Zhao et al. 2020),
which involves: (1) creating a poison sample set from the
target class; (2) adding triggers on these samples for model
training to inject the backdoor. It avoids modifying sample
labels, adhering to the fundamental assumptions in VFL. For
step (1), we define an anchor sample and choose poison sam-
ples that are most consistent with the anchor based on their
embedding gradients. For step (2), we selectively switch the
local data of poison samples with other samples, enhancing
attacks while preserving main task accuracy.

4.1 Gradient-Guided Poison-Set Construction
Motivation. In VFL, as a passive client, the task label infor-
mation is not accessible to the attacker, presenting challenges
for backdoor attacks. However, the attacker receives updated
gradients of local embeddings, which closely relate to the
sample labels. In this case, we leverage the embedding gradi-
ents as guidances to construct the target poison set, ensuring
it consistently originates from the backdoor target.
Gradient-Guided Poison-Set Construction. To effectively
inject the backdoor into the VFL model, the attacker first
chooses an anchor sample as guidance. Denote the anchor
sample as xr, with features xm

r distributed to the attacker
client. The backdoor target τ is set to the class of the anchor
sample yr, and the label is only possessed in the active client.
During training, each client sends local embeddings Hk and
receives corresponding gradients calculated by the active
client. Similarly, the attacker client sends the embeddings
{Hm

i }Ni=1 computed from the local data Dm = {xm
i }Ni=1.
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Figure 2: The framework of Label-Free Backdoor Attacks (LFBA). To construct the poison set that consistently from the backdoor
target, (a) Gradient-Guided Poison-Set Construction (GPC in Section 4.1): the attacker chooses an anchor sample locally, and
the samples with maximum consistency are chosen for the poison set. They are consistently from the same class of the anchor,
i.e., the backdoor target; To effectively poison samples for injecting target backdoor, (b) Selectively Sample Switching (SAW in
Section 4.2): the attacker selectively switches the poison samples that are with maximum embedding gradients, which promotes
the backdoor optimization by disturbing the origin feature learning while maintaining the main task accuracy.

Subsequently, the attacker can obtain the embedding gra-
dients {∇Hm

i
}Ni=1 from the active client. The gradients of

embeddings can be calculated by:

∇Hk
i
=

∂L(G(H1
i , ..., H

K
i ; θg), yi)

∂Hk
i

. (3)

Given that the embedding gradients are calculated with sam-
ple labels and retain the label information, we utilize the
gradients as guidance to construct a sample set consistent
with the backdoor target. Specifically, we calculate the con-
sistency of embedding gradients between the anchor and
other samples and construct the target set comprising sam-
ples with the highest consistency. The construction process
can be defined as follows:

Dp = argmax
Dp

1

Np

Np∑
i=1

∇Hm
r

· ∇Hm
i

∥∇Hm
r
∥
2
∥∇Hm

i
∥
2

, (4)

where ∇Hm
r

is the gradient of the anchor sample embedding
Hm

r . The target set of chosen samples is denoted as Dp,
containing Np samples with the ratio p =

Np

N . Concretely,
we construct the poison set during the initial training epoch
and maintain the same set for subsequent training rounds.
Guided by the embedding gradients, the selected samples are
intended to consistently with the same label as the anchor
sample, which is the backdoor target. Utilizing the poison set
consistently from the backdoor target and adding designed
triggers, the VFL model can learn the association between the
backdoor target and the triggers without the need to alter any
labels. During the construction process, the attacker has no
access to label information about the backdoor target, which
aligns with the constraints in the VFL setting.

4.2 Selectively Sample Switching
Motivation. After obtaining the target sample set, the attacker
can add the designed triggers to the chosen samples and inject
the target backdoor directly. Consider the samples from the
backdoor target τ in Dp, the backdoor task can be formulated:

min
Θ

1

Np

Np∑
i=1

L(F (xi + δ; Θ), τ). (5)

Feature Learning

Trigger Learning
To inject the target backdoor, the reflection between the trig-
ger δ and the target τ is expected to be established, i.e., Trig-
ger Learning. However, with the poison samples consistently
chosen from the backdoor target τ , the model will focus on
Feature Learning: the correspondence between the original
features and the target. In this case, the trigger will be ig-
nored and under-fitted, hindering the optimization of trigger
learning. To address this limitation, an intuitive solution is
to disturb the feature learning, thereby encouraging the VFL
model to focus on learning triggers.
Selectively Sample Switching. Within the attacker capa-
bility, we propose to switch the poison samples with other
samples to disturb feature learning, promoting backdoor task
optimization. We first switch each poison sample features
xm
i with the local data of other samples xm

j ∈ {D − Dp}
not in the poison set. Then a designed trigger is added to the
local data of the poison samples. The poisoning process with
switching can be formulated:

xm
i → xm

j + δ. (6)

In this way, the feature learning of poison samples is dis-
rupted, promoting the VFL model to focus on trigger learning
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for enhancing attack performance. Besides, to maintain the
accuracy on clean data, we selectively switch and add triggers
to only a portion of the poison set samples. It minimizes the
impact on original feature learning, achieving a better trade-
off between main task accuracy and backdoor performance.
Concretely, we select the hard samples with the maximum
embedding gradients, which are considered difficult to learn
and promote main task performance. The construction of the
switching sample set can be defined as:

Ds = argmax
Ds

1

Ns

Ns∑
i=1

∥∇Hm
i
∥
2
, (7)

where Ds ⊆ Dp is the selected sample set to perform poi-
soning by switching and adding the trigger. The size of Ds

is Ns, with a switch ratio of s = Ns

N . Define [·] as data
concatenation, the final poisoned data can be formulated:

Dsf = {([x1
i , ..., x

m
j + δ, ..., xK

i ], yi)}Ns
i=1. (8)

The modified training data Df can be defined as follows:

Df = Dc + (Dp −Ds) +Dsf . (9)

With the final training data Df , the target backdoor can be in-
jected into the VFL model successfully without performance
degradation on clean data, under the applicable label-free as-
sumptions. For a clearer illustration, we provide an overview
of the proposed attacks in Algorithm 1.

4.3 Discussion and Limitation
Existing Attacks with Gradients in FL. Existing methods
in FL also use gradient information to aid backdoor attacks.
Several works (Sun et al. 2019; Wang et al. 2020) propose
performing projected gradient updates in the attacker client,
where the attack model stays close to the global model. Yoo et
al. (Yoo and Kwak 2022) suggest using gradient ensembling
from multiple poison rounds to improve attack generaliza-
tion. Nguyen et al. (Nguyen et al. 2024) leverage historical
gradient variations to pick infrequently updated neurons for
poisoning, reducing the dilution effect from benign clients. In
this work, we propose constructing the poison set by embed-
ding gradients in VFL, providing insights for future works.
Existing Attacks in VFL. Existing methods rely on prior
knowledge or assumptions about task labels. In contrast, we
design several baselines without additional knowledge for
comparison. This highlights the effectiveness of our method
with each key component. Please refer to Section 5 for details.
Limitations. However, our method LFBA may face chal-
lenges in certain situations: (1) If the number of clients in-
creases and the attacker features remain extremely limited,
the attack performance may decrease. (2) The sample switch-
ing may result in sub-optimal performance due to discrepan-
cies between the switching features and the backdoor target.

5 Experiment
Datasets. We evaluate our method on four real-world
datasets, with data distributed to multiple clients, and only the
active client holds the task labels: (1) NUS-WIDE (Chua et al.
2009): A multi-modal dataset contains 1000 text features and

Algorithm 1: The framework of LFBA in VFL
Input: Initial training data D and VFL model F (; Θ0); The
active client P a and malicious client Pm; The trigger δ.
Output: Trained VFL model F (; ΘT ), activated with trigger
δ for target τ .

1: for epoch t← 1, ..., T do
2: for all clients P k ← P 1, ..., PK in parallel do
3: Compute Hk = fk(x

k; θkt );
4: Send Hk to P a.
5: end for
6: for active client P a do
7: Lt = L(G(H1

i , ...,H
K
i ; θgt ), yi);

8: Return∇Hk calculated by Equation (3);
9: Update global model via∇θg

t
= ∂Lt

∂θg
t

.
10: end for
11: for attacker Pm do
12: if t==1 then
13: Choose an anchor in local data xm

a ;
14: Construct Dp through Equation (4);
15: end if
16: Poison D into Df by Equation (6)-Equation (9).
17: end for
18: for all clients P k ← P 1, ..., PK in parallel do
19: Update local model with∇θk

t
=

∂∇
Hk

∂θk
t

.
20: end for
21: end for

634 image features, labeled with multiple classes. We use
a five-class subset including ‘buildings’, ‘grass’, ‘animal’,
‘water’, and ‘person’, with 69966 training samples and 46693
testing samples. (2) UCIHAR (Anguita et al. 2013): A human
activity recognition dataset with six classes: ‘walking’, ‘walk-
ing upstairs’, ‘walking downstairs’, ‘sitting’, ‘standing’, and
‘laying’, with 7352 training samples and 2947 testing samples.
(3) Phishing (Asuncion, Newman et al. 2007): It provides
30 features indicating whether a website is a phishing web-
site, with 8844 training samples and 2211 test samples. (4)
CIFAR-10 (Krizhevsky, Hinton et al. 2009): It is an image
dataset for 10 classification tasks with 50000 training sam-
ples and 10000 testing samples. We conduct evaluations with
two-client settings (K = 2) and four-client settings (K = 4).
On the NUS-WIDE dataset, image features and text features
are distributed separately to different clients when K = 2. In
other cases, the features are equally partitioned to all clients.
Baselines. We compare several applicable baselines without
requiring task labels in VFL: (1) Vanilla: The VFL baseline
without attacks. (2) DGPC: Construct the poison set Dp by
GPC and directly add triggers. (3) RGPC: Randomly select
Ns samples in Dp to add triggers. (4) RS-GPC: Randomly
select Ns samples in Dp to switch and add triggers.
Evaluation Metrics. We evaluate the attack performance
with three metrics: the accuracy (M) on clean data and the
attack success rate (A) of poison data (Gu, Dolan-Gavitt, and
Garg 2017). Additionally, we use the mean values of (M)
and (A), referred to as V , to assess the trade-off performance.
Models. In all experiments, each client employs a local model
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NUS-WIDE UCI-HAR
K = 2 K = 4 K = 2 K = 4Methods

M A V M A V M A V M A V
Vanilla 83.98 12.36 48.17 82.56 2.27 42.25 92.98 4.48 48.73 90.70 2.73 46.72
DGPC 83.56 98.30 90.93 80.23 85.85 83.04 87.75 77.28 82.52 88.90 86.12 87.51
RGPC 83.86 96.86 90.36 82.21 81.60 80.29 86.33 66.33 76.33 90.50 84.40 87.45

RS-GPC 83.46 98.55 91.01 82.26 86.45 84.36 91.13 98.72 94.93 89.93 88.80 89.37
LFBA 83.93 99.85 91.89 82.36 95.13 88.75 91.99 99.96 95.98 90.69 90.63 90.66

Phishing CIFAR-10
K = 2 K = 4 K = 2 K = 4Methods

M A V M A V M A V M A V
Vanilla 95.12 2.22 48.67 92.76 2.55 47.66 78.22 3.00 40.61 73.66 4.26 38.96
DGPC 93.26 78.16 85.71 90.90 76.59 83.75 70.39 96.48 83.43 69.77 82.40 76.09
RGPC 93.71 77.67 85.69 91.68 70.23 80.96 71.17 94.87 83.02 71.13 80.02 75.58

RS-GPC 94.30 81.36 87.83 91.63 77.98 84.81 77.12 97.18 87.15 70.20 91.94 81.07
LFBA 93.76 83.09 88.42 91.95 80.74 86.35 77.68 98.22 87.95 72.33 93.47 82.90

Table 1: Comparisons with Baselines. Bold represents the highest accuracy.

NUS-WIDE
p =

Np

N M A V
Vanilla 83.98 12.36 48.17

0.02 83.86 99.49 91.67
0.06 83.73 99.86 91.79
0.1 83.93 99.85 91.89

0.14 83.76 99.97 91.87
0.18 83.03 99.81 91.42
0.2 82.79 95.91 89.35

(a) Different Poison Ratios.

NUS-WIDE
s = Ns

N M A V
Vanilla 83.98 12.36 48.17

0.1 83.62 99.70 91.66
0.3 83.93 99.85 91.89
0.5 83.73 99.94 91.84
0.7 83.63 99.97 91.80
0.9 83.57 99.96 91.77
1 83.54 99.94 91.74

(b) Different Switch Ratios.

Table 2: Ablation with Different Np and Ns. Our attack
method is effective with different numbers of poison samples.

to extract embeddings, while the active client employs an
additional global model for final predictions. For the NUS-
WIDE and UCI-HAR datasets, we utilize a 4-layer linear
model as the local model and a 3-layer model for the global
model. For the Phishing dataset, we use a 2-layer model for
both the local model and the global prediction model. For
CIFAR-10, we utilize the ResNet18 (He et al. 2016) as the
local model and a 3-layer linear model for the global model.
Implement Details. We randomly set several dimensions to a
fixed value as the triggers on the NUS-WIDE, UCI-HAR, and
Phishing datasets. For CIFAR-10, we utilize the same trigger
pattern as BadNets (Gu, Dolan-Gavitt, and Garg 2017). The
backdoor target is consistent with the anchor sample class:
on the NUS-WIDE and UCI-HAR datasets, it is the fourth
class, e.g., ‘water’ in the NUS-WIDE dataset; on the Phishing
dataset, it is ‘not the phishing website’. For CIFAR-10, the
target is the seventh class, i.e., ‘frog’. All models are trained
until convergence using the Adam optimizer (Kingma and
Ba 2015) with a batch size of 256. The learning rate of all
models is set to 0.001 for the NUS-WIDE and CIFAR-10
datasets, and 0.003 for the UCI-HAR and Phishing datasets.
The poison sample ratio p =

Np

N is set between 0.1 and 0.3,
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Figure 3: Ablation with Different Trigger Sizes. Our attack
method is effective with different trigger sizes.

and the switching sample ratio s = Ns

Np
is set between 0 and

1 (e.g., p = 0.1 and s = 0.3 for the NUS-WIDE dataset).

5.1 Ablation Study
Comparison with Baselines. We provide comparisons with
baseline methods and present results in Table 1, where LFBA
achieves high attack success rates, up to 92.64% on average,
without significant degradation in main task accuracy. Com-
paring DGPC with Vanilla, the constructed poison set can be
utilized to effectively inject backdoors, resulting in an aver-
age ASR of 85.15%. Comparing RGPC with RS-GPC shows
an average gain of 8.63% in ASR, demonstrating that the
sample switching method is effective for enhancing attacks.
Comparing LFBA with RS-GPC, the trade-off performance
increases by 1.55% on average, indicating that the selective
switching strategy is effective for a better trade-off.
Ablation with Different Np and Ns. To investigate the im-
pacts of poison sample ratio p and switch sample ratio s, we
conduct two ablation experiments: (a) we change the poison
ratios p while keeping the switch ratio fixed at 0.3, and (b)
we change the switch ratio s while keeping p fixed at 0.1. As
shown in Table 2a, the attack performance of LFBA remains
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(b) Gaussian Noise.

Figure 4: Experiments with Defenses. The results show the
effectiveness of LFBA under different defense strategies.

effective with changes in p, although decreases with relatively
large values, e.g., p = 0.2. It is because the consistency of
the constructed poison set decreases, hindering the trigger
learning. However, a small sample set is usually preferred
to ensure the attack is stealthy. As shown in Table 2b, the
performance of LFBA remains stable and effective across
different s values. Both experiments show the effectiveness
of our method with various poison and switch ratios.
Ablation with Different Trigger Sizes. We conduct abla-
tions on the NUS-WIDE and UCI-HAR datasets, to explore
the impacts of trigger sizes. As depicted in Figure 3, back-
door attacks can be successful (over 90%) with different
trigger sizes even when only 0.03% of the original features
are changed to the fixed trigger value (5 trigger dimensions vs.
1634 original feature dimensions on the NUS-WIDE dataset).

5.2 Extended Analysis
Attack under Defenses. To evaluate the attack effectiveness
under defenses, we apply two defense strategies and test
LFBA on four datasets: gradient compression (Shokri and
Shmatikov 2015; Lin et al. 2018; Fu et al. 2022), and adding
Gaussian noise to the gradients (Fu et al. 2022). We use the
compression rates of 0.8, 0.6, and 0.4, and the Gaussian noise
standard deviations of 0.0001, 0.001, and 0.01 for evaluation.
As depicted in Figure 4, although stronger defenses can re-
duce the attack success rates, they also degrade main task
performance significantly, indicating the defenses fail.
Consistent Rate of Poison Set. We calculate the consistent
rate of the constructed poison set Dp, which indicates the
proportion of samples that belong to the class of the anchor
sample (backdoor target). As illustrated in Figure 5, the con-
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Figure 5: Consistent Rate with Different Poison Ratios p. The
constructed poison set is consistently from the target class.

(a) Poison-Set Visualization. (b) Attack Visualization.

Figure 6: Feature Visualizations. (a) The samples in the poi-
son set are consistently from the target class. (b) The samples
with triggers are misclassified into the target class.

structed sample set consistently includes samples from the
attack target across different poison ratios p, demonstrating
that GPC effectively constructs the target poison set.
Visualization Results. We further visualize the features ac-
quired from the VFL model with the injected backdoor. In
Figure 6a, we visualize parts of samples in poison set Dp,
which are consistently from the same class (backdoor target).
Besides, we poison several samples with triggers and visu-
alize them in Figure 6b, where the poisoned samples cluster
into the backdoor target, indicating successful attacks.

6 Conclusion

In Vertical Federated Learning (VFL), the trained model may
be vulnerable to backdoor attacks, where the final output is
rendered to the backdoor target once the specific triggers are
added. In this paper, we investigate an applicable backdoor
attack in VFL that does not require knowledge of the predic-
tion tasks or any label information. Specifically, we use the
gradients of embeddings as guidance to construct a consistent
poison set for the backdoor target. Additionally, we propose
selectively switching the sample features of the poison set
to enhance backdoor task optimization, and achieve a better
trade-off between the main task and the backdoor task. This
research provides valuable insights for executing backdoor
attacks in VFL, and will induce potential implications for
real-world security applications and studies.
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